# SPACES OP CONTINUOUS FUNCTIONS

INTO A BANACH SPACE I

by

K. Sundaresan

Research Report 70-19



#### SPACES OF CONTINUOUS FUNCTIONS

INTO A BANACH SPACE

K. Sundaresan

## 1. Introduction

Let X be a compact Hausdorff space and E be a Banach space. Let C(X,E) denote the Banach space of E-valued continuous functions equipped with the usual supremum norm. The Banach-Stone theorem. Day [4], asserts that if X,Y are compact Hausdorff spaces then X is homeomorphic with Y if and only if there is a linear isometry on C(X,R) onto C(Y,R)where R is the real line. Subsequently Jerison [8] investigated the problem of extending Banach-Stone theorem with R replaced by an arbitrary Banach space E. In [8] it is proved that the theorem remains true if (\*) any two T-sets in E are discrepant and in particular if E is a strictly convex space; however it is shown that the theorem is false in general. We aim here to investigate the same problem in the case when the space E does not satisfy the condition (\*) • Among others we consider in this paper similar problems that arise when E is a smooth Banach space or the unit cell of E is quasi-cylindrical.

Apart from discussing the above problems we obtain some auxilliary results concerning the spaces C(X,,E) which are also of intrinsic interest. Among others we provide a useful characterization of extreme points of the unit cell of the dual space of C(X,E)and determine the functions f in C(X,E) such that the norm is G-differentiable at f.

## 2. Preliminaries

Before proceeding to the main results of the paper we recall the necessary terminology and notation and few useful results.

Throughout the paper E is a fixed real Banach space of dimension  $J \ge 2$ . If B is a Banach space we denote the dual space of B by B\*. The norms of the various Banach spaces that enter our discussion are all denoted by the same symbol |] jj as there is no occasion for confusion. The unit cell of B(B\*) is denoted by  $U_D(U^*)$ 

[2]

and  $S_n(S_{*}^*)$  is the boundary of  $U_Q(U_{*}^*)$ . If X is a  $a \xrightarrow{D}$  Ho. If X is a compact Hausdorff space the unit cells of C(X,E) and its dual are denoted by  $U_{*}$  and  $U^*$  respectively. -A X If K is a convex set Ext K is the set of extreme

points of K.

In the sequel we make use of the following functions e and II. The function e on E\* x X into  $(C(X,E))^*$ is defined by setting e(1,p) (f) =  $\langle t(f(p))$ . We have  $|e(*,,p)(f)| = |*(f(p))| f \langle 1 \rangle | f(p)|! \leq \langle 1 \rangle | f||$ . Thus for a fixed p  $|e(1,p) \rangle \leq \langle 1 \rangle | 1 \rangle$ . On the other hand if  $f^{x_n}$   $i^{-s}$ a sequence in S\_, such that  $I(x) \to I+fI$  then considering hi 3p. the functions  $f^n \in C(X_j)E)$  defined by  $f^n(q) = x^n$  for all qeX it is verified that  $e(^,p)(f_n) \to |Kj|$  and  $||^n I| = 1$ . Thus  $||e(<t,p)|_j = ||+t||$  and for a fixed peX, e(-,p) is a linear isometry on E\* into  $(C(X,E))^*$ . The function II on E into C(X,E) is defined by setting II(x)(p) = x for all  $x \in E$  and  $p \in X$ . It is verified that II is a linear isometry on E into C(X,E).

We recall few geometric properties of a Banach space. If B is a Banach space and  $x \in S$  then a functional B U B \* is said to support U\_ at x if H|| = 1 = I(x). The cell U\_, is said to be smooth at x if there exists

[3]

one and only one hyperplane of support at x . A Banach space B is said to be smooth if  $U_n$  is smooth at all points x e S\_. . It is known, Mazur [lol, that U is B .r., ..., -..., » n. HX+tVH-IJX 1 • , , smooth at x if and only if (\*)  $\lim \cdot \cdot \cdot \frac{-u}{-u} - \cdot \cdot \frac{-u}{-u} = 0$ G(x;y) exists for all y e B. Further, if the limit exists then G(x; ) is a linear functional supporting  $U_-$  at x . For each x e  $S_\circ$  let v(x) be the set of В all linear functionals supporting UB at  $_{*}$  x . Then v into 2<sup>°B</sup>. If follows is a set valued mapping on S\_. from Hahn Banach theorem that  $v(x) = 0^{f \circ r a} H^{x e S} B^*$ Further if C is the set of smooth points in  $S_{\perp}$ , it follows from the preceding observations that v|c might be considered as a function on C  $-\bullet$  S<sup> $\pm$ </sup> . The set valued а mapping v is called the spherical image map of  $S^{B}$ , Cudia [3].

We proceed to define certain distinguished subsets of a Banach space which are useful later in the paper. An M-set in a Banach space B is a maximal convex subset of S\_, . A T-set in B is the half cone of nonnegative multiples of vectors in a M-set . For a discussion of these sets we refer to [8]. Two T-sets  $T^{-}T^{-2}$  are said to be discrepant if either  $T_{r}^{-1}$  n  $T_{2} = \{0\}$  or if there exists a T-set  $T_{3}$  such that  $T_{r}^{-1}O T_{3} = \{0\} = T_{2}$  fl  $T_{3}$ .

[4]

It is verified by applying Zorn<sup>1</sup>'s lemma that if  $x \in S_{-}$ a then there is a M - set M. containing x. Further if  $x \in S_{B}$  and  $\{x\}$  is a M- set then any two T-sets are discrepant. For if  $T_{O}$  is the T-set  $\{Ax \mid Aj \ge 0\}$ and  $T_{1}$  is another T-set then it is verified using the maximality of M- sets that  $T_{O} \circ 1^{-} = \{0\} i$  In particular it follows that the norm in B is strictly convex then any two T-sets are discrepant for then there exists only one point belonging to a M - set.

We summarize some properties of M- sets which are required in the last section of the paper in the following remark.

Remark 1. If M is a M- set in the Banach space B then it follows from the separation theorem [4], that there exists a linear functional f e B\* such that ||f|| = 1and inf f(x) :> sup f(x) where  $U_B^o$  is the interior of  $\mathbf{x} \in \mathbf{M}$   $\mathbf{x}_{60}$   $\mathbf{g}$ the cell U<sub>\_</sub>. Hence if H is the hyperplane f<sup>-1</sup>(1) then B M c H. Further since H H S is a convex set and M is a B

maximal convex set we conclude that  $H H S_n = M$ . We refer to H as a hyperplane supporting  $U_$  along M. Further Bwe note that if ther exists a point  $x \in M$  and if U is Bsmooth at x then from the definition of smooth point it follows the hyperplane supporting  $U_$ . along M is unique.

[5]

We conclude the preliminary remarks from geometry of Banach spaces by stating the definition of quasi-cylinders and a known result, theorem 5.2 [8] for convenience of reference. Before stating the definition we recall that if C is a convex set in a Banach space B the relative interior of C is the interior of C relative to the affine subspace of B spanned by C. The relative boundary of C is C ~ relative interior C . The relative interior and boundary are respectively denoted by rel-int and rel-bd.

Definition 1. Let B be a Banach space and D be the set of smooth points in  $S_D$ . Then the unit cell U\_. is said to be a quasi-cylinder if it satisfies the following conditions.

(1) Ext U\_ is a closed subset of S<sub>o</sub> and D U Ext U\_ = S\_ . J3 B B B
(2) There are two antipodal M - sets M and M? in S<sub>o</sub> B such that Ext U<sub>B</sub> c M<sup>1</sup> U IV? and if H is the hyperplane supporting Ug along M<sup>1</sup> then M<sup>1</sup> has a nonempty interior relative to H.
(3) x e D implies x is in the rel-int of a M - set of B.

(4) There exists a point  $p \in M^{\mathbf{1}}$  and a closed subspace L of B such that  $p + (U_Q \text{ fl L}) = M^1$ .

[6]

We proceed to provide an example of a quasi-cylinder. Let (E, j| ||) be a Hilbert space and L be a subspace of E of deficiency 1. Let x e L and |jx|| = 1. Let C be the complete cylinder erected on L n U, with generators parallel to x. Let U be the portion of C cut out by the hyperplanes x + L and -x + L. Then U is the unit cell of a Banach space (E, || ||o) topologically equivalent to (E, || ||) and U is a quasi-cylinder. From this example of a quasi-cylinder we conclude that if the unit-cell of a Banach space is a quasi-cylinder then the T-sets need not necessarily be discrepant. In this connection we refer to example 4.5 in [8].

For convenience of reference we state the theorem 5.2 in [8] below.

Theorem 1. [Jerison]. Let X,Y be two compact Hausdorff spaces and E be a Banach space such that any two T-sets in E are discrepant. Then X is homeomorphic with Y if there is a linear isometry on C(X,E) onto C(Y,E).

We need some concepts from the theory of vector valued measures. For an account of vector valued measures we refer to Edwards [6] and Dinculeanu [5]. An E-valued Borel measure on a topological space X is a measure defined on the Borel sets of X with values in E. If pi is a Borel

[7]

measure on X with values in E then the variation of ji is defined by

$$V(ju) = \sup \left\{ \begin{array}{c} n \\ 0 \\ 0 \\ 0 \end{array} \right\} \stackrel{\text{I}}{\underset{i=1}{\overset{\text{H}}{\underset{x}}}} H M V \underset{x}{\underset{x}}! \quad I \quad (B_{L}, B_{p}, \dots, B_{n}) \in P \right\}$$

where P is the set of finite Borel partitions of X. When X is a compact Hausdorff space an E-valued Borel measure pt is said to be regular if V(fj.) is a regular set function, see in this connection proposition 21 on page 318 in [5]. If  $V_v(E)$  is the set of all E-valued regular Borel maesures  $\setminus i$  of finite variation defined on the compact Hausdorff space X then with the usual definitions of addition and Scalar multiplication  $V_v(E)$  is a  $X = V(\mu)$ , linear space. Further equipped with the norm

 $V_{Y}(E)$  is a Banach space.

Let  $u \in V$  (E\*) and S: X -• E be a step function Χ n {B.} S is of the form E x(B.) x. where i.e. is х i=l 1 × i=1 a finite family of pairwise disjoint Borel sets in X and x. e E for 1 <, i <^ n and x(B.) is the characperistic function of B. . Then the Stieltje<sup>1</sup> s integral Sdu r  $\mathbb{I} Sd \setminus i = \frac{T}{1} JU(\mathbb{B}.)(\mathbb{A}.)$  . Since X is defined by is a compact Hausdorff space corresponding to any function  $f \in C(X, E)$  there exists a sequence of step functions  $S_n$ uniformly converging to f. The Stieltje<sup>1</sup>s integral If dJU is defined to be the lim J S  $d_{n}$  ju . Since JI nn-» od

is of finite variation the integral exists for all f eC(X,E) For a detailed account of this theory of integration we refer to Bochner and Taylor [2] and to sections 7 and 8 in Chapter II in [5] and the representation theorem stated below could be deduced from the corollary 2 on page 387 in [5]. In this connection we refer also to Bochner and Taylor [2], Gowurin [7] and Singer [11]. The papers [2]\_, [7] are concerned with the representation problem when X is the unit interval while the more general case when X is an arbitrary compact Hausdorff space has been dealt in [11]•

[9]

<u>Theorem 2</u>. If X is a compact Hausdorff space there exists a linear isometry a on  $(C(X, E))^*$  onto  $V_{**}(E^*)$  such that

$$\mathbf{L} \bullet (\mathbf{f}) = \int_{\mathbf{J}_{X}} \mathbf{f} \, \mathrm{d}_{\sigma}(\mathbf{L})$$

for all Le  $(C(X,E))^*$  where the integral is the Stieltje<sup>1</sup>s integral defined in the preceding paragraph.

3. Smooth Points in C(X,E).

We proceed next to characterize the functions  $f \in C(X, E)$  such that the norm in C(X, E) is G-differentiable at f. We first establish a lemma useful in the subsequent discussion.

Lemma 1. Let X be a compact Hausdorff space and E be a Banach space. Then

Ext 
$$(U_{-}^{*}) = e(Ext U_{-}^{*} X X)$$

where e is the map defined earlier.

<u>Proof</u>. Let  $I \in Ext \bigcup_{\mathbf{E}}^{*}$  and  $p \in X$ . Since e(\*,p) is an isometry and  $||^{|}| = 1$ , ||e(<t,p)|| = 1. Let  $L_p L_2 \in U_x$  be

such that  $e(l,p) = \frac{L_1 + L_2}{2}$ . We claim that  $L^{\wedge} = l >_2 =$ Let  $H_{1}JJ_{2}$  e  $V_{X}(E^{*})$  be such that  $^{=} oCL_{\pm}$ e(l,p).where a is the isometry described in theorem 2. We claim that if M is a Borel set in X and p / M then the variation  $\left| \begin{array}{c} \left| \begin{array}{c} \left| \begin{array}{c} \left| \begin{array}{c} x_2 \end{array} \right| \right| \\ - & - \end{array} \right| \\ - & - \end{array} \right| = 0$ . For if this is not true by the regularity of the measure  $jUj + i_2$  there exists a compact C c M such that if v is the contraction of  $\frac{Mi + M2}{2}$ set C then the variation of v is a positive number 6. to Since  $|-L^2 - 1| = 1$ ,  $H = \frac{L}{2} - 1$  = 1 • Hence if v'is the contraction of  $H_1 + \frac{1}{5}$  to  $X \sim C$  then from the definition of variation it follows that j|i/|| + ||i/'|| = $\frac{1}{1} \frac{1}{2} H = 1 \cdot \text{Thus } \|i/\| = 1 - 6 \text{. Let } \{x_n\}_n \wedge \text{ be}$ a sequence of vectors in E,  $||x_n|| = 1$  such that  $I(x_n) \rightarrow 1$ . Since p / C and C is compact there exists a sequence  $[f_n]_{n>1}$  in C(X,E) such that  $||f_n|_j = 1$ ,  $f_n(p) = x_n$  $f_n(q) = 0$  if  $qeX \sim \{p\}$  for all  $n \ge 1 \bullet$  Now and

$$|\mathcal{L}(\mathbf{f}_{\mathbf{n}}(\mathbf{p}))| = \langle ad, p \rangle \langle f_n \rangle = \langle \frac{\mathbf{L} \quad \mathbf{L}}{\frac{1+2}{2}} \langle (f_n) |$$
$$= \left| \int_{\mathbf{X} \sim \mathbf{C}} \mathbf{f}_{\mathbf{n}} \, d\frac{\mu_1 + \mu_2}{2} \right| \leq ||\nu'|| ||\mathbf{f}_{\mathbf{n}}|| \leq 1 - \delta$$

Hence  $\frac{1}{2} + \frac{2}{2}$  (M) = 0 if M is a Borel set and p / M. Thus it is verified that

$$n = \|\underline{M_{i} + M_{0}}\| = \sqrt{M_{i}^{2}(p)} + \frac{\mu_{2}(p)}{r} \| \leq 1.$$

Since  $||_{MI}|| = ||/X_2|| = 1$ ,  $||Mi(P)II \pounds^{I} and I!M_2(P)|| \leq 1$ . Hence the preceding equations imply  $||ju_1(p)|| = ||/Z_2(P)||^{=1}$ . Thus if  $x \in E$  L,  $(II(x)) = \int_{X} II(x)du_{,,} = u, \{p\}(x)$ . It follows similarly that  $L_2(II(x)) = \uparrow_2(p\}(x)$ . Further a(l,p)(II(x)) = I(x). Hence by our choice of  $L_1$  and  $L_2^{\wedge}$  it follows that  $I = \frac{jU_{,}\{p\} + MofP^{\wedge}}{2^{2}}$ . Since  $I \in Ext \cup_{E}^{*}$ ,  $\mu_1\{p\} = \mu_2\{p\}$ . Thus  $L_1 = L_2^{\vee}$  and  $a(l,p) \in Ext \cup_{R}$ .

Conversely let  $L \in Ext \bigcup_{X}$ . We verify that there exist  $I \in Ext \bigcup_{X}^{*}$  and  $p \in X$  such that  $L = e(\pounds, p)$ . Let *a* be the map assured by theorem 2 and let  $\langle j(L) = \mu$ . Since ||L|| = 1, ||/ij| = 1. We claim that there is a point  $p \in X$  such that if M is a Borel set and p / M then  $j \perp (M) = 0$ . For convenience the contraction of the Borel measure JU to a Borel set N c X will be denoted by ju|N.

As a first step we verify that there exists a point p e X such that  $ju\{p\} \land 0$ . For if  $jx\{p\} = 0$  for all

 $p \in X$  then there exists a point  $p \in X$  such that whenever N is a neighborhood of p then JJ(N) ^ 0. This statement is verified as follows. If for each point p e X there exists a neighborhood  $N_p$  such that  $JL(N_p) = 0$  then since is a compact space there exists a finite set  $\{p_{1}, p_{2}, \dots, p_{n}\}$ Х such that  $X = \bigcup J \underset{1 \le n}{N} N_i$ . Tilus  $1 = \|juj\| \le \frac{n}{j=1} \|JU\| N_i \| = 0$ . c X Hence we obtain a contradiction. Thus there exists a point p e X such that for all neighborhoods N of  $p_k / i(N) j = 0$ . Since nip] = 0 and the measure jj, is regular there exist two neighborhoods N- $_1$  and N $_2$  of p such that N $_1$  c N $_2^{\ast}$ and  $0 < ||\pi|N_1|I < ||M|N_2I_1 ^ 1$ . We verify in such a case L / Ext U<sup>\*</sup>, thus obtaining a contradiction. Let N<sub>o</sub> ^ N. = N<sub>3</sub> X Z x 'i' be the measure in  $VX(E^*)$  defined by  $/i' = ||/m|N_{\underline{1}}| (\mu | N_{\underline{1}}) - M_{\underline{1}}|$ and  $llulNjjl(M|N_3) \bullet Thus M + M \ll = (n | x \sim N_2) + (1 + ||M|N_3||) (\mu | N_1) +$  $(1 + HUJN-J^{J}J)$  (JUJN<sub>3</sub>). From the above equations and the definition of variation it follows that  $|!/i. + ju^11| \le |!jn|x \sim N_{2}|| + |!jn|x \sim N_{2}||$  $|I^1N_I||\ +\ ||/i|N_3|l\ =\ jl^ijl\ =\ 1$  . Similarly it is verified that || lX - ll'V | < l = 0 Since n = - W T - (-H - A + I) and tf + Oit follows that n is not an extreme point of the unit cell of

۰.

HINT mm CARNEGIE-MELLON UNIVERSITY  $V_V(E^*)$ . Since the map a is a linear isometry it follows that L / Ext U\*, . Thus we conclude that there exists a point  $p_{\mathbf{6}}$  X such that  $M(P(J^{\circ} \circ ' \text{ Suppose now that} ||_{M}\{p_{0}\}!| < 1$ . Then if  $Y = X \sim \{p\}$ , 0 < ||M|Y|| < 1 and the above argument applied to  $fP_{n}$ }  $^{an<n} Y$  i-<sup>n</sup> place of  $N_1$  and  $N_3$  will again contradict the assumption that L e Ext U\* . Thus  $||/i\{p_{0}\}|| = 1$  and for all Borel sets M such that  $p_{\mathbf{0}} / M$  it follows that p(M) = 0. Let  $M(P_{\mathbf{0}}) = I \cdot$ If f e C(X,E) then  $L(f) = J_n f d \mathbf{II} = jLl\{p_Q\}f(p_Q) = e(f,p_Q)(f)$ .

Hence  $\mathbf{L} = e(^{,}p_{Q})$ . If  $I = \frac{e(^{+}\mathbf{1}, \mathbf{p}_{Q})}{2} > IKjl! = 1 = |K_{2}II|^{then}$ it is verified that  $\mathbf{L} = \frac{e(^{+}\mathbf{1}, \mathbf{p}_{Q}) + e(^{+}\mathbf{2}, \mathbf{p}_{Q})}{2}$ . Since  $\mathbf{L} \in Ext U^{\pm}$  we conclude that  $e(<t, p_{r}j) = e(^{-}t^{*}, p_{-})$ . Hence  $e(l_{1})p_{Q})(\mathbf{n}(\mathbf{x})) = e(f_{2}, p_{0})(\mathbf{n}(\mathbf{x}))$  for all  $\mathbf{x} \in E$ . Thus  $I, (\mathbf{x}) = -t_{o}(\mathbf{x})$  for all  $\mathbf{x} \in E$  i.e.  $f, = l^{-}$ . Thus  $I \in Ext Uf$ and this completes the proof of the lemma.

In the next theorem we provide a characterization of those functions  $f \in C(X, E)$  such that the jj )| is G-differentiable at f. The theorem thus generalizes the known result for the case when E = R, discussed in Banach [1]. Before proceeding to the theorem we wish to state a couple of remarks.

[14]

The Remark 2  $i_s$  an immediate consequence of the definition of the function e .

Remark 2. Let  $x \in E$  with j|x|j = 1 and let  $I \in E^*$ be such that ||I|| = I(x) = 1 = ||x||. Let  $f \in C(X,E)$ ||f|| = 1 be such that for some point  $q \in X$ , f(q) = x. Then the linear functional e(f,q) is of unit norm and the hyperplane  $e(t,q)^{-1}(1)$  supports the unit cell of C(X,E) at f.

Remark 3. Let F be an arbitrary Banach space and x e F with ||x|| = 1. Let B(x) = {f|feE\*, ||f|| = 1 = f(x) } Then B(x) is a nonempty w\*-compact convex subset of  $U_{p}^{*}$  and Ext B(x)  $\stackrel{a}{_{\sim}}$  Ext  $U_{B}^{*}$ .

Proof. From the Hahn-Banach theorem it follows that  $B(x) \land (()$ . Further it is verified that B(x) is a w\* closed convex subset of  $U_{\mathbf{F}}^*$  and since by Alaoglu<sup>1</sup>s theorem  $U_{\mathbf{F}}^*$  is w\*-compact it follows that B(x) is a  $g_{\neg}, +g_{?}$ w\*-compact set. Let f e Ext B(x) and let f = -=--=• where  $g_{\pm} \in U|$  for i = 1,2. f e B(x) implies that  $H^{\circ}ill = llg_{?}H^{=1} = {}^{g}i^{(x)} = {}^{g}2^{(x)} \bullet$  Thus  ${}^{g}i'{}^{g}2 = {}^{e}B(x) \bullet$ Since f e Ext B(x) it is inferred that  $g_{\prime 1} = g_{\prime 2} = f$ . Hence f e Ext U|.

۰.

[15]

Theorem 3. If X is a compact Hausdorff space and f e C(X,E),, ||flj = 1 then the unit cell of C(X<sub>J</sub>)E) is smooth at f if and only if there exists a point q e X such that 1 = ||f(q)|| > ||f(q')|| for all q' f q and U<sub>E</sub> is smooth at f(q).

Proof. We prove first that the condition in the theorem is necessary. Let the unit cell in C(X,E) be smooth at f. If possible let  $q_i, q_2$  be two distinct points in X such that  $1 = Hffq^U = ||f(q_2)||$ . Let  $l_{\pm}l_2 \stackrel{e E_*}{=} \stackrel{be such that}{=} the such that$ 

$$\|\ell_1\| = \|\ell_2\| = \ell_1(f(q_1)) = \ell_2(f(q_2)) = 1$$

Thus  $||e(*_1,q_1)|| = ||e(t_2,q_2)|| = ef^q^f = e(*_2,q_2)(f) = 1$ where e is the map defined in section 2. Since the unit cell in C(X,E) is smooth at f it follows from the above equations that  $e(<t_{q'}q_{-1}) = e(<t_{2J}q_2)$ . Hence for  $g \in C(X_{,,E})$  $\ell_1(g(q_1)) = \ell_2(g(q_2) + Let NOW X)Y = E$  be such that  $I_{\overline{L}}, (x) \wedge 2^{AA} + 9^{ince - x}$  is a compact Hausdorff space there exists a continuous function  $g_0: X \to E$  such that  $g_0(q_1) = x$  and  $SQ^{AO} + 9^{ince - x}$  For such a function  $g_0$  we have  $1^{O^{AC}} - 1^{A} + 2^{A^{C}} + 9^{ince - x}$  contradiction is obtained and there exists only one point  $q \in X$  such that 1 = ||f(q)|| = ||f||. We proceed to show that the norm in E is smooth at f(q). For if the norm is not smooth at f(g) let  $f_1, f_2$  be two distinct linear functionals in E\* supporting LL, at f(q). As noted in Remark 2 the hyperplanes  $e(l_1,q)^{-1}(1)$  and  $e^{-j}(1)^{-1}(1)$  support the unit cell of C(X,E) at f. Since the norm in C(X,E) is smooth at f it follows that  $e(f_1,q) = eflj^{2}q)$ . Now evaluating these functionals over the E-valued constant functions in C(X,E) it follows that  $I_1 = l_2$  contradicting the assumption  $f_1 \wedge f_2$ . Thus the norm in E is smooth at f and this completes the proof of the necessity of the condition.

Conversely suppose  $f \in C(X,E)$  and ||f]| = 1. Let q be the only point in X such that 1 = ||f(q)|| and further let the norm in E be smooth at f(q). If  $I \in E^*$ , with ||l|| = 1, supports  $U_E$  at f(q) then ||e(\*,q)|| = 1 and  $e(-t^q)^{-1}(1)$  is a hyperplane supporting the unit cell in C(X,E) at f. If the norm in  $CCX^*E$  is not smooth at f and if

 $B(f) = \{ L \mid L e (C(X,E)) * , |J|! = 1 = L(f) \}$ 

then B(f) is a w\*-compact convex subset of the unit cell  $U_{'X}^*$  and card B(f) ^\_2 . By the Krein-Milman

[17]

theorem. Day [4], B(f) = w\*-closure of the convex hull of Ext B(f). Since card B(f)  $\stackrel{\sim}{>} 2$  it follows that there are at least two distinct extreme points  $L_{1'}$  i = 1,2 in B(f). From remark 2 L. are extreme points of U<sup>\*</sup>. We complete 1 he proof by showing that  $L_4 = L_2 = e(f,q)$  thus obtaining a contradiction. From Lenun<sup>a</sup> 1 it follows that there is a point v e X and a linear functional  $I_0 e E^*$ ,  $IK_{n}II = 1$ such that  $L_1 = e(I_0, r)$ . Thus  $eM_{,0}, r)(f) = -t_0(f(r)) = 1$ . Since  $||f(v)|| 1 ||f|| = 1 = \backslash I_0 \backslash$  it is verified that ||f(r)|| = 1, From the choice of f we conclude that q = r. Since the cell  $TK_{hi}$  is smooth at f(q),  $f = t_{a}$ . Thus  $L_{k} = e(I,q)$ . From a similar argument we conclude that  $L \ll_{2} = ef-C^{2}q$ . Thus  $L_{1} = L_{2}$  and card B(f) = 1. Thus the norm is smooth at f and the condition in the theorem is sufficient.

4. Spaces of maps into Banach spaces '

We next proceed to the main theorem of the paper. In the course of the proof of the theorem we make use of the following lemmas.

Lemma 2. If X is a compact Hausdorff space and f is an extreme point of the unit cell of C(X,E) then ||f(t)|| = 1 for all t e X.

[18]

Proof. Since ||f|| = 1 if  $||f(t)|j \wedge 1$  for t G X then there exists a point  $t_0 \in X$  such that  $|jf(t_0)||^2 = 6 < 1$ . Since X is a compact space and f is a continuous function there exists a compact neighborhood N of  $t_0$  and a number  $\hat{6'}$ ,  $0 \notin 6' < 1$  such that  $||f(t)|| \notin 6'$  for all t  $\in N$ . Since X is a compact Hausdorff space there exists a continuous function C : X -• [0,1 - 6'] such that  $C(t_0) = 1 - 6'$  and C(t) = 0 if t / N. Let a be a vector in E such that J|a|| = 1. Let g be the function on X -• E defined by g(t) = c(t)a. Then g e C(X,E),  $||f_+ + g|| \notin 1$  and  $g \notin 0$ . Thus f ft Ext  $U_x$ . This completes the proof of the Lemma.

Lemma 3. Let M be a convex subset of S and H Ebe a hyperplane such that M = H 0 S\_ . If the interior of E M relative to H is nonempty and f is an extreme point of the unit cell U<sub>x</sub> of C(X,E) then f(p) <f relative interior of M for all p e X :

Proof. We note first that the rel-int M is a subset of the interior of M relative to S  $_{\mathbf{E}}$ . For let,  $I \in \mathbb{E}^*$ ,  $\|\boldsymbol{\ell}\| = 1$  be such that  $H = ^{II}(1)$ . Let x be in the rel-int M. Since the interior of M relative to H is non-empty the core of M relative to H is nonempty. Thus

the smallest affine space containing M is H. Thus the interior of M relative to H is also the rel-int M. Hence there exists a 6 > 0 such that if ||hj| < 6 and I(h) = 0 then  $x + h \in M$ . We note that corresponding to each y e E there exists a unique scalar A  $\mathbf{x}$  and a unique vector  $h_{v} \in l^{-1}(0)$  such that  $y = A_{v}x + h_{v}$ . Since y -• Ay is a continuous linear functional, y -•  $h_y$  is also a continuous function on E -• E . Let G =  $\{y \mid |yh \mid | < 4 \text{ and } Ay > -x-\}$ . By the preceding observations G is a open subset of E. Now if y e G.d Sr then 1 = ||y|| = ||A y x + h y || = |A y || x + |1.Since ^ ∥< 6 and  $I(h_{\rm V}$ ) =0 from the choice of 6 it follows that  $\lim_{x \to -\infty} h_{x}$ . IIx + -^- || = 1 . Thus A =1 noting that y e G . Hence I(y) = 1 i.e. G O SE c M and x is in the interior of M relative to  $S_{E}$  . To complete the proof of the lemma let  $f \, e \, \mbox{Ext} \, \overline{U}$  . From Lemma 2 it follows that range f c S^ . Now if possible let there be a point  $p \in X$  such that  $f(p) \in X$ rel int M . Thus f(p) e interior of M relative to S,, as seen from the observation in the preceding paragraph. Since f is a continuous function there exists an open set G,  $p \in G$  and f (G) c  $S_{\scriptscriptstyle \! E}$  . Let C be a compact neighborhood of p with  $C \subset G$ . Thus f(c) is a compact subset of the interior of M relative to  $S^{\star}$ . Thus there exists a

[20]

6 > 0 such that if  $y \in S_{\mathbf{E}}$  and ||y - z|j < 6 for some  $z \in f(x)$  then  $y \in interior of M$  relative to  $S_{\mathbf{E}}$ . With H and I chosen as in the preceding paragraph it is verified that if I(h) = 0 and ||h|| < 6 then  $z + h \in M$  for all  $z \in f(c)$ . Let h be such a fixed vector. Since X is a compact Hausdorff space there exists a continuous function  $\langle p : X - \cdot [0,1]$  such that  $\langle p(C) c \{1\}$  and  $\langle p(X \sim G) < \langle 0 \}$ . Let  $q \cdot \hat{q}$ , be two functions on  $X \rightarrow E$  such that  $g_1(q) = "f(q) + \langle p(q) h$  and  $g_2(q) = f(q) - \langle p(q) h$ . It is verified that  $g_{\pm}g_2$  e C(X<sub>J</sub>E) UgJ =  $||g_2|| = 1$ ,  $f = {}^{g}1^{+g}2$ . Hence f 4 Ext K and the proof is complete.

Lemma 4. If M is a M- set in a Banach space E then Ext M c Ext  $U_{\text{E}}$  .

Proof. Let  $e \in Ext M$  and let H be a hyperplane sup-  $-\frac{n}{4}$ porting IJ' along  $M_{\pm 2}$  Let H = I (1) for some  $I e E^*$ , ||I|| = 1. If  $e = \frac{y_2}{2}$ ,  $y, z \in U_E$  then it is verified that  $l(y) = ^(z) = 1$ . Thus  $y, z \in H$  and ||y|| = ||z|| = 1. Hence  $y, z \in M$ . Since  $e \in Ext M_1$  e = y = z. Thus  $e \in Ext U$ and  $Ext M \ll Ext U^{\wedge}$ . E

[21]

Lemma 5. Let E be a Banach space with a quasicylindrical unit cell. If M is a M- set rel-bd M = Ext M.

Proof. Let x e rel-bd M . If x 4 Ext M then x 4  $^{\text{Ex}}$ t U<sub>E</sub>. Thus from the condition (1) in the definition of a quasi-cylinder it follows that x is a smooth point of S<sup>^</sup>, . Thus there is only one hyperplane H supporting U<sup>^</sup><sub>,mi</sub> at x and H fl  $S_{_{N_{N}}} = M$ . Since distinct M- sets are in distinct hyperplanes supporting U<sub>.</sub> it follows that M is the only M- set such that x e M. Since x is a smooth point from the condition (3) in the definition of a quasi-cylinder it follows that x e rel-intM thus obtaining a contradiction. Hence rel-bd M c Ext M. Since every extreme point M is in the rel-bd M it follows that rel-bd M = Ext M.

Remark 4. From the preceding lemma it follows that if  $U_E$  is quasi-cylindrical then for a M- set M in E, M = Conv (Ext M).

Lemma 6. Let E be as in the preceding lemma. if  $P_1, P_2$  are two distinct M-sets then Card ( $P_1$  n PO < 1.

Proof. If possible let x,y e Pi\_fl P\_ and  $x \neq Y$ . Since P. , i = 1,2 are convex  $-\stackrel{X}{r}\stackrel{t}{\stackrel{V}{-}} e$  P,  $(1 P_2 .$  Since

[22]

 $\frac{\mathbf{x} + \mathbf{Y}}{c}$  & Ext  $\mathbf{U}_{\mathbf{H}\mathbf{i}}$  it is a smooth point in  $S_{\mathbf{E}}$ . Thus if H is the hyperplane supporting  $\mathbf{U}_{\mathbf{L}}$  at  $\frac{\mathbf{x} + \mathbf{y}}{c}$  it follows that  $\mathbf{H} = \mathbf{H}_{\mathbf{L}}^{*} = \mathbf{H}_{2}$  where  $\mathbf{H}_{\mathbf{L}}$ ,  $\mathbf{i} = 1,2$  are the hyperplanes supporting  $\mathbf{U}_{\mathbf{L}}$  along P.,  $\mathbf{i} = 1,2$ . Since distinct M- sets t 1 are in distinct hyperplanes of support a contradiction is obtained and the proof of the lemma is complete.

Remark 5. If the Banach space E in the preceding lemma contains two non-discrepant T-sets then as observed in § 1 if M is any M - set then Card M ^>\_2. Thus from the remark it follows that Card Ext M J>\_2. If now  $M_1, j_2$  are the two antipodal  $\langle i - sets$  such that Ext U c  $M_1 \cup M_2$  then Ext M c M, U M<sub>2</sub>. From lemmas 4 and 6 it follows that if M  $\Rightarrow M_1$ , i = 1,2 then M has precisely two extreme points one belonging to Ext Mi. and the other belonging to Ext M<sub>2</sub>.

Lemma 7. Let E be a Banach with a quasi-cylindrical unit cell. Let M^M^ p and L be as in (2) and (4) of Definition 1. If  $e_i = Ext M_i = 1,2$  and if  $[e^e_2] c S_E$ then  $e_1 = \frac{e_2}{2} = p$ .

Proof. Let V = L fl U<sub>r</sub>. Hence from (4) of Definition 1 E it is seen that p + V = M<sub>I</sub>. We proceed to verify that

(\*)  $p + \frac{e_1 + e_2}{2} = e_{,1}$  and  $-p + \frac{e_1 + e_2}{2} = e_2 * Wenote$  that

[23]

since  $M_{1} = p + V$  ( $M_{2} = -p + V$ ), e. - p', e + p are in V. Hence  $\frac{e_1 + e_2}{2} e^v$  since V is convex. Further since  $||-i_{2}-|| = 1$  and  $e_{1} - p_{1} e_{2} + p$  are in  $U_{E}$  it is verified that  $|| e_1 - p \rangle = || e_2 + p || = 1$  and  $[e, -p, e_9 + p] \le s_{-1}$ . Since  $e_{-1} + e_{0}$ .  $e_{-1} - e_{-1} + e_{0}$ .  $e_{-1} - e_{-1} + e_{0}$ . U; is a quasi-cylider  $j_{2}^{e_{1}+e_{2}}$  is a smooth point of  $S_{*}^{*}$ Hence there is exactly one hyperplane H supporting U\_ at "• X.- Since j. • f, is a point in  $[e, , e_9]$  and  $[e_i - PJ e_i + p]$  and these line segments are subsets of  $S_{hi}^{*}$  it is verified that H D  $S_{hi}^{*} => [e_{i}, e_{\hat{z}}] U [e_{i} - p, e_{\hat{J}} + p]$ . Since H is the only hyperplane supporting  $U_{\mathbf{E}}$  at  $-X \stackrel{e}{\underline{\phantom{a}}}^{\underline{+}}Z$ . it follows from Remark 1 that if M is an M - set containing <u>e1 + e2</u> then M = H D S,;. It is inferred from Remark 5 that  $M = [e_1^e_2]$ . Hence  $[e_1 - p, e_2 + p] c [e_{iJ}e_2]$ . If the equations in (\*) are false then  $e_{1} - p = f e_{2}^{*} + p$ . Since  $e_1 - p$ ,  $e_2 + p$  are in the subspace L it is verified that  $[e_{1j}(e_2] \ c \ L.$  Hence  $e_1 \in V.$  Thus  $p + e_1 \in M_1$ . However, since p,  $e_1 \in M_1$  and  $M_1$  is convex,  $\frac{P + e_1'}{2} k_e M_1$ , Since  $M_1 <= s_E$ 

[24]

it follows that  $|| p + e_t II = || -\frac{p}{2} - i \cdot || = 1$  which is a contradiction. Since either of the equations in (\*) implies  $\frac{c}{2} - \frac{c}{p}$  the proof is completed.

Lemma 8. Let E be a Banach space containing two non-discrepant T-sets and let  $U_{E}$  be a quasi-cylinder. Then if f e C(X,E) is an extreme point of  $U_{\bullet}$ , then f(p) is in Ext O, for all p e X.

Proof. Let  $M_{1}, M_{2}$  be the pair of antipodal M- sets of U such that Ext U<sub>E</sub> c  $M_{1}$  U M<sub>2</sub> with interior of E (Continued)  $M_1(WL)$  relative to the hyperplane supporting  $U_{\mathbf{E}}$  along M, (along jyL) non-empty. Let f be as in the hypothesis of the lemma. Then from Lemma 3 it follows that f(p) is not in rel int  $M_1$ , i = 1,2 for all  $p \in X$ . Thus if for  $p \in X$ ,  $f(p) \ 4^{E \times t U_E} \ then \ f(p) \ M! \ U \ M_2$ . Since  $M_1 \ U \ M_2$  is closed there is a compact neighborhood C of p such that for all  $q \in C$ ,  $f(q) \in U_{\mathbf{E}} \sim (M_{,1} (J \ M_2))$ . From Lemma 2 it follows that  $f \in c \ S_E_{-} \sim (M_{,1} u \ M_2)$ . From Remarks 4 and 5 it follows that for each  $q \in C$  there is a uniquely determined pair of extreme points  $e^{\mathbf{i}}$  with  $e^{\mathbf{i}} \in M$ . i = 1,2  $q \qquad q \qquad 1$ such that  $f(q) \in [ej, ej]$ . Since  $f(q) \setminus M$ ., i = 1,2there exists a function  $A : C \rightarrow [0,1[$  such that f(q) =

[26]

Let the functions  $g_i : X \rightarrow E$  be defined by  $g_1(q) = \frac{1}{2} - \frac{1}{2} -$ 

is complete.

Lemma 9. A set P c C(XeE) is a M-set if and only if there is a M- set McE and a point  $p \in X$  such that P = I f | f e C(X,E), ||f|f = 1 and f(p) e M|(

Thus each M-set P in C(X,E) could be represented as p = (M,p) where M and p are chosen as above and two M-sets  $P_1^{P_2}$  where  $P_2 = (M_1, p_1)$  and  $P_2 = (M_2, p_2)$ are equal if and only if  $M_1 = M_2$  and  $p_1 = p_2$ .

This lemma is an immediate consequence of theorem 4.1 and lemma 4.3 in [8]. Hence the details of a proof are omitted. Before proceeding to the main theorem of this section we note if X,Y are two compact Hausdorff spaces and j: X -\* Y is a homeomorphism on X onto Y then the operator T: C(Y,E) -\* C(X,E) defined by T(f)(p) = f(rp) for f e C(Y,E), p e X is verified to be a linear isometry on C(Y,E) onto C(X,E). Thus in the subsequent discussion we consider only the converse question.

Theorem 4. Let E be a smooth Banach space such that Ext  $U_E = 0$ . Let X,Y be two first countable compact Hausdorff spaces such that there is a linear isometry on C(X,E)onto  $C(Y^E)$ . Then X and Y are homeomorphic.

Proof. Let x be an extreme point of U\_, . Let T be a linear isometry on C(X,E) onto C(Y,E). Let T\* be the adjoint operator. Then T\* is a linear isometry on  $(C(Y,E))^*$  onto  $(C(X,E))^*$ . Let  $T_{JL} = T^* \sim^1$ .

Let *I* be the functional in E\* supporting  $U_{\mathbf{E}}$  at  $x_{o}$ . Since  $x_{o}$  is a smooth point of  $U_{bj}$  it is verified that  $I \neq \text{Ext } U_{\text{E}}^{*}$ . Thus if  $p \in X$  it follows from Lemma 1 that  $e(I,p) \neq \text{Ext } U_{*}^{*}$ . Since T\* preserves extreme points there is an extreme point A e Ext  $\Psi^{*}$  such that  $T^{*}A = e(I,p)$ .

[28]

Thus from Lemma 1 it follows that there is an extreme point  $V_{p} e \text{ Ext } U_{E}^{*}$  and a point  $p^{1} e Y$  such that  $T^{*} \& (V_{p}, p') =$ e(f,p) i.e. for all  $\langle t(f(p)) = l_p^{i}$  (Tf(p')) for all feC(X,E). Since  $T^*$  is 1-1 if p' = r(p) it is verified r is a function on X into Y. We next verify that T(x) = Y. Let q' e Y. Let K be the function in  $C(X_3E)$  defined by K (q) = x for all q e X. Since K e Ext  $U_v$  and x A T is a linear isometry TK  $_{x_{O}}$  e Ext U . Thus from Lemma 2 it follows that  $||T K_{x_0}(q^1)|| = 1$ . Let  $T K_{x_0}(q^1) = x_0^1$ . Let m' e E\* be such that m'  $(x') = || m^1 |j = 1$ . Since E is smooth such a functional m' e Ext U\*. Hence  $e(m', q') e Ext U^{\star}$ . Then  $e(m'., q^{1}) e Ext U^{\star}$ . Hence there is an extreme point e(1, p-,) of U\* such that  $\begin{array}{c} \textbf{U} & \texttt{at} & \textbf{x} & \texttt{Since} & \textbf{x} & \texttt{i}_1 \textbf{s} \\ \textbf{I}_1 = \textbf{I} & \texttt{Hence} & \texttt{T*e} & (\texttt{m}^*, \texttt{q}^*) = e(\textbf{I}, \texttt{P}_1) & \texttt{i.e.} & \texttt{T}(\texttt{p}^* = \texttt{q}^1). \end{array}$ Thus T(X) = Y. (Continued)

Next we verify that T is 1 - 1. If possible let  $p,q \in X$  be such that r(p) = T(q) = r'. "Thus there are functionals  $M'_1, M^{\wedge}$  in  $E^*$  of unit norm such that -t(f(p)) =  $M^{\wedge}Tf(r')$  and \*(f(q)) = Mf(Tf(r')) 'for all f eC(X, E). Thus in particular  $1 = I(x) = I(K_{(p)}) = M'_{-}(T K_{(r^1)}) = 1 \cdot$  o  $x_{O}$   $X \quad X_{O}$ Similarly it is verified that  $Mi(TK_{(r^1)}) = 1$ . Since  $||T K_{\mathbf{x}_{O}}(r')|| = 1$  and E is smooth it follows that  $M^{\wedge} = Mj_{2}$ . Thus it is verified that  $T^*e(M'\mathbf{l}'r') = e(t,p) = e(l,q)$ . Since  $T^*$  is an isometry it follows that p = q. Hence T is 1 - 1.

We proceed now to show that T is a continuous mapping. Since X and Y are first countable Hausdorff spaces it is enough to verify that if  $(p_n)_{n \geq 1}$  is a sequence in X converging to the point p in X then  $T(p)_n$  "• T(p) • Let us denote for convenience  $r(p_n) = p'_n$  and  $T(P) = p^1$  • Let  $T^*e(l^*n, p^*) = e(f, p_n)$  for all n where we note that  $[V_n]_{n \geq 1} c$ Ext  $U_E^*$ . If  $p^* \Rightarrow p^1$  since X is a first countable compact Hausdorff space there exists a convergent subsequence  $\{p_n'\}$  of  $\{p_n\}$  such that  $\lim_{n \to 1} p'_n = q' \Rightarrow P^1$  • Consider the function  $f_n^R$  as defined in the preceding paragraph.

.

[31]

Since 
$$\| f_{X_{O}}^{\mathbf{p}}(\mathbf{p}_{\mathbf{i}}) - f_{\mathbf{c}}^{\mathbf{f}}(\mathbf{p}) \| = 0$$
 it follows that  $*(f_{\mathbf{c}}^{\mathbf{f}}(\mathbf{p}_{\mathbf{n}t})) \stackrel{\bullet}{\mathbf{o}} \mathbf{i}$   
 $\| it^{*}..(\mathbf{P}) \cdot \mathbf{Thus} V_{-}(\mathbf{TfP}..(\mathbf{p}_{\mathbf{i}})) = 1$ . Since  $\| * \frac{1}{\mathbf{i}} \| = 1$ ,  
 $\| \mathbf{TfP}_{\mathbf{x}_{O}}(\mathbf{p}_{\mathbf{n}_{\mathbf{i}}}) - \mathbf{T} f_{\mathbf{v}_{O}}^{\mathbf{p}}(\mathbf{q}) \| = 0$  and  $\| \mathbf{Tf} f_{\mathbf{c}}(\mathbf{q} \times) \| = 1$  it  
is verified that  $\| \mathbf{T} f_{\mathbf{x}_{O}}^{\mathbf{p}}(\mathbf{q}^{1}) \| = 1$ . From the equations  
 $l(fl_{\mathbf{p}}) = 1 = V (\mathbf{T} f\mathbf{P}.(\mathbf{p} \times))$  and  $\| * \| = 1 = \| \mathbf{T} f\mathbf{P}.! \|$  it  
follows that  $\prod_{i} \mathbf{T} f_{\mathbf{p}_{i}}^{\mathbf{p}}(\mathbf{p}) \| = 1 \cdot \mathbf{From}$  Theorem 3 it is seen  
that  $f_{\mathbf{x}_{O}}^{\mathbf{p}}$  is a smooth point of  $U_{\mathbf{v}}$ . Hence  $\prod_{i} f_{\mathbf{x}_{O}}^{\mathbf{p}}$  is a  
smooth point of  $U_{\mathbf{v}}$ . Further  $\| f\mathbf{P} \| = \| \mathbf{T} f\mathbf{P} \| = 1$ . Since  
 $\| \mathbf{T} f_{\mathbf{x}_{O}}^{\mathbf{p}}(\mathbf{p}^{t}) \mathbf{I}^{1} = 1$  once again appealing to Theorem 3 we con-  
elude that  $\mathbf{p}^{1} = \mathbf{q}^{t}$ . Thus every convergent subsequence of  
 $\{ r(\mathbf{p}_{\mathbf{n}}) \}$  converges to  $T(\mathbf{p})$ . Since Y is a first countable  
compact Hausdorff space it is verified that the sequence  
 $(r(\mathbf{P}_{\mathbf{n}}) \}$  converges to  $-r(\mathbf{p})$ .

Next we proceed to the case when the unit cell tL, of E E is quasi-cylindrical. As noted in § 1 the T- sets are not necessarily discrepant and thus Jerison's theorem does not apply to this case. However we show below that if X^Y are as in the preceding theorem and U\_ is quasi-cylindrical and the linear isometry T fulfills an additional condition then we have an analogue of the preceding theorem. We shall denote the constant function in C(X,E) with range in  $\{x\}$  by K .

Theorem 5. Let E be a Banach space with a quasicylindrical unit cell  $U_{E}$  and X,Y be first cour. :able compact Hausdorff spaces. Let T be a linear isometry on C(X,E) onto  $C(Y^{E})$  such that corresponding to each point t e X there are at least two points  $x_n, x_o$  e Ext U, for which T K<sub>x1</sub>(t) <sup>T</sup> K<sub>x2</sub>(t) . Then X is homeomorphic with Y.

Proof. If the T- sets in E are discrepant then Jerison's theorem applies and the conclusion follows. Thus we can assume there exist pairs of non-discrepant T-sets in E. Hence as noted in Remark 5 if M is a M-set in E then Card M  $^{2}$  2. Thus since M is a convex subset of  $S_{E}$  it follows that M ~ Ext U  $_{E} \neq \$$  • Hence from the definition of a quasi-cylinder it follows that there are points x e M such that U is smooth at x. Hence  $_{Ei}$  corresponding to a M- set M there is one and only one functional m in  $E^{*}(|!mH = 1)$  such that m supports U along M. From the uniqueness of m it is further verified that such a functional m is in Ext U \* .

Let  $M_1, M_2$  be the pair of antipodal M- sets (guaranteed by (2) in Definition 1) such that Ext IL, c M, U  $M_n$ . Let Ci J. 2.

[32]

 $-\frac{1}{4} \left( \frac{f}{2} = -\frac{f}{4} \right)$  be the functionals in E\* supporting  $U_E$ along M.  $\left( \frac{M_{\sim}}{2} \right)$ . Then as shown in the proof of the preceding theorem there exists a function  $r : X \rightarrow Y$  such that  $T^*e(\ll_{i}, p) = e(f_{i}', rip)$  where Y is an extreme point of  $U_{ni}^*$  depending only on p. We proceed to show that r maps X homeomorphically onto Y.

We verify first that T(X) = Y. Let  $p^1 \in Y$ . Let dim E :> 3 . As a initial step we assert that there are at least two points y,z e Ext U fl M, = Ext M, such that T K  $_{\rm v}({\rm p}^{\prime}$  ) , T K  $_{\rm z}({\rm p}^{\prime}$  ) are in the same M- set. Since dim E  $\geq$  3 and interior of M<sub>1</sub> relative to the hyperplane  $l_{I}^{I}$  (1) is nonempty it follows that Ext  $M_{I}$  = rel - bd  $M_{I}$ is a infinite set. (See Lemma 5). Let  $x \mbox{ e Ext } U_{\underline{\cdot}} \mbox{ 0 } M_n$  . Thus K e Ext  $U_{\rm v}$  . Hence T K e Ext U... . Thus from Lemma 8 we conclude that  $TK'(p^1) \in Ext U_$ . Thus  $TK(p^1)$ is in  $M_{2}^{\uparrow}$  or  $M_{2}$ . Let  $T K_{x}(p') \in M_{r}^{\downarrow}$ . If for some y e Ext  $U_E$  n  $M_1$  T K  $Y(p^1)$  e M', then the assertion is verified at once. If for all y e Ext  $M_1$  ~  $\{x\}$  , T  $K^{{\bf Y}}\left(p^1\right)$  e  $M_2^$ then since Ext  $\mathbf{X}^{\mathbf{L}}$  is an infinite set the assertion is verified. The case when TK (p') e  $M_{\circ}$  is similarly dealt. If dim E = 2 then since  $U_E$  is a quasi-cylinder  $S^{\mathbf{E}}$  is a parallelogram and there are only two pairs of antipodal M-sets in E and each M-set is a non-degenerate line segment. If  $M^{\mathbf{1}}$ (i = 1, 2, 3, 4) are the four M-sets of E it is directly

verified that there is an  $i_{o}$  such that if fy, z = Ext  $M_i$ o then  $T K_y(p')$ ,  $T K_z(p^*)$  are in the same M-set. Without loss of generality we can assume that  $i_o = 1$ , since  $M_{1_o}$ and its antipodal set could be taken for the sets  $M_{I}$  and  $M_{I}$  considered in the second paragraph above.

Let y,z be two points in Ext  $M_{\underline{1}}$  with the property asserted in the preceding paragraph. From Lemma 6 it follows that there is only one M-set, say M', such that  $[T K_{\underline{y}}(p'), T K_{\underline{z}}(p^{1})] cz M^{1}$ . Consider the M-set  $(M^{1}, p')$ of C(Y,E). For the definition of (M', p') we refer to Lemma 8. Since T is a linear isometry  $T^{-1}(M', P^{T})$  is an M-set of C(X,E). Thus from Lemma 8 it follows that there exists exactly one M-set L in E and a unique point p e X such that  $T^{-1}(M', p^{1}) = (L, p)$ . We verify that L =  $M_{\underline{1}}$ . Since  $\{T K (p^{1}), T K (p^{*})\} c M^{1}, \frac{T(K_{\underline{y}} + K_{\underline{z}})}{2}(p^{*}) = T K_{\underline{y}+\underline{z}}(p') e M^{*}$ . Since  $T^{-1}(M'_{\underline{y}}p') = (L,p)j K_{\underline{y}+\underline{z}}(p) e L$ . Since  $J^{\underline{y}} + \frac{Z}{2}$  e  $M_{\underline{x}} \sim Ext U_{\underline{x}}$  and  $U_{\underline{x}}$  is a quasi-cylinder  $y \frac{1}{2}$  is a smooth point of S\_ . Thus  $M_{\underline{n}}$  is the only

M-set such that  $\bigwedge_{J^2} e^{M_1}$ . Hence  $M_1 = L$ . Thus  $\prod_{n=1}^{M_1} m_n = L$ . Thus  $T(M_1, p) = (M'JP^1) \cdot We$  proceed to show that if  $m^1$  is the functional in E\* supporting tr along M' and E

[34]

f e C(X,E) then  $e(t_{1[},p)(f) = e(m',p')(T f)$ . Let  $\frac{4f_{T}}{2} = v$ . As already shown in paragraph 3 of the proof of preceding theorem there exists a function  $f_{\mathbf{v}}^{p} \in C(X,E)$  such that  $f_{\mathbf{v}}^{p}(\mathbf{p}) = v$  and  $||ff_{\mathbf{t}}^{p}(\mathbf{p})|| < 1$  if  $q \in X \sim \{p\}$ . Further as  $|_{v}^{\gamma Fi} = |_{v}$  and the norm in C(X,E) is G-differentiable at  $f_{\mathbf{v}}^{p}$  and the norm in C(Y,E) is G-differentiable at T  $f_{\mathbf{v}}^{p}$ . Since  $f^{\mathbf{P}}(\mathbf{p}) = M_{1}$  and  $TfM-^{\gamma}p) = (M',P^{r})$  it is verified that T  $f_{\mathbf{v}}^{p}(p^{f}) = M'$ . Thus the linear functionals  $e(1_{\mathbf{i}},p)$  and  $e(m_{\mathbf{i}}^{r},p')$  are the Gateux gradients of the norms in C(X,E)and C(YjE) at  $f_{\mathbf{v}}^{p}$  and T  $f_{\mathbf{v}}^{p}$  respectively. Thus arguing as in paragraph 3 of the proof of Theorem 4 we conclude that if  $f \in C(X,E)$  then  $e\{1^{\wedge},p\}(f) = e(m_{f},p')(T f)$ i.e.  $T^{*}e(m_{\mathbf{i}}, p^{1}) = e(1_{\mathbf{i}},p)$ . Hence T(P) = p' and r maps X onto Y.

Next we proceed to verify that r is 1 - 1. Let p,q be two points in X such that r(p) = T(q) = t. From the definition of T it follows there exist two functionals m<sup>^</sup>, m<sup>^</sup> in Ext U<sub>E</sub><sup>\*</sup> such that (a) T<sup>\*</sup>e(m<sup>^</sup>, t) = e<sup>^</sup>p) and (b) T<sup>\*</sup>e(m<sup>^</sup>, t) = ef<sup>^</sup>q). Let  $T(M_x, p) = (M_x^2, p^1)$  and  $T(M_1, q) = (M^{^}, q')$ . Now let y be a smooth point in JL.

Consider a function  $f_{\mathbf{v}}^{p} \in C(X, E)$  such that  $f^{\mathbf{p}}(p) = y$ and  $||\mathbf{f}_{\mathbf{y}}^{\mathbb{P}}(\mathbf{p})!| < 1$  for seX ~ {p}. Since  $\mathbf{f}_{\mathbf{y}}^{\mathbb{P}} \in \{M_{\pm}, \mathbf{p}\}$ , Tf $_{\bf v}^{\rm P}$ (p') e (M' , p<sup>1</sup>) . Since  $f^{\rm P}$  is a smooth point in  $U_{\rm x}$ T  $f_{v}^{P}$  is a smooth point in  $U_{v}$ . Hence from Theorem 3 it is coneluded that pp' is the only point in YY such that  $||T|f^{P}f_{p}^{P}')|| = 1$ . Further  $Tf^{P}(p')$  is a smooth point of U\_. The equation (a) implies  $m^{(Tf_{\mathbf{v}}^{p}(p'))} = -t(\mathbf{f}_{\mathbf{v}}^{p}(p)) = 1$ . Since  $||m^{|}| = 1$  and IIT  $\mathbf{f}^{p} \mid \mid = 1$  it follows from the preceding equations  $\mid \mid Tf \mathbf{y}(t) \mid \mid = 1$ . Thus  $p^1 = t$ . Hence  $m^{(Tfy^{p}(t))} = 1$ . Since  $Tf^{p}(t) = Tf^{(t)}$ is a smooth point of S^ in Mi m' is the functional in hi 1 1 Е 1 supporting U along M'. Similarly it is verified E\* 2 that m' is the functional in E\* supporting U along mi . From the additional hypothesis on the linear isometry T in the statement of the theorem it follows that there are two points x, ,x\_ e Ext M, , x,  $i = x_0$  such that T K (t) =f  $T K_{X_2}(t) = Since K_{X_i} e (M_X, p)$  for i = 1, 2 from our choice of M<sup>^</sup> and M<sup>^</sup> it is verified that T K e ( $M^1$ , t) for i = 1,2 and j = 1,2 . Thus T  $K_{\rm x}$  (t) e MJ n M£ ).. Hence from Lemma 6 it is inferred that  $M'_1 = M'_2$ .' Since there are smooth points in a M- set of E and  $m'_{i}$  support  $U_{\mathbf{F}}$  along

[36]

M^ we conclude that m^ = m^ . Thus  $T^*e(m^, t) = e\{l_1, p\} = e(f_1, q)$ . Since e is 1-1 it follows that p = q and T is 1-1.

The proof of the part that r is a continuous mapping is exactly same as the corresponding assertion in the proof of the preceding theorem after choosing for  $x_0$  a fixed smooth point of  $U_r$  in M. . Thus the details of a proof are omitted.

As in the preceding theorem it follows that T maps X homeomorphically onto Y. The proof of the theorem is completed,

In conclusion we mention the following unsettled problems 1) If E is a smooth Banach space and Ext  $\bigcup_{E} 4 \ 0$  then must it be true that the T - sets in E are discrepant. 2) Is it necessary for the linear isometry T to fulfill the additional hypothesis in Theorem 5 for the conclusion of the Theorem.

#### Bibliography

- Banach, S., Theorie des operations linearies, Warsaw, 1932.
- 2. Bochner, S. and Taylor, A.E., Linear Functionals on Certain Spaces of Abstractly Valued Functions, Ann. of Math. .39, (1938), 913-944.
- 3. Cudia, D. F., The Geometry of Banach Spaces. Smoothness. Trans. Amer. Math. Soc, <u>110</u>, (1964), 286-314.
- 4. Day, M. M., Normed Linear Spaces, Springer-Verlag, Berlin, 1962.
- Dinculeanu, N., Vector Measures, VEB Deutscher Verlag der Wissenschaften, Berlin, 1967.
- 6. Edwards, R.E., Functional Analysis, Holt, New York, 1965.
- 7. Gowurin, M. Uber Die Stieltjessche Integration Abstrakter Funktionen, Fund. Math. <u>27</u>, (1936), 255-268.
- 8. Jerison, M., The Space of Bounded Maps Into A Banach Space, Ann. of Math., J<u>32</u>, (1950), 309-327.
- 9. Kelley, J.L., General topology, Van Nostrand, Princeton, New Jersey (1955).
- 10. Mazur, S., Ueber Konvexe Mengen In Linearen Normierten Raumen, Studia Math., <u>4</u>, (1933), 70-84.
- 11. Singer, I., Linear Functionals on the Space of Continuous Mappings of a Compact Space Into a Banach Space (Russian), Revue Math. Pures et Appl. 2\_, (1957), 301-315.

CARNEGIE-MELLON UNIVERSITY PITTSBURGH, PENNSYLVANIA 15213 [38]