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Abstract

The first section gives the measure of uncertainty given

by Shannon (1948) and the generalizations thereof by Schvitzen-

berger (1954), Kullback (1959), Renyi (1961,1965), Kapur (1967,

1968), and Rathie (1970). It gives some postulates character-

izing Shannon's entropy, Renyi's entropy of order a and our

entropy of order a and type P. It also gives some properties

of this most general type of entropy.

In the second section an optimization problem is formulated

and solved in the case of Shannon's and Renyi's entropies by

the use of the principle of optimality. It is shown that this

principle fails to solve the problem in the case of entropy of

order a and type (3 and this leads to an interesting problem in

non-linear integer fractional functional programming.

In the third section, we discuss the connection between the

concepts of entropy in information theory and physics and show

how Shannon's entropy leads to Boltzman distribution of statis-



tical mechanics but fails to give the Fermi-Dirac and Bose-

Einstein distributions of quantum mechanics. We find the

entropies which lead to these distributions, but these do

not satisfy an important property satisfied by Shannon1s

entropy. This may give us some insight into quantum mech-

anical systems .

In the fourth and last section, we obtain some proper-

ties of Bose-Einstein and Fermi-Dirac entropies obtained in

the third section.
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1. MEASURES OF UNCERTAINTY.

It is important to be able to measure the amount of in-

formation obtained from any scientific experiment or investi-

gation. This can be measured by the amount of uncertainty

removed by the experiment or investigation. The greater the

uncertainty removed, the greater is the information communicated.

Thus let A , A ,. . . ,A be n possible outcomes of an

experiment A and let p ,p ,. . . ,p be the respective probabil-

ities of these outcomes before the experiment is performed.

After the experiment is performed, one of these outcomes has

happened and so the uncertainty as to the outcome has been

removed. We give below some postulates which we expect any

measure of uncertainty to satisfy,

(i) It should be a function of P-|JP9>-«'JP • We denote it by

(ii) If there are small changes in p's, there should result a small

change in the measure of uncertainty, so that H(p ,p ,...,p )

should be a continuous function of p,,P2,...,p •

(iii) If p. = 1 and the other probabilities are all zero, there is

no uncertainty about the outcome. As such H(p.,p«,...,p )

should vanish whenever one of the probabilities is unity and

the others are zero.



(iv) From (iii), the minimum uncertainty is zero. The maximum

uncertainty arises when all the outcomes are equally like-

ly, i.e., when

p l = P 2 = ••' = P n = n '

(v) If we add an impossible outcome to the n outcomes, the

uncertainty does not change, so that

H(P1,P2,...,Pn,0) = H(p 1,p 2,...,p n). (2)

(vi) If we simply interchange the names of the outcomes, the un-

certainty does not change so that H(p ,p , . . . ,p ) is a

symmetric function of the arguments.

(vii) The information given by two independent experiments is the

sum of informations given by the two separately so that if

A and B are independent experiments, then

H(AB) = H(A) + H(B) (3)

where

/ A1 A2 ••' A n \ B B . . . B \
A is (I ~ " " I and B is / 1 2 m ) (4)

X
P1P2 '•• P n / 'v

qiq2 ••' \J

P± > °> qj > O (i = 1,2,...,n; j = 1,2,...,m) (5)

and
n m
£ p, = 1, S q. = 1 . (6)
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(viii) If the experiments are not independent, we expect intuitively

that

H(AB) £ H(A) + H(B) (7)

Let IL(B) be the amount of information given by ex-

periment B when it is known that the experiment A has

resulted in the k th outcome. We then postulate

n
H(AB) = H(A) + E p R ( B ) . (8)

k=l k *

It may be noted that here we have used a purely mathemat-

ical construct viz the concept of mathematical expectation.

We ask, at this stage, the question whether there exists

a function satisfying all the eight postulates and whether it

is unique. The answer to the first part is in the affirmative

[Khinchin (1957)] and the function which satisfies all the

postulates is

n
H(p,,p,,...,p_) = - A £ p . log p. (9)

L z n ± = 1

where A is arbitrary and this arbitrariness is due to the

fact that none of our postulates specify a scale. If we add

the postulate

(ix) H(-j,~) = 1, (10)

we get a unique function viz

n
H(p1,p2,...,pn) = - S p i log2 p ±. (11)

This is Shannon's entropy given in 1948.
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We can prove a large number of properties for Shannon's

entropy and we can replace the above postulate system by

other postulate systems. Some of these postulate systems

have been discussed in Reza (1961), Khinchin (1957), Fein-

stein (1958), Terberg (1958), Kullback (1959), Renyi (1961),

Aczel (1968), Daroczy (1969), Kendell (1964), Lee (1964),

Aczel (1970) and Aczel-Daroczy (1971).

We may note that out of the above postulates, (viii) is

on a different footing from others in the sense that it is

less intuitive than others and is based on a mathematical

construct. We can replace it by another postulate of the

same nature, e.g. Renyi (1961) replaces it by

w(P)g(H (A)) + w(Q)g(H (B)

(viii1) g{H , (AUB)} = s—r-r 7— - (12)
^ n+m w(P) + w(Q) v

where g is a monotone increasing function,

/ A A • • • A B B . . . B \
AUB i s X 2 n 1 2 n I (13)

V P 1 P 2 ' ' ' P n q l q 2 * ' ' q n )

and

w(P) = p± + P2 + . . . + p n (14)

w(Q) = qx + q2 + . . . + c^ (15)

are the weights of the two schemes.



Renyi (1961) considered the case of generalized proba-

bility distributiQis for which

w(P) £ 1, w(Q) £ 1 (16)

and he postulated (12) to hold when

w(P) + w(Q) £ 1 . (17)

For these generalized probability distributions, he ob-

tained the entropy of order a

H (P) = ~~ log ^f (a jt 1). (18)

n
r

i=]
n
£

a
Pi

Pi

We (1967) replaced the above postulate (viii') by

wB(P)g(H (A)) +wB(Q)gH (B)
(viii") g(H .(AiiB)) = — ~ . T

P
y ...

 m (19)

where

(20)

0 (21)
H -L £. ill

to get the entropy of order a and type |3

(a ^ 1) . (22)
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This will make the corresponding version of (17) applic-

able for a wider class of incomplete probability distributions.

We can get a still more general measure of uncertainty by

using

wf(P) = f(px) + f(p2) + ... + f(pn) (23)

wf(Q) = f(qx) + f(q2) + ... + f(qm) (24)

to get the measure

( 2 5 )

f(P.)

This is the most general measure of uncertainty obtained so far.

R
If f(p.) = p. , we get entropy of order a and type p.

Q

If f(p.) = p. , CL -* 1, we get the measure of uncertainty
n p
S Pi log2Pi

H.e(P) = Lt HP(P) = - ~ ; . (26)
a-1 a J 3

If f(p.) = p., we get Renyi's entropy of order a.

n
If f (p. ) = p. , a -• 1, Dp. = 1 , we get Shannon' s entropy.

i l

If a - co , we get

(27)
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which is in a sense, the simplest measure of uncertainty. It

satisfies the first seven postulates and to use it we need not

know all the probabilities; we have to know precisely only the

maximum probability of any outcome. In many cases, it may be

easier and less costly to determine this than to determine all

the probabilities.

Pathis (1970) had generalized (22) to give

J a+P.-l

H X 2 n(P) = - ^ log *=±- (28)
CC 1-CC Z n 8

but this measure violates the symmetry postulate (vi) which has

a strong intuitive basis.

Before proceeding further, we state some properties of en-

tropy of order a and type |3 , some of which will be found use-

ful later.

(i) H (p ,p , . . . ,p) is independent of both a and 3 and for

generalized probability distributions with given weight k,

it is a monotonic increasing function of n.

(ii) H P(P) = 0 =» Sp/tp^" 1-!) = 0 (29)

i=l

so that this entropy vanishes when exactly o n e probability is

unity and the rest are all zero.
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(iii) H (P) is a monotonic decreasing function of a, for a fixed 3

(30)

P l + P 2 + P 3 P l + P 2 + P 3 P l + P 2 + P 3( iHa ^ l ^ ' - ' P n 1 ^ H a ( i , 3 , 3

and in general, this measure increases with the coming closer of

probabilities. This is also expected on intuitive grounds.

P, p l P l P l P2 P2 P2 P n p n Pn,
v a mn mn m ' m_ m ' m^ m m m

1 1 1 2 2 2 nn n

> H a
3 ( P l , p 2 , . . . 5 p n ) (32)

so that this entropy is always increased by a subdivision of

the outcomes.

This last property leads to the optimization problem

discussed below.

The entire theory of information is based on Shannon's

entropy and Chabbra (1969) has made an investigation as to how

far the results of this theory remain valid for entropy of

order a and for entropy of order a and type (3.
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2. THE OPTIMIZATION PROBLEM.

Suppose an experiment

\

A = | AV
A
2'""

An »

is performed and H(p ,p ,...,p ) is any one of the entropies

obtained above, for this experiment.

Now suppose more funds become available so that each of

the possible outcomes can be investigated in greater detail.

The more detailed experiment is indicated by

— / 1 1 ' 1 2 ' * * * ' "̂l pi ' 00' ' ' ' ' p ni ' n 0' ' ' ' ' ̂ ^^n \

A — I

(33)

where

m.

S Pij = Pi (i = l,2,...,n). (34)

We have seen above that this will increase the information

obtained. The problem is to maximize the gain in information viz

H(A) - H(A)

or

(35)
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subject to

f1(m1) + f2(m2) + ... + fn(mn) £ B (36)

where f.(m.) is the cost of carrying out m. experiments of

the i th cateqory, B is the budget available and m's are

integers >̂ 1.

Since m's are required to be integers, Lagrange's meth-

od of undetermined multipliers is not available. However for-

tunately the technique of dynamic programming is applicable in

the case of Shannon1s and Renyi's entropies. We may note that

here decision or control variables are m ,m ,...,m .

We may make an initial simplification by noting that the

entropy is increased by making probabilities as nearly equal as

possible so that we take the objective function as

Pi Pn P-, P - P^ P P P
„/__! ZJ-. _ 1 . _i. 12.. Ilk Ilk n,

m. m mn m . m . m m m
1 1 1 2 2 nn n

- H(p ,p , . . . , p ) . (37)

(i) In the case of Shannon's entropy, the objective function is

n P. p. n n
-S m.— log •— + E p^ log p . = Fp, log m. . (38)
i=l mi mi i=l i=i

Let <p (B) denote the maximum of this objective function

(38) subject to (36), m! s being integers >̂ 1, than the prin-
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ciple of optimality of dynamic programming [Bellman (1957),

Bellman and Dreyfus (1961)] gives

> n ( B ) = ^ ^ f P n
 l o < 3 m

n + V - l ( B ~ f n ( m n ) ] ( n = 2 > 3 > - - )

(39)

= p n l o g Mn (40)
X 1 1

where M is the integer for which B-f (M ) is minimum and

M is the integer for which
n

B-f (M ) - fn(!) - fo(l),...,- f .,(1)
n n 1 2 n-1

is the smallest.

(ii) In the case of Renyi1s entropy or order a, the objective func-

tion is

n P. a n

- log — - - log (41)
l-cc n p^ l-a n

£ m^ S p •

n
so that if 0 < a < 1, we have to maximize £ p^ /m^ and

if a > 1, we have to minimize the same quantity subject to

(36) and m1s being integers > 1.

The principle of optimality gives for the case 0 < a < 1

a

[— + P (B-f (m )] (n = 2 3 )
m
n (42)

HUNT LIBRARY
CARNESIE-MELLON UNIVERSITY
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a

r^i <43)

Similar equations are obtained when a > 1.

(iii) In the case of H (P), the objective function
OD

A L L — J- L L ̂ ^ XL L «X» £tt ^ X,

(44)

We have thus to find the minimum of the maximum of

Pl P2 Pn
— , — , . . . ,—, so that the recurrence relation is
m m 'm
1 2 n

min Pn
<(> (B) = {max(— ,<f> n(B-f (m ) ) (n = 2,3,...) (45)n , . ... m n-1 n n

l<m <M n
-̂  n^ n

pl
^ (B) = -~. (46)
1 M

The particular cases of the above when (36) is replaced by

m + m + . . . + m = M (47)

were discussed by us in Kapur (1968a).

(iv) For the entropy of order a and type $, the objective function is

n P i C C + p - 1 n «4B 1

^ l o g ^ / - ^ log i = l — — (43)

i= 1 i i=l

so that we have to maximize (when 0 < a < 1)
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n
E

n
T,

P

m

P

,a+
1

.a+
1

i P

V-1
1

(49)

m. p-1

subject to (36) and m1 s being integers )> 1. When a > 1,

we have to minimize the expression (49).

Unlike the earlier case, this is not separable and the

technique of dynamic programming is not applicable.

The problem belongs to the domain of non-linear integer

fractional functional programming.

The first attack is to try to solve this problem without

the requirement of m1 s being integers. Even this is not easy

and only some cases of fractional functional programming have

been solved.

As is well-known, for a mathematical programming problem,

whether a local maximum or minimum is also a global maximum or

minimum, and the necessary and sufficient conditions for the

existence of a local or global optimum depends very much on the

nature of the objective and constraint-functions. Magasarian

(1969) and Postein (1967) have studied seven types of con-

vexity. Gupta and Bector (1967) have made a systematic study

of the nature of products, quotients and rational powers of

convex-like functions and their relevant results are given in

the following table:
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cx sx sx cv cv sv sv ex ex sx sx
>o >o >o >o >o >o ^o <p <o <o

sv cv sv cx sx cx sx cx sx cx cx
>0 >0 >0 >0 >0 >0 >0 >0 >0 >0 >0

— EQX EQX EQX QV EQV EQV EQV QX EQX EQX EQX
g

cx cx sx sx cv cv sv cv cv cv sv sv
>0 >0 >0 >0 >0 >0 >0 <fi <p <0 <0

cx sx cx sx cv sv cv cv cv sv cv cv
<0 <0 <0 <0 <0 <0 <0 <0 >0 >0 >0 >0

QV EQV EQV EQV QX EQX EQX EQV QV EQV EQV EQV

f CX CV SX CX SX SV CV SV

<0 <0 <0 <0 <0 <0

cv cx cv sv sv cx sx sx
<0 <0 <0 <0 <0 <0 <0 <0

QV QX EQV EQV EQV EQV EQV EQV
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Here CV, SV, QV, EQV, SDV are abbreviations for concave,

strictly concave, quasi-concave, explicitly quasi-concave and

pseudo concave functions respectively. In the same way CX,

SX, QX, EQX and SDX stand for convex, strictly convex, quasi-

convex, explicitly quasi-convex and pseudo convex functions

respectively. The results are simplified when the functions

are differentiable.
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3. GENERALIZED ENTROPIES AND STATISTICAL MECHANICS.

To make connection with statistical mechanics, we ask

ourselves the question: "In what quantum state is the system?"

Let p. be the probability for the system being in the i th

state. The probability distribution must, of course, be con-

sistent with the observed knowledge. According to the infor-

mation-theoretic point of view, we choose a set of probabili-

ties which maximize the entropy, consistent with observed

knowledge, since this is the most non-committal view. Accord-

ing to Gibbs the state of equilibrium is the state of maximum

entropy. From the information theoretic point of view, it is

the state in which all the random motions which can take place

are taking place so that the observer knows as little about

the system as it is possible for him to know beyond the know-

ledge of the constants of motion.

From quantum mechanics, we know that the system can be

in state i with energy e^ (i=l,2,...,n). If we make an

observation of e, the best we can do is to infer that it re-

presents the expected energy "e, since this is the repeatable

quantity associated with the motion. To find the appropriate

distribution, we maximize H(p.,p_,...,p ) subject to

n

SPi = 1 (50)
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n
pi€i = i (51)

Equation (50) states that the system is always in one of the

states and equation (51) states that e is the expected energy.

Using Shannon1s measure of uncertainty, we seek to max-

imize

n
-S Pj, log p± (52)
i l

subject to (50) and (51).

Using Lagrange' s method of undetermined multipliers, we

get the probability distribution

• -0-B e .

p± = e (i = 1,2,. . . ,n) (53)

where if) and B are determined from the equations

n -B G. , n - B e .

S e ° X = e^ ze. e ° X = i e*. (54)

It can be shown that B is equal to 1/kT where k is

the Boltzman Content and T is the temperature of the system

(53) gives then the classical Boltzman distribution. However,

in statistical mechanics, we come across the distributions

p- - (Fermi-Dirac) (55)
(£i-«)Bo

e +1
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and

p. = — TTT— (Bose-Einstein) (56)
i o

e -1

of which (54) is a limiting form when particle density is low

and the temperature is high.

We now attempt to answer the following questions,

(i) How should the expression (52) for entropy be modified so that

its maximization may lead to (55) or (56) instead of to (53)?

(ii) Do these modified forms satisfy the postulates laid down by

Shannon for (52)? In particular which postulates have to be

modified?

(iii) How are these modified forms related to the generalized entro-

pies of order a and type 3?

To answer these questions we replace (52) by

n
T f(p.) (57)

where the choice of the function f is at our disposal. Max-

imizing it subject to (54), we get

f (p^ = B (€ i-M) • (58)

If (55) is to be a solution^ we get

f1 (—^—) = u or f (y) = log (--1) = log

or
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f(y) = -y log y - (1-y) log y + c. (59)

The constant c depends on the choice of the base of

the logarithm so that

n n
S = - T p± log p ± - £ (1-Pi) log (l-p±) (60)

i=l i=l

for the Fermi-Dirac case.

Similarly for the Bose-Einstein case, we get

n n
£ (l+p±) log (I4pi) - S P i log p± . (61)

i l

Let us now consider the properties of (60) and (61).

(i) Each is a continuous symmetric function of the argements

(taking p^ log p^ = 0 when p^ = 0) .

(ii) Each is maximum when p = p = ... = p = — [see Section 4].

(iii) For each S (p^p^'. . . ,p^, 0) = S(p1,p2, . . . ,pn) .

(iv) In the case of certainty, i.e. when one of the states is bound

to occur and the rest are bound not to occur (60) gives zero

(61) gives 2 log 2, so we can make this also zero by defining

n n

S = S (1+Pi) log (1+Pi) - S P i log p± - 2 log 2.
i=l i=l

(62)

(v) For two independent schemes, (60) gives
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S(AB) - S(A) - S(B)

m n m n
- £ £ p. q. log p. q. - £ £ ( l~P i q_j) lo9 (1-P^ tL)

n m n
+ £ p. log p. + £ q. log q. + £ (1-p. ) log (1-p.

i=l x x j = i ^ J i=i x 1

m
+ £ (1-q.) log (1-q.)

i=l ^ ^

m n . n
? i q j log ( 1 - P i q. ) + £ . ^= - £ £ (1-p. a ) log ( l -p ± q.) + £ (1-p.) log (1-j

n
(1-q. ) log (1-q. ) . (63)+ I; (1-q. ) log (1-q.

1=1 ^ "

In the special case

/ 1' 2' ' ' * ' n \
A = /1 l i V B = 11^ i" r j * (64)

\ n n n / \ m m m

we get

S(AB) - S(A) - S(B) = -nm(^ 1 x- " 1
) o g ( l

) g ( )

-^-) + (n-1) log( l - - )

+ (m-1) log(l-~)
m

, n-1 m-1
(1-^) (1-^)

log (65)
nm-1

+0 (1__1_)
nm
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so that we conclude that for two independent schemes S(AB)

is not necessarily equal to S(A) + S(B). The same result

is also easily seen to be true for Bose-Einstein entropy.

Thus we find that Fermi-Dirac and Bose-Einstein entro-

pies do not satisfy postulates (vii) and (viii) of section 1.

However our generalized entropy of order a and type 3

and Renyi's entropy of order a satisfy (vii) and so it is

observed that these cannot lead to (60) or (61).

The earlier generalizations referred to generalizations

of postulate (viii). We need to modify postulate (vii) also.

For Renyi1 s entropy., it is easily seen that the probabil-

ity distribution is given by

1

p ± =(A + B e ^ " 1 (66)

when A and B are determined from

1
n r n
S (A + B e ± )

a 1 = 1, S e±(A + B e ± )
a 1 = 1. (67)

l i l
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4. BOSE-EINSTEIN AND FERMI-DIRAC ENTROPIES.

(i) We first prove by using the principle of optimality that

Bose-Einstein entropy is maximum when all the probabilities

are equal. Let

n n

S = S (c+p±) log (c4pi) - E p . log p ± (68)
i=l i=l

and let it be desired to maximize this subject to

= c, p ± ^ 0. (69)
n

Let f (c) be the desired maximum value, then the prin-

ciple of optimality gives

fn ( C > = O ^ c ((c+pn)log(c+pn)-pn log p n + fn_ 1 (c-pn) ) (70)

f (c) = 2c log c - c log c. (71)

Suppose the result is true for the case of (n-1) outcomes,

then (70)gives

max cn-p
fn(c) = O ^ c f (C+Pn)

log(c+Pn)-Pn log Pn + (cn-pjlog -^-f

°"Pn

then
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c+p c-p
(p ) = log — + log (73)
v*n P cn-p v

( 7 4 )

<[)(p ) is therefore maximum when

( 7 5 )

Using the principle of induction and putting c = 1, we

get the result.

(ii) We next prove, again by using the principle of optimalitv,

that Fermi-Dirac entropy is maximized when all the probabilities

are equal.

We consider the maximization of

n n
S = - £ p i l o g p i - £ (c-p ±) log (c-p ±) (76)

i=l i=l

subject to (69).

The principle of optimality gives

f (c) = _ . ^ f-p log p - (c-p )log(c-p )+f n(c-p )}n Q<JP ̂ .c n n v ^n ^v ^n n-lv ̂ n J

(77)

f1(c) = -c log c (78)

If the result is true for the case of (n-1) outcomes



26.

c-p
f (c) = ^. . f-p log p -(c-p ) log (c-p )-(c-p ) lon O^p <sl *n ^ *n v ^n ^v *n v *n

en-2c+p
- (en-2c + pn) log — j ^ — - }

Then
c-p c-p

<b' (p ) = log + log 5 (79)Y VFn * p ^ cn-2c+p v
rn n

~" c
Pn(c-pn) - (c-pn)(cn-2c+pn)

<|)(p ) is therefore maximum when

p = -. (81)

^n n

Again using mathematical induction and putting c = 1, we

get the result.

(iii) Alternative proofs of the above two results are easily obtained

by using the convexity of the functions

x log x -(1+x)log(l+x) and x log x + (1-x)log(l-x)(82)

in the interval 0 < x < 1 and the inequality

n
a.) 1 7 £ <t>(a.;) (83)

n n

which holds for any continuous convex function.
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(iv) We now show that both Bose-Einstein and Fermi-Dirac en-

tropies are increased by subdivision of events.

For the Bose-Einstein case, we have to show that

n p. p. n p. p
{ E m. (l+-i)log(l+-i) - E m . — log —
. , 1 m. m. , n ira. m.
i=l 1 I i=l I I

n
= E (1+p .) log (1+p .) + S p. log p . } ;> 0

i.e.

n p
E { (pi+mi)log(l+—) - (l+pi)log(l+pi) + p ± log m±) 2 0.

(84)
Let

f(n) = (p4x)log(l+^)-(l+p)log(l+p)+p log x (8 5)

then

f (x) = log (1+J) . (86)

Since f(l) = 0 and f' (x) > o for x ;> I, it follows

that f(x) ̂ 0 for x N. 1# I t f on Ows that (84) is always

satisfied when m' s are integers 2 1«

Similarly for the Fermi-Dirac case, we have to show that

n P i
E {-(m -p )log(l-—) + (l-p.)log(l-p. ) + p. log m• } 2 0

i=l mi
(87)

Let

(t>(x) = -(x-p) log(l-^) + (1-p) log(l-p) +p log x (88)

then

<t>' ( x ) =
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Since <}>(1) = 0 , <t>' (x) > 0 for x ;> 1, it follows that

<t>(x) ;> 0 for x ;> 1. It follows then that (87) is always

satisfied when m1 s are integers ]> 1.

(v) We now use dynamic programming to optimize the gain in

Bose-Einstein and Fermi-Dirac entropies subject to the budget

constraint (36).

The recurrence relations for the Bose-Einstein case are given

by

n

(n = 2,3,...) (90)

Pl
)

l
^ = (P1+M1) log (1+—) + P± log Kv (91)

The same relations for the Fermi-Dirac case are given by

n n
(92)

Pl
log M -(M -p )log(1-—). (93)

Since the objective functions are separable, the method

of dynamic programming is applicable.
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SUMMARY

(i) The problem of allocating resources for carrying out ex-

periments to maximize the gain in information when the budget

is fixed is solved when Shannon's and Renyi1s entropies are

used,

(ii) For our entropy of order a and type P, this problem

leads to a problem in non-linear integer fractional functional

programming.

(iii) Shannon1s entropy leads to Boltzman distribution of sta-

tistical mechanics. Bose-Einstein and Fermi-Dirac entropies

which lead to the corresponding distributions of statistical

mechanics have been obtained and some of their properties have

been studied.
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