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1. Introduction

Let X be a compact Hausdorff space and E be a

Banach space. Let C(X,E) denote the Banach space of

E-valued continuous functions equipped with the usual

supremum norm. The Banach-Stone theorem. Day [4], asserts

that if X,Y are compact Hausdorff spaces then X is

homeomorphic with Y if and only if there is a linear

isometry on C(X,R) onto C(Y,R) where R is the real

line. Subsequently Jerison [8] investigated the problem

of extending Banach-Stone theorem with R replaced by an

arbitrary Banach space E. In [8] it is proved that the

theorem remains true if (*) any two T-sets in E are

discrepant and in particular if E is a strictly convex

space; however it is shown that the theorem is false in

general. We aim here to investigate the same problem in

the case when the space E does not satisfy the condition

(*) • Among others we consider in this paper similar problems
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that arise when E is a smooth Banach space or the unit

cell of E is quasi-cylindrical.

Apart from discussing the above problems

we obtain some auxilliary results concerning the spaces

C(X,,E) which are also of intrinsic interest. Among

others we provide a useful characterization of extreme

points of the unit cell of the dual space of C(X,E)

and determine the functions f in C(X,E) such that

the norm is G-differentiable at f .

2. Preliminaries

Before proceeding to the main results of the paper

we recall the necessary terminology and notation and

few useful results.

Throughout the paper E is a fixed real Banach space

of dimension J> 2 . If B is a Banach space we denote

the dual space of B by B*. The norms of the various

Banach spaces that enter our discussion are all denoted

by the same symbol |] jj as there is no occasion for con-

fusion. The unit cell of B (B*) is denoted by UD(U* )
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and Sn(S*) is the boundary of UQ(U*). If X is a
a D Ho

compact Hausdorff space the unit cells of C(X,E) and

its dual are denoted by U and U* respectively.
-A. X

If K is a convex set Ext K is the set of extreme

points of K.

In the sequel we make use of the following functions

e and II . The function e on E* x X into (C(X,E))*

is defined by setting e(l,p) (f) = <t(f(p)). We have

|e(*,,p)(f)| = |*(f(p))| £ \\l\\ llf(p)|! < \\l\\ ||f||. Thus for

a fixed p | e (l,p) ) <_ \}l\\ . On the other hand if fx
n) i-s

a sequence in S_, such that I (x ) -» I!-til then considering
hi 3D. •

the functions f e C(Xj)E) defined by f (q) = x for

all q e X it is verified that e(^,p)(fn) -• |Kj| and

|| f I] = 1 . Thus ||e(<t,p)|j = ||-t|| and for a fixed p e X ,

e( ,p) is a linear isometry on E* into (C(X,E))*. The

function II on E into C(X,E) is defined by setting

II(x) (p) = x for all x e E and p e X . It is verified

that II is a linear isometry on E into C(X,E) .

We recall few geometric properties of a Banach space.

If B is a Banach space and x e S then a functional
B

U B * is said to support U_ at x if H|| = 1 = I (x) .

The cell U_, is said to be smooth at x if there exists
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one and only one hyperplane of support at x . A Banach

space B is said to be smooth if Un is smooth at all

points x e S_. . It is known, Mazur [lol, that U is
B B

. , , . r. , .. .-. -„> n. H X + t VH - IJX |1
smooth at x if and only if (*) lim •** ^ u—"• =
G(x;y) exists for all y e B . Further, if the limit

exists then G(x; ) is a linear functional supporting

U at x . For each x e So let v(x) be the set of
B B

all linear functionals supporting U at x . Then v
SBis a set valued mapping on S_. into 2 . If follows

B
from Hahn Banach theorem that v(x) =f= 0 f o r aH x e SB *

Further if C is the set of smooth points in S_ , it

follows from the preceding observations that v|c might

be considered as a function on C -• S* . The set valued
a

mapping v is called the spherical image map of S ,

Cudia [3] .

We proceed to define certain distinguished subsets

of a Banach space which are useful later in the paper.

An M- set in a Banach space B is a maximal convex subset

of S_, . A T-set in B is the half cone of nonnegative

multiples of vectors in a M-set . For a discussion of

these sets we refer to [8] . Two T-sets T^T- are said

to be discrepant if either T, n T2 = (0} or if there

exists a T-set T3 such that T, 0 T3 = {0} = T2 fl T3 .
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It is verified by applying Zorn1s lemma that if x e S_
a

then there is a M - set M containing x . Further

if x e S_ and {x} is a M- set then any two T-sets
B

are discrepant. For if T is the T-set {Ax | Aj> 0}

and T. is another T-set then it is verified using the

maximality of M- sets that T 0 1^ = {0} i In particular

it follows that the norm in B is strictly convex then

any two T-sets are discrepant for then there exists only

one point belonging to a M - set.

We summarize some properties of M- sets which are

required in the last section of the paper in the following

remark.

Remark 1. If M is a M- set in the Banach space

B then it follows from the separation theorem [ 4 ] , that

there exists a linear functional f e B* such that ||f|| = 1

and inf f(x) ;> sup f(x) where U° is the interior of

ex60e
-1the cell U_ . Hence if H is the hyperplane f (1) then

B
M c H . Further since H H S is a convex set and M is a

B

maximal convex set we conclude that H H Sn = M . We refer

to H as a hyperplane supporting U_ along M . Further
B

we note that if ther exists a point x e M and if U is
B

smooth at x then from the definition of smooth point it

follows the hyperplane supporting U_. along M is unique.
£5
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We conclude the preliminary remarks from geometry of

Banach spaces by stating the definition of quasi-cylinders

and a known result, theorem 5.2 [8] for convenience of

reference. Before stating the definition we recall that

if C is a convex set in a Banach space B the relative

interior of C is the interior of C relative to the

affine subspace of B spanned by C. The relative boun-

dary of C is C ~ relative interior C . The relative

interior and boundary are respectively denoted by rel-int

and rel-bd .

Definition 1 . Let B be a Banach space and D be

the set of smooth points in SD . Then the unit cell U_.

is said to be a quasi-cylinder if it satisfies the follo-

wing conditions.

(1) Ext U_ is a closed subset of So and D U Ext U_ = S_ .
J3 B B B

(2) There a re two a n t i p o d a l M - s e t s JVr and JY? in So
B

such that Ext UB c M1 U IV? and if H is the hyper-

plane supporting Ug along M1 then M1 has a nonempty

interior relative to H.

(3) x e D implies x is in the rel-int of a M - set of B .

(4) There exists a point p e M and a closed subspace L of

such that p + (UQ fl L) = M
1 .

B
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We proceed to provide an example of a quasi-cylinder. Let

(E, j| ||) be a Hilbert space and L be a subspace of E

of deficiency 1 . Let x e L and |jx|| = 1 . Let C be

the complete cylinder erected on L n U with generators
hi

parallel to x . Let U be the portion of C cut out by

the hyperplanes x + L and - x + L . Then U is the

unit cell of a Banach space (E, || || ) topologically equi-

valent to (E, || ||) and U is a quasi-cylinder. From

this example of a quasi-cylinder we conclude that if the

unit-cell of a Banach space is a quasi-cylinder then the

T-sets need not necessarily be discrepant. In this connec-

tion we refer to example 4.5 in [8] .

For convenience of reference we state the theorem 5.2

in [8] below.

Theorem 1 . [Jerison] . Let X,Y be two compact Hausdorff

spaces and E be a Banach space such that any two T-sets

in E are discrepant. Then X is homeomorphic with Y

if there is a linear isometry on C(X,E) onto C(Y,E).

We need some concepts from the theory of vector valued

measures. For an account of vector valued measures we refer

to Edwards [6] and Dinculeanu [5] . An E-valued Borel mea-

sure on a topological space X is a measure defined on the

Borel sets of X with values in E . If pi is a Borel
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measure on X with values in E then the variation of

ji is defined by

n
V(ju) = sup ) E H M V l ! I (B,,Bp,...B ) € P

• i=l x L z n

where P is the set of finite Borel partitions of X .

When X is a compact Hausdorff space an E-valued Borel

measure pt is said to be regular if V (fj.) is a regular

set function, see in this connection proposition 21 on

page 318 in [ 5 ] . If VV(E) is the set of all E-valued

regular Borel maesures \i of finite variation defined on

the compact Hausdorff space X then with the usual defini-

tions of addition and Scalar multiplication VV(E) is a

x

linear space. Further equipped with the norm

VY(E) is a Banach space.
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Let u e V (E*) and S: X -• E be a step function
X

n n

i.e. S is of the form E x(B.) x. where {B.} is

i=l x 1 x i=l

a finite family of pairwise disjoint Borel sets in X and

x. e E for 1 <, i <^ n and x (B.) is the characteristic
function of B. . Then the Stieltje1 s integral S d u

r n

is defined by I S d \i = T, JU(B.)(X.) . Since X is

a compact Hausdorff space corresponding to any function

f eC(X,E) there exists a sequence of step functions S

uniformly converging to f . The Stieltje1s integral

If d JU is defined to be the lim J S d ju . Since JLI

n-» OD

is of finite variation the integral exists for all f eC(X,E)

For a detailed account of this theory of integration we

refer to Bochner and Taylor [2] and to sections 7 and 8

in Chapter II in [5] and the representation theorem stated

below could be deduced from the corollary 2 on page 387

in [5]. In this connection we refer also to Bochner and

Taylor [2], Gowurin [7] and Singer [11]. The papers [2] _,

[7] are concerned with the representation problem when X

is the unit interval while the more general case when X

is an arbitrary compact Hausdorff space has been dealt in

[11] •
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Theorem 2. If X is a compact Hausdorff space there

exists a linear isometry a on (C(X, E))* onto V (E*)
•A.

such that

• (f) = f f
JX

for all Le (C(X,E))* where the integral is the Stieltje1 s

integral defined in the preceding paragraph.

3. Smooth Points in C(X,E).

We proceed next to characterize the functions f e C(X,E)

such that the norm in C(X,E) is G-differentiable at f .

We first establish a lemma useful in the subsequent discus-

sion.

Lemma 1. Let X be a compact Hausdorff space and E

be a Banach space. Then

Ext (U*) = e(Ext U* X X)

where e is the map defined earlier.

Proof. Let I e Ext U* and p e X . Since e(«,p) is

an isometry and ||̂|| = l, ||e(<t,p)|| = 1 . Let L p L 2 e Ux be
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L +L2
such tha t e(l,p) = —2 . We claim tha t L^ = 1>2 =

e(l,p). Let H1}IJ.2 e VX(E*) be such tha t ^ = oCL±)

where a is the isometry described in theorem 2. We claim

that if M is a Borel set in X and p / M then the varia-

(/i, + (X2) |M
tion ||—=—^— = 0 . For if this is not true by the

regularity of the measure jUj + \i2
 t n e r e exists a compact

Mi + M
set C c M such that if v is the contraction of 2

to C then the var ia t ion of v is a pos i t ive number 6 .

Since \-L~2—- || = 1 , H—=L—2—- II = 1 • Hence if v' is

H \ 2
the contraction of 5 to X ~ C then from the

definition of variation it follows that j|i/|| + ||i/'|| =

11 1 M
11 2 H = 1 • Thus ||i/« || = 1 - 6 . Let { x n } n ^ be

a sequence of vectors in E , ||x || = 1 such that I (x ) -• 1

Since p / C and C is compact there exists a sequence

[ f n } n > 1 in C(X,E) such that ||fn|j = l, fn(p) = xn

and fn(q) = 0 if qeX ~ {p} for a l l n 2 1 • Now

= \ad,p)(fn)\ = \ 1+
2

 2 ( f n )

X ~c
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^1 + ^2Hence 2 (M) =0 if M is a Borel set and p / M

Thus it is verified that

Mi + Mo Mi fp) +

n _ II ! 2 I) _ \\LA

Since | |Ml | | = ||/x2]| = 1 , ||Mi(P)ll £ 1 a n d
 I !M 2 (P)

Hence the preceding equations imply ||ju1(p)|| = ||/Z2(P)|| = 1

Thus if xeE L, (II (x)) = II(x)du,, = u, {p} (x) . It

follows similarly that L2(II(x)) = ^2(p}(x) . Further

a(l,p) (II(x)) = I (x) . Hence by our choice of L, and

jU,{p} + MofP̂
L^ it follows that I = -z . Since I e Ext U*

Thus L, = L« and a(l,p) € Ext U,, .

Conversely let L e Ext U . We verify that there
.A.

exist I € Ext U* and p e X such that L = e(£,p) .

Let a be the map assured by theorem 2 and l e t <j(L) =

Since ||L|| = 1 , ||/ijl = 1 . We claim that there is a point

p e X such that if M is a Borel set and p / M then

jLt(M) = 0 . For convenience the contraction of the Borel

measure JU to a Borel set N c X will be denoted by ju|N

As a f i r s t step we verify that there exists a point

p e X such that ju{p} ^ 0 . For if jx{p} = 0 for a l l
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p € X then there exists a point p e X such that whenever

N is a neighborhood of p then JJ(N) ^ 0 . This statement

is verified as follows. If for each point p e X there

exists a neighborhood N such that jLt(N ) =0 then since

X is a compact space there exists a finite set {p,3p«,. . .p }

n
c X such that X = \J N . Tiius 1 = ||juj| < E ||/Ll|N || = 0.

^i< p i " i=l p i

Hence we obtain a contradiction. Thus there exists a point

p e X such that for all neighborhoods N of p k /i(N) j= 0 .

Since nip] = 0 and the measure jj, is regular there exist

two neighborhoods N-, and N~ of p such that N, c N«

and 0 < ||JI|N,|I < ||M|N2I' ̂  1 . We verify in such a case

L / Ext U* , thus obtaining a contradiction. Let No ^ N. = N
X Z x

and ^i' be t h e measure in V (E*) d e f i n e d by /i' = ||/m|N_||

l l u l N j j l ( M | N 3 ) • T h u s M + M« = (n\x ~ N 2 ) + ( l + | | M | N 3 | |

(1 - i!,a|N1|!) (/i|N3) and \i - ^ = (M |x ~ N2) + ( 1 - | | j a | 3

(1 + HUJN-J^IJ) (JUJN3) . From t h e above equa t ions and the d e f i n i -

t i o n of v a r i a t i o n it fol lows t h a t |!/i + ju11| < |!jn|x ~ N»|| +

| I ^ 1 N I | | + ||/i|N3|l = jl̂ ijl = 1 . S i m i l a r l y i t i s v e r i f i e d t h a t

\\lX- l l ' V < 1 . S i n c e n = ^ W ) \ ( H - ^ ' l and t f + O i t

follows that n is not an extreme point of the unit cell of

HUNT mm
CARNEGIE-MELLON UNIVERSITY
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VV(E*). Since the map a is a linear isometry it follows

that L / Ext U* . Thus we conclude that there exists a

point pe X such that M(P(J ^ ° ' Suppose now that

||M{p0}!| < 1 . Then if Y = X ~ {p} , 0 < ||M|Y|| < 1 and

the above argument applied to fPn}
 an<^ Y i-n place of

N, and N3 will again contradict the assumption that

L e Ext U* . Thus ||/i{po}|| = 1 and for all Borel sets M

such t h a t p / M it f o l l ows t h a t p(M) = 0 . Le t M(PO) = I •

If f e C(X,E) t h e n L(f) =J f d JLI = jLl{pQ}f (pQ) = e ( £ , p Q ) ( f ) .
X

Hence L = e(^,pQ) . If I = 2 > IKjl! = 1 = |K2II
 then

e(t ,p ) + e(^2,p )
it is verified that L = 5 . Since

L e Ext U* we conclude that e(<t,,prj = e(-t«,p ) . Hence

e(l1}pQ) (n(x) ) = e(£2,p0) (n(x) ) for all x e E. Thus

I, (x) = -to (x) for all x e E i.e. £, = l~ . Thus I e Ext U£

and this completes the proof of the lemma.

In the next theorem we provide a characterization of

those functions f e C(X,E) such that the jj )| is G-differen-

tiable at f. The theorem thus generalizes the known result

for the case when E = R , discussed in Banach [1] . Before

proceeding to the theorem we wish to state a couple of remarks.



[15]

The Remark 2 is an immediate consequence of the

definition of the function e .

Remark 2 . Let x e E with j|x|j = 1 and let I e E*

be such that \\l\\ = I (x) = 1 = ||x|| . Let f e C(X,E)

||f|| = 1 be such that for some point q e X , f (q) = x .

Then the linear functional e(£,q) is of unit norm and

the hyperplane e(t,q) (1) supports the unit cell of

C(X,E) at f .

Remark 3• Let F be an arbitrary Banach space and

x e F with ||x|| = 1 . Let B (x) = {f|feE* , ||f|| = 1 = f (x) }

Then B(x) is a nonempty w*-compact convex subset of

U* and Ext B(x) a Ext U* .
r ~ b

Proof. From the Hahn-Banach theorem it follows that

B (x) ^ (() . Further it is verified that B (x) is a w* -

closed convex subset of U* and since by Alaoglu1s

theorem U* is w*-compact it follows that B(x) is a

g-, + g->

w*-compact set. Let f e Ext B(x) and let f = —=——=•

where g± e U| for i = 1,2 . f e B(x) implies that

H îll = llg2H
 = 1 = g i ( x ) = g 2 ( x ) • T h u s g i ' g 2 e B ( x ) •

Since f e Ext B(x) it is inferred that g, = g_ = f .

Hence f e Ext U| .
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Theorem 3. If X is a compact Hausdorff space and

f e C(X,E),, ||flj = 1 then the unit cell of C(XJ)E) is

smooth at f if and only if there exists a point q e X

such that 1 = ||f(q)|| > ||f(q')|| for all q' £ q and UE

is smooth at f(q).

Proof. We prove first that the condition in the theorem

is necessary. Let the unit cell in C(X,E) be smooth at f .

If possible let q.,q2 be two distinct points in X such

t ha t 1 = Hffq^U = | | f (q 2 ) | | . Let l±,l2
 e E* be s u c h t h a t

Thus ||e(*1,q1)|| = ||e(t2,q2)|| = e f ^ q ^ f ) = e(*2,q2)(f) = 1

where e is the map defined in section 2. Since the

unit cell in C(X,E) is smooth at f it follows from the

above equations that e(<t,,q..) = e(<t2Jq2) • Hence for g e C(X,,E)

^ * L e t n o w X}Y e E

I-, (x) ^ ^2^^ ' S i n c e x is a compact Hausdorff space

there exists a continuous function g : X -• E such that

g (q,) = x and S Q ^ O ^ = v * F o r s u c h a function g we have

^l^O^cj-l^ ^ ^2^ gO^ q2^' TJ^1VLS a contradiction is obtained and

there exists only one point q e X such that 1 = ||f(q)|| = ||f||
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We proceed to show that the norm in E is smooth at

f(q) . For if the norm is not smooth at f(g) let

£' £„ be two distinct linear functionals in E* sup-

porting LL, at f (q) . As noted in Remark 2 the

hyperplanes e(l,,q) (1) and e^-j^)" (1) support

the unit cell of C(X,E) at f . Since the norm in

C(X,E) is smooth at f it follows that e(£,,q) =

eflj^q) • Now evaluating these functionals over the

E-valued constant functions in C(X,E) it follows that

I, = l~ contradicting the assumption £, ^ £_ • Thus

the norm in E is smooth at f and this completes the

proof of the necessity of the condition.

Conversely suppose f e C(X,E) and || f ]| = 1 . Let q

be the only point in X such that 1 = ||f(q)|| and further

let the norm in E be smooth at f(q) . If I e E* , with

\\l\\ = 1 , supports UE at f(q) then ||e(*,q)|| = 1 and

e(-t^q) (1) is a hyperplane supporting the unit cell in

C(X,E) at f . If the norm in CCX^E) is not smooth

at f and if

B(f) = { L L e (C(X,E))* , |JL|! = 1 = L(f) )

then B(f) is a w*-compact convex subset of the unit

cell U,* and card B(f) ^_ 2 . By the Kre in-Mi I'm an
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theorem. Day [4], B(f) = w*-closure of the convex hull of

Ext B(f). Since card B(f) ^> 2 it follows that there are

at least two distinct extreme points L., i = 1,2 in B(f) .

From remark 2 L. are extreme points of U* . We complete
1 A

the proof by showing that L, = L2 = e(£,q) thus obtaining

a contradiction. From Lenuna 1 it follows that there is

a point v e X and a linear functional I e E* , 1Knll
 = 1

such that L1 = e(lQ,r) . Thus eM,Q,r)(f) = -tQ(f(r)) = 1 .

Since ||f(v)|| 1 |]f|| = 1 = \\lQ\\ it is verified that ||f(r)|| = 1,

From the choice of f we conclude that q = r . Since the

cell TX-, is smooth at f(q), £ = <t_ . Thus L, = e(l,q).
hi u x

From a similar argument we conclude that L« = ef-C^q). Thus

L, = L2 and card B(f) = 1 . Thus the norm is smooth at f

and the condition in the theorem is sufficient.

4. Spaces of maps into Banach spaces

We next proceed to the main theorem of the paper.

In the course of the proof of the theorem we make use of

the following lemmas.

Lemma 2. If X is a compact Hausdorff space and f

is an extreme point of the unit cell of C(X,E) then

||f(t)l| = 1 for all t e X.
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Proof. Since ||f|| = 1 if | | f ( t ) | j ^ 1 for t G X then

there exists a point tQ e X such that |jf(to)|| = 6 < 1 .

Since X is a compact space and f is a continuous func-

tion there exists a compact neighborhood N of t and

a number 6' , 0 £ 6' < 1 such that ||f (t)|| £ 6' for all

t e N . Since X is a compact Hausdorff space there

exists a continuous function C : X -• [0,1 - 6'] such

that C(t ) = 1 - 6 ' and C(t) = 0 if t / N . Let a

be a vector in E such that J|a|| = 1 . Let g be the

function on X -• E defined by g(t) = c(t)a . Then

g e C(X,E) , ||f + g|| £ 1 and g £ 0 . Thus f ft Ext Ux .

This completes the proof of the Lemma.

Lemma 3. Let M be a convex subset of S and H
E

be a hyperplane such that M = H 0 S_ . If the interior of
E

M relative to H is nonempty and f is an extreme point

of the unit cell Ux of C(X,E) then f(p) <f relative

interior of M for all p e X :

Proof. We note first that the rel-int M is a subset

of the interior of M relative to S . For let, I e E* ,

= 1 be such that H = ^" 1(1). Let x be in the rel-int

M . Since the interior of M relative to H is non-empty

the core of M relative to H is nonempty. Thus
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the smallest affine space containing M is H . Thus the

interior of M relative to H is also the rel-int M.

Hence there exists a 6 > 0 such that if ||hj| < 6 and

I(h) = 0 then x + h e M . We note that corresponding

to each y e E there exists a unique scalar A and a

unique vector h e l~ (0) such that y = A x + h . •H y Y Y

Since y -• A is a continuous linear functional, y -•

h is also a continuous function on E -• E . Let G =

{y [ || h || < 4 and A > -r- } . By the preceding obser-

vations G is a open subset of E. Now if y e G.d S then

1 = | | y | | = ||A x + h | | = |A | | | x + ^ | l . S i n c e ^
y y

6 and I(h ) =0 from the choice of 6 it follows that

h
II x + -̂ - || = 1 . Thus A =1 noting that y e G . Hence

y Y

I(y) =1 i.e. G O S c M and x is in the interior of

M relative to SE . To complete the proof of the lemma let

f e Ext U . From Lemma 2 it follows that range f c S^ .

Now if possible let there be a point p e X such that f(p) e

rel int M . Thus f (p) e interior of M relative to S,,

as seen from the observation in the preceding paragraph.

Since f is a continuous function there exists an open set

G , p € G and f (G) c SE . Let C be a compact neighbor-

hood of p with C c G. Thus f(c) is a compact subset of

the interior of M relative to S^ . Thus there exists a
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6 > 0 such that if y e S and ||y - z|j < 6 for some

z e f(x) then y e interior of M relative to S .

With H and I chosen as in the preceding paragraph it

is verified that if I (h) =0 and ||h|| < 6 then z + h e M

for all z e f(c) . Let h be such a fixed vector. Since

X is a compact Hausdorff space there exists a continuous

function <p : X -• [0,1] such that <p(C) c {1} and

<p(X ~ G) <~ {0} . Let g.^g, be two functions on X -» E

such that g1(q) ="f (q) + <p(q) h and g2 (q) = f(q) - <p(q) h .

It is verified that g±,g2 e C(XJE) UgJ = ||g2|| = 1, f =

gl + g2
=— ,, and ĝ. f g_ . Hence f 4 Ext U and the proof

is complete.

Lemma 4. If M is a M- set in a Banach space E

then Ext M c Ext UE .

Proof. Let e e Ext M and let H be a hyperplane sup-
_ n

porting IJ along M . Let H = I (1) for some I e E* ,

\\l\\ = 1 . If e = y
2 , y, z e UE then it is ver i f ied tha t

l(y) = ^(z) = 1 . Thus y,z e H and ||y|| = ||zl| = 1 . Hence

y,z e M . Since e e Ext M} e = y = z . Thus e e Ext U
E

and Ext M <= Ext Û  .
E
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Lemma 5. Let E be a Banach space with a quasi-

cylindrical unit cell. If M is a M- set rel—bd M =

Ext M .

Proof. Let x e rel-bd M . If x 4 Ext M then

x 4 E xt U . Thus from the condition (1) in the defi-

nition of a quasi-cylinder it follows that x is a smooth

point of Ŝ , . Thus there is only one hyperplane H sup-

porting U^ at x and H fl Sw = M. Since distinct
.hi hi

M— sets are in distinct hyperplanes supporting U_ it

follows that M is the only M- set such that x e M .

Since x is a smooth point from the condition (3) in the

definition of a quasi-cylinder it follows that x e rel-intM

thus obtaining a contradiction. Hence rel-bd M c Ext M.

Since every extreme point M is in the rel-bd M it follows

that rel-bd M = Ext M .

Remark 4. From the preceding lemma it follows that if

U is quasi-cylindrical then for a M- set M in E, M =
E

Conv (Ext M) .

Lemma 6. Let E be as in the preceding lemma. if

P1,P2 are two distinct M — sets then Card (P1 n PO <, 1 .

Proof. If possible let x,y e Pi fl P, and x =f= Y •

x + vSince P. , i = 1,2 are convex —r-2- e P, (1 P2 . Since
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x +o & Ext U it is a smooth point in S_ . Thus if H
c. Hi E

is the hyperplane supporting U_ at X
 o
 y it follows that

H = H^ = H2 where H. , i = 1,2 are the hyperplanes sup-

porting U along P. , i = 1,2 . Since distinct M- sets
t 1

are in distinct hyperplanes of support a contradiction is

obtained and the proof of the lemma is complete.

Remark 5. If the Banach space E in the preceding

lemma contains two non-discrepant T-sets then as observed

in § 1 if M is any M - set then Card M ̂ > 2 . Thus

from the remark it follows that Card Ext M J> 2 . If now

M, ,jyu are the two antipodal \i - sets such that Ext U c

M U M2 then Ext M c M, U M2 . From lemmas 4 and 6 it

follows that if M =j= M. , i = 1,2 then M has precisely

two extreme points one belonging to Ext Mi. and the other

belonging to Ext M2 .

Lemma 7. Let E be a Banach with a quasi-cylindrical

unit cell. Let M ^ M ^ p and L be as in (2) and (4) of

Definition 1. If e. e Ext Mi i = 1,2 and if [e^e c

then el " e2
^

Proof. Let V = L fl Ur. Hence from (4) of Definition 1
E

it is seen that p + V = M-. We proceed to verify that

el + e2 el + e2
(*) p + 2 = e, and -p + -^ = e2 * We n o t e
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since M, = p + V (M2 = - p + V), e. - p' , e + p are in V.

el + e2
Hence ~ e v since V is convex. Further since

|| —i 2- || = 1 and e, - p, e 2 + p are in U it is

verified that || e, - p \\ = || e2 + p || = 1 and

e-. + e o
[e, - p, e9 + p] <= s . Since —i .̂ e So ~ Ext U_ and

e1 + e?
U_ is a quasi-cylider j- —=• is a smooth point of S^
h 2 "

Hence there is exactly one hyperplane H supporting U_

el + e2 el + e?
at "-••• X .— Since j . • • £, is a point in [e,,e9] and

[e. - PJ e~ + p] and these line segments are subsets of

Ŝ , it is verified that H D S^ => [e,,e ] U [e, - p, e + p] .
hi hj ± z ± J.

e -f" e
Since H is the only hyperplane supporting U at —X Z.

it follows from Remark 1 that if M is an M - set containing
el + e2

2 then M = H D S,,. It is inferred from Remark 5
a

that M = [e1^e2] . Hence [e1 - p, e2 + p] c [eiJe2] . If

the equations in (*) are false then e, - p =f e« + p. Since

e, - p, e2 + p are in the subspace L it is verified that

[elj(e2] c L. Hence e, € V. Thus p + e, e M,. However, since

P + ei'
p, e1 e M1 and M1 is convex, k^ e M 1 > Since M1 <= s
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it follows that || p + e± II = ||—-—i. || = l which is a

contradiction. Since either of the equations in (*)

implies _JL 2_ _ the proof is completed.
2 p

Lemma 8. Let E be a Banach space containing two

non-discrepant T-sets and let U be a quasi-cylinder.

Then if f e C(X,E) is an extreme point of U then f(p) is
.A.

in Ext O, for all p e X .
hi

Proof. Let M,,M? be the pair of antipodal M- sets

of U such that Ext UE c M1 U M2 with interior of
(Continued)
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M,(WL) relative to the hyperplane supporting U along

M, (along jyL) non-empty. Let f be as in the hypothesis of

the lemma. Then from Lemma 3 it follows that f(p) is not in

rel int M., i = 1,2 for all p e X . Thus if for p e X ,

f(p) 4 E x t U
E
 then f(p) ^ M! U M2 . Since M1 U M2 is

closed there is a compact neighborhood C of p such that

for all q e C , f (q) e U ~ (M, (J M2) . From Lemma 2

it follows that f e e c SE ~ (M, u M2) . From Remarks 4

and 5 it follows that for each q e C there is a uniquely

determined pair of extreme points e with e e M. i = 1,2
q q l

such that f(q) e [ej , ej] . Since f(q) \ M. , i = 1,2

there exists a function A : C -• ]0,l[ such that f(q) =

1 2
A(q) e + (1 - A(q)) e . We verify that A is a continuous

function. For if {q } is a set in C converging to a point

q then since f is a continuous function ||f(q ) - f(q)|| ~* 0

Thus if I is the continuous linear functional on E suchthat ||.t,|| = 1 and ^ = -t"1(l) fl SE then £(f(qa)) -

Hence Mq,J - A(q) since I (e1 ) = 1 and I (e2 ) = - 1
Q qa qa

Thus A is a continuous function. Since C is a compact

set there exists an a > o such that a < A(q) < 1 - a for

all q e C . Let G = int C and C, be a compact neighbor-

hood of p such that c^ a U . Let <p be a continuous func-

tion on X -• [0,1] such that <p(C;,) c (1] and <p(X ~ G) <=
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Let the functions gi : X -» E be defined by g1 (q) =
1 2 1 2

f(q) + <p(q) a [e,, - e l and g (q) = f(q) - <p(q) a [e - e I

Since for q e C e^ e Ext M. i = 1,2 and [e1, e1 .] c s^ the pre-

.... , 1 _ 2 -
ceeding Lemma implies that _9__II = P for all q e C where p is

2
a fixed vector. Thus the functions g., 1 = 1,2 are continuous and

9i (q) = go (q) = f (q) if q & G . and g. (q) e [e , e l c s if
i z •*•• T Ji q q ~ E

q 4 G. Thus 11 g. || = || g_ || = 1, g. 4= g. and f = gl + g 2 . Hence
1 2 1 2 2̂

f $ Ext Ux contradicting the hypothesis. The proof of the Lemma

is complete.

Lemma 9. A set P c C(XeE) is a M -set if and only if

there is a M - set M c E and a point p e X such that

P = I f | f e C ( X , E ) , | | f |f = 1 a n d f (p ) e M|

Thus each M- set P in C(X,E) could be represented as

p = (M,p) where M and p are chosen as above and two

M-sets P
1^

P2 where P̂ĵ  = (M ,p1) and P2 = (M2,p2)

are equal if and only if M, = M2 and p = p2 .

This lemma is an immediate consequence of theorem 4.1

and lemma 4.3 in [8]. Hence the details of a proof are

omitted.
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Before proceeding to the main theorem of this section

we note if X,Y are two compact Hausdorff spaces and j :

X -* Y is a homeomorphism on X onto Y then the opera-

tor T: C(Y,E) -* C(X,E) defined by T(f)(p) = f(rp) for

f e C(Y,E), p e X is verified to be a linear isometry on

C(Y,E) onto C(X,E). Thus in the subsequent discussion we

consider only the converse question.

Theorem 4. Let E be a smooth Banach space such that

Ext U 4= 0 . Let X,Y be two first countable compact Haus-
E

dorff spaces such that there is a linear isometry on C(X,E)

onto C(Y^E) . Then X and Y are homeomorphic.

Proof. Let x be an extreme point of U_, . Let T

be a linear isometry on C(X,E) onto C(Y,E) . Let T* be

the adjoint operator. Then T* is a linear isometry on

(C(Y,E))* onto (C(X,E))*. Let TJL = T*~
1 .

Let I be the functional in E* supporting U at

x . Since x is a smooth point of U_ it is verified
o o bj

that I £ Ext UE* . Thus if p e X it follows from Lemma 1

that e(I,p) £ Ext U * . Since T* preserves extreme points
.A.

there is an extreme point A e Ext U* such that T*A = e(l,p)
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Thus from Lemma 1 it follows that there is an extreme point

V e Ext U* and a point p1 e Y such that T* &(V , p' ) =p E p

e(£,p) i.e. for all <t(f(p)) = l} (Tf(p')) for all feC(X,E)

Since T* is 1-1 if p'= r(p) it is verified r is a

function on X into Y. We next verify that T(x) = Y.

Let q' e Y. Let K be the function in C(X3E) defined
o

by K (q) = x for all q e X. Since K e Ext Uv and
X O X A
O O

T is a linear isometry T K e Ext U . Thus from Lemma 2
Xo y

it follows that ||T K (q1 ) || = 1. Let T K (q1 ) = x1 .
xo xo °

Let m' e E* be such that m' (x' ) = || m1 |j = 1. Since
E is smooth such a functional m' e Ext U*. Hence

E

e (m' , q') e Ext U*. Then e (m' ., q1 ) e Ext U*. Hence

there is an extreme point e(l, p-,) of U* such that
X .A.

T*e(m', q') = e(l1> p±) . Thus I (Kx (p^ ) = m1 (T Kx (q') )
o o

= 1. Since K (p, ) = x and |j£- || = 1, I supports
xo 1

U at x . Since x is a smooth point of U ,
I = I. Hence T*e (m1 , q1 ) = e(l, P ) i.e. T (p^ = q1 .

Thus T(X) = Y. (Continued)
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Next we verify that T is 1 - 1 . If possible let

p,q € X be such that r(p) = T(q) = r' . "Thus there are

functionals M' M^ in E* of unit norm such that -t(f(p)) =

M^Tf(r')) and *(f(q)) = M£(Tf(r')) 'for all f eC(X,E) .

Thus in particular 1 = I(x ) = I(K (p)) = M' (T K (r1)) = 1 •
° xo X Xo

Similarly it is verified that Mi(TK (r1)) = 1 . Since
Z xo

||T K (r')|| = 1 and E is smooth it follows that M^ = Mj, .
o

Thus it is verified that T*e (M' r') = e(t,p) = e(l,q) .

Since T* is an isometry it follows that p = q . Hence T

is 1 - 1 .

We proceed now to show that T is a continuous mapping.

Since X and Y are first countable Hausdorff spaces it is

enough to verify that if (p } . . is a sequence in X con-

verging to the point p in X then T (p ) "• T (p) • Let

us denote for convenience r(p ) = p' and T(P) = p1 • Let

T*e (l*n , p^ ) = e(£,pn) for all n where we note that [V } c

Ext UE^ . If p^ -»• p1 since X is a first countable com-

pact Hausdorff space there exists a convergent subsequence

{pn' } of {pn} such that lim p ' = q' =j= P1 • Consider
i ni

the function f^ as defined in the preceding paragraph.
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Since || fP (p ) - f£ (p)|| - 0 it follows that *(f£(Pnt>)
o i o o i

lit* (P)) • Thus V (TfP (p ' )) - 1. Since | |* ' || = 1 ,
O 1 O 1 1

||TfP (p ' ) - T fP (q')| | - O and |IT f£ (q« ) || £ 1 it
xo n i o o

is verified that || T fP (q1 ) || =1 . From the equations
xo

l(fl (p)) = 1 = V (T fP (p<)) and ||*'|| = 1 = ||T fP !! it
o o o

follows that IIT fp(p')l| = 1 • From Theorem 3 it is seen
o

that fP is a smooth point of Uv . Hence T r is a
X A X
O O

smooth point of U . Further || fP || = ||T fP || = 1 . Since
o o

||T fP (p' ) I1 = 1 once again appealing to Theorem 3 we con-
xo

elude that p1 = q' . Thus every convergent subsequence of

{r(p )} converges to T(p) . Since Y is a first countable

compact Hausdorff space it is verified that the sequence

(r(Pn)} converges to -r(p) .

Next we proceed to the case when the unit cell tL, of

E

E is quasi-cylindrical. As noted in § 1 the T- sets are

not necessarily discrepant and thus Jerison's theorem does

not apply to this case. However we show below that if X^Y

are as in the preceding theorem and U_ is quasi-cylindrical

and the linear isometry T fulfills an additional condition

then we have an analogue of the preceding theorem.



[32]

We shall denote the constant function in C(X,E) with

range in {x} by K .

Theorem 5. Let E be a Banach space with a quasi-

cylindrical unit cell U and X,Y be first cour. :able

compact Hausdorff spaces. Let T be a linear isometry on

C(X,E) onto C(Y^E) such that corresponding to each point

t e X there are at least two points xn,,xo e Ext U for

which T K (t) ^ T K (t) . Then X is homeomorphic with Y.
xl X2

Proof. If the T- sets in E are discrepant then

Jerison's theorem applies and the conclusion follows. Thus

we can assume there exist pairs of non-discrepant T-sets

in E . Hence as noted in Remark 5 if M is a M-set

in E then Card M ̂ > 2 . Thus since M is a convex sub-

set of S it follows that M ~ Ext U =f= $ • Hence from

the definition of a quasi-cylinder it follows that there

are points x e M such that U_ is smooth at x . Hence
Ei

corresponding to a M- set M there is one and only one

functional m in E*(|!mH = 1) such that m supports U_

along M . From the uniqueness of m it is further veri-

fied that such a functional m is in Ext U * .
E

Let M1,M2 be the pair of antipodal M- sets (guaranteed

by (2) in Definition 1) such that Ext LL, c M, U Mn . Let
Ci J. 2.
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-I (£ = - I ) be the functionals in E* supporting UE

along M.. (M~) . Then as shown in the proof of the preceding

theorem there exists a function r : X -• Y such that

T*e (<£,.., p) = e(£' , rip)) where V is an extreme point

of U * depending only on p . We proceed to show that
hi

r maps X homeomorphically onto Y .

We verify first that T(X) = Y . Let p1 e Y . Let

dim E ;> 3 . As a initial step we assert that there are

at least two points y,z e Ext U fl M, = Ext M, such

that T K (p' ) , T K (p' ) are in the same M- set. Sincey z

dim E >_ 3 and interior of M, relative to the hyperplane

lZ (1) is nonempty it follows that Ext M, = rel - bd M.

is a infinite set. (See Lemma 5). Let x e Ext U_ 0 Mn .
Ci 1

Thus K e Ext Uv . Hence T K e Ext U... . Thus from
X A X Y

Lemma 8 we conclude that T K (p1) e Ext U_ . Thus T K (p1)

is in JVL̂  or M2 . Let T Kx(p') e M, . If for some

y e Ext UE n M1 T K (p1) e M, then the assertion is

verified at once. If for all y e Ext M1 ~ {x} , T K (p1) e M2

then since Ext JXL is an infinite set the assertion is veri-

fied. The case when T K (p') e Mo is similarly dealt. If

dim E = 2 then since UE is a quasi-cylinder S is a paral-

lelogram and there are only two pairs of antipodal M-sets in E

and each M-set is a non-degenerate line segment. If M.

(i = 1,2,3,4) are the four M-sets of E it is directly
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verified that there is an i such that if fy, z} = Ext Mi
o

then T K (p'), T K (p* ) are in the same M-set. Without

loss of generality we can assume that i = 1 , since M.
o

and its antipodal set could be taken for the sets M. and

M~ considered in the second paragraph above.

Let y,z be two points in Ext M, with the property

asserted in the preceding paragraph. From Lemma 6 it

follows that there is only one M-set, say M' , such that

[T K (p') , T K (p1 ) } cz M1 . Consider the M-set (M1 , p')y z

of C(Y,E) . For the definition of (M' , p') we refer to

Lemma 8 . Since T is a linear isometry T~ (M' , PT ) is

an M-set of C(X,E) . Thus from Lemma 8 it follows that

there exists exactly one M-set L in E and a unique

er
T(K + K

point p e X such that T (M' , p1 ) = (L, p ) . We verify

that L = M, . Since {T K (p1 ) , T K (p* ) } c M1 , *-= —(p» )

T Ky + z(p') e M« . Since T~1 (M' ) P') = (L,p)j Ky + z (p) e L .

2 2

V + Z
Since JL-=— e M. ~ Ext U_ and U_, is a quasi-cylinder

^ X JQ HI

y
 ?
 Z is a smooth point of S_ . Thus Mn is the only

M-set such that ^ ̂ -z e M . Hence M.. = L . Thus

T(M , p) = (M'JP 1) • We proceed to show that if m1 is

the functional in E* supporting tr along M' and
E
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f e C(X,E) then e(t][,p) (f) = e (m' ,p' ) (T f) . Let Y
 2
 Z = v .

As already shown in paragraph 3 of the proof of preceding

theorem there exists a function fp e C(X,E) such that

fP(p) = v and |lfP(q)|| < 1 if q € X ~ {p} . Further asp(p) = v and |lfPl
v ^Fi I! v

shown there the norm in C(X,E) is G-differentiable at

fp and the norm in C(Y,E) is G-differentiable at T fp .

Since f^(p) e M1 and TfM-^p) = (M',Pr) it is verified that

T fp(pf) e M' . Thus the linear functionals e(l.,p) and

e(m', p' ) are the Gateux gradients of the norms in C(X,E)

and C(YjE) at fp and T fp respectively. Thus arguing

as in paragraph 3 of the proof of Theorem 4 we conclude

that if f e C(X,E) then e{l^, p) (f) = e (m£ , p' ) (T f)

i.e. T*e(mi , p1) = e(l,,p) . Hence T(P) = p' and r maps

X onto Y .

Next we proceed to verify that r is 1 - 1 . Let

p,q be two points in X such that r(p) = T(q) = t . From

the definition of T it follows there exist two functionals

m^ , m^ in Ext UE* such that (a) T*e (m^ , t) = e ^ ^ p )

and (b) T*e (m^ , t) = e f ^ q ) . Let T(MX, p) = (M£ , p1 ) and

T(M1, q ) = (M̂  , q' ) . Now let y be a smooth point in JVL .
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Consider a function fp e C(X,E) such that f^(p) = y

and ||fP(p)!| < 1 for s e X ~ {p} . Since fP e {M± , p) ,

TfP(p') e (M' , p1 ) . Since fP is a smooth point in Ux

T fP is a smooth point in U,r . Hence from Theorem 3 it is con-
v ^ Y

eluded that p' is the only point in Y such that ||TfP(p')|| = 1.p' is the only point in Y such that ||TfP

Further TfP(p') is a smooth point of U_ . The equation (a)
y E

implies m^(Tfp(p')) = -t(fP(p)) = 1. Since ||m̂ || = 1 and

I!T fp || =1 it follows from the preceding equations ||Tfp(t)||= 1 .

Thus p1 = t . Hence m^(TfP(t))= 1. Since TfP(t) = Tf^tp1)

is a smooth point of S^ in Mi m' is the functional in
hi 1 1

E* supporting U along M' . Similarly it is verified

that m' is the functional in E* supporting U along

mi . From the additional hypothesis on the linear isometry

T in the statement of the theorem it follows that there are

two points x, ,x_ e Ext M, , x, =j= xo such that T K (t) =f
T K (t) .--. Since K e (M, , p) for i = 1,2 from our

X2 xi X

choice of M^ and M^ it is verified that T K e (M1. , t) for
Xi ^

i = 1,2 and j = 1,2 . Thus T Kx (t) e MJ_ n M£ ).. Hence

from Lemma 6 it is inferred that M' = M' ' Since there are

smooth points in a M- set of E and m'. support U along
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M^ we conclude that m^ = m^ . Thus T*e (m^ , t) = e{l1 , p) =

e(£, , q) . Since e is 1 - 1 it follows that p = q and T

is 1 - 1 .

The proof of the part that r is a continuous mapping

is exactly same as the corresponding assertion in the proof

of the preceding theorem after choosing for x a fixed

smooth point of U in M. . Thus the details of a proof
XJ X

are omitted.

As in the preceding theorem it follows that T maps X

homeomorphically onto Y . The proof of the theorem is completed,

In conclusion we mention the following unsettled problems

1) If E is a smooth Banach space and Ext U 4 0 then must

it be true that the T - sets in E are discrepant. 2) Is it

necessary for the linear isometry T to fulfill the additional

hypothesis in Theorem 5 for the conclusion of the Theorem.
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