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SPACES OF CONTI NUOUS FUNCTI ONS
| NTO A BANACH SPACE

K. Sundar esan

1. Introduction

Let X be a conpact Hausdorff space and E be a
Banach space. Let C(X E) denote the Banach space of
E-val ued continuous functions equipped with the.usual
supremumnorm  The Banach-Stone theorem Day [4], asserts
that if X Y are conpact Hausdorff spaces then X is
honmeomorphic with Y if and only if there is a |inear
isometry on C(X,R) onto CY,R where R is the real
line. Subsequently Jerison [8 investigated the problem
of extendi ng Banach-Stone theoremwith R replaced by an
arbitrary Banach space E. In [8 it is proved that the
theoren1renafns true if (*) any two T-sets in E are
di screpant and in particular if E 1is a strictly convex
space; however it is shown that the theoremis false in
general. W aimhere to investigate the sane problemin
the case when the space E does not satisfy the condition

(*) » Anmong others we consider in this paper simlar problens
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that arise when E 1is a snooth Banach space or the unit

cell of E is quasi-cylindrical.

Apart from discussing the above problens
we obtain some auxilliary results concerning the spaces
QX.,E which are also of intrinsic interest. Anong
others we provide a useful characterization of extrene
points of the unit cell of the dual space of C(X E)
and determne the functions f in C(X E) such that

the normis Gdifferentiable at f

2. Prelimnaries

Before proceeding to the main results of the paper
we recall the necessary term nology and notation and

few useful results.

Throughout the paper E 1is a fixed real Banach space
of dinmension J> 2 . If B is a Banach space we denote
the dual space of B by B*. The norns of the various
Banach spaces that enter our discussion are all denoted
by the same synbol |] jj as there is no occasion for con-

fusion. The unit cell of B(B*) is denoted by Up(U* )
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and S,(St) is the boundary of Ug(UZ*). If X s a
a D Ho

conmpact Hausdorff space the unit cells of C(X E) and

its dual are denoted by U- and U~ respectively.
-A X

If K is a convex set Ext K is the set of extrene
poi nts of K

In the sequel we make use of the follow ng functions
e and 11 . The function e on E* x X into (C(X E))*
is defined by setting e(l,p) (f) =<t(f(p)). W have
le(*,,p)(f)] = [*(f(p))| £ \\I\\ HIf(p)|! < \\VINN ||f|]]. Thus for
afixed p |e(l,p)) < \}I\\ . Ontheother hand if f*,) i-°

a sequence in S, such that | (x ) -» Il then considering
hi 3D. .

the functions fneC(X,-)E) defi ned by fn(q) = x° for

all geX it is verified that e(”, p)(f,) -+ |K| and

||1?'I] =1. Thus ||&<,p|j = ||t|]] and for a fixed peX,

e( ,p) is a linear isonmetry on E* into (C(X E))*. The

function Il on E into C(X,E) 1is defined by setting
II(x) (p) =x for all xeE and peX. It is verified
that 11 is a linear isometry on E into C(X E) .

We recall few geonetric properties of a Banach space.

If B is a Banach space and xe S then a functional
B

UB* is said to support U at x if HJ|] =1=1(x).

The cell U, is said to be snooth at x if there exists
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one and only one hyperplane of support at x . A Banach

space B is said to be snooth if U, is snooth at all

points x e S. . It is known, Mazur [lol, that U is
B B-
o r. - -, > m HX+t VH- 1JX|1
spooth at X |f and onIy |f (*) m e**___ N U e =
G(x;y) exists for all Further if the limt
exists then Q(x; ) is a linear functional supporting
U at x. For each x e S, let v(x) be the set of
B B
all linear functionals supporting Us ag*_x . Then v
is a set val ued mappi ng on SE into 2 B . If follows

from Hahn Banach theoremthat v(x) £ 0 f°ray xe B *
Further if C is the set of snoboth points in S , it
follows fromthe preceding observations that v|c m ght

be considered as a function on C -« Sf . The set val ued
a

mapping v is called the spherical inmge map of SB,
cudia [3] . |

We proceed to define certain distinguished subsets
of a Banach space which are useful later in the paper.

An M set in a Banach space B is a maxinmal convex subset

of S, . A T-set in B is the half cone of nonnegative
mul tiples of vectors in a M set . For a di scussion of
these sets we refer to [8 . Two T-sets T*"T¢ are said

to be discrepant if either T+ n T, = (0} or if there
exists a T-set T3 such that T,*0 T3 = {0} =T, fl Ts
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It is verified by applying Zorn's lema that if x e S,

a
then there is a M- set M. containing X . Furt her

if x e SB and {x} is a M set then any two T-sets
are discrepant. For if T, is the T-set {Ax | Az 0}
and T, is another T-set then it is verified using the
maxi mality of M sets that T40 1 = {0} | I n particul ar
it follows that the normin B is strictly convex then
any two T-sets are discrepant for then there exists only

one point belonging to a M- set.

We sunmari ze sone properties of M sets which are
required in the last section of the paper in the follow ng
remarKk.

Remark 1. If M is a M set in the Banach space
B then it follows fromthe separation theorem [ 4], that
there exists a linear functional f e B* such that |[|f|]] =1

and inf f(x) ;> sup f(x) wher e l£ is the interior of

xeM XGOQ
the cell UT3' Hence if H is the hyperplane f'l(l) t hen
Mc H. Further since HHS is a convex set and M is a
B
maxi mal convex set we conclude that HH S, = M. W refer
to H as a hyperplane supporting U_ along M. Furt her
we note that if ther exists a point BxeM and if U is

B
smooth at x then fromthe definition of snooth point it

foll ows the hyperplane supporting U. along M is unique.

5
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We conclude the prelimnary remarks from geometry of
Banach spaces by stating the definition of quasi-cylinders
and a known result, theorem 5.2 [8 for convenience of
reference. Before stating the definition we recall that
if C 1is a convex set in a Banach space B the relative
interior of C is the interior of C relative to the
af fine subspace of B spanned by C. The relative boun-
dary of C is C ~ relative interior C. The relative
interior and boundary are respectively denoted by rel-int

and rel-bd .

~ Definition 1. Let B be a Banach space and D be
the set of smooth points in Sp. Then the unit cell U.
is said to be a quasi-cylinder if it satisfies the follo-

wi ng conditions.
(1) Ext U is a closed subset of S, and D UExt U = S_
J3 B B

(2) There are two antipodal M - sets J and ¥? in S
B

os)

such that Ext U c M U IV and if H is the hyper-
pl ane supporting Ug along M then M has a nonenpty
interior relative to H.

(3) x e D inmplies x is inthe rel-int of a M- set of B.

(4) There exists a point p e N} and a closed subspace L of g

such that p + (Uy fl L) =M.
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We proceed to provide an exanple of a quasi-cylinder. Let
(E j] ||) be aHlbert space and L be a subspace of E
of deficiency 1. Let xelL and |[j¥] = 1. Let C be

the conplete cylinder erected on L n U, wth generators

hi

parallel to x . Let U be the portion of C cut out by
the hyperplanes x + L and - x + L. Then U is the
unit cell of a Banach space (E || ||le) topologically equi-
valent to (E || ||) and U is a quasi-cylinder. From

this exanple of a quasi-cylinder we conclude that if the
unit-cell of a Banach space is a quasi-cylinder then the
T-sets need not necessarily be discrepant. In this connec-
tion we refer to exanple 4.5 in [§

For conveni ence of reference we state the theorem 5.2

in [8 below.

Theorem 1 . [Jerison] . Let X Y be two conpact Hausdorff
spaces and E be a Banach space such that any two T-sets
in E are discrepant. Then X is honeonorphic with Y
if there is a linear isonetry on C(X,E) onto C(Y,E).

We need sone concepts fromthe theory of vector val ued
measures. For an account of vector val ued neasures we:refer
to Edwards [6] and Dinculeanu [5 . An E-valued Borel nea--
sure on a topological space X is a neasure defined on the

Borel sets of X wth values in E. If pi is a Borel
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measure on X with values in E then the variation of

ji is defined by

(
Mju) = sup) inEI HMVI ! | (B,,B,...B) €P
r =

where P is the set of finite Borel partitions of X.

When X is a conpact Hausdorff space an E-val ued Bor el
nmeasure pt is said tobe regular if V(fj.) is aregular

set function, see in this connection proposition 21 on
page 318 in [5]. If VyE) is the set of all E-valued
regul ar Borel nmaesures \i of finite variation defined on

t he conpact Hausdorff space X then with the usual defini-

tions of addition and Scalar multiplication Vy(E) 1is a

X
Nl = v
i near space. Further equipped with the norm

VC(E) i s a Banach space.




Let ueV (E) and S:'X-' E be a step function
X
n n
i.e. S is of the form E x(B.) x. where {B.} S

= e

a finite famly of pairwise disjoint Borel sets in X and
1 = - 1

X. eE for 1< i <~n and x(B) is the characferistic

function of B. . Then tHe Stieltjels integral Sdu
I

is defined by lv Sd\i :iil JU(B.) () . Since X is

a conpact Hausdorff space corresponding to any function

f eC(X,E) there exists a sequence of step functions Sh

uniformy converging to f . The Stieltjels integral
JIfdJU is defined to be the |im J S lqju . Since 1
n» D
is of finite variation the integral exists for all f eC(X, E).

For a detailed account of this theory of integration we
refer to Bochner and Taylor [2] and to sections 7 and 8
in Chapter Il in [5 and the representation theorem stated
bel ow could be deduced from the corollary 2 on page 387
in [5]. In this connection we refer also to Bochner and
Taylor [2], Gowurin [7] and Singer [11]. The papers [2] _,
[7] are concerned with the representation problemwhen X
is the unit interval while the nore general case when X
is an arbitrary conpact Hausdorff space has been dealt in

[11] -
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Theorem 2. If X is a conpact Hausdorff space there

exists a linear isonetry a on (X E))* onto V., (E)

such that
e (f) =,f f e

for all Le (C(X E))* where the integral is the Stieltje’s

integral defined in the preceding paragraph.

3. Snmooth Points in C(X, E).

We proceed next to characterize the functions f e C(X E)
such that the normin C(X,E) is Gdifferentiable at f .
We first establish a lemma useful in the subsequent discus-

si on.

Lemma 1. Let X be a conpact Hausdorff space and E

be a Banach space. Then

Ext (W) = e(Ext U

—

X X)

where e s the map defined earlier.

Proof. Let | e Ext oy and peX. Since e(«,p) 1is

an isonetry and ||| =1, ||e(<t,p)|]|] =1. Let L,L, e U Dbe
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|_14L'2

such that ell,pp = —=—— We claim that L" = 1>, =

el,p). Let Hpld, e Vx(E*) be such that ~ = oCL.)

where a 1is the isonetry described in theorem 2. W claim

t hat if'M is a Borel set in X and p/ M then the varia-:

li, +(X) |M
tion ]Ifl—‘=é—$‘iLu_=O. For if this is not true by the

regularity of the measure jy + \i, 'M®'® exists a conpact

M +M
set Cc M such that if v is the contraction of . -

to C then the variation of v is a positive number 6 .

Since \-"=2=— 9 =1, H—==2"11 = 1+ Hence if v s
. H +\4
the contraction of 5 to X — C then from the

definition of variation it follows that j|i/|| + [[i/']] =
M2y C 1. Thus ik = 1- 6. Let {xi}.A be

a sequence of vectors in E, ||xn|| = 1 such that I(xn? -~ 1.

Since p/ C ad C is compact there exists a sequence

[fn}ns1 in C(CX,B) such that |[fy] = I, fa(pP) = Xn

and fh(g) =0 if geX — {p} forall n2 1 Now

L L
[LCE (P | = Nadp)\ =\ E——2— (f,) |
By + p
N A == P N FA Sy

X~c
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AN RN
Hence —-:——1'-742(I\/I) =0 if M is a Borel set and p/ M.

Thus it is verified that

n Mt Moy \Minfp) * Py (Pl | <

=

Since |lwll = x| = 1, |IMi(PIl £ 1 2" 1imyuP) <.
Hence the preceding equations imply |[jui(p)|| = WVZ(P)| = * -
Thus if xeE L, @ () = | 1eodw, = u {p} 0. It
A

follows similarly that Ly(I1(x)) = "(p}(xX) . Further
a(l,p (1x)) =1 . Hence by our choice of L1 and

L;‘ it follows that | = jl{,{p} ;—ZI\/‘I_dP" . Since | e Ext UE s
ur{p} = pylp} . Thus L, = L« and a(l,p) €Ext U, .

Conversely let LeExt U,. W verify that there

A

exist | € Ext U% and p e X such that L = e(£,p) .

Let a be the mgp assured by theorem 2 and let <L) = y.

Since |IL|l =1, [fijl = 1. We claim that there is a point

p e X such that if M is a Borel set and p/ M then

M = 0. For convenience the contraction of the Borel

measure JU to a Borel set N c X will be denoted by juN .
As a first step we verify that there exists a point

peX such that jupt 0. For if jp{p} = 0 for all
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p € X then there exists a point p e X such that whenever
N is a neighborhood of p then JJN) ™~ O. This statement
is verified as follows. |If for each point p e X there

exists a neighborhood NP such that jLI(NP) =0 then since

X is a compact space there exists a finite set {pl,gpz«,...pn}
n

c X such that X = \J N . Tiius 1 = |jul< E JLIN || =0
Injgn  Pj " i=l Pi

Hence we obtain a contradiction. Thus there exists a point
p e X such that for all neighborhoods N of py/i(N j=0.

Since nip] =0 and the neasure jj, 1is regular there exi st

two nei ghbor hoods N.L and NZ of p such that N,lcN<é

and 0O < HIINIE < [IMNl N~ 1. Weverify in such a case

L/ Ext U~ , thus obtaining a contradiction. Let N, » N. :|\13

X Z X
i - : — (uim,) -
and A be the measure in VX(E*) defined by /[/i' = |/m|N3|| 1
[HUINjjl (M[N3) © Thus m + v« = (N\NX ~N,) + (I + ||M|N3||)(p|Nl) +
. , , . N} +
(1 - ilaNg) (/ilNs) and \i - A~ = (ulx ~ Np) + (1- |“6{ﬁ3|1)(ul 1)

(1 + HUN-MJ) (JUIN3) . From the above equations and the defini-

tion of variation it follows that |/i. + jul] < |ljnjx ~ Nx|| +
HAING| + J/iNg|l = Nl = 1. Similarly it is verified that
WX 'V <L Since n ="M"WJTT\—(HTAE ad tf + O it

follows that n is not an extreme point of the unit cell of

HNT  mm
CARNEGIEMELLON  UNIVERSITY
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Vy(E*). Since the map a is a linear isonmetry it follows

that L/ Ext U*, . Thus we conclude that there exists a
poi nt P§ X such that M P(\] A Suppose now t hat
[|Mpo}!] < 1. Then if Y=X~{p}, 0<|IMY|l <1 and

t he above argunent applied to fP,} 3~ .Y i-" place of

N1 and N; wll again contradict the assunption that
L e Ext U;{ Thus ||/i{p}|] = 1 and for all Borel sets M
such that pol M it follows that p(M) = 0. Let M(Po) =1 o

If f e C(X,E) then L(f) =3 fddl = jL{pof (po) = e(£,po)(f).
X

Hence L =e(*,pg . If | =—=—=>IKIl =1 =Kl t"e"
e(ty,py) + e("2 py)

it is verified that L= % 9 5 ° Si nce

L e Ext U we conclude that e(<t,,pj = e(-t«,p-) . Hence

e(l ypg (N(x) ) =e(£2 po) (nN(x)) for all x e E Thus
I, (X)) =-to(x) for all xe E i.e. £, =1~. Thus | e Ext UE
and this conpletes the proof of the | ema.

In the next theoremwe provide a characterization of
those functions f e C(X,E) such that the jj )| is Gdifferen--
tiable at f. The theoremthus generalizes the known result
for the case when E = R, discussed in Banach [1] . Before

proceeding to the theoremwe wish to state a couple of remarks.
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The Remark 2 is an inmmedi ate consequence of the

definition of the function e .

Remark 2 . Let x e E with j|§j =1 and let | e E*
be such that \\I\\ =1 (x) =1= [[4] . Let f e C(X E)
[[f[| = 1 be such that for sone boint ge X, f(q =x."
Then the linear functional e(£,q) 1is of unit normand
t he hyper pl ane e(t,q)"l(l) supports the unit cell of
C(X,E) at f.

Remark 3¢ Let F be an arbitrary Banach space and
xeF with ||¥] =1. Let B(x) = {f|feE* , ||f|]|] =1 =1(x)}
Then B(x) 1is a nonenpty  w+-conpact convex subset of

U and Ext B(x) a Ext Ug

Pr oof . From t he Hahn-Banach theoremit follows that
B(x) (). Further it is verifiedthat B(x) is a w -

cl osed convex subset of U and since by Al aoglu's

F
t heorem Ug is w-conpact it follows that B(x) is a
g, *¢=2
w*-conpact set. Let f e Ext B(x) and let f = -—=—=¢
where ¢g. e U for 1 =1,2. f e B(x) inplies that

H/\IH — "ng =1 = gi(x) = gz(x) o Thus gi-gz e B(x) o
Since f e Ext B(x) it is inferred that g, =9g_="f.
Hence f e Ext U
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Theorem 3. If X 1is a conpact Hausdorff space and
fedXB,, [|Ifi =1 then the unit cell of OX)E 1is
smooth at f if and only if there exists a point q e X
such that 1 = [|f(g)|| > |If(q)||] for all q £ q and U

Is snooth at f(q).

Proof. W prove first that the condition in the theorem
I's necessary. Let the unit cell in C(X E) be snmooth at f

[f possible |et q,. 02 be two distinct points in X such

that 1 = HfngU = ||f(CI2)|| Let Il e Ex be such that
el = eyl = 29 (Etay)) = 2,(£(@@y)) =1
Thus [le(*na) |l = [le(tz )| =efq”f) =e(*2q)(f) =1

where e is the map defined in section 2. Since the

unit cell in C(X,E) is smoth at f it follows fromthe

above equations that e(<t,iq. .1.) = e(<t ZIqu) * Hence for g e dX,E
&l(g(ql)) = 4,(g(gyn « Let now XY e E be such that

-, (x) "~ r2nn Since X js a conpact Hausdorff space

there exists a continuous function g o X-*E such that

g,(d) =x and SQ"O" =V Forsucha fyunction g oWe have

A AQRCj -1 A A a2ngondn TS A coptradiction is obtai ned and

there exists only one point g e X such that 1 = ||f(g9)]|] = |If]] .
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W proceed to show that the normin E is snooth at
f(q) . For if the normis not smooth at f(g) |let
£'l, £z be two distinct linear functionals in E* sup-
porting LL, at f(g) . As noted in Remark 2 the

hyper pl anes e(I,l,q)-l(l) and e"-L")"l(l) support

the unit cell of C(X,E) at f . Since the normin
C(X,E) is smooth at f it follows that e(£,,q) =

eflj”q) « Nowevaluating these functionals over the

E-val ued constant functions in C(X,E) it follows that

y s contradicting the assunption £,J_ A £1 « Thus

the normin E is snooth at f and this conpletes the

proof of the necessity of the condition.

Conversely suppose f e C(X,E) and || f]|] =1. Let ¢

be the only point in X such that 1 = ||f(g)||] and further
let the normin E be snooth at f(q) . If | e B, wth
\WI\\ =1, supports U at f(q) then ||e(*,qg)||] =1 and

e(-t"q)'l(l) I's a hyperplane supporting the unit cell in
C(X,E) at f . [f the normin CCX*E) is not snooth
at f and if

B(f) ={LjiLe (CXE)*, |H' =1=L(f))

then B(f) 1is a w'-conpact convex subset of the unit
cell Ux and card B(f) "_ 2. By the Krein-M I"man
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theorem Day [4], B(f) = w'-closure of the convex hull of
Ext B(f). Since card B(f) ";> 2 it follows that there are
at least two distinct extrene points L.l, I =1,2 in B(f)

Fromremark 2 L. are extrene points of Ut . W conplete
1 A
the proof by showing that L, =L, = e(£,q) thus obtaining

a contradiction. FromLenun? 1 it follows that there is

apoint ve X and a linear functional Ioe E* , 1K/l 71
such that L; = e(lgr) . Thus eMqgr)(f) =-tdf(r)) =1.
Since [|f(W)||] 1 ]If]] =1 =\\lQ\ it is verified that [|f(r)]] = 1,
Fromthe choice of f we conclude that g =r . Since the

cell I is smooth at f(q), £:<tu_. Thus Lk:e(l,q).

Froma simlar argunent we concl ude that L«, = ef-C'q). Thus
L,l =L, and card B(f) = 1. Thus the normis snooth at f

and the condition in the theoremis sufficient.

4. Spaces of maps into Banach spaces

We next proceed to the main theorem of the paper.
In the course of the proof of the theoremwe nake use of

the follow ng |emmas.

Lemma 2. '" X is a conpact Hausdorff space and f
Is an extrene point of the unit cell of C(X E) then
[|f(t)l] =1 for all t e X
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Proof. Since |f|] = 1 if [|f(t))j ~ 1 for t G X then
there exists a point tge X such that |jf(td||“ =6<1.
Since X is a conpact space and f is a continuous func-
tion there exists a conpact nei ghborhood N of t0 and
anunber 6 , O0£6 <1 such that [If (t)|]|] £ 6 for al
t e N. Since X is a conpact Hausdorff space there
exi sts a continuous function C : X -« [0,1 - 6] such
t hat C(to) =1-6'" and C(t) =0 if t / N. Let a
be a vector in E such that Jd| = 1. Let g be the
function on X -« E defined by g(t) = c(t)a. Then
ge CXE, [|[f_+d|l £1 and g£ 0. Thus f ft Ext U .
This conpl etes the proof of the Lemm.

Lemma 3. Let M be a convex subset of S and H
E

be a hyperplane such that M=H 0 S_ . If the interior of
E

M relative to H is nonenpty and f is an extrenme point
of the unit cell U of C(X,E) then f(p) <f relative

interior of M for all p e X

Proof. W note first that the rel-int M is a subset
of the interior of M relative to S - For let, | e E* ,
¢l = 1 be such that H=A2"1(1). Let x be in the rel-int
M. Since the interior of M relative to H is non-enpty

the core of M relative to H is nonenpty. Thus
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the snmallest affine space containing M is H. Thus the
interior of M relative to H is also the rel-int M
Hence there exists a 6 >0 such that if |[|h] < 6 and
I(h) =0 then x +h e M. VW note that corresponding
to each y e E there exists a unique scalar Ay and a

. 1 '
~ = + e
uni gue vector hy e |~7(0) such that vy AYx h v

Since 'y -+ A is a continuous linear functional, 'y -e

hy is also a continuous function on E -« E. Let G=
) 1

{y [ Ilsh || <«4 and A > -¢-} . By the preceding obser-

vations G is a open subset of E. Nowif y e Gd Ss then

L=l = A xwh g gl = IA I I x+~ |l Since ~li<
y y
6 and I1(hy) =0 fromthe choice of 6 it follows that

y he .
Il x -~ || =1. Thus A =1 noting that y e G. Hence

y Y
I(y) =1 i.e. GO$c Mand x 1is in the interior of
M relative to Sg. To conplete the proof of the lemma |et
f e ext U . From Lemma 2 it follows that range f c¢c S°
Now i f possible let there be a point p e X such that f(p) e
rel int M. Thus f (p) e interior of M relative to S,
as seen fromthe observation in the precedi ng paragraph.
Since f 1is a continuous function there exists an open set
G, p€Gand f (G ¢ Sg. Let C be a conpact neighbor-
hood of p with Cc G Thus f(c) is a conpact subset of

the interior of M relative to Sw. Thus there exists a
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6 >0 suchthat if y e SE and |'|‘y - 74 < 6 for sone

z e f(x) then y e interior of M.relativeto SE.

Wth H and | chosen as in the precedi ng paragraph it

is verified that if 1 (h) =0 and ||H|] <6 then z + h e M
for all z e f(c) . Let h be such a fixed vector. Since

X is a conpact Hausdorff space there exists a continuous
function <p: X -« [0,1] such that <p(Q c {1} and

PX ~ G <~ {0} . Let q."g, be two functions on X -» E
such that g:(q) ="f (@) + <p(g) h and g>(q) = f(q) - <p(g h .
It is verified that g.,0. e CXXE) Ugd = |lg2|| = 1, f =

g| H9o \ .
&, and g\ f g . Hence f 4 Ext & and the proof
i's conpl ete.

Lemma 4. If M is a M set in a Banach space E

then BExt Mc BExt Ug .

Proof. Let e e Ext M and let H be a hyperpl ane sup-

n
—

porting 13 along M+‘z Let H=1 (1) for some | e E* |
WW\ = 1. If e= Y, , Y,z e Ug then it is verified that
Iy) =2 =1. Thus y,zeH and |ly|| = |lzI]| = 1. Hence

y,zeM . Since eeExt My e=y =2z. Thus e e Ext U
E

and ExtM < Ext U .
E
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Lemma 5. Let E be a Banach space with a quasi -
cylindrical unit cell. If M is a M set rel-bd M=
Ext M.

Proof. Let x e rel-bd M. If x 4 Ext M then
X 4 Bt UE. Thus fromthe condition (1) in the defi-
nition of - a quasi-cylinder it follows that x is a snooth
point of 8, . Thus there is only one hyperplane H sup-

porting U"hi at x and H fl %W:M Si nce di stinct

M—sets are in distinct hyperplanes supporting U. it
follows that M is the only M set such that x e M.

Since x is a snmooth point fromthe condition (3) in the
definition of a quasi-cylinder it follows that x e rel-intM
thus obtaining a contradiction. Hence rel-bd M c Ext M
Since every extreme point M is in the rel-bdM it follows

that rel-bd M= Ext M.

Remark 4. Fromthe preceding lenma it follows that if

UE is quasi-cylindrical then for a M set M in E M=

Conv (Ext M .
Lemma 6. Let E be as in the preceding lemma. if

P, P, are two distinct M—sets then Card (P n PC;_ <, 1.

Proof. If possible let x,y e Pilfl P, and x £ Y-

Si nce. P.l, i = 1,2 are convex —?(-ZZ-V e P,l(l P, . Since
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x_él;_l’ & Ext U, it is a snooth point in S_. Thus if H

is the hyperplane supporting U, at X—J'l it follows that

H=H =H where H.l , I = 1,2 are the hyperpl anes sup-

porting U- along P. , i =12. Since distinct M sets
t 1

are in distinct hyperplanes of support a contradiction is

obtained and the proof of the lemma is conplete.

Remark 5. If the Banach space E in the preceding
| emma contains two non-di screpant T-sets then as observed
in 81 if M is any M- set then Card M~>_ 2 . Thus
fromthe remark it follows that Card Ext MJ> 2 . If now

M-L ,j}’/‘u are the two antipodal \i - sets such that Ext Lﬁ c

M1U|\/b t hen Ext 'Mc MLUM;. Fromlemmas 4 and 6 it
follows that if M3 M1 , i = 1,2 then M has precisely

two extrenme points one belonging to Ext I\il.l and the ot her

belonging to Ext M .

Lemma 7. Let E be a Banach with a quasi-cylindrical

unit cell. Let MA"MM» p and L be as in (2) and (4) of
Definition 1. |If e, e Ext M i =12 and if [e"e,] c Sg
t hen el—"_i\‘f_2_=p.
Proof. Let V=1L fl U. Hence from (4 of Definition 1
E

it is seen that p +V =M. W proceed to verify that

¢t et o2

(*) p+——__ = e,-L and -p + =€ % W not e that
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si nce Ml:p+v (M =- p + V), e.l-p‘, 3 + p are in V.
eI + 62 .
Hence ” Y since V is convex. Further since
||—'+2_2- [ =1 and & - P, e, +p are in L‘:L: it is
verified that || e - p\\ =[] e +p | =1 and
. e_'. +e9\
[e, - p, eg + p] <=s.. Since —+ e S, ~ Ext U_ and

el + en

UH is a quasi-cylider "T""'é =+ is a snooth point of S,

Hence there is exactly one hyperplane H supporting U,

el *eo €| + e'?
at "m X .— Since ] . < £ isapointin [e, ,e] and
[el - PJ e~ + p] and these line segnents are subsets of

S’Qi it is verified that HDS"hj:> [e,+,e3] Ule, - p eJ.+p] )
Since H is the only h er' | ane su orfin at Ex_fl eZ
y nyperp pp g L& 5 .

it follows fromRemark 1 that if M is an M- set containing

el * €2
2 then M=HD §,. It is inferred fromRemark 5
a

that M= [e;”e,] . Hence [e;- p, e, +p] C [eige2] . |If

the equations in (*) are false then e, - p =f e« + p. Si nce

e, - b, e+ p are in the subspace L it is verified that

[eljez] c L. Hence e, € V. Thus p + e, e Ml. However, since

e; 1
Ik_’\e M;> Since M <= SE

p, e1 e M and M s convex,i2
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: pt+te : :
it follows that || p + e. Il :||—2—|. [| =1 whichis a

contradiction. Since either of the equations in (%

'i mplies L "2 . the proof is conpleted.
2 p

Lerma 8. Let E be a Banach space containing two

non-di screpant T-sets and |et Ug be a quasi-cylinder.

Then if f e C(X,E) is an extreme point of U, then f(p) is
A

in Ext O,  for all pe X.
hi

Proof. Let N},M_; be the pair of antipodal M sets

of U such that Ext U_bc M UM wth interior of
B (Cont i nued)
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ML(V\E) relative to the hyperplane supporting UE al ong
M (along jyL) non-enpty. Let f be as in the .hypot hesi s of

the lemma. Then fromLema 3 it follows that f(p) 1is not in
rel int M,, i =112 for all peX. Thus if for p e X,
f(p) 45 Y% t"en f(p) ™M UM . Since M UM is

closed there is a conpact neighborhood C of p such that
for all ge C, f(q eUE~ (Ml(J M) . From Lenmma 2
it follows that f ee ¢ Sg ~ (Mlu M) . From Remarks 4

and 5 it follows that for each q e C there is a uniquely

determ ned pair of extrene points ei with eie M =12
q q |
such that f(q) e [ej , ej] . Since f(q) \ M , I =1,2

there exists a function A: C - ]0,I[ such that f(q) =

| d
A(g) e + (1- A(q))ae . We verify that A is a continuous

function. For if {q } 1is a set in C converging to a point

a
g then since f is a continuous function ||f(q ) - f(q)||] ~* O
TRES ifi.t)l =i$ tdwd contd nyoyg)limeas. funehi opat (g0)) E - SUghs(q)).

Hence - Mgq,J - A(q) since | (et) =1 and 1 (e*) = - 1.
Q qa qa

Thus A is a continuous function. Since C is a conpact
set there exists an a > o such that ?< A(q) <1 - a for
all g e C. Let G=int C and C; be a conpact nei ghbor-
hood of p such that c” aU. Let <p be a continuous func-

tion on X -+ [0,1 such that <(G,)) c (1] and <X ~Q <= (0}.
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Let the functions g : X -» E be defined by g:(q) =

1 2. : 1 2
f(a) + K@ ale,- el ad g~@ = f(q) - KO a[e~- eI
Since for qe Ce® e Ext M i =1,2 and [e', e'.] c s* the pre-
v a1l _g2 -
ceeding Lemma inplies that 9 I * P for all g e C where p is
2

a fixed vector. Thus the fu_nk;tions 0a, 1 =1,2 are continuous and
9i (g) =go(g) =f(g) if q&G. and g. (g) e[&, &l cs if
z oo T Ji q q -~ E

|
I3

q4G Thus 11g. || =[] 9_|] =1, g, 4=9. andf =9 *92. Hence
1 2 1 2 2

f $ Ext U, contradicting the hypot hesis. The proof of the Lenma

is conpl ete.
Lemma 9. A set Pc C(XeE) is a M-set if and only if
there is a M- set Mc E and a point p e X such that

P=11f ] feC(X,E), |ff =1 and f(p) e M|
{ )

Thus each M set P in C(X E) could be represented as
p= (Mp) where M and p are chosen as above and two
Msets Pi2AP2  where Pj» = (|Vi,p1) and P, = (M, p>)
are equal if and only if I\/L = M and Py = P2

This lema is an imedi ate consequence of theorem4.1
and lemma 4.3 in [8]. Hence the details of a proof are

omtted.




Before proceeding to the main theorem of

we note if

*

X Y is a honeonorphi smon

Y, E) A X E)
f e Y, FE), is verified to be
C(Y,E) onto C(XE).

consi der

*

tor T:

p e X
Thus in the su

only the converse question.

Theorem 4. Let E be a snooth

Ext U Let

g4 0

dorff spaces such that there is a linear

onto Then

Y E)

Proof. Let x be an extrene po

C( X, E)
Then T*

be a linear isonetry on ont o

the adj oi nt operator. s a

(C(Y,E))* onto (C(X E))*. Let Ty

Let | be the functional in FE*

X, Si nce X is a snooth point of

that | £ Ext Ug* Thus if p e X

Since T*

A e Ext gk

that e(l,p) £ Ext U-* .
A

there is an extrene'point

X, Y are two conpact Hausdorff spaces and
X onto Y
defined by T(f)(p)
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this section
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= f(rp)
a linear isonetry on

bsequent di scussion we

Banach space such that

X, Y be two first countabl e conpact Haus-
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(X, E)

X and Y are homeonor phic.
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Y, B)
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= T*~1

supporting LE at

b

it follows fromLemm

it is verified

such that
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for

1
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Thus fromLemma 1 it follows that there is an extreme point

Vpe Ext U*E
e(€,p) i.e. for all <t(f(p)) :Ii, (Tf(p')) for all feC(XE)-

Since ™ is 1-1 if p'=7r(p) it is verified r is a

and a point p' e Y such that T* &(Vp, p' ) =

function on X into Y. W next verify that T(x) =Y.
Let g e Y. Let K be the function in C(XzE) defined
0
by K (g9 =x for all ge X Since K e Ext U and
X 0 X

A
0 -- 0
T is a linear isonetry TK e Ext Uy. Thus fromLemma 2
it follows that ||TK (q)|| =1 Llet TK (qt) =x'.
O o
Let m e B be suchthat m (x Y= n|j =1 Since
E is smooth such a functional m e Ext U*. Hence
E

' - Y
e (M, ) e Ext 0. Then e(m ., q*) e Ext U*. Hence

there is an extrene point e(l, p,) of U such that

X A
Te(m, o) =e(ly ps) . Thus | (Kxo(p“) =m (T Kx (q'))
L

1 o
=1 S nce K, (p, ) =x and |j& || =1, l supports
E o

|J :af. Hence (n)1( 13 a_sgPlothpo?l nt 8f Hj(p" - g

1
Thus T(X) =Y. (Cont i nued)
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Next we verify that T is 1- 1. | f possible |et
p,qg € X be such that r(p) = T(q) =r" . "Thus there are
functional s Ml,M‘ in E* of unit normsuch that -t(f(p)) =

MTF(r')) and *(f(q)) = ME(TF(r')) ‘for all f eC(X, E)

Thus in particular 1 =1(x) =1(K (p) =M-(TK (r?)) =1-
o X0 X XO
Sinmilarly it is verified that M (TK (r)) =1 . Si nce
z X
0
T K, (r')Il =1 and E is smoth it follows that M =M, .
0

Thus it is verified that T*e (M3 +r') =e(t,p) =e(l,q)
Since T is an isometry it follows that p = q. Hence T
is 1-1.

W proceed now to show that T 1is a continuous mapping.
Since X and Y are first countable Hausdorff spaces it is
enough to verify that if (pn}nzl. is a sequence in X con-
verging to the point p in X then T(p )n "o T(p) ¢ Let
us denote for conveni ence r(pg :p'n and T(P) = p' e+ Let

Te(l*,, p*) =-e(£,py) for all n where we note that [X}n21c

Ext Ug® . If p» -» p' since X is a first countable com

pact Hausdorff space there exists a convergent subsequence

{pr } of {pn} such that limp' = g 3 P' e« Consider
[ i

the function fR as defined in the precedi ng paragraph.

O
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Since ||[fP (p ) - f£ (p)|| - O it follows that *(fE(P.,>) =
X n. -
o i o o i
lit\ _(P)) « Thus V_(TfP.(p.)) - 1. Since |[|* .|l = 1,
o) 1 o 1 1
||Tf|§(> (pn_' ) - T @) - O ad |ITfE )| £ 1 it
o i o o
is verified that [T f° (") || =1 . Fom the equations
X
0
L(fl (p)) = 1=V (TfR.(p<)) and [|*|]] =1 =|[|T fR.IL it
o o o
follows that |]T fP(p')I| =1+« FromTheorem 3 it is seen
0
t hat fg is a snooth point of U . Hence X’Ti is a
(@) O
smooth point of U ., Further || fP || =||TfP || =1 . Since
o o
[IT fP (p ).1' =1 once again appealing to Theorem 3 we con-
X
0
elude that p!' = q . Thus every convergent subseqUence of
{r(pn)} converges to T(p) . Since Y is a first countable

conpact Hausdorff space it is verified that the sequence

(r(Pn)} <converges to -r(p

Next we proceed to the case when the unit cell tL  of
E
E is quasi-cylindrical. As noted in 8 1 the T- sets are

not necessarily discrepant and thus Jerison's theorem does
not apply to this case. However we show below that if XY
are as in the preceding theoremand U  is quasi-cylindrical
and the linear isonetry T fulfills an additional condition

then we have an anal ogue of the preceding theorem
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We shall denote the constant function in C(X,E) wth

range in {x} by K

Theorem 5. Let E be a Banach space with a quasi-
cylindrical unit cell UE and X, Y be first cour. :able
conpact Hausdorff spaces. Let T be a linear isonmetry on
C(X,E) onto C(Y*E) such that corresponding to each point
t e X there are at least two points Xx,,X € Ext U for
which T KXI (t)y ~T sz(t) . Then X is honeonorphic with Y.

Pr oof . If the T- sets in E are discrepant then
Jerison's theorem applies and the conclusion follows. Thus
we can assune there exist pairs of non-discrepant T-sets
in E. Hence as noted in Remark 5 if M is a Mset
in E then Card M"> 2 . Thus since M is a convex sub-
set of SE it follows that M~ Ext UEt $ ¢ Hence from

the definition of a quasi-cylinder it follows that there

are points x e M such that U_ is snooth at x . Hence
B

corresponding toa M set M there is one and only one
functional m in BE(|'md = 1) such that m supports U_
along M. From the uniqueness of m it is further veri-

fied that such a functional m is in Ext U*
E

Let M, M be the pair of antipodal M sets (guaranteed
by (2 in Definition 1) such that Ext LL, ¢ M UM . Let
a

J. 2.
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5 (£ = - i) be the functionals in E* supporting U

al ong I\/I.l (l\ﬂ~) . Then as shown in the proof of the preceding
theoremthere exists a function r : X -+ Y such that
T*e(<£,., p) =e(E£ , rip)) wiere V is an extrenme point

of u_* depending only on p . W proceed to show that

r maps X homeonorphically onto Y .

W verify first that T(X) =Y. Let p' e Y. Let
dmE ;>3 . As ainitial step we assert that there are
at least two points y,z e Ext UEfI M = Ext Ml such
t hat TKy(p') : Tl&(p') are in the same M set. Since
dimE > 3 and interior of M, relative to the hyperpl ane
I;l(l) is nonenpty it follows that Ext M, =rel - bd M

is ainfinite set. (See Lenma 5). Let x e Ext U, 0O M, .
a 1

Thus K e Ext U, . Hence TK e Ext U. . Thus from

X A X Y
Lenma 8 we conclude that T K (p) e Ext U . Thus T K (ph
isin N or M . Let TKd(p') eMl. If for some

y e Ext Ug n M TKY(pl) el\/[" then the assertion is
verified at once. If for all y e Ext M ~ {x} , TKy(pl) e M
then since Ext M is an infinite set the assertion is veri-
fied. The case when T K (p') e M is simlarly dealt. |If
dimE = 2 then since Uz is a quasi-cylinder SE Is a paral -

| el ogram and there are only two pairs of antipodal Msets in E
and each Mset is a non-degenerate |line segment. If M

(i =1,2,3,4 are the four Msets of E it is directly
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verified that there is an iD such that if fy, z} = Ext M

0
then T Ky(p'), T Kz'(p*) are in the same Mset. Wthout
| oss of genérality we can assune that io: 1, since M:.

0
and its antipodal set could be taken for the sets Mt and
Mz considered in the second paragraph above.

Let y,z be tw points in Ext M_‘L with the property
asserted in the preceding paragraph. From Lenma 6 it
follows that there is only one M set, say M , such that

[T IS/(p') , TKZ(pl)} czM . Consider the Mset (M, p)

of C(Y,E) . For the definition of (M, p') we refer to
Lenma 8 . Since T is a linear isonetry T~ ](IVI , PT) is
an Mset of C(X E) . Thus fromLenmma 8 it follows that

there exists exactly one Mset L in E and a unique

point pe X such that T "(]M , pt) = (L, p) . W verify
| T(K, + K)
that L =M, . Since {TK(p') , TK(p*)} c M, = Ep») =

T K(p') € M« . Since T~*(M )p'") = (L,p)j K+, (p) e L .

2 2

Si nce JV—T;A e MX ~ Ext U_ﬁ,g and U_,HI is a quasi-cylinder

-y?—t— is a snmooth point of S . Thus M is the only

M set such that »é4-% e Ml' Hence I\/I._L =L . Thus
T(I\/E, p) = (MJPY) e+ W proceed to showthat if m s

the functional in FE* suppc;rting tr along M and
E




f e (X E then e(ty,p) (f) =e(m ,p" ) (TfF) . Let'%—L:v.

As already shown in paragraph 3 of the proof of preceding

theoremthere exists a function ff’ e C(X, 'E) such that
fR(p) =w aadd ||Fflq)|| <1 if g€ X~ {p} . Further as
v "Fi n

shown there the normin C(X,E) is Gdifferentiable at

f‘p’ and the normin C(Y,E) is Gdifferentiable at Tf";’.

Si nce fp(p) e M and TfM"p) = (M,P) it is verified that

T £ p') e M . Thus the linear functionals e(l . P)  and
e(ml, p' ) are the Gateux gradients of the nornms in C(X E)
and C(YjE) at f\f and T fff respectively. Thus arguing

as in paragraph 3 of the proof of Theorem 4 we concl ude

that if f e C(X,E) then e{l”, p) (f) =e(nE, p* ) (TT)

i.e. Tre(m , p') =e(l,,p) . Hence T(P) =p and r maps
X onto Y.
Next we proceed to verify that r is 1- 1. Let

t . From

p,q be two points in X such that r(p) = T(q)
the definition of T it follows there exist two functionals
m , m in Ext Ug* such that (a) Te(m, t) =e”"p)

and (b) Tre(m , t) =efrq). Let T(M, p) = (M, p') and

T(M, ) = (M, g ). Nowlet y be a snooth point in ‘Nl'
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Consi der a function f; e C(X, E) such that fP(p) =y
and ||f;(p)!‘| <1 for s eX ~{p} . Since fpye {M, p) ,

P ' 1 . P . .
Tfy(p) e (I\/i,p) : Si nce 1; is a snmooth point in U
Tf\F/’ is a snmooth point in uy. Hence from Theorem 3 it is con-

eluded that ' iisstthieeoohlyypponntinn YY sscicht haat | ||Tﬂ‘7(;)' Y[ = 1.

Further TfP(p') is a snooth point of U . The equation (a)
y E
inplies mM(Tf&p')) = -t(fyp(p)) = 1. Since |Im| =1 and

MTH || =1 it follows fromthe preceding equations ||Tf¥t)||= 1.
Thus p* =t . Hence mM(TfF(t))= 1. Since Tf¥Yt) = Tfrtph)

is a smooth point of S in M M~ is the functional in

hi 1 1
E 1

E* supporting U along M . Simlarly it is verified
2 B
that ni is the functional in E* supporting U along
Z
m . From the additional hypothesis on the linear isonetry

T in the statement of the theoremit follows that there are

two points x, ,x_e Ext M , X, F X, suchthat TK f{t) =f
T Kx (t) ~ Since I§ e (I\){l , p) for i =1,2 fromour
2 [

choice of M and M it is verified that TK e (M, t) for
Xi Al

i =1,2 and j =1,2. Thus TK (t) e M_n M ).. Hence
i

fromLenma 6 it is inferred that M1:M2" Since there are

smooth points ina M set of E and m.l support uE: al ong
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M* we conclude that m =m . Thus T*e(nm, t) =¢€{l,, p) =

e(£,l ,qQ . Since e is 1-1 it follows that p=q and T
is 1-1.

The proof of the part that r 1is a continuous nmapping
Is exactly same as the corresponding assertion in the proof
of the preceding theoremafter choosing for X, @ fixed
smooth point of U, in M . Thus the details of a proof

XJ X
are omtted.

As in the preceding theoremit follows that T maps X

honeonor phically onto Y. The proof of the theoremis conpleted,

In conclusion we nention the follow ng unsettled problens
1) If E is a snooth Banach space and Ext Lﬁ 4 0 then nust
It be true that the T- sets in E are discrepant. 2) Is it
necessary for the linear isometry T to fulfill the additiona

hypothesis in Theorem 5 for the conclusion of the Theorem
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