
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



NORMS AND DETERMINANTS

OF LINEAR MAPPINGS

Juan Jorge Schaffer

Report 70-16

April, 1970

CUKUUM



NORMS AND DETERMINANTS OP LINEAR MAPPINGS

Juan Jorge Schaffer

1. Introduction and Preliminaries.

Some years ago, B. L. van der Waerden called the author's

attention to the inequality

( i . i ) IIT"1!! |det T | ^ UTII11-1

valid for an invertible linear mapping T of an n-dimensional

real euclidean vector space into itself, with respect to the

operator norm. Following a discussion on possible applica-

tions of the Cayley-Hamilton Theorem to problems in analysis,

W. A. Coppel remarked that that theorem could be used to show

that for any norm, not necessarily euclidean, one still has

(1.2) (IT"1]! |det T| £ (2n -
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It is our purpose in this paper to give some more

precise estimates of this type and to illustrate some methods

that are useful in exploring the geometrical properties of

normed space s.

X shall generally denote a finite-dimensional real

normed vector space, n = dim X its dimension, || || its

norm, £ its unit ball (in full, || ||x , L(X)) . X is

euclidean if its norm is determined by an inner product;

this is the case if and only if £ is an ellipsoid. (The

definition of an ellipsoid depends only on the underlying

linear structure of X . )

~ 2

X shall denote the normed (n -dimensional real)

algebra of linear operators on X , with the operator norm.

The following discussion of determinants and adjugates

depends on the linear structure of X and X only, together

with their natural topologies, not on the specific norm.

The determinant function det : X H> R is well defined,

and T e X is invertible if and only if det T / 0 , We are

interested in the continuous function T H> (det T)T , de-

fined for invertible T e X . It is useful to know that this

function can be extended to a continuous function adj : X -• X ;
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since the set of invertible elements is dense in E , this

extension is unique; thus adj is characterized by being

continuous and satisfying

(1.3) T adj T = (det T)I , TeX .

The function adj can be defined by the identity

det (T+A) = det T + tr (A adj T) + 0 (A) , T,A € X , A •* 0 ;

n

further, if det(T-Ai) = \ p.CTjA1 is the characteristic
O

polynomial of T , adj T is given by

n
(1.4) adj T = -Y pi(T)T

1"1

1

Finally, if a basis of X is specified, the matrix of

adj T is the fadjugate transpose1 of the matrix of T ,

i.e., its (j,i)-entry is the cofactor of the (i,j)-entry

of the matrix of T . The verification, in terms of (1.3)
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and continuity, of these well-known statements is omitted.

Formula (1.4) follows from the Cayley-Hamilton Theorem

and leads almost immediately to the estimate (1.2) .

We return to the consideration of the normed space X

We are interested in an inequality of the form

(1.5) ||T" (I |det T| £ c||T||n""

valid for all invertible T € X . Since (1.5) is homo-

geneous (i.e., preserved under multiplication of T by a

scalar), we are led to define

-i ~

(1.6) k(X) = sup{||T || |det T| : T e E(X) invertible}

= max{||adj T|| : T € E(X) } .

The maximum of the continuous function T ** ||adj T|| on the

compact set £(X) is attained. If X and Y are congruent

(i.e., isometric) normed spaces, we obviously have k(X) = k(Y)

We also define

(1.7) kn = sup{k(X) : X a real normed space, dim X = n} ,

n = 1,2, . . .
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The set-theoretical difficulties of this definition are

illusory: since congruent spaces have the same k , the

supremuum in (1.7) need be taken only over the set of

normed spaces defined on one and the same n-dimensional

real linear space. By (1.7), k is defined as the

least c for which (1.5) holds for every invertible

operator on every n-dimensional normed space.

The main result of this paper is that k2 = 2 and

2 £ kn £ (nn/(n-l)n~1)1/2 < (ne) 1 / 2 , n = 3,4,... . It

is conjectured that, in fact, k = 2 , n = 3,4,..., also*

Of course k., = 1 , and the trivial one-dimensional case

will be excluded without further mention in what follows.
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2. I1 - spaces and a lower bound.

In this section we shall compute k ( ^ n ) > where ln

is the linear space Rn of column vectors x = (x-3), j =

1, ...,n, with the norm \\x\\1 = 2, I
35"1 I and the unit bal1

n
= {x € R" :

^ 1

The elements of (I ) ~ are square matrices T = (T^ ) ;
n ^ D

T. denotes the j column of T. Thus Ii'-*** I
n '

 tlle

columns of the identity I 3 constitute the natural basis

of I1 , and T. = Tl. , j = 1, . ..^n . Z^ is the balan-

ced convex hull of [1^.•.,In) . The use of matrix language

could be avoided, but it is quite natural for a space with a

built-in basis. For T e {I ) ~ we have

n
( 2 . D UTHx = m a x j l lT j i l = m a x j 1 ' T j I •

As mentioned in Section 1 , (adj T) . is the cofactor

of T. in T .

2.1. Lemma. ||ad.j TJL , considered as a function of

T,,...,T , is a convex function of each argument separately*
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Proof. Let h , 1 <£ h <£ n , be specified and T. be

fixed for all j ^ h • In its dependence on Th , (adj T)?

is constant if j = h, and linear if j ̂  h , for all i,j

Thus Th ** adj T : ln -• K * ) ~ is an affine mapping. But

A »-> IIAII - : (I ) ~ -> R is a convex function; the conclusion
11 l n

follows.

2.2. Theorem, k ( ^ ) = 2, n = 2,3,

Proof. 1. According to (1.6) and (2.1),

(2.2) k(*J) = max{||adj T ^ . T^Z^, j = l,...,n).

convexBy Lemma 2.1, ||adj TJ^ is, for each h, 1 ^ h £ n, a

function of T^ (the other T. being fixed). Now a convex

real-valued function attains its maximum on a compact convex

set at least at one extreme point. If we start from a point

at which the maximum in (2.2) is attained, we may replace

the T., one at a time, by an extreme point of E-i without

changing the value of ||adj T||, . Thus the maximum in (2.2)

is attained at least at one point at which each T. is an

extreme point of 2>. .

The extreme points of £, are exactly ±IT*•••*±I •

The preceding discussion implies that the maximum in (2.2)

need be sought only in the finite set P of those T that

m aP (±Ii^••• ̂ ±I
n^ into itself and thus have, in each

column, exactly one non-zero entry, namely a 1 or a -1.

Thus

(2.3) k(-tj) = max{||adj T ^ :
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2. We claim that, for T€P, ||adj T ^ = 0,1, or 2

according as the number of rows of T consisting only of

zeros ("zero-rows") is greater than one, zero, or one,

respectively.

If T has two zero-rows or more, every cofactor is 0,

and therefore adj T = 0. If T has no zero-rows, it has

exactly one non-zero entry (a 1 or a -1) in each column

Tand in each row. If T denotes the transpose of T, we

T -1have I det T| = 1 and T = T by direct verification;

-1 T

so adj T = T det T = +. T also has exactly one non-zero

entry (a 1 or a -1) in each column, and (2.1) yields

||adj T||L = 1.
Assume, finally, that the hth row is the only zero-row

of T. Then there must be exactly two non-zero entries in

k kone other row, say T ,T (each 1 or -1), and each row

other than the hth and the kth contains exactly one such

entry. Now the cofactor of T^ in T is 0 unless i = h

and j = p or q : indeed, it is the determinant (up to

sign) of a minor matrix that has a zero-row if i ̂  h, and

has two columns that are equal or opposite if j ̂  p,q.

The cofactors of T and T are the determinants (up to
p q *

sign) of minor matrices that have exactly one non-zero entry

(a 1 or a -1) in each column and in each row; these co-

factors are the only non-zero entries of adj, T, namely

(adj T)^ , (adj T)^ , and each is 1 or -1. By (2.1),
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||adj TJL = 2. This completes the proof of our claim.

3. Since there does exist TeP with exactly one

zero-row (e.g., set T. = I., j = l,...,n-l, and T n = In_]_) $

we conclude from (2.3) that k(^n) = 2.

2.3. Corollary, k > 2, n = 2S3,....
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3. Loewner ellipsoids and upper bounds*

Let E be an n-vlimensional real linear space. A central

convex body in E is a compact convex set with non-empty

interior and 0 as a centre of symmetry. We want to discuss

^cie volume of convex bodies in E; now volume is (a restriction

of) a Haar measure on E; since any two Haar measures are

proportional, there will be no loss in choosing one arbitrary

but fixed determination of the volume; vol U will denote the

volume of U in this determination. If T : E -» E is an

invertible linear mapping and U is a central convex body

in E, then TU is another, and vol TU = |det TJvol U.

We shall require the following interesting property of

ellipsoids.

3.1. Lemma. (Loewner). JEf U is a central convex

body in E, then among the central ellipsoids containing U

there is exactly one of least volume.

Proof. See, e.g., [4; 16.10]. (The sketchiness of

the existence proof given there is easily remedied.)

The ellipsoid singled out by Lemma 3.1 shall be termed

the Loewner ellipsoid of U, and denoted by L(U).

Remark. Lemma 3.1 is the special case for central

convex bodies of a much more general result; Busemann, in

the book quoted above, has a version of intermediate generality

and attributes the result to C. Loewner. Behrend [2],[3]

discussed the two-dimensional case in detail. A deep

application of the existence and uniqueness of Loewner

ellipsoids was made by Gromov [6].
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3,2. Lemma. If U jLs _a central convex body in E and

T : E -» E JLS an invertible linear mapping, then TL(U) = L(TU) .

Proof. TL(U) is a central ellipsoid containing TU,

and T L(TU) is a central ellipsoid containing T~ TU = U.

By the minimality property of the Loewner ellipsoids,

VOl TL(U) _
* vol L(TU)

det T
det T

vol L(U)
* VOl T-IL(TU) 4

Thus equality holds at both ends; by the uniqueness of the

Loewner ellipsoid we must have TL(U) = L(TU).

We now return to our normed space X. We first perform

a geometric computation for euclidean X; this will lead,

incidentally, to a proof of (1.1).

3.3. Lemma. Assume that X is euclidean and that

TeX is invertible. Let a., . . . ,a be the half-axes of the
— — — — — ^ — — — — — — • _______ Ĵ  jQ — — _____ „_____. ______ ___ ____

Thenellipsoid TS, where 0 < a.. <_* . . . <̂  a
Y1

||T||n= an, HT-1!! = a"1, | det T| =TT a. .

Proof. Obvious from euclidean geometry and the fact
n

| det T| vol £ = vol T£ = (JJ a i ) v o l L.
1

3.4. Theorem. If X JLS euclidean, then k(X) = 1.

Proof. If TeX is inver t ib le and ||T|| <£ 1, Lemma 3.3

implies | |T"1 | | |det T | =TTa. ^ a^"1 <: 1. On the other hand,
*\ I — n —

k(X) > || I"1!! | det l| = 1.

To deal with a normed space X that is not necessarily

euclidean, we consider the auxiliary euclidean space XL on

the same underlying linear space, and whose unit ball is

the Loewner ellipsoid of the unit ball of X : £(x) =
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The operator algebra (\)^ i s algebraically identical to

X. Norms of elements of X^ and of (*L)~ will be

distinguished by a subscript L.

3.5- Lemma. If. TeX JLs invertible and ||T|| £ 1, then

(3.1) llT^HJ

Proof. TS(XL) = TL(E) = L(TE) by Lemma 3.2. Let

a-,...,a be the half-axes of this ellipsoid in the

euclidean space 'X_, where 0 < a.. ̂  . . . £ a . By Lemma 3.3

applied to X-,

n
(3.2) IJT^I^Idet T| =]Ta i .

For an appropriate orthonormal basis in X. we have

Y x2
± £ 1} L(T£) = {xeJ^ : ^ a"̂  xj £ 1},

where x.,...,x. are the coordinates of x with respect to

this basis. For A,0 <£ X ̂  1, consider the ellipsoid

n

V(A) = {xe^ : ̂  (A + (l-A)a-i
2)x^ ^ 1 } , o £ X £ 1.

1

Then ||T|| ̂  1 implies TS = L n TL c L(E) 0 L(TE) c V(A)

for each A. By Lemma 3 . 1 ,

n
vol V(0) = vol L(T£) £ vol V(A) = (TT (A+ (l-A)a:2 ) ) ~1/2vol L(E),

1

O £ A ̂  1,

and therefore
n

0 £ (d/dA)log vol V(A)| A = Q = |-^(l-a
2),

1
so that
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n

(3.3) Y ai = n'
1

From the inequality between arithmetic and geometric

means and from (3.3) we obtain

n . . n n

(3.4) (Tf a^) £ (£ aj)/(nl) < (£ a
2 2 1

Combination of (3.2) and (3.4) yields (3.1).

In order to obtain an upper estimate for k(X) from

this lemma, we must be able to bound ||T~ || in terms of

|| T~* || . For this purpose we introduce a parameter that

measures the closeness of £ and L(£)5 namely

p(X) = min{reR : L(£) c r£} > 1. This parameter is 1 if

and only if X is euclidean; we shall show presently that

xt never exceeds n

3.6. Theorem, 1 £ k(X) £ (n/n-1)) (n~1)/2 p(x) .

Proof. k(X) > ||l"" |||det l| = 1. On the other hand,

let J : X -> Xj. be the identity mapping considered as a

mapping from the normed space X to the normed space X-

Then ||j|| = 1, IIJ"1!! =p(X). If T G X is invertible,

IIT"1!! = Her1 T - 1 J | | ^ I I J I I I I J ^ H I I T - 1 ^ = p ( X J H T " 1 ! ^ .

Combination of this inequality with Lemma 3.5 and (1.6)

yields the conclusion.

For an upper bound of k we need a bound for p(X);

in finding one, we recover a precise form of a result of

John [7].

3 . 7 . Lemma, p (X) £ n 1 ^ 2 , i . e . , L(£) c n 1 / / 2 £ .

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY
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Proof, Let dE denote the boundary of £. Choose

uQ ebZ so that d = lkollL = min{||u||L : uebt] > 0. We are
1/2

to prove that n ' d > 1. Assume that this is not the

2
case, i.e., that nd < 1.

Choose an orthonormal basis of the euclidean space X

so that i t s f i r s t element is d uQ, and le t x . . , . . . ,x

be the coordinates of the point x with respect to this

basis. Now xeE implies xeL(S) and |xjj £ d3 so that

i - x2 + S ^ - ? x 2 ^ i . x 2 + M . ( 1 K
2) _ n ± + 1-nd2 2

7 X- + o / x . £ 9 x- -t- 9 vi . -x , ; — 9 - h 9 9
 x i £ n2 1 2 £ X 2 1 2 1 2 2 2 Xd2 1 1-d2 £ X " d2 -1 1-d2 -1 1-d2 d2(l-d2) X "

thus £ is contained in the ellipsoid

n

V = {xeX : -^ xj + n~1 2 Y xj ̂ 1}.
L nd2 X n(l-d2) 2

By Lemma 3.1, vol L(£) < vol V, i.e.,

,-> e» i , _j2 ,n( 1-d ) x n , 2 M ,2.n-l
(3.5) 1 < nd ( —-ir) = —-=- d (1-d )

n" i (n-l)11"1

But the function t •* t(l-t) " is increasing in the interval

-1 2
[05n ]; therefore nd < 1 implies

- 2 n ,2.n-l . n - l n n- lxn-l _ (n-l)31-1
d (1-d ) < n (1-n ) = ->

n

and this contradicts (3.5).

1/2
Remark. p(X) does attain the bound n / s e.g. for

3.8. Theorem. 2 £ kn ̂  (nn/(n-l)n"1}1/2 < (ne) 1 / 2

for n = 2,3,..; jLn particular, k2 = 2.

Proof, Theorem 3#6, Lemma 3.7, Corollary 2.3.
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4. Comments and conjectures

We collect in this section some additional comments

and some open questions.

For given X, let X* be the normed dual space.

The mapping T •-» T* : X -> (X*)~ is bijective and preserves

invertibility, the inverse, the norm, and the determinant.

This allows us to compute k(X*).

4.1. Theorem. For each X, k(X*) = k(X)•

4.2. Corollary. If the unit ball of X is a

parallelotope9 then k(X) = 2.

Proof. X is then congruent to £°°, which is itself

congruent to (£ )*. The conclusion follows from Theorems

2.2 and 4.1.

Banach and Mazur defined a 'distance1 between (complete)

normed spaces [1? pp. 242-243]; see also [5; p. 156],

[9; pp. 72-74] . For our purposes — restricted to finite-

dimensional spaces—this may be formulated as follows.

If X,Y are real normed spaces of the same dimension,

(4.1) A(X,Y) = min{log | |s | | ||S"~ îi : S : X -» Y an i n v e r t i b l e
linear mapping}

The minimum is attained; A does not change if either space

is replaced by one congruent to it, and A induces, on

the set of congruence classes of n-dimensional spaces,

a metric with respect to which this set is a compact space.

This makes it again possible to overcome the set-theoretical
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difficulties of the definition. The preceding remarks show

that a real-valued function defined for n-dimensional real

normed spaces and continuous with respect to the pseudometric

A (hence congruence-invariant) attains its maximum

(cf. [9; Corollary 6.4]).

4.3. Theorem. If X,Y are n-dimensional real normed

spaces, |log k(Y) - log k(X)|<£ nA(X,Y). The supremum in

(1.7) jLs attained.

Proof. Let S : X -» Y be linear and invertible. If

T€Y is invertible, so is S" TSeX; $nd det S TS = det T.

Then

l l ^ H I T| £ Hslllls^llllcs

Therefore k(Y) £ (||s|| Us""1!!) nk(X) . Interchanging X and Y

(and S and S ) in this computation and using (4.1) we

arrive at the conclusion. The paragraph preceding this

theorem then shows that the supremum in (1.7) is attained.

Any two n-dimensional euclidean normed spaces are con-

gruent. It is therefore meaningful to set, for every n-

dimensional normed space X, A (X) = A(X,Y), where Y is

any n-dimensional euclidean space.

4.4. Corollary. k(X) £ exp(nA (X)).

Proof. Theorems 3.4 and 4.3.

This estimate for k(X) is a generalization of

Theorem 3.4--while Theorem 3.6 is not--but it is good only

for small A (X). Observe that, by Lemma 3.7,
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(4.2) Ae(X) = A(X,XL) £ log p(X) £ -| log n,

and that equality holds throughout in (4.2) if X = I or

X = 1°°. Corollary 4.4 and (4.2) yield the estimate

k £ nn' ? this is exact for n = 2 (Theorem 3.8), but

much cruder than the bound given by Theorem 3.8 for greater n.

We have seen that, in a way relevant to the computation

of k(X) (cf. Theorem 2.6 and Lemma 2.7, Theorem 4.3 and

Corollary 4.4), the n-dimensional spaces 'farthest* from

1 oo
the euclidean spaces include I and <t . This motivates

n n

the following conjecture.

4.5. Conjecture. k(X) £ 2 for all X; thus k = 2 for

n = 3,4,....

In this connection, it may also be asked what spaces

X, if any, share with the euclidean ones (Theorem 3.4) the

value k(X) = 1 . A complete answer is available for

dimension 2. Assume dim X = 2 and let 3£ be the

boundary of £• X shall be said to be a Radon plane

if for any u,V€d£ such that v has the direction of a

supporting line of £ at u, u has the direction of a

supporting line of £ at v. Radon [8] first pointed out

that X with these properties need not be euclidean, even

if 2 is strictly convex (when the condition asserts that

every diameter has a fconjugate diameter'). The description

in [4; p. 104] is easily extended to all Radon planes, even

those whose £ is not strictly convex or smooth. A careful

use of this description, as well as the study of special
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linear mappings, yield the following characterization; the

proof cannot be given in detail here.

4.6. Theorem. _If dim X = 2, then k(X) = 1 JLf and

only if X Jj3 â  Radon plane.

Inasmuch as Radon planes are characterized among normed

planes by 'symmetry of orthogonality1, and this property is

characteristic of euclidean spaces if the dimension is greater

than two, the following conjecture appears plausible.

4.7. Conjecture. JEf dim X > 2, then k(X) = 1

(if and) only if X JLs^ euclidean.

As long as our information on k is not complete, it

is interesting to compare values of k for different n.

For this purpose we define, for each n-dimensional real normed

space X, the (n+1)-dimensional normed space X © R :

algebraically, this is the outer direct sum of X and R;

the norm is ||x©r|| = maxf ||x||, | r | }, so that £(X©R) = S(X) © [-1,1].

If TeX, seR, we define T©sIe(X©R)~ by (T©sl) (x©r)=Tx©sr;

we find ||T©sl|| = max{ ||T|| , | s | } ,det (T©sl) = s det T.

4.8. Lemma. k(X©R) > k(X) .

Proof. For every invertible Te£(X) we have

||T©l|| £ 1, det(T©l) = det T^T©!)""1 = T"1©!. NOW

IIT"1!! ^ IITH"1 ^ 1. Thus ||T"1|||det T| = || (T©I) ""1|| | det (T©I) | ̂ k(X©R)

Since this holds for a l l invertible TeL(X), the conclusion

follows.

4.9. Theorem. The sequence (k ) is non-decreasing.
YI — , ,i

Proof. For every n-dimensional X, k(X) £ k(X©R) £ k

(Lemma 4.8). Therefore k £ k .
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