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1. We consider systems of the form

(1) |£=A(?c,t)x,

where t varies in a closed real interval I, x is a real con-

tinuous n-vector, and A(x,-|:) is a real n X n matrix whose

elements are continuous functions of t (for t e I) and of the

components Xp..,,x of x (for x, e (-00,00) , k = l,...,n),

A solution of (1) on I will be said to be nonoscillatory on

this interval if at least one of its components does not vanish

on I. While for a linear system (1) there always exists, for a

given t , a value t^ e (t ,00) such that all the solutions of

the system are nonoscillatory in [t , t,][1] , this is in general

not the case if the system is nonlinear. An elementary example

which exhibits this type of behavior is the system x,! = x^,

x 2
 ! = -X-. , which possesses solutions with arbitrarily small in-

tervals of nonoscillation. In the nonlinear case it is therefore

necessary to speak of the nonoscillation of specific solutions or,

at best, of certain classes of solutions. We shall characterize

an individual solution by its initial value at the left endpoint
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of the interval I. However, in order to formulate a meaningful

criterion for the nonoscillation of such a solution it is also

necessary to establish the existence of this solution throughout

the interval I. The condition given in Theorem I guarantees

both existence and nonoscillation. Theorem II gives a weaker

condition which, though not sufficient for nonoscillation, still

assures the existence in I of a solution with specified initial

values and, moreover, yields an estimate for the norm of the

solution vector.

We denote by ||B|| the operator norm of the matrix B, i.e.

||B|| = max ||BCX|| _, where ||cc|| = 1 and ||a|j is the euclidean norm
a

of the vector a. For the matrix A(x,t) we define the norms

(2) Na[A(x,t)] = max ||A(x,t)||

Hx||<Cf

which depend on a positive number a. While it may be difficult

to compute N for a given A(x,t), it is generally very easy

to find an upper bound for it, i.e., a function R(cr,t) which

increases with a(cr > 0) and is such that

(3) l|A(x,t)|| < R(||x||,t).

We shall accordingly formulate our results in terms of such a

bound R(cr,t) rather than the norm (2) ; the best possible

result will correspond to the choice R(cr,t) = N [A(x,t)].

For the existence proof in Theorem II we shall use the

Lipschitz condition
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(4) | |A(x,t) - - A ( y , t ) | | £ Lff||x-y|| (||x||£ff

Because of the continuity in t and the restrictions on x,y

this condition will, for instance, be satisfied if the elements of

A(x,t) have continuous partial derivatives with respect to the

components of x.

We now state our first result.

Theorem I. Let A(x,t) satisfy the inequality (3), where

R(cr,t) jjs nonnegative, continuous in both arguments, and non-

decreasing in a for fixed t, for t e [a,b] and or € [O,oo).

Denote by r the solution of the ordinary differential equation

(5) T' = TR(r,t)

with the initial condition r(a) = y(Y > 0 ) • UL T exists

throughout [a,b] and
7T

(6) T(b) < r(a)e2

then all solutions x o»f (1) for which ||x(a) || £ y exist

and are nonoscillatory in [a,b]. The constant exp( / ) în

(6) is the best possible; in fact, the conclusion does not

necessarily follow if equality is permitted in (6).

If the system (1) is linear -- i.e., if the coefficient ma-

trix A does not depend on x -- (6) reduces to the condition
b

(7) J||A(t)||dt

[1]9 which evidently guarantees the nonoscillation of all solu-

tions of the equation on [a,b]. A similar conclusion can be
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drawn if the system is sublinear, i.e., if for all positive a

the norms (2) are dominated by a continuous function R(t)• If
b

R(t)dt < -r, all solutions will again be nonoscillatory.

2. The proof of Theorem I in the general case will be obtained

by combining the result for linear systems [1] with a suitable

majorizing procedure, and we therefore begin with a brief deriv-

ation of the linear result. If ||x|| = a and u = ax, the equa-

tion xT = A(t)x transforms into the equation

a!

uT = Au - — ua

for the unit vector u. Since uu1 = 0, this takes the form

uT = Au - u(uAu).

If c is a constant unit vector, we have

(cu)! = [c - (cu)u]Au

and thus

- (cu)2

l. e. ,

(cu)
(8)

Vl-(cu)2

Integrating over [a,b], we obtain
b

(9) | arc sin cu(b) - arc sin cu(a) | £ J||A||dt.
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If x is oscillatory on [a,b], there exist values

t ,...,t on [a,b] such that ir (t ) = 0 (k=l,...,n,

u = (u.,...,u )). If we denote by S(t) the diagonal matrix

with the elements ^^(t) = sgn(t.-t) (t^t ) , siCTC(
t]J = ° a n d

define the piecewise constant unit vector c(t) by c(t) = S(t)c,

the inner product c(t)u(t) remains continuous throughout

[a,b]. We may therefore replace c by c(t) in (8) and inte-

grate over [a,b]. Since c(a) = c and c(b) = -c, this yields
b

| arc sin cu(b) + arc sin cu(a) | <£ ||A||dt.

Combining this with (9), we have

b

| arc sin cu(b) | + | arc sin cu(a) | <£ ||A||dx,

a
and thus, with the particular choice c = u(a),

b
^ + [a rc s i n u ( a ) u ( b ) | ^ J||A||dx.

a

Since this is incompatible with (7), the latter condition has

thus been shown to be sufficient to guarantee the nonoscillation

of all nontrivial solutions of x! = A(t)x in [a,b].

Turning now to the general case (and postponing the discus-

sion of existence until the proof of Theorem II), we note that a

nontrivial solution x(t) of (1) may be regarded as a solution

of the linear system

x! = A(x(t) ,t)x.

Since, as just shown, all nontrivial solutions of this system

(including x) will be nonoscillatory on [a,b] if
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b

(10) J||A(x(t),t) ||dt < ̂ ,
a

Theorem I will be proved if the assumptions made can be shown

to imply (10) .

By (1) and (3), we have

xx' = xA(x,t)xi ||x||2||A(x,t)|| £ !|x1|2R(||xLt).

Setting ||x|| = cy and noting that xx' = ao* , we obtain

(11) ff1 lffR(ff,t) , <y(a) = ||x(a)||.

If we compare this with the differential equation

(12) r' = TR(r,t), T(a) = Y^ ||x(a) || = a(a) ,

and take account of the fact that R(T,t) is a nonnegative

nondecreasing function of T, an elementary argument shows that

a <£ T as long as the solution r of (12) exists• Using again

the monotonicity of R(T,t), and observing (11), we find that
b b

jR(a,t)dt £ jR(T,t)dt = log JlH" < | ,
a a

where the last inequality follows from (6). By (3), and because

of ||xl| <̂  T9 the solution x of (1) is thus subject to condi-

tion (10)• Since this was shown to imply to nonoscillation of

x on [a,b], the main assertion of Theorem I is proved.

As mentioned before, (6) reduces to (7) if the system is

linear. Since (7) is the best possible condition of its kind

[1], this establishes the assertion regarding the sharpness of

condition (6).
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3. We illustrate the use of Theorem I by two examples. Our

first example concerns the n-th order differential equation

(13) x(n)+ x(r)F(t,x,x! , . . . ̂ x*11"1*) + x = 0, n ̂  2, 1 £ r £ n

which is equivalent to a system (1) if the non-zero elements

A of the matrix A are A^ = 1 (V=l, . . . ,n-l) , A = -1,

A = -F. If a = (a ,...,& ) is a unit vector, we have,

(Aa) = 1 + 2a .a ^.p + a _,, F2,v 1 r+1 r+1 '

and therefore
JL

2 1 2 2 1 4 - 2 , , 2
2 i + F + nr + ± F V ̂  (i + \?\)

An application of Theorem I thus yields the following result.

Let | F(t,x,x? , • . . ,xK ~ )\ ^R(a,t), where

Q. = x + x! +...+ [x ] and R(a,t) is nondecreasinq

in a and continuous in both arguments, and let the differential

equation TT =TR(T,t) have _a continuous solution in [a,b]

with a positive initial value T(a). ijf r(b) < T(a)eA and if

x ,is ,a solution of (13) jLn [a,b] for which

x2(a) + x' 2(a) +. . .+ [x(n"1) (a) ]2 ̂  T2(a) , then at least one of

the functions XjX1,..,^ does not vanish on [a,b].

It may be noted that, because of Rolle1 s theorem, it also

follows that such a solution cannot have more than n-1 zeros

in [a,b].

To illustrate the last statement in a specific instance, we

consider the equation

(14) x" + p(t)F(x,x') + x = O,
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I 2 2

with |F(x,x!)| <L R( )/X +X ! ), where R(^) increases with a.

If x is a solution of (14) with x(a) = 0, x! (a) = y > 0, and

if b is subject to
y

J
then x is positive and increasing in [a,b].

As another application of Theorem I we consider the auton-

omous equation

x ( n )+ xF(x,x',...,x(n-1)) = 0,

which may be replaced by the system

xn
! = cx^x ' = cx_;...,x ' = ex ,x ' = -c xnF, where c is
1 2 2 3' 5 n-1 n^ n 1 '

an arbitrary positive constant. If this system is written in

the form (1), the norm of the matrix A is easily found to be

||A|| = max [cc^lPlJ.

Hence, if | P(x,. . . ,x ( n" 1 ) | ^ R(ff) (a
2 = x 2 + . ..+ [ x ^ " 1 ^ 2

and R(a) is an increasing function, the right endpoint of the

interval [a,b] in which nonoscillation can be guaranteed is

given by T(b) = r(a)e^ where r is the solution of

Tl = T max [c,c "nR(r)]5 r(a) = a(a).

Since T is increasing for any choice of c, we will have

R(r) ;> cn if c is so chosen that R[a(a)] = cn. With this

value of c, the equation is therefore of the form r! = c" TR(T)

and an application of Theorem I shows that the existence and non-

oscillation of a solution x for which

x2(a) + x*2(a) +...+ [x*n~1)(a)]2 = y2(Y > 0) can be guaranteed

on the interval [a,b], where
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ds
sR(s)

Y

4. So far we have not shown that the hypotheses of Theorem I

are sufficient to guarantee the existence throughout [a,b] of

the solutions under consideration. This question will be settled

by the following theorem. In fact, it will be shown that for

the purpose of establishing existence we may replace the norm

(2) by the maximum of the quadratic form ccA(x,t)a (||a|| = 1)

for ||x|| <£ a. Since this maximum cannot exceed the norm (2),

our result will be stronger than that required for the purposes

of Theorem I.

Theorem II. Let A(x,t) satisfy the Lipschitz condition (4)

and the inequality

(15) aA(x,t)a £ S(||x||,t) (||a|| = 1),

where the function S(cr,t) j-ss continuous in both arguments,

and nondecreasing in a for fixed t, for t e [a,b] and

a G [0,oo) . Let r be <a solution of the ordinary differential

equation

(16) T' = TS(T,t)

whose interval of existence includes [a,b] and for which

T(a) > 0. IJ: c i§. ̂ L constant vector satisfying ||c|| ^ T(a) ,

then the system (1) has ci unique solution x(t) jLn [a,b]

with the initial condition x(a) = c, and we have

(17) Hx(t)|| ^ T(t).
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We note that for sufficiently small (positive) initial

values equation (16) will have solutions which exist throughout

[a,b]. Indeed, if we take 0 < T(a) £ y, where
b

(18) Y = M exp[-Js(M,t)dt], M > 0,

(M constant) and consider the sequence of functions r ,T,...

defined by

(19) Tm+l ( t ) = T(a)exp[^S(Tm,s)as], TQ = r(a) ,

it follows from (18) and the fact that r(a) £ y that
t b

r _(t) ̂ M exp(f[S(T ,s) - S(M,s)]ds- fs(M,s)ds}.
m+1 J m J

An induction argument (using the monotonicity of S and the

fact that r < M) then shows that r < M for all m. More-
o ^ m •*•

over T >̂ T , and the application of a standard argument to

(19) shows that r ;> r . Because of the equicontinuity of

the sequence [r } (which follows from (19) and the uniform
m

boundedness of the r ) it thus has a uniform limit, which
m

clearly is a solution of (16) (and is bounded by M). Theorem II

will therefore have the following:

Corollary. If ||c|| £ y3 where y JLS. the number defined in

(18), the solution x(t) of (1) with the initial value

x(a) = c exists, and satisfies ||x(t) || <£ M, throughout [a,b].

Turning now to the proof of Theorem II, we remark that it

is easy to obtain the estimate (17) for a solution of (1) whose

existence in [a,b] is known beforehand. Indeed, if we set
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CT = ||x|| we h a v e , by (1) and ( 1 5 ) , aa1 = xx1 = x A ( x , t ) x <£
2

a S(a,t), i.e., a1 <£ aS(a,t). If T is the solution of

TT = TS(T,t) for the initial condition T(a) = a(a) , it fol-

lows from the monotonicity of S (with respect to a) that

a <L T> ar*d this establishes (17). It may be noted that for a

linear system (1), (17) reduces to the well-known inequality
t|x(a)||exp{jA(A)ds},

where A (A) = max ocA(s)a f o r | |a| | = 1 [ 2 ] .

To prove the existence part of Theorem II, we set up the

iteration scheme

(20) xm+1« = A(xn,t)xm+1, xm+1(a) = c,

where it may be noted that, in contrast to the customary

successive approximation procedure, every step requires obtain-

ing the solution of a linear differential system. If we set

||x || = Q we have, by (20) and (15),

2
= x nA(x ,t)x . < a . S(a »t).

m+1 v m^ m+1 ^ m+1 v m^

Hence,

t

am+1(t) ^ ||c||exp(Js(am,s)ds}.

a

If T is a solution of (16) with an initial value T(a) ^> ||c|

and if cr < r, it follows that
t

^ T(a)exp(js(T,s)ds}
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and therefore, by (16), t:m+i <L T* I f we b e 9 i n t h e i teration

with x (t) = c, we thus have a £ T for a l l m.
o in

Accordingly, if T £ M in [a,b] , we have \\x
m\\ £ M

for a l l m, and it follows from (4) that

||A(xm,s) - A(x m - I , s ) | | £ L||xm - xm-1l|, t € [a ,b] ,

where L = L is a constant independent of t. Similarly, be-

cause of ||x || <£. M and the continuity of A(x,t) in x and t

there exists a constant K such that ||A(x ,t)|| < K for
m

t e [ a , b ] and a l l m . N o t i n g t h a t , b y ( 2 0 ) ,
t

Xm+l ( t ) " Xm ( t ) " JL l"v"m'"/"~v*vm-l'~'J~in+l

+ A ( x , s ) ( x - x ) } d s ,
m-.l m+i m

and utilizing these estimates, we are led to the inequality
t t

With the abbreviation
t

" K tP (t) = e"Ktf||x -x ||ds,
m J m m - 1

a

this may be written t

^ (t) £ MLfp (s)ds,
m+l J m

a

and a standard argument shows that this inequality implies the

uniform convergence of EP (t) in [a,b]. Since, by (21),
m m
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this proves that the sequence {x } converges uniformly to a

solution of (1). The uniqueness of this solution is then shown

by a similar modification of the usual argument. This completes

the proof of Theorem II.

We finally note that the conditions imposed on the matrix

A(Xjt) in Theorem II are in general not sufficient to make the

system (1) nonoscillatory. For example, in the case of a skew-

symmetric matrix A(x,t) the function S in (15) may be taken

to be identically zero, and the interval of existence of all

solutions of (1) will therefore coincide with the interval in

which A(x,t) is continuous in t. An elementary example of

an oscillatory system of this type is the linear system corres-

ponding to the matrix A = I 1 . Its general solution is the

vector (Y cos(t-t ), y sin(t-t )), where y and t are con-
o o o

stants, and the system is thus oscillatory in any closed inter-
77*

val of length / .
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