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NORMS AND DETERMINANTS OF LINEAR MAPPINGS

Juan Jorge Schaffer

1. Introduction and Preliminaries.

Some years ago, B. L. van der Waerden called the author's

attention to the inequality
(1.1) I laet o] ¢ |t

valid for an invertible linear mapping T of an n-dimensional
real euclidean vector space into itself, with respect to the
operator norm. Following a discussion on possible applica-
tions of the Cayley-Hamilton Theorem to problems in analysis,
W. A. Coppel remarked that that theorem could be used to show

that for any norm, not necessarily euclidean, one still has

(1.2) T4 Jaet T| < (2® - v|™ L.
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It is our purpose in this paper to give some more
precise estimates of this type and to illustrate some methods
that are useful in exploring the geometrical properties of

normed spaces.

X shall generally denote a finite-dimensional real
normed vector space, n = dim X its dimension, | || its
norm, T its unit ball (in full, | |, Z(X)). X lis
euclidean if its norm is determined by an inner product;
this is the case if and only if ¥ is an ellipsoid. (The
definition of an ellipsoid depends only on the underlying

linear structure of X .)

~

X shall denote the normed (n2—dimensional real)
algebra of linear operators on X, with the operator norm.
The following discussion of determinants and adjugates

depends on the linear structure of X and X only, together

with their natural topologies, not on the specific norm.

The determinant function det : X 2 R is well defined,
and T € X is invertible if and only if det T # O. We are
interested in the continuous function T P (det T)T-1 ; de-

fined for invertible T ¢ X. It is useful to know that this

~

function can be extended to a continuous function adj: X = X
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~

since the set of invertible elements is dense in E , this
extension is unique; thus adj is characterized by being

continuous and satisfying

(1.3) Tadj T = (det T)I , TeX .

The function adj can be defined by the identity

det (T+A) = det T+ tr(A adj T) + 0(4) , T,AecX, A =20;
n .

further, if det(T- AI) = 2. pi(T)7\l is the characteristic
0]

polynomial of T, adj T is given by
n 3
(1.4) adj T = {Z pi(T)Tl-l
1

Finally, if a basis of X is specified, the matrix of
adj T is the ‘'adjugate transpose' of the matrix of T,
i.e., its (j,i)-entry is the cofactor of the (i,j)-entry

of the matrix of T. The verification, in terms of (1.3)
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and continuity, of these well-known statements is omitted.
Formula (1.4) follows from the Cayley-Hamilton Theorem

and leads almost immediately to the estimate (1.2) .

We return to the consideration of the normed space X.

We are interested in an inequality of the form

(1.5) ||T’l|\ |dget T| < c||'1'nn"l

~

valid for all invertible T ¢ X. Since (1.5) is homo-
geneous (i.e., preserved under multiplication of T by a

scalar), we are led to define

(1.6) k (X)

sup{HT_lH |det T| : T € T(X) invertible)

Il

max{|ladj T|| : T € Z(g)}.

The maximum of the continuous function T P |ladj T|| on the

compact set X(X) is attained. If X and Y are congruent

(i.e., isometric) normed spaces, we obviously have k(X) = k(Y) .

We also define

(1.7) k, = sup{k(X) : X a real normed space, dim X = n},

n=1,2,... .
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The set-theoretical difficulties of this definition are
illusory: since congruent spaces have the same k, the
supremuum in (1.7) need be taken only over the set of
normed spaces defined on one and the same n-dimensional
real linear space. By (1.7), kn is defined as the.
least ¢ for which (1.5) holds for every invertible
operator on every n-dimensional normed space.

The main result of this paper is that k2 = 2 and

2¢k ¢ @D HY2 ¢ me)’?, n=34,... . 1t
is conjectured that, in fact, kn =2, n=3,4,..., also.
Of course k1 = 1 , and the trivial one-dimensional case

will be excluded without further mention in what follows.
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2. Ll— spaces and a lower bound.

In this section we shall compute k(&i) , Wwhere Li

is the linear space R" of column vectors x = (xj), j =

n
l,...,n, with the norm Ux”l = EZIXJI and the unit ball

n 1
21=2“'i) = {xeR": z |x3| <1}.
1
The elements of (Li) ~ are square matrices T = (T;) :
Tj denotes the jth column of T. Thus Il""’In , the
columns of the identity I , constitute the natural basis
1l . .
of Ln , and Tj = TIj , J=1l,...,n. El is the balan-
ced convex hull of {Il,...,In) . The use of matrix language

could be avoided, but it is quite natural for a space with a

built-in basis. For T ¢ (x,rl1 ) ~ we have

(2.1) iy = maxyf|zy]l = max, L

As mentioned in Section 1, (adj T)i is the cofactor

of T; in T.

2.1. Lemma. |adj T|l; , considered as a function of
TyseeesTy s is a convex function of each arqument separaﬁely.
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Proof. Let h, 1<{hgn, be specified and Tj be

fixed for all 3j # h. 1In its dependence on Ty, (adj T)i

is constant if j = h, and linear if j # h , for all i,j.
. 1
Thus Thl* adj T : Ln

Aw af; - ({,l;];)~ » R is a convex function; the conclusion

- ('Ln)~ is an affine mapping. But

follows.
2.2, Theorem. k(Li) =2, n=2,3,....

Proof. 1. According to (1.6) and (2.1),

(2.2) k(Li) = max([ladj T||, - TSy, 3 = 1,...,n).

By Lemma 2.1, |ladj T|; is, for each h,1 ¢ h < n, a convex
function of Th (the other Tj being fixed). Now a convex
real-valued function attains its maximum on a compact convex
set at least at one extreme point. If we start from a point
at which the maximum in (2.2) is attained, we may replace
the Tj’ one at a time, by an extreme point of Zd without
changing the value of |ladj T“l . Thus the maximum in (2.2)
is attained at least at one.point at which each Tj is an
extreme point of -

The extreme points of I, are exactly ot PR 2 S
The preceding discussion implies that the maximﬁm in (2.2)
need be sought only in the finite set P of those T that
map Lill,...,iln] into itself and thus have; in each
column, exactly one non-zero entry, namely a 1 or a -1.
Thus

(2.3) k(Li) = max(||adj 7|, : Tep).
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2. We claim that, for TeP, |adj T”l = 0,1, or 2
according as the number of rows of T consisting only of
zeros ("zero-rows") is greater than one, zero, or one,
respectively.

If T has two zero-rows or more, every cofactor is O,
and therefore adj T = 0. If T has no zero-rows, it has
exactly one non-zero entry (a 1 or a -1) in each column

T

and in each row. If T denotes the transpose of T, we

have |det T| = 1 and T = 771 by direct verification;
so adj T = rl get T = i.TT also has exactly one non-zero
entry (a 1 or a -1) in each column, and (2.1) yields
lady 7/, = 1.

Assume, finally, that the hth row is the only zero-row
of T. Then there must be exactly two non-zero entries in
one other row, say Tg,Tg (each 1 or -1), and each row
other than the hth and the kth contains exactly one such
entry. Now the cofactor of T% in T is O unless i =h
and j =p or g : indeed, it is the determinant (up to
sign) of a minormatrix that has a zero-row if i # h, and
has two columns that are equal or opposite if j # p,q.

The cofactors of Tg and Tg are the determinants (up to
sign) of minor matrices that have exactly one non-zero entry
(a 1 or a -1) in each column and in each row: these co-

factors are the only non-zero entries of adj. T, namely

(adj T)} , (adj T)F , and each is 1 or -1. By (2.1),
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llaa;j T"l = 2, This completes the proof of our claim.
3. Since there does exist TeP with exactly one

zero-row (e.g., set T, =1I., j=1,...,n-1, and Tn = In—l)’

J 3’
we conclude from (2.3) that k(éi) = 2,

2.3. Corollary. kn 22, n=2,3,....




[10]

3. Loewner ellipsoids and upper bounds.

Let E Dbe an n-a@mensional real linear space. A central

convex body in E 1is a compact convex set with non-empty

interior and O as a centre of symmetry. We want to discuss
the volume of convex bodies in E; now volume is (a restriction
of) a Haar measure on E; since any two Haar measures are
proportional, there will be no loss in choosing one arbitrary
but fixed determination of the volume; vol U will denote the
volume of U in this determination. If T : E2>E is an
invertible linear mapping and U 1is a central convex body
in E, then TU is another,and vol TU = |det T|vol wU.

We shall require the following interesting property of
ellipsoids.

3.1. Lemma. (Loewner). f U 1is a central convex

body in E, then among the central ellipsoids containing U

there is exactly one of least volume.

Proof. See, e.g., [4; 16.10]. (The sketchiness of
the existence proof given there is easily remedied.)
The ellipsoid singled out by Lemma 3.1 shall be termed

the Loewner ellipsoid of U, and denoted by L(U).

Remark. Lemma 3.1 is the special case for central
convek bodies of a much more general result; Busemann, in
the book quoted above, has a version of intermediate generality
and attributes the result to C. Loewner. Behrend [2],[3]
discussed the two-dimensional case in detail. A deep
application of the existence and uniqueness of Loewner

ellipsoids was made by Gromov [6].
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3.2. Lemma. f U 1is a central convex body in E and

—

T : E~> E is an invertible linear mapping, then TL(U) = L(TU).

Proof. TL(U) is a central ellipsoid containing TU,

and T_lL(TU) is a central ellipsoid containing T_lTU = U.

By the minimality property of the Loewner ellipsoids,

vol TL(U) _ |det T| vol L(U)
vol L(TU) = |det T| ° vol T- 1T, (T0) S

1 1.

17N

Thus equality holds at both ends; by the uniqueness of the
Loewner ellipsoid we must have TL(U) = L(TU).

We now return to our normed space X. We first perform
a geometric computation for euclidean X; this will lead,
incidentally, o a proof of (1l.1).

3.3. Lemma. Assume that X is euclidean and that

TeX is invertible. Let a;,...,a  be the half-axes of the
ellipsoid TI, where O < a,; ..o £ a . Then

- -1 n
”Tl T al’l’ HT l“ = al » |det T' =-‘1|— ai .

Proof. Obvious from euclidean geometry and the fact

n .
|det T|vol ¥ = vol TZ = (ﬂ a;)vol Z.
1
3.4. Theorem. If X 1is euclidean, then k(X)) = 1.

Proof. If TeX 1is invertible and [T|| < 1, Lemma 3.3

implies |lT7Y|det T|

n
TT'ai < ag'l < 1. On the other hand,
9 S S

k(x) > || get 1| = 1.

To deal with a normed space X that is not necessarily
euclidean, we consider the aﬁxiliary euclidean space Xt on
the same underlying linear space, and whose unit ball is

the Loewner ellipsoid of the unit ball of X : Z(XL) = L(Y).
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The operator algebra (Xt)” is algebraically identical to
X. Norms of elements of X  and of (X‘L)~ will be
distinguished by a subscript L.

3.5. Lemma. If TeX is invertible and |T|| < 1, then

(3.1) Izt ldet T| < (n/(n-1)) (P72

Proof. TE(XL) = TL(Y) = L(TY) by Lemma 3.2. Let
Ayse0e52 be the half-axes of this ellipsoid in the

euclidean space 'XL, where O < a; £ ... £a . By Lemma 3.3

applied to XL’
1 n
(3.2) lr~) gt | =Ilai

For an approprlate orthonormal basis in Xt we have
n

L(Y) [xeX Z x < 1} L(TY) = (xeXL : z ai xi <1},

where Xyse..,X, are the coordinates of x with respect to

this basis. For \,0 < A £ 1, consider the ellipsoid

n
V(A) {xex, Z (N + (‘l—k)a_iz)xi <1}, ognNg1.
1

Then ||T|] ¢ 1 implies TE = L N T c L(E) N L(TY) < V())

for each A\. By Lemma 3.1,

: n
vol V(0) = vol L(TE) < vol V(A\) = (Tr(x+(1—%)a;?))'l/2vol L(Y),
1

and therefore

. n
0 ¢ (&/aN)log vol V(N |, _o = 3 ) (1-a2),
1

so that
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(3.3) 2 ai = n.

From the inequality between arithmetic and geometric

means and from (3.3) we obtain

n n n
(3.4) qTaH YD ¢ 0 a%)/(n-1) < ) ad)/(n-1) < n/(n-1).
Combination of (3.2) and (3.4) yields (3.1).

In order to obtain an upper estimate for k(X) from
this lemma, we must be able to bound HT—IH in terms of
-1
e,

measures the closeness of ¥ and L(Y), namely

. For this purpose we introduce a parameter that

pP(X) = min{reR : L(L) < rZ} > 1. This parameter is 1 if
and only if X 1is euclidean; we shall show presently that
it never exceeds n]"/2 )
3.6. Theorem. 1 < k(X) < (n/n-1)) (P"1)/2 j(sy
Proof. k(X) > |lT7}||det I| = 1. on the other hand,
let J : X - X be the identity mapping considered as a
mapping from the normed space X to the normed space Xt .

|

Then HJ” =1, Ilg =p(X). If TeX is invertible,

Iz~ = o™t 7t all ¢ allila™ Ty, = e lie T,

Combination of this inequality with Lemma 3.5 and (1.6)
yields the conclusion.
For an upper bound of kn we need a bound for p(X);

in finding one, we recover a precise form of a result of

John [7].

1/2

3.7. Lemma. p(X) < n , l.e., L(Y) c nl/2

z.

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY




(14]

Proof. Let 3dY denote the boundary of I. Choose

u, €3 so that d = “u = min{“u”L : uedyxr} > 0. We are

olly,
to prove that nl‘/2 d > 1. Assume that this is not the

case, i.e., that nd2 < 1.

Choose an orthonormal basis of the euclidean space XL

so that its first element is d-luo, and let X;,...,X

be the coordinates of the point x with respect to this

basis. Now xc¥ implies xecL(X) and |x1| < d, so that

n

. 2
12 x2 + n-1 E'Xi < 12 Xi + n—lz(l_xi) n—l2 + 15nd 5 2
d > 1-4 l1-4 a“(1-4av)

Xy £ n,xeU;

thus Y 1is contained in the ellipsoid

- .1 2, n-1
V = {xeX. Xy + 5

x5, < 1}.
n(l-4%) -

B
e )

By Lemma 3.1, vol L(Y) < vol v, i.e.,
2 n(l-dz)n_l n”
(3.5) 1 < nd™( n—l) = —

2 2,n-1
(n-l)n_l a”(1-4%) .

But the function t - t(l—t)n_l is increasing in the interval

[O,n_l ; therefore nd? < 1 implies

a2 (1.2 o p-l(qp-1yn-1 _ n—an_l ,
n
and this contradicts (3.5).
Remark. p(X) does attain the bound nl/z, e.g. for
X=Li,x=£?.
3.8. Theorem. 2 < k_ < (nn/(n—l)n—l)l/2 < (ne)l/2

for n= 2,3,..; in particular, k2 = 2,

Proof. Theorem 3.6, Lemma 3.7, Corollary 2.3.
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4, Comments and conijectures

We collect in this section some additional comments
and some open questions.

For given X, let X* be the normed dual space.
The mapping TV T* : X » (X*)" is bijective and preserves
invertibility, the inverse, the norm, and the determinant.
This allows us to compute k(X¥*).

4.1. Theorem. For each X, k(X*) = k(X).

4.2, Corollary. If the unit ball of X is a

parallelotope, then k(X) = 2.

Proof. X is then congruent to Lgo, which is itself
congruent to _(&i)*. The conclusion follows from Theorems
2.2 and 4.1.

Banach and Mazur defined a 'distance' between (complete)
normed spaces [l; pp. 242-243]; see also [5; p. 156],

[9; pp. 72-74]. For our purposes--restricted to finite-
dimensidnal spaces--this may be formulated as follows.
If X,Y are real normed spaces of the same dimension,

(4.1) A(X,Y) = min{log HSHHS—ln : S : X->Y an invertible
linear mapping}.

The minimum is attained; A does not change if either space
is replaced by one congruént to it, and A induces, on

the set of congruence classes of n-dimensional spaces,

a metric with respect to which this set is a compact space.

This makes it again possible to overcome the set-theoretical
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difficulties of the definition. The preceding remarks show
that a real-valued function defined for n-dimensional real
normed spaces and continuous with respect to the pseudometric
Ak(hehce congruence-invariant) attains its maximum

(cf. [9; Corollary 6.41).

4.3. Theorem. If X,Y are n-dimensional real normed

spaces, |log k(Y) - log k(X)|<£ nA(X,Y). The supremum in
(1.7) is attained.
Proof. Let S : X > Y be linear and invertible. If

lps = get .

s s . . -1 ~ -
TeY 1is invertible, so is S "TSeX: and det S
Then

et aet | < lsllis™ il (s~ es) ||| et s™tos| ¢

< k@ lsllis~Hills st < x0 llsllis~Hh ™zt .

Therefore k(Y) < (HSHHS-l“)nk(X). Interchanging X and Y
(and S and S_l) in this computation and using (4.1l) we
arrive at the conclusion. The paragraph preceding this
theorem then shows that the supremum in (1.7) is attained.

Any two n-dimensional euclidean normed spaces are con-
gruent. It is therefore meaningful to set, for every n-
dimensional normed space X, Aé(x) = A(X,Y), where Y is
any n-dimensional euclidean space.

4.4. Corollary. k(X) < exp(nAb(X)).

Proof. Theorems 3.4 and 4.3.

This estimate for k(X) is a generalization of
Theorem 3.4--while Theorem 3.6 is not--but it is good only

for small Aé(x). Observe that, by Lemma 3.7,
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(4.2) Ae(x) = A(X,XL) < log p(X) g—;‘- log n,

and that equality holds throughout in (4.2) if X = Li or
X = Lﬁo. Corollary 4.4 and (4.2) yield the estimate

kn < nn/2 ; this is exact for n = 2 (Theorem 3.8), but

mich cruder than the bound given by Theorem 3.8 for greater n.
We have seen that, in a way relevant to the computation

of k(X) (cf. Theorem 2.6 and Lemma 2.7, Theorem 4.3 and

Corollary 4.4), the n-dimensional spaces 'farthest' from

the euclidean spaces include Li and Lgo. This motivates

the following conjecture.

4.5. Conjecture. k(X) ¢ 2 for all X; thus kn = 2 for

n= 3,4,....

In this connection, it may also be asked what spaces
X, if any, share with the euclidean ones (Theorem 3.4) the
value k(X) = 1. A complete answer is available for
dimension 2. Assume dim X = 2 and let 3Y be the

boundary of 3. X shall be said to be a Radon plane

if for any u,vedYX such that v has the direction of a
supporting line of ¥ at u, u has the direction of a
supporting line of Y at v. Radon [8] first péinted out
that X with these properties need not be euclidean, even
if 2 is strictly convex (when the condition asserts that
every diameter has a 'conjugate diameter'). The description
in [4; p. 104] is easily extended to all Radon planes, even
those whose Y 1is not strictly convex or smooth. A careful

use of this description, as well as the study of special
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linear mappings, yield the following characterization; the
proof cannot be given in detail here.
4.6. Theorem. If dim X = 2, then k(X) =1 if and

only if X is a Radon plane.

Inasmuch as Radon planes are characterized among normed
planes by 'symmetry of orthogonality', and this property is
characteristic of euclidean spaces if the dimension is greater
than two, the following conjecture appears plausible.

4,7. Conjecture. If dim X > 2, then k(X) =1

(if and) only if X 1is euclidean.

As lgng as our information on kn is not complete, it
is interesting to compare values of kn for different n.
For this purpose we define, for each n-dimensional real normed
space X, the (n+l)-dimensional normed space X @ R :
algebraically, this is the outer direct sum of X and R;
the norm is ||x®r| = max{||x|l,|r|}, so that T(X®R) = $(X) & [-1,1].
If TeX, scR, we define T®sIec(X®R) by (T®sI) (x®Pr)=TxDsr;
we find |T®s1| = max{|T|,|s|},det(T®sI) = s det T.

4.8. Lemma. k(X®R) > k(X).

Proof. For every invertible TeZ(X) we have

1 1@1. Now

Im®1] < 1, det(T®1) = det T,(T®I) " = T~
[l > o) ~t > 1. Thus I~ | det T| = ||(T®I)‘l\||det(T®1)|_§k(x®R).
Since this holds for all invertible TeXx(X), the conclusion

follows.

4.9. Theorem. The sequence (kn) is non-decreasing.

Proof. For every n-dimensional X, k(X) < k(X®R) ¢ kn+l

4.8). .
(Lemma 8) Therefore kn < kn+l
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