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1. We consider systems of the form

(1) 2 = alx,t)x,

where t wvaries in a closed real interval I, x is a real con-
tinuous n-vector, and A(x,F) is a real n X n matrix whose
elements are continuous functions of t (for t ¢ I) and of the
components  X;,...,X, of x (for X, € (-0,0), k =1,...,n).
A solution of (1) on I will be said to be nonoscillatory on
this interval if at least one of its components does not vanish
on I. While for a linear system (1) there always exists, for a
given to, a value tl € (to,oo) such that all the solutions of
the system are nonoscillatory in [to,tl][l], this is in general
not the case if the system is nonlinear. An elementary example
which exhibits this type of behavior is the system xl' = X,,

x, '= —xl3, which possesses solutions with arbitrarily small in-

2
tervals of nonoscillation. In the nonlinear case it is therefore
necessary to speak of the nonoscillation of specific solutions or,

at best, of certain classes of solutions. We shall characterize

an individual solution by its initial value at the left endpoint



of the interval |. However, in order to fornulate a neaningfu
criterion for the nonoscillation of such a solution it is also
necessary to establish the existence of this solution throughout
the interval |. The condition given in Theorem | guarantees
bot h existence and nonoscillation. Theorem Il gives a weaker
condition which, though not sufficient for nonoscillation, stil
assures the existence in | of a solution with specified initia
val ues and, noreover, yields an estimate for the normof the
solution vector.

We denote by ||B| the operator normof the matrix B, i.e.

[|B] = max ||BA{| , where |lod] =1 and ||dj is the euclidean norm
a

of the vector a. For the matrix A(x,t) we define the norns

(2) Na[A(x,t)] = max |[A(x,t)]]
H| | <O

whi ch depend on a positive nunber a. Wile it may be difficult

to conpute Na for a given A(x,t), it is generally very easy

to find an upper bound for it, i.e., a function Rcr,t) which

increases with a(cr > 0) and is such that

(3) HAX O < RIIx[1).

We shall accordingly formulate our results in ternms of such a
bound R(cr,t) rather than the norm (2) ; the best possible
result will correspond to the choice Rcr,t) = NU[A(x,t)].

For the existence proof in Theorem Il we shall use the
Li pschitz condition




(4) latx,8) - Aly,t) | < B llx-vll (|0, lyl<o, te1) .

Because of the continuity in t and the restrictions on x,y

this condition will, for instance, be satisfied if the elements of
A(x,t) have continuous partial derivatives with respect to the
components of x.

We now state our first result.

Theorem I. Let A(x,t) satisfy the inequality (3), where

R(o,t) is nonnegative, continuous in both arguments, and non-

decreasing in ¢ for fixed t, for t e [a,b] and ¢ ¢ [0,0).

Denote by T the solution of the ordinary differential equation

(5) T' = TR(T,t)

with the initial condition 7(a) = vy(y > 0). If 1T exists

throughout [a,b] and

I

(6) T(b) < T(a)e’

then all solutions x of (1) for which |[x(a)]l < v exist

and are nonoscillatory i [2a,b]. The constant exp(v/2) in

(6) is the best possible; in fact, the conclusion does not

necessarily follow if equality is permitted in (6).

If the system (1) is linear -- i.e., if the coefficient ma-
trix A does not depend on x -- (6) reduces to the condition
b
T
(7) Jaeyjae < T
a

[1], which evidently guarantees the nonoscillation of all solu-

tions of the equation on [a,b]. A similar conclusion can be




drawn if the systemis sublinear, i.e., if for all positive a

the nornms (2) are dom nated by a continuous function R(t)e If
b

IR(t)dt < gy all solutions will again be nonoscillatory.

a

2. The proof of Theorem | in the general case will be obtained
by conbining the result for linear systens [1] with a suitable
maj ori zi ng procedure, and we therefore begin with a brief deriv--
ation of the linear result. If ||4|] = a and u = ax, the equa--
tion x' = A(t)x transforns into the equation
|
a
T = - —
u = Au 3 u
for the unit vector u. Since uu' = 0, this takes the form

u’ = Au - u(uAu).

If ¢ is a constant unit vector, we have

(cu)! = [c - (cu)u]Au
and thus
| (cu)'| < fle - (ewullfay = V1 - (cu)? {a]j,
. e.,
(8 | e e ) Il
Integrating over [a,b], we obtain )
9 |arc sin cu(b) - arc sin cu(a@) | £ :j||A||dt.

a




If x is oscillatory on [a,b], there exist val ues
tl""’tn on [a,b] such that 'rg(tk) =0 (k=l,...,n,
u = (ul,...,un)). If we denote by S(t) the diagonal matrix
with the elements "7M(t) = sgn(t. t) (t"t g, Sil_c:_l'((t]\J = o and
define the piecew se constant unit vector «c(t) by «c(t) = S(t)c,
the inner product c(t)u(t) remains continuous throughout
[a,b]. We may therefore replace ¢ by c(t) in (8 and inte-
grate over [a,b]. Since c(a) =c and c(b) =-c, this yields

b
| arc sin cu(b) + arc sin cu(a) | _<£J||A{|dt.

a

Conbining this with (9), we have

b
|arc sin cu(b) | + |arc sin cu(a) | <£.[||A||dx,

a
and thus, with the particular choice c¢ = u(a),
b

A+ [arc sin u(a)u(b)| ™ JJA[ldx.
a

Since this is inconpatible with (7), the latter condition has
t hus been shown to be sufficient to guarantee the nonoscillation
of all nontrivial solutions of x' = A(t)x in [a,b].

Turning now to the general case (and postponing the discus-
sion of existence until the proof of TheoremI1l), we note that a
nontrivial solution X(t) of (1) may be regarded as a sol ution

of the l|inear system
x' = A(X(t) ,t)x.

Since, as just shown, all nontrivial solutions of this system
(including X) wll be nonoscillatory on [a,b] if




b
(10) [laEey flat < T,

a

Theorem I will be proved if the assumptions made can be shown
to imply (10).
By (1) and (3), we have

% = G OT < IRIPIAE O || < I=IPRARL 0
Setting ||X|| = ¢ and noting that XX' = ¢gg¢', we obtain
(11) o' < oR(o,t), g(a) = [[X(a)|l.
If we compare this with the differential equation
(12) T' = TR(T,t), T(a) = v 2 ||IR@)]| = g(a),

and take account of the fact that R(T,t) is a nonnegative
nondecreasing function of T, an elementary argument shows that
g < T as long as the solution 7T of (12) exists. Using again

the monotonicity of R(T,t), and observing (1l1l), we find that

b b
fR(o,t)dt < de(r,t)dt = log :_%)L < 12T_ ’
a a

where the last inequality follows from (6). By (3), and because
of ||X|| £ T, the solution X of (1) is thus subject to condi-

tion (10). Since this was shown to imply to nonoscillation of

X1

on [a,b], the main assertion of Theorem I is proved.

As mentioned before, (6) reduces to (7) if the system is
linear. Since (7) is the best possible condition of its kind
[1], this establishes the assertion regarding the sharpness of

condition (6).




3. W illustrate the use of Theorem | by two exanples. CQur

first exanple concerns the n-th order differential equation
(13)  xM+ xIF(t, x, x', ... A%y + x =0, nr2 1£r £n-1,

which is equivalent to a system (1) if the non-zero el enents

i A = = - = -
A}N of the matrix A are A .,v+11 (v=l, ... ,n1), Anl 1,
A =-F If a=(a,...,&x2 is a unit vector, we have,
n,r+l I

2 _ 2
(ha) - =1+ 28,8 04p + 3,y FL

and therefore

1L

1 2.2 1 4 - 2 2

2 , )
1Az =i+ B % nr +xar v (i +\2\)

An application of Theorem | thus yields the follow ng result.

Let | F(t,x,x”, «. . ,x*3\ AR(a,t), where

Q =X +x% +..+ [®**"™]° and R(,t) is nondecreasing

in a and continuous in both arguments, and let the differential

equation T' =TR(T,t) have _a continuous solution_in [a,b]

with a positive initial value T(a). ijf r(b) < T(a)e® and if

X ,is ,a_solution of (13) jLn [a,b] for which
x?(a) +x'2?(a) + ..+ [x("Y (a)]?" T*a), then at |east one of

the functions Xj X!, .., AP~ 4) does not vani sh on_ [a,Db].

It may be noted that, because of Rollels theorem it also
follows that such a solution cannot have nore than n-1 zeros
in [a,b].

To illustrate the last statement in a specific instance, we

consi der the equation

(14) x" + p(t)F(x,x") + x =0,




I 2 2
with |F(x,x')| <L R )/X+X' ), where R(") increases with a.
If x is a solution of (14) with x(a) =0, x' (a) =y >0, and

if b is subjec_teziio

.
ds

j er(s) > fip(t)ldt,

Y a

then x 1is positive and increasing in [a,Db].
As anot her application of Theorem | we consider the auton-

onous equation
x(MW+ xF(x, x',...,x"-Dy =0,

whi ch may be replaced by the system

l1-n .
- N ' = . ! = ! = -
Xy CXJ X o CXgs -+ -5 X 4 eX n X c >inF., where c is
an arbitrary positive constant. [f-this systemis witten in

the form (1), the normof the matrix A is easily found to be

[[Al =nax [ cc™l Pl J.

Hence, if | P(x,. .., x("D | ~ARy) (2= x2+. ..+ [xn"in?
and R(a) is an increasing function, the right endpoint of the
i nterval [a,b] in which nonoscillation can be guaranteed is
-ﬂf

given by T(b) =r(a)e® where r is the solution of

T = T max [c,cl"“R(r)]5 r(a) = a(a).
Since T 1is increasing for any choice of ¢, we wll have
R(r) ;>c" if ¢ is so chosen that Ra(a)] = c". Wth this
value of ¢, the equation is therefore of the form r' = c¢" n"‘%’R(T),

and an application of Theorem | shows that the existence and non-
oscillation of a solution x for which
x?(a) + x*%(a) +...+ [x*"~Y(a)]? = y}(Y > 0) can be guaranteed

on the interval [a,b], where




n-1 ve g
b-a:[R(Y)]”J—-é-Rf—S).
Y

4. So far we have not shown that the hypotheses of Theorem |

are sufficient to guarantee the existence throughout [a,b] of
the solutions under consideration. This question will be settled
by the following theorem In fact, it will be shown that for

the purpose of establishing existence we may replace the norm

(2) by t he maxi numof t he quadratic form ccA(x,t)a (J|d] = 1)

for ||¥| .<€Ea Since this maxi num cannot exceed the norm (2),

our result will be stronger than that required for the purposes

of Theorem I|.

Theorem 1l. Let A(x,t) satisfy the Lipschitz condition (4)

and the inequality

(15) aA(x,t)a £ J][x],1) aldl = 1),

where the function $S(.,t) j-ss continuous in both arqunents,

and nondecreasi ng i

——

a
a G [0,00) . _Let r be <a_solution of the ordinary differential

equation

for fixed t, for t e [ab] and

(16) T = TS(T,t)

whose interval of existence includes [a,b] and for which

T(a) >0. 1J. c i8 “L_constant vector satisfying ||d| ™ T(a) ,

then the system (1) has c¢i _unique solution x(t) jLn [a,b]

wth the initial condition x(a) = c, and we have

(17) B(t) [~ T(t).




10.

We note that for sufficiently small (positive) initial
values equation (16) will have solutions which exist throughout

[a,b]. Indeed, if we take 0 < T(a) < v, where
b

(18) Y = M exp[-[s(M,t)dt], M> o,

a

(M constant) and consider the sequence of functions To’§3"'

defined by
t

(19) (8 = T(@expl[s(r_,s)ds], T =7(a),
a

it follows from (18) and the fact that 7(a) £ y that

t b
Tm+l(t) < M exp[J[S(Tm,s) - S(M,s)]ds - IS(M,s)ds].
a t

An induction argument (using the monotonicity of S and the
fact that L < M) then shows that T <M for all m. More-
over Tl > To, and the application of a standard argument to
(19) shows that Tm+l > T Because of the equicontinuity of

the sequence [Tm} (which follows from (19) and the uniform
boundedness of the Tm) it thus has a uniform limit, which
clearly is a solution of (16) (and is bounded by M). Theorem II

will therefore have the following:

Corollary. If |lc|| £ y, where y is the number defined in

(18), the solution x(t) of (1) with the initial value

x(a) = ¢ exists, and satisfies ||x(t)| < M, throughout [a,b].

Turning now to the proof of Theorem II, we remark that it
is easy to obtain the estimate (17) for a solution of (1) whose

existence in [a,b] is known beforehand. Indeed, if we set




11.

CT2= IIX]| we have, by (1) and (15), aa' = xx' = xA(x,t)x <£

a S(a,t), i.e., a'® <f£ aS(a,t). If T is the solution of

T = TS(T,t) for the initial condition T(a) = a(a), it fol-

lows fromthe nonotonicity of S (with respect to a) that

a<L™ *d this establishes (17). It nmay be noted that for a

linear system (1), (17) reduces to the well-known inequality
I < 1Ix(a) || exp{j A(A) ds},

a

where A (A) = max ocA(s)a for |la] = 1 [2].

To prove the existence part of Theoremll, we set up the

iterati on schene
(20) Xme1< = A(Xn, t) Xme1, Xm1(a) = c,

where it may be noted that, in contrast to the customary
successi ve approximation procedure, every step requires obtain-.
ing the solution of a linear differential system If we set
||xm|| = g we have, by (20) and (15),

2
omt1mil = Fm+1¥mer’ T XmefOX ) X g Ay Sagpt).

Hence,
t
am1(t) " [[cl|exp(Js(ans)ds}.
a
If T is a solution of (16) with an initial value T(a) > |||

and if o=, it follows that
t

{t) ~ T(a)exp(js(T,s)ds}

a

Tm+1




12.

and therefore, by (16), timi <L "> 'fwebeginthe jtaration
with xo(t) = ¢, we thus have ain£T for all m.

Accordingly, if T £M in [ab], we have \W,\\ £ M
for all m, and it follows from (4) that

IA(Xm,S) - A(Xm-1,9) || £ L|Xm - Xm-1l], t € [a,b],

where L = LM Is a constant independent of t. Simlarly, be-
cause of ||xm||_<£ M and the continuity of A(x,t) in x and

there exists a constant K such that ||Ax ,t)||] < K for

m
t e [a,b] and all m. Noting that, by (20),

- e

X (0 Xp(t) v g =17
ad

rl\f Y_af
[wvn at v v ~i n+l

» 1
ml'~

AL S) O X Hds,

and utilizing these estimates, we are led to the inequality
t t

(21) e 1%l < Mufllx -x llas + K[llx o -x [lds.

m+1"
a a

Wth the abbreviation
t

— st
P () = e fx -x__.]lds,
a

this may be witten t

p A (1) £ MLfp_(s)ds,

and a standard argument shows that this inequality inplies the

uni form convergence of EP (t) in [a,b]. Since, by (21),
m m

IES

X o1l < e® [MLPm(t) + Ke_ (8],




33

this proves that the sequence {xm} converges uniformy to a
solution of (1). The uniqueness of this solution is then shown
by a simlar nodification of the usual argunent. This conpletes
t he proof of Theorem .

W finally note that the conditions inposed on the matri x
A(Xjt) in Theorem Il are in general not sufficient to nake the
system (1) nonoscillatory. For exanple, in the case of a skew
symmetric matrix A(x,t) the function S in (15 my be taken
to be identically zero, and the interval of existence of all
solutions of (1) will therefore coincide with the interval in
which A(x,t) is continuous in t. An elenentary exanpl e of

an oscillatory systemof this type is the |linear system corres-

! A
ponding to the matrix A =] 011. Its general solution is the
\~10 7/
vector (Y cos(t-t ), y sin(t-t )), where y and t are con-
0 0 0

stants, and then* systemis thus oscillatory in any closed inter-
val of length /2
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