
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
of photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



Proposal for a 

Center for the Study of Information Processing 

submitted by 

Carnegie Institute of Technology 

to the 

Advanced Research Projects Agency 
of the 

Department of Defense 

Allen Newell 
Institute Professor 

Systems and Cctmriunicatlon Sciences 

Alan J. Perils 
Director, Computation Center 

Professor, Mathematics 

Edward R. Schatz 
Dean of Research 

October, I96U 
(Proposal submitted April 27, 196k) 



Proposal for a Center for the Study of 
Information Processing 

This document proposes the establishment of a Center at Carnegie 

Institute of Technology for the study of the science of information processing. 

It was submitted to the Advanced Research Projects Agency in April, 196U, for 

consideration at their request, in support of a request for funds. It des

cribes in broad terms what such a center would be like — what problems it 

would tackle, how it would proceed in its work, and how it integrates into the 

larger intellectual community of Carnegie Tech. 

We start with a broad discussion of the goals of the proposed center 

and an attempt to place it in context. From this follows a more substantive 

discussion of the science of information processing, its current state and 

important problems. We then take up the major issues that condition the organi

zation and operation of the center. 

The Goals Of The Center 

The continuing, fundamental aim of the center is understanding the 

nature of information processing. It must be so. We abide by the faith that 

out of deep understanding of a part of nature arises both control and appli

cation. Further, the attempt to produce a science in an area that not long 

ago was purely a technology — to have first rate intellects devote their 

professional lives to it, to train young men to work in it, to raise centers 

devoted to its exclusive study — implies a belief that there is much to dis

cover and deep understanding to be had. 



Any attempt to define the field of information processing (called by 

this or any other name) by its inherent subject matter encounters difficulties. 

Clearly, the field is concerned vith information, the systems that process and 

transform it, and the vay it is used to control, integrate and coordinate other 

systems. But then the fields of control systems, information theory, computer 

engineering, programming, automata theory, documentation and information re

trieval, linguistics, dynamic programming, modern logic, statistical decision 

thoery, and others as veil, come one and all to be included. This is an 

ungainly collection of subfields, comprising men vho know little of each other's 

work, perspective and goals, with boundaries that have been determined by the 

history of parent disciplines and the flowering of specific techniques. 

No institute can exist to study this field.1 Selection is necessary! 

a narrowing of the focus to some coherent wedge. Even the attempt to state 

the problems of the field, as we do below, adopts some point of view conditioned 

by one of the subfields, and misstates the total as some god would see it. 

This is the state of the science and we make no apology for it. It does mean 

that our statement of basic problems is itself a description of the viewpoint 

and commitment of the proposed center. 

Matters are even worse. All intellectual activities presume infor

mation processing; all systems require communication and control. As complexity 

increases and as performance demands become more stringent, the information 

processing component of all these activities and systems becomes critical and 

must be more deliberately studied and engineered. Eventually, recourse must be 



had to the range of devices used to build information processing systems ~ 

to computers, sensors, communication equipment, etc. The professionals in the 

substantive fields begin perforce to be specialists in information processing: 

conducting research, designing systems, etc. Thus the science of information 

processing pervades and interpenetrates all other fields. 

No institute vill range throughout so vast a domain. Of all the sub

stantive fields and regions of intellectual endeavor, only a few will be 

represented in any center. Selection, mostly historical and fortuitous, will 

be necessary. More important, there is no way in which research on information 

processing can be the exclusive concern of a center, the way physicists are 

the only ones who do physics, or biologists the only ones who do biology. 

Important research on Information processing — important in its own right and 

important in terms of the center's own specialized interests — will occur 

throughout the scientific community. This is emphatically the case at Carnegie 

Tech, as we shall see later. 

It might be thought that the issue is one between the science and its 

application: there is the pure science of information processing (to be done 

in a center) and the applied science (to be done in the various disciplines). 

In mathematics, for instance, which also pervades all fields, we do talk of 

pure mathematics and of applied mathematics. But information processing is 

much more closely tied to its applications. The new ideas and insights that 

move it towards being a science arise mostly from applications rather than from 



any self-generative character of the pure science of information processing. 

(The same is often argued of mathematics as veil, but that is a different 

story.) 

To summarize: Any center is narrow by comparison vith the vhole. 

More important, a center is better characterized by its selections of specific 

problems, methods and attitudes, than by its most general goals. Almost a 

decade of research in information processing at Carnegie Tech has produced an 

approach vhich still seems to its major participants to be extremely pro

ductive. The proposed center vill be, by and large, a continuation of this 

approach. We are oriented towards f,softvaretf — tovards programs vritten on 

digital computers. We are empirical, in that ve believe in constructing pro

grams that do things, and in learning about information processing from the 

difficulties of construction and from the behavior of the resulting programs. 

We are theoretical, although not so much by a dependency on formal models (such 

as automata theory), as by trying to formulate the essential nature of infor

mation processing. Thus many, although by no means all, of the tasks for vhich 

ve build programs are selected for the understanding they yield and not for 

their usefulness in applied vork. This particular combination of theory and 

empiricism stems from the viev that the key problems today in the science of 

information processing are those of discovery, formulation, representation, and 

immediate generalization — and that ve are not yet at the place of building 

very elaborate or formal mathematical structures that are significant. 

As in all sciences, ve devote a major effort to tool building and to 

the understanding of vhat tools are needed. Tools, in this field, are largely 



programming languages and programming systems. Since the most Important 

application of the science of Information processing is the development of these 

tools of programming, the concern vith tools can be made to yield double 

dividends. Thus, ve try to pose our tool building tasks so they shed light on 

fundamental scientific questions. 

The vork in information processing at Carnegie Tech has strong ties 

vith the behavioral and management sciences as veil as vith the natural 

sciences. We are concerned vith hov the human processes Information, both in 

isolation and in organized contexts. In fact, one of the other major appli

cations of a science of information processing is to permit finally a deeper 

understanding of hov humans think, learn and decide as veil as to supply 

improved tools for processing increasingly complex problems. The intertvining 

of concern vith artificial systems and natural systems —• vhether artificial 

and natural languages or artificial and natural problem solving systems is 

mutually beneficial, and vill continue to characterize the approach of the 

proposed center. 

The Science Of Information Processing 

With the general discussion of the previous section to put the vork 

of the proposed center in context, ve can nov describe vhat appears to us to 

be the main problems and avenues of attack in developing a science of infor

mation processing. 



Problems of Discovery, 

Take any area of application of programming — arithmetical calculation 

with matrices, numerical control of machine tools, theorem proving in logic, 

translation programs for programming languages — any area whatsoever. The 

first programs that are written for the area are narrow in application and 

particular in conception. They tend to be just great aggregates of code. They 

may be impressive, if they do important tasks not previously done by computers 

or if they exhibit great exercises in ingenuity and tricky coding. But they 

often do not appear to the outsider to be more than a technological stunt. 

However, an important process has been started, which is the main path of 

advancement in our science. Subsequent programs generalize the range of appli

cation, or change the internal representation to increase time or space effi

ciency, or simply clean up the program to make smoother or neater or more 

esthetic certain of its substructures. Eventually, the structure of the task 

environment, its relations to other tasks, and its demands for processing become 

transparent. It becomes abidingly clear how the data structures and interfaces 

should be represented, and exactly what choices there are with the relevant 

properties of each. It becomes clear what generally useful processes of inter

mediate complexity should exist and how to build complete sets of these from 

which to construct total programs. When this stage is reached, and the import-

tant features of the class of programs have been stated in concise terms, it 

can fairly be said that a real addition has been made to the science of infor

mation processing. The scientific knowledge is contained, not in a formal 



theory, but in the knowledge, however expressed, of the structure of a class of 

information processing tasks and the programs that can do them. The validation 

of this scientific knowledge lies in the fact that operating programs run and 

accomplish the tasks in the area, and that this know-how for the area can be 

communicated to new programmers, who can then produce new programs of high 

effectiveness in the area without themselves recapitulating all the mistakes 

and grotesqueries of thet past. The degree of progress is often obscured because 

the end product, being a transparent way of structuring the task and its pro

cessing, makes it difficult to understand how muddy the issues once were. As 

in all science, the progress is contingent: the set of ideas generalizes only 

so far; new tasks cannot be handled, though everyone was sure they were easy; 

and so on. 

This pragmatic process of achieving clarity of structure is not by any 

means the whole story in the development of a science of information processing, 

as we shall Bee. Yet currently and for some time to come it 1 B the main source 

of new ideas and new starting points. Since the approach at the start seems so 

often to be brute force, particular, and task bound, it is worth illustrating 

some Important advances which developed this way. 

Example 1: Algebraic compilers. The construction of the programs that 

translate programs of algebraic statements into machine code has followed 

exactly the routine described ahove. The original compilers (e.g., FORTRAN) 

were impressive achievements, but were extremely complex and obscure. They, 

and the other early efforts, gave birth to the myth that is still with us: the 



f 

many man years it takes to construct a compiler* Yet vithin five years, through 

the use of parenthesis free languages (so-called Polish notation), the develop

ment of notations for expressing the syntax of a programming languages (so-

called Backus Normal Form), and the development of translation schemes utilizing 

push-down lists (or stacks, as they are also called), an important part of the 

translation process has become crystal clear. This part is the syntactic analy

sis of the source language (i.e., of the language as written by the user). The 

problem of the final production of machine code from an appropriate internal 

representation is not yet so well understood, and is in fact an area of much 

current concern* Even so, the total task of constructing a new compiler has 

become only a modest task, as opposed to the horrendous one it once was — and 

fortunately so, since the pressure for new languages increases. 

The construction of translators, although it illustrates the general 

point, is thus an especially important task area. New programming languages 

are the tools for building information processing systems: Hence tools to 

build translators are tools to build tools, with all the multiplication of 

effect without multiplication of effort that is implied. Consequently, any 

center for the science of information processing will have a major effort in 

this area. Our own has involved the development of a special programming 

language for specifying syntactic analysis. We have used a similar scheme to 

build up a language for specifying code production, that at least pushes the 

translation problem back another step. From this and similar efforts by others 



it is a safe prediction that soon the production of translators for languages 

inherently no more complicated than ALGOL. FORTRAN, or COMIT vill become a 

routine task* 

Example 2; Formula manipulation* The task area is that of manipu

lating algebraic formulas ~ of simplifying, differentiating, factoring, 

integrating, constructing, etc* Languages such as ALGOL or FORTRAN do only 

arithmetic, and extension into the area of handling the literal expressions 

vould yield a vast increase in power. Formidable manipulation problems in the 

natural sciences vould become simply computations. This area is less far along 

than the area of translator construction. A fev systems have been built uti

lizing isolated sets of subroutines for doing a fev basic operations, and some 

of these have been used to yield useful results. A program has been vritten 

that performs integration, but as a demonstration program and an example of more 

general symbolic processes* Our own vork involves embedding a scheme in ALGOL 

(called FORMULA ALGOL) vhich permits the complete integration of arithmetical 

and symbolic processes and should be one more step beyond existing programs. 

Already the line of development is sufficiently apparent in the vork of our

selves and others to forsee the eventual incorporation into every algebraic 

language of symbolic manipulation vithout great additional complexity. On the 

other hand, no clarification of the task analogous to the use of stacks in 

translation has yet occurred* 

Example 3: Monitors* By a monitor is meant a routine that controls 

the computer processing of many different jobs. Many monitors have been vritten. 



One impetus is the time lost in a very fast machine by requiring the human 

operator to do any of the processing in initiating each new Job. A second 

impetus (just coming into full force) is the problem of handling many users 

simultaneously in time sharing mode. Yet a third comes from systems vhich have 

more than one processor and require a monitor to coordinate and assign Jobs. In 

spite of the number of monitors, their importance, and the first class talent 

that has gone into their development, ve are still at the beginning of the trail. 

Each monitor is an organization unto itself, each Just a monstrous piece of code. 

No structure has yet emerged; no consensus exists on vhat the crucial design 

considerations are, from vhich the rest of the organization logically follovs. 

While ve do not have progress to report yet, this is an area in vhich research 

vill be pushed. 

Example hi Chess languages. We humans use a vide collection of 

linguistic devices to communicate vith one another. Some small set of these 

(including some important ones) have been incorporated into programming languages, 

vhereby ve communicate vith machines. The devices left out ve either do not 

understand, are too difficult to implement, or are not thought to be vorthvhile. 

In order to explore a nev linguistic device it is sometimes expedient to move to 

a nev task area in vhich it can be implemented and is useful. Thus, one may 

start the process of understanding* Based on an initial use, other programming 

languages vill incorporate it in different vays, or by different underlying pro

cesses, until it becomes clear vhat the function of the linguistic device is and 

hov it affects the other parts of languages. 



An example Is some work we are doing In developing a chess language 

that permits one to designate objects in the chess situation simply by stating 

the various relationships it satisfies* The translator must analyse the various 

relationships and their interaction, select an appropriate method to find an 

object satisfying these conditions, and construct the program to carry out the 

method. In general, such an analysis is exceedingly hard (and is, in fact, what 

good programmers are paid to do for a living). For instance, in an algebraic 

language to permit the user to simply write down "the x such that F(x) = 0, , f 

for some general class of functions, F* requires that the translator be able to 

solve the equation for x. In general this is too hard a problem, and con

sequently, current translators are not capable of it. But in chess the relation

ships are sufficiently tractable that we hope to be able to characterize gen

erally how the analysis and program construction chould go. It is a good bet 

that once we do the analysis for chess, we will see ways to incorporate similar 

facilities in more limited ways into classical command languages. 

There are other examples of this road to discovery: list processing, 

simulation languages, numerical control, graphical languages (just starting with 

programs such as SKETCHPAD) and so on* Each starts particular and gradually 

becomes a vehicle for revealing a little more of the structure of information 

processing. Each tends to solve, with varying degrees of success, problems in 

a multiplicity of new areas: list processing for pattern recognition now an 

essential part of high energy physics research; numerical control for rocket 

experimentation; graphical languages for automating design, etc* 



Problems of Integration* 

The approach to discovery described above Is divisive: a multitude 

of separate strands. Clearly there is much common structure. In fact, whatever 

is abidingly true in the nature of information processing must occur again and 

again in all these separate efforts. If you will, these efforts, when successful, 

represent the elementary generalizations of our science. The problem is to ex

tract from then the really fundamental characteristics and techniques of infor

mation processingjl.e., to formalize. The difficulty, of course, lies in the 

separate genesis of each strand. Each was made by differnet researchers re

sponding to different formulations, and was shaped to the nature of particular 

task areas. 

There are at least two ways to go about an integration. One can 

develop a formal theory of information processing systems, including the develop

ment of the associated mathematics. This route is well traveled; the going is 

rough but progress is by no means impossible. Indeed, some of the most ijnpres-

sive dividends of this approach were given to the field as its birthright. In 

1937> before any of the technology existed that has made the study of information 

processing an inoperative, Turing formulated the concept of a universal computer 

and proved that not all things were computable. 

Such formal theories consist of postulated basic scheme for the 

representation of all information and a set of primitive information processes 

out of which all more complex systems must be fashioned. Their virtues lie in 



in being able to establish extremely general properties of information processing 

systems within the model; their major difficulty is limited power on relevant 

problems. They cannot yet give any answer to efficiency, optimal design, 

correctness, etc., when asked about programs of practical complexity. We are not 

working much in this area. On the other hand, good talent is being applied by 

others, and the power of this approach will steadily increase in time. 

An alternative to developing formal theories is to incorporate all of 

the important features of the separate strands into a single unified programming 

structure. This is a much more pragmatic approach than the formal one. As in 

the processes of basic discovery, its success is measured by the clarity of 

structure achieved, validated by useful programming systems applicable to a 

diversity of new problems. Note that we are not talking about constructing a 

monitor or supervisory structure in which all the separate special programming 

systems can co-exist as separate equals. We mean a single linguistic structure 

with mechanisms for creating and assigning names, abbreviating, delimiting lex

ical units, etc. Within this there should be a single set of mechanisms for 

organizing processes.-- a single command structure. Particular data represen

tations with their proper operations should be incorporated as neat subsystems 

with clean interfaces between subsystems. 

This process is not a simple one, nor one that can be hurried or done 

by fiat. Let us illustrate. We are currently very active in this enterprise, 

using ALGOL as a basic vehicle and producing a growing system which we can call 

EXTENDED ALGOL. Now consider COMET, a programming language developed for lin

guistic analysis, and containing a number of unique features. How does one 



. Ik -

extend ALGOL, so that it has all the additional powers (of expression and of 

processing) of CQKET without at the same time duplicating many of the functions 

already in ALGOL ~ and in COMIT in quite different ways? One cannot just embed 

COMIT in ALGOL as an undigested monstrous subroutine. One must find instead that 

natural elegant extension of ALGOL which accomplishes the important new functions 

that COMIT has revealed. 

One sees here clearly the complementary role of separate, almost 

isolated, efforts to build programming systems in new territory on the discovery 

side, and the effort to build a single universal programming system on the inte

grative side. We wish to emphasize this dual process, since we feel that it is 

the main road to the development of a science of information processing during 

these early, somewhat progmatic decades. 

Problems of Proof. 

The programming profession is engaged at all times in constructing 

large and complex symbolic structures that purport to do things and to have 

certain properties. This program claims to invert matrices; that program claims 

to post an accurate and complete status summary for a commander's view; a third 

claims to translate any program in ALGOL into a machine language subroutine that 

accomplishes the same processing as the ALGOL program. How do we know they 

accomplish their tasks? 

The current answer, of course, is that we don't know. Instead, we 

are prepared to continually debug our programs. However, we do know that a large 

proportion of programming effort is spent in this debugging; but also that 

no really complex program ever becomes completely error free. One of the major 



Indications of the scientific maturity of information processing vill be the 

development of direct techniques of verifying that programs are correct and have 

various properties. In short, ve must learn to prove assertions about programs. 

By phrasing the task as one of proof, ve vlsh to emphasize that a program is in 

fact a mathematical object, and that the techniques to be used are mathematical 

ones. 

Again, thefre are tvo approaches to the problem of proving things about 

programs. Starting from the formal theories of information processing systems, 

mentioned above, the concern vith proof techniques is already uppermost. As ve 

stated earlier, the difficulty is that there appears to be such a long vay to go 

before ve are able to prove things about the complex algorithms that interest us. 

However some rather general things can be shovn. For instance, there cannot 

exist any single general scheme that vill determine the correctness of arbitrary 

programs. The second alternative is to tackle complex algorithms directly, not 

vorking vithin a completely formalized system, but trying to prove things more 

in the style of an eighteenth century mathematician. Again, consistent vith our 

general approach, ve have been more concerned vith this latter possibility. 

Programs are indeed very large and complex. Consequently, proofs 

about programs are also complex. Invariably they involve the extensive analysis 

of different cases — as vhen one has to ask hov the program vould behave if 

the input data had a certain property (or if it didn't). Hovever, the internal 



relationships In the program upon which the proofs depend may not be very deep 

or subtle, and It may be possible to construct programs that will carry out this 

case analysis. These will be true theorem proving programs; they will try to 

fill in the detail of proof schemas suggested by human mathematicians. Since the 

case analysis may run into thousands of cases — each of which must in some 

sense be discovered by the mathematician trying to prove the theorem — it may be 

that these mechanical aids will be an essential ingredient in developing proof 

techniques for programs and will provide a good example of the power of man-

machine cooperation. We have been doing some work in theorem proving programs 

that use case analysis, in order to explore this possibility. 

Problems of Efficiency. 

It should take no special argument to assert that the efficiency of a 

program in processing information is one of its most Important features. A 

science of Information processing should certainly have some techniques for 

assessing efficiency and for knowing whether some theoretical limit is being 

approached. Such concepts as the conservation of energy and (much closer to 

home) the channel capacity for information convince us of the power of such 

general laws. We believe in them in programming too. For instance, all pro

grammers believe that you can trade time for memory and time for equipment. But 

to date, no good theoretical formulations of this trade-off exists, and it can be 

used only as the roughest qualitative guide. Except in some special areas, such 

as sorting, the problems of efficiency must simply be put down as future scien

tific business, but one whose study is critical. 



- IT -

Problems of Representation. 

To be processed, information must be represented in some concrete 

form. The representation determines hov much space must be used to hold a given 

collection of data. It also determines the processes required to vrite infor

mation into the representation, to read information out of it, and to maintain 

the information. Given a task to be programmed, the variety of vays to represent 

the information in it are not veil understood. Yet vhat representation is 

chosen vill determine the program's efficiency and flexibility and differently 

BO at different times of the program's use. It is a commonplace that the hard 

part of programming a nev task is creating and selecting the representation; 

most of vhat follovs is routine coding. 

Having pronounced the Importance of representation, and by implication 

asserted that a science of information processing must contain a theory of 

representation, ve confess that matters are in a very primitive state theoret

ically. We are still at the stage of the natural historian — discovering nev 

representations under odd rocks and gradually collecting them and cataloguing 

their interesting properties. An important example of this is list structures. 

These vere developed in connection vith a specific task area (problem solving 

programs) and have since become a veil understood and videly used representation. 

However, there exists no vider framevork vithln vhich to relate list structures 

to the various other existing representations or from vhich to generate nev rep

resentations in any systematic vay to meet nev requirements. 



Problems of Problem Solving Power 

The following is elementary! a computer delivers raw processing power; 

how it is shaped to useful ends depends upon the program. Assured though we are 

by basic theoretical results that we can do anything we can specify, there are 

narrow limits to our understanding of how to achieve complex ends through complex 

processes. One major part of a science of information processing is concerned 

with advancing our problem solving power. 

As elsewhere, formal theory about problem solving is worse than 

rudimentary. Instead, progress is achieved by selecting task areas that, while 

well defined, demand excessively difficult and unknown processing, and then 

trying to construct programs that do these tasks. The process is quite analogous 

to that described in the sections on discovery and integration. However, tech

niques of programming are to be distinguished from techniques of problem solving. 

One does not (yet) try to incorporate into an integrated programming system, such 

as EMENDED ALGOL, the concepts that have arisen in constructing theorem proving 

programs. This separation is only temporary, reflecting a difference of starting 

point — a concern with linguistic mechanisms, such as naming, as opposed to a 

concern with reasoning mechanisms, such as heuristic search. The distinction 

disappears as soon as we ask our language processors to do any substantial amount 

of inference and selection of methods of solution. 

The whole area of problem solving makes a pretty illustration of the 

discovery-integration process. Many separate problem solvers have been written; 

the tasks have usually been idiosyncratic and non-utilitarian — games, puzzles, 



and areas of elementary mathematics. Some of the Individual results have been 

Impressive. Out of these separate efforts has emerged a clear understanding 

of two related important problem solving mechanismss the formulation of a 

problem as the search through an exponentially growing tree of possible solu

tions) and the role of various heuristics to narrow and guide the search so it 

can be successful within reasonable processing times. 

A current problem in this area is that of generality! how to build 

programs that can do a wide range of tasks. In normal applied work the interest 

focuses on a specific task, and in the interests of efficiency the program is 

adapted as much as possible to the particular features of the task. As a 

consequence, little experience exists about the organization of general problem 

solvers; and when the need arises to build programs with fairly general capa

bilities (as in conmand and control environments) we are stuck with extra

polating techniques adapted to an opposite goal. This limitation of our past 

experience to highly specialized programs lies at the root of the myth about 

the Inherent rigidity of programmed systems. One approach to this problem, 

and an approach we are taking, is to take a single problem solving program 

(called OPS) and try to make it solve a wide range of problems (about ten). 

OPS initially proved theorems in elementary logic. It is being extended to 

various puzzles, elementary mathematical manipulations, more advanced proof 

procedures, etc. As with most of the work on problem solving, the tasks them

selves are not yet of practical importance; also, one could probably design 

for each task a separate program that would be more efficient. But by trying 



to use the seme set of mechanisms for all the tasks ve increase the efficiency 

vith vhich ve learn the natural generalizations of program organization and 

descriptions of task environments. This approach is the direct analog of the 

attempt to build an EXTENDED ALGOL, except that it is at a more primitive and 

experimental state. 

Problems of Mass Information. 

The problems of storing and accessing information undergo radical 

change as one goes from fairly modest amounts of information to massive files. 

Partly this is due to a radical discontinuity in the nature and relative speed 

of the accessing mechanism from random access in microseconds to serial or 

cyclic access in tens of milliseconds (and recently to pseudo-random access in 

tenths of seconds or seconds). Much more constrained strategies of accessing 

must be used and great care given to the rationale and timing of each access. 

These special features alone vould be enough to dictate concern vith the classes 

of processes involved. They are perhaps most of vhat is involved in handling 

large veil organized files (as in most business data processing). 

But the more general problem of large amounts of information is that 

the program (i.e., the programmer) knows very little about the data he wants. 

In a small program, the programmer knows exactly what information is stored 

where and how it relates to the task of his program. But in extracting 

information from an encyclopedia, an intelligence file, or even a table of 

integrals, only the most general features of the data are known. The 



relevant data could be in the file in many different forms, fractured in many 

different parts. 

Concern vith this problem of organizing complex retrieval systems is 

conditioned by the accessing characteristics of the physical store, but vould 

exist even if ve had billion vord random access memories. The problem is 

intimately involved vith natural language. It is not that ve must use English, 

because (say) ve want to be easy on the user. Rather, natural language Is the 

only universal vehicle known for expressing arbitrary information. The formal

ized languages that will eventually develop to handle large wide ranging masses 

of information will contain most of the important mechanise of natural language 

and will develop out of the study of natural language. The problem of massive 

information is also intimately involved with mechanized inference techniques, 

so that a fact can be gleaned from fragments of data in the store that have 

never before been brought together. One can pursue these inference problems 

along the same line as the problem solving programs -- working with formalized 

systems, rules of transformation, and so on. Alternatively, one can work at 

developing internal models, such that as each parcel of information is added to 

the system it is assimilated into the internal model. When requests are made 

of the system, the information is obtained by an investigation of the current 

state of the model. This latter approach currently seems very profitable, both 

to us and to other workers in the field, and some of the early work in this 

direction was done at Carnegie Tech in the form of question-answering programs. 



The imminent advent of large scale commercial systems possessing 

enormous storage vill make mass-Information handling and retrieval problems, 

hitherto a specialized task area, standard fare for all large scale computer 

users. This flood to fill and use available storage vill be arranged vith 

languages that have increased naming, state, and search sophistication. The 

design of excellent I.R. languages cannot vait much beyond 1967* 

Problems of Communication* 

A language is Janus-liket one face tovard each conmunicant. When both 

are human and substantially identical one is hardly aware of the tvo-faced 

nature. When there is great inequality — a mother to her child, a boy to his 

dog, a man to a computer — ve viev the language only in terms of the veaker. 

The problem is to get the computer to understand the instructions ve give it; 

the man can shift for himself. We have already partially learned our lesson 

vith respect to computers; the whole development of programming languages 

reflects an attempt to ease the task of the human. But at each step the course 

is roughly the same: a nev linguistic feature is proposed (for human benefit) 

and the problem is hov to construct the systems to interpret it and use it 

efficiently. All the science Is built around the machine side of the language 

problem; the "nev linguistic features11 come of themselves, full blovn, out of 

the minds of those experienced in the programming art, or these struggling vith 

a problem. 

Still, the human is an information processing system in his ovn right 

vith his own special properties and limitations. At some point, when our 



ability to construct progranming languages becomes sufficiently great, ve vill 

need to know a great deal more about the human and his communication problems. 

What are his languages? Hov does he interpret linguistic expressions? What 

stages of gradual refinement and definition do his intentions go through on the 

vay to becoming a set of instructions to be given to a computer? What is the 

role of mnemonic symbols for him, and hov complex can they become before they 

cease to be helpful? All these questions are fundamentally psychological and 

linguistic, and they have interest in their ovn terms. Our concern vith them 

here is as applied psychology — as the human engineering of language and 

communication vith the computer. 

Let us give tvo examples of vork in this area that ve have an interest 

in pursuing, and vhere ve have given some preliminary consideration to the prob

lems. The first concerns on-line continuous communcations (so called conversa

tional mode) betveen man and computer. We are currently pushing this problem, 

and like everyone else ve are proceeding by designing systems, putting them into 

operation, discovering the difficulties and revamping the system. But it is 

clear that the human has difficulties thinking clearly in real-time — vitness 

the difference betveen spoken and vritten English. Ultimately (after the first 

exploitation of the nev powers opened up by the hardware), the conmunication 

language must adapt to these limitations of the human. One could believe this 

vould happen eventually just by successive approximation. One could proceed a 

good deal faster by understanding in some depth the nature of the human limi

tations, and then vith this understanding in hand, designing language systems 

to reflect it. 



The second example stems from searching for alternatives to on-line 

interaction: Perhaps the human could simply communicate his rough plans to the 

machine, and let the computer fill in the details. This puts the computer in 

the role of problem solver again, but the problems vould not be very difficult 

(that is vhat it means to be a "detail"). However, before one can vorry about 

the computer program, one needs to know a good deal about the nature of human 

plans — about vhat it is that the human can communicate vhile he is still vague 

about the details. (The OPS program referred to earlier, used to simulate human 

problem solving, has already given us some information about this*) 

We have ranged rather videly over approaches and problems in the 

science of information processing. The pattern adds up to a substantial and 

integrated attack on the science, and the one that vill characterize the center 

in the coming fev years. But to return to the theme in the earliest section, 

much has been left out. Some of that missing reflects our focussing on the 

center itself and not on the total Carnegie Tech environment. Although ve have 

mentioned the vork, on psychology, using simulation as a major tool, ve have 

underplayed it. And ve have not mentioned at all the vork in management science 

nor the task areas that arise out of physics* relatively nev concern vith data 

processing. But there are still other areas that currently have no strong 

representation at Carnegie Tech: the translation of natural languages; the 

problems of pattern recognition in various difficult and noisy environments 

(handwriting, picture interpretation, biological analysis); the problems of 

error correcting and detecting codes. We have not mentioned computing hardware 



even onceJ In one sense there is space for these researches in our earlier 

description: the tilling of special areas provides the initial glimpses of 

important structure. But no particular subset are essential to the center's 

own program of research and so the choice of which ones exist and flourish in 

our total environment will be time dependent on more external factors. The 

matter of hardware is a special case and we will treat it more fully in the 

next section. 

Organizational Issues Concerning The Center 

Given the picture of the substantive orientation of the proposed 

center, we can turn to questions of organization. There are a few major issues 

and points of view, each of which requires discussion. Once these have been set 

forth, the actual details or organization and growth follow simply and without 

further justification in the final section. 

Relationship to the Carnegie Tech Research Conmunity. 

We have already commented at length about the way Information proc

essing pervades other fields and the way research on information processing 

ultimately becomes an integral part of many fields. As a consequence, the 

center must be "open" towards the entire campus. Research on information 

processing must grow up and flourish throughout Carnegie Tech because the Center 

is here, not in spite of it. Nothing would be more fatal than to erect an 

organization whose natural tendency was to absorb all such research within its 

confines, or which even operated to create a gradient of sophistication, in 



vhich those "outside" the center have little access to the advances achieved 

"inside." Thus, in a sense, a very substantial segment of Carnegie Tech should 

become the laboratory for the study of information processing. 

The organizational form that seems most adapted to this goal is a 

center vith a relatively small full time faculty and a very substantial Joint 

faculty. The full time group, consisting ultimately of six to seven members, 

has its research objectives directly focussed on the science of information 

processing, substantially vithin the purviev of the previous section. The joint 

faculty have their interests and motivations split betveen a concern vith infor

mation processing and some other substantive field. This "other," of course, 

may simply be one of the many aspects of information processing that happens to 

grov up in one of the departments — e.g., a concern vith redundancy techniques, 

or vith hardware devices, or management control systems — anything that happens 

to settle more comfortably elsevhere. 

The important distinction is the following: We in the Center are 

committed to a line of research, as outlined; we are not committed to any 

particular size or composition of the Joint faculty. The joint arrangements 

form an opportunity to encourage research on information processing wherever 

it most naturally occurs on campus by offering partial financial support for 

faculty members, support for graduate students, and an official vay of blurring 

the lines of separation between those inside and outside the center. 

The current situation at Carnegie Tech is consistent vith this organi

zational form, and supports the proposition that this is the correct vay to 



organize a center for the study of information processing. We have an inter

departmental doctoral program in Systems and Communication Sciences. The heart 

of this graduate program is a concern with information processing, but it covers 

the full range from control systems, through cognitive processes, to logic The 

current participating departments are Electrical Engineering, Mathematics, 

Psychology and the Graduate School of Industrial Administration. There are over 

fifteen faculty members involved, and about fifty graduate students, mostly in 

Mathematics and Electrical Engineering, all of whom are going toward the doctor

ate. In each of these four departments there is already much work on information 

processing that fits the "joint faculty" concept. Most of the work in Mathematics 

connected with information processing is directly related to the center, but not 

all. The arrival of good facilities for formal manipulation will produce an 

increase in the involvement with advanced information processing techniques. In 

Electrical Engineering, for example, there has been developed a programming system 

called SCADS (under AKPA support, in fact) for handling continuous dynamic systems 

on the digital computer. (This is not the first such programming system of this 

kind, but appears to be the most sophisticated to date.) SCADS, which was done 

by two graduate students in EE last summer, is a nice example of many points — 

of what graduate students can do if given their head; of the way new systems get 

born by users fighting with problems, and then get incorporated into the regular 

system; and of the way information processing further interpenetrates a field, 

since one of the developers of the system will be doing his thesis on programming 

aids for analysing non-linear dynamic systems. 



Both the Psychology department and the Graduate School of Industrial 

Administration are thoroughly saturated vith a concern with Information processing 

and much of the research in information processing done at Carnegie Tech in the 

last eight years has been done in these two departments (including the development 

of programming languages and problem solving programs). 

We have mentioned so far only the four departments that happen to be 

involved in the interdepartmental graduate program. But other departments are 

also involved In information processing research. The Physics department has 

just added to its faculty an expert on information processing as related to high 

energy physics research. There is a substantial research project in Civil 

Engineering to develop a programming language and system for the area of hydrology. 

As one final indication, a young post-doctoral fellow from the Chemistry depart

ment is being supported by ARPA this year to work on doing formal analysis in 

chemical energy calculations by computer. 

Relationship to Graduate Students and Education. 

We have Always felt that graduate education is part of the growth of a 

science ~ not just a logistic function to be performed, but an integral part of 

the process of advancing the science. The act of teaching refreshes and stretches 

the mature researcher. The impact of the uncommitted and iconoclastic mind of 

the graduate student forces the continual re-examination of old solutions; and 

offers the best chance for the emergence of something really new. We fully expect 

a major part of the research output of the center to come from the work of the 

advanced graduate students. 



A consequence of this viewpoint is that there will be no permanent 

group of full time non-faculty research personnel at the center. Thus, we will 

differ from a research institution in that all the research people here will 

also be concerned with graduate education. There will, of course, be all sorts 

of arrangements that involve exclusive commitment to research: post-doctoral 

appointments, visiting appointments, semesters with no teaching duties, etc. 

But all these are essentially temporary in nature. 

In the final section we estimate the number of graduate students who 

will be associated with the center, either through the full time faculty or the 

Joint faculty. The number is currently about 25 and will increase to about 60 

during the next four years. Most of these students are in the Systems and 

Communication Sciences doctoral program, mentioned earlier. Only a certain 

fraction of these students will be supported out of the center's funds, since 

many of the other research efforts on campus have their own support. 

Mixing Service and Research. 

In all events there will exist at Carnegie Tech a Computation Center, 

whose function it will be to provide the Carnegie Tech community with whatever 

computing power it needs. The relationship between the Computation Center and 

the proposed center for research is a crucial one. The problems are whether, on 

the one hand, those who just want some computing done, even as part of informa

tion processing research, will be short changed, everything being in a constant 

state of flux due to research in progress and no one in the computation center 



caring about anything but research, or whether, on the other hand, no one in 

the proposed center will get any research done because they are so busy pro

viding service. All solutions endeavor to separate the function in one way or 

another, ranging at the extreme end to using separate computers or even to 

creating completely separate organizations. Our proposed solution is to incor

porate the Computation Center into the proposed center organizationally, to 

utilize a single computer facility, and to structure the internal organization 

of the proposed center to deal with the mixing of service and research. 

The most important argument for the use of a single facility is that 

nothing can be gained by having two. Under all circumstances the vast majority 

of people working on information processing research are not concerned with 

modifying the currently operating programming system or equipment configuration. 

These people have as big an investment in a stable, efficent, smoothly running 

system as any chemist or physicist, who only wants to get his calculation done. 

Consequently, in terms of service provided the computer system devoted to 

information processing research differs not one whit from that devoted to 

"service computation." 

The real problem is how to live with a system which is being advanced 

almost continually, both in the basic programming systems; and languages, and in 

the equipment configuration. The theoretical answer is easy: simply control the 

process of change sufficiently well to avoid instability. The capability for 

doing this may have arrived only with effective time sharing systems, which 

permit systems work to proceed in parallel with other use under suitable protec

tion. In any event, this is the path we are pursuing with out system and we 

expect to be able to make it work eventually. 



So far ve have addressed only one side of the issue: hov to assure 

adequate service vhile doing research. The other side — hov to assure adequate 

research vhile doing service — must still be dealt vith. Our solution here is 

to divorce research from development and maintenance. No member of the research 

group (roughly, the faculty and graduate students) vill have any operating 

responsibility. Conversely, there vill exist a substantial full time program

ming staff, vhose function it vill be to institute change and to maintain the 

programming systems. This programming group vill. consist entirely of systems 

programmers, as that term is currently used in the programming profession. Their 

vork vill be information processing oriented as distinct from application pro

gramming. It has never been the policy of Carnegie Tech to provide application 

programming, and no change in this policy is anticipated. 

It vas stated earlier that no permanent full time reseach personnel 

vould exist at the center. The programming staff under discussion does not 

violate this statement, and it is quite Important to understand the distinc

tions that are being made. Much programming, even at the highest technical 

level, is not research. The programming and installation of a language already 

available on other machines, is not research. The revorking of the ALGOL system 

already in use to improve its efficiency by a factor of tvo, is probably not 

research — although it may involve some very ingenious programming tricks, and 

is certainly vorthvhile. The improvement of the monitor system by adding nev 

features is not research, even though it may take the best programmer to accom

plish it, since storage and timing constraints are so tight. The incorporation 



of a nev programming system, created in the center as a piece of research, into 

the current operating system is not research, even though it is a necessary 

follow through before research becomes useful. 

This last example is vorth additional expansion. The typical life 

history of much research done at the center vill be as folLovs. A graduate 

student vill get interested in some aspect of programming, say in monitor systems. 

Working vith one of the professors as advisor, he develops a programming language 

in vhose terms monitor routines may be expressed, including a technique for 

translating the symbolically expressed monitor into machine code that meets the 

various timing constraints of the hardware configuration. Focussing on the 

es8entieQ.s, he vorks vith a 11 pseudo-machine11 that he has defined for his ovn 

purposes and simulates it on the computer. This pseudo-machine differs from the 

existing machine in many vays — simpler in many respects, more complex in a fev. 

At the termination of this research it has become abundantly clear that this 

monitor language should be used for the Carnegie Tech system. At that point there 

may be a full man-year of hard development vork ahead, for it is unlikely that 

any such nev idea could be applied for the first time vithout considerable effort. 

Yet this next man-year is Just development vork; it is not research. Further, it 

is inappropriate to insist that this student personally engage in this develop

ment. At that point the full time programming staff assumes control, and does 

the additional vork necessary to incorporate it into the system. They vill con

tinue to improve its use in the operating system. Meanwhile its limitations 

become apparent. In coping vith them they may make a substantial enough contri

bution to the programming art so that, in retrospect, research has been done: 



revealed as a sideline to the task of making the Carnegie Tech operating system 

system as good as possible. 

The point In presenting such an extended example is to show that there 

can be a meaningful difference in function — and even in creativity vithout 

a difference in intellectual level. The best part of the systems programming 

vorld today does not do much research by the definition implicity given above; it 

does high class engineering. 

We have labored this long to establish the legitimacy, in a proposal 

for a research center, of a large full time programming Btaff vhose function is 

not research. The large size is dictated by the need to keep the total system 

stable in the face of continuous advancement in the state of the art. The group 

Is in fact larger than it appears. It is augmented by a substantial number of 

undergraduates; In fact, it is from the pool of undergraduates that the addi

tional programming power comes to do many of the extra features and provide the 

necessary extra push for their rapid accomplishment. At Carnegie Tech we have 

used large numbers of undergraduates as programmers for many years, and have 

found this to be an admirable practice, paying a very large educational bonus as 

well. Its one main disadvantage, having students responsible for operating system 

systems, we propose to rectify by the presence of the full time programming staff. 

In general every one at Carnegie Tech involved in information proc

essing research does his own programming — just as a mathematician does his own 

mathematics. A very few projects exist of such large magnitude that this is an 

unreasonable mode of operation. An example would be a large question-answering 



program. Consequently, a small number of full time programmers will exist to 

work on these projects. These are to be considered as full time technicians, 

and not independent research scientists. 

With a single computational facility kept in stable performance with 

an extremely advanced software system, everyone benefits — the researcher on 

information processing and the researcher who only wants his information proc

essed. There is no clean answer to the question of what proportion of the 

center's cost should be assigned to research and what to service. If all the 

non-information-processing-research people would vanish, the costs of the center 

and the facilities would not be much less. If all the information-processors 

vanished, the cost would be a lot less, although still not small, and those left 

would get less advanced software. However, ARPA should not support research 

which is not related to information processing research. The administrative 

control will, of course, lie with those responsible for the center. 

Equipment, Hardware evelopment and Hardware Research. 

The center, by inclination, talent and past action, is a center of 

software research. What is needed on the hardware side? The issues naturally 

break into the three parts in the heading and we will take them up in that order. 

Equipment. Pour things determine how much equipment one needs at any 

time. First is the number of users. Second is the amount of processing par user, 

both in time and memory. Third is the style of use these users will adopt. And 



fourth is the basic proposition in programing research: have available substan

tially more capacity than one can justify. 

The oddest of theBe is style. It refers to the transition nov begin

ning to a time-sharing mode of operation in vhich the user is able to keep vast 

amounts of information in the machine at all times, instantly available at his 

call. This nev style, hurried into existence by ARPA itself, carries vith it a 

large saltus in equipment per man. Large secondary stores, high capacity trans

fer rates, remote stations, a large Increase of time spent by all users in commu

nicating vith the machine — all these add up to a substantially higher "overhead!1 

Since this issue of style relates directly to the researcher^ effectiveness in 

using the machine, it is clear that the center must remain relatively close to 

the best available in this department (independent of the fact that one part of 

our research interest is concerned vith hov to develop this style). 

Carnegie Tech is a relatively small environment) consequently the 

total number of users is relatively small (compared, say, to the University of 

Illinois or MET), even vhen one takes into account the high density of scientists 

concerned vith information processing. The computation requirements of the univer

sity background are not consistently excessive. Thus, although large computers 

are required for information processing research, their total demands lie veil 

belov the most powerful systems available in the country. For instance, our 

current system has somevhat less power (in operations per second) than an IBM 

709^- The situation on memory is somevhat different. Programming research, and 

especially vork in problem solving, requires as much random access storage as one 

can reasonably get. In this last department, ve again need to be near the top 

of vhat is available. 



The final consideration -- the need for "over capacity" — is based on 

the need to ignore questions of space and time efficiency in order to get on with 

discovery. An example will make this clear. The initial, uniform reaction of 

the programming world to list processing when it was first introduced in 1956 

(when big machines had 4,000 words of storage) was incredulity that someone would 

throw half the memory to store the links to other words. Yet it was precisely 

this dis-efficiency that allowed many other features to be exploited, and which 

became less and less important as large memories became available. 

Generally, for an active installation the need for computing power has 

grown exponentially. Our own growth is from an IBM 650 in 1956 to a Bendix G20 

in I96I (an increase in power by around two hundred) to a CDC-Bendix G21 in 1963 

(another increase of over four times). This is a growth rate in power of some

thing like three per year, and is in no way unusual. The amount of computing 

obtainable per dollar is also growing exponentially, and has absorbed some, but 

not all of the cost of this growth in power. Consequently an increasing invest

ment in hardware ^s still indicated. That this exponential growth must stop 

eventually is clear. Yet the continued expansion of our knowledge of how to use 

the computer in sophisticated ways and the continued change in style in using 

them (always in the direction of increased leverage for the human mind, hence 

requiring increased operations per thought) virtually guarantees that the expan

sion will continue for another decade at least. 

Another factor that tends to increase the amount of equipment needed, 

although by an amount small in comparison with the total growth rate, is the need 

to balance the system while keeping it stable. The sequence goes like this: At 



time T a decision is made for a substantial increase in the equipment configu

ration, to provide nev capabilities, a change in style, etc. This Involves a 

change in the programming systems and vork on these is initiated. After the 

equipment arrives, the nev programming systems are installed and operational 

experience accumulates, it is discovered that the vision at time T of the state 

of affairs at installation vas faulty: the disc capacity is limiting, or trans

lation takes too long to permit on-line compilation, or vhat not. The performance 

of the total system falls appreciably below that predicted due to a particular 

feature that becomes limiting: the system is out of balance. Theoretically, at 

this point, the system could be balanced by a readjustment of the total configu

ration keeping total dollars fixed. Hovever, to do so is to unstablize the vhole 

system — to require revorking of the just finished programming system because 

many features of the hardware configuration have been altered again. The alter

native ~ and the one that is always taken — is to leave the existing configura

tion fixed and to add some incremental equipment to try to achieve balance. This 

permits one to make as small a change as possible in existing programming systems. 

The net result, of course, is to remove the offending limiting factor and to re

veal the next one — thus causing the addition of yet another small increment of 

equipment and programming system. The root source of this rather vobbly vay of 

business is imperfect vision in the face of a dynamic environment; and vhile there 

is no intention to condone it, there does not seem to be anyway to avoid it and 

still progress. 

The net result of these considerations is a projection of the total 

equipment configuration that rises from a current rental equivalent of somevhat 



under a million dollars a year to about two million dollars a year in 1967-68. 

The exact configuration is given with the budget, including estimated cost. The 

growth is made up of four parts: a relatively modest increase in central processor 

power; a more substantial attempt to keep up with the secondary storage require

ments; a reasonable growth rate on remote terminals of fairly conventional type; 

and the acquisition of a random access "bulk" store (half-million words and up) 

when it becomes available. Although one high performance console is included 

(1964-65)> no other attempt is made to keep abreast of advances in such man-machine 

communication devices (but see the section on hardware development). 

This total configuration is shared between all users and its costs must 

likewise be shared. These estimates on this division are shown in the budget 

request. 

Hardware development. There is a need for a modest sized engineering 

group in the center, independent of any major research into hardware. The needs 

are several. First, it is essential that there exist in the center a first rate 

knowledge of, and sophistication in. the hardware state of the art. Otherwise 

one is at a decided disadvantage in any negotiations with the computer industry 

that involves new or special equipment. Estimations of reliability, ease of hard

ware adaptation into the existing system, probability of successful delivery on 

time, and definition of acceptance criteria,are all examples of what must be done 

in-house, independently of the manufacturer. In a large and experimental configu

ration, even the question of maintenance cannot be left wholly to the manufacturer. 



An informed technical judgment of the seriousness of maintenance difficulties 

independent of that of the manufacturer's maintenance engineers is essential. 

The kinds of needs described above extend both to the writing of speci

fications for special equipment and the monitoring of any special contracts, and 

to the estimation of the future configurations both needed and possible in the 

light of on-going hardware advances. 

A more substantial need in terms of the amount of people and budget 

required concern the design and construction in-house of a small amount of equip

ment. The argument is simple. Programming research often demands slight equip

ment additions and modification beyond conventional configurations in order to 

make certain developments possible. These are first seen by the researchers be

fore the industry is prepared to provide the new gear. A standard example from 

the recent past is the provision of communication terminals with visual display 

and graphical input capability. Another example is the addition of a list proc

essing adjunct to a standard configuration, something that makes no sense except 

at an installation that is doing a great deal of list processing. Yet for such 

an installation, a modest capital expenditure on a piece of equipment could pay 

for itself many times over. It could even permit modes of operation otherwise 

denied, such as conversational modes of interaction with list processing systems. 

No manufacturer will provide such a piece of gear. It must at least be designed 

in-house; and, given the judicious use of subcontractors, it might be faster and 

cheaper to construct the gear oneself. 

One final and important example is the construction of interfaces to the 

existing configuration to allow a new device to communicate with the central 



- ho -

machine. Many of these vill arise from the demands of the joint faculty to auto

mate various experimental and exploratory arrangements. These vill all be one-of-

a-kind jobs that regular manufacturers vill not touch. While part of the cost vill 

be born by other sources of funds, there needs to be the vhereVithal to meet them 

half vay. 

Note that none of these items is research. Even the list processing adjunct 

may be a perfectly straight-forward vired program machine. It is justified by 

vhat it allows for programming research, not because it is an engineering achieve

ment. 

It is our estimation that there vill be a continuous enough stream of these 

projects to justify a modest engineering group. As vith the programming staff, 

this group is full time, and is not considered to be a research group. Likevise, 

ve anticipate that they vill mate considerable use of undergraduate students, vhich 

vill provide that variable pool of manpover for special projects. 

Unlike the situation vith the basic equipment configuration, ve are not 

prepared to submit costs for specific projects. One small project, involving the 

incorporation of the RAND graphical tablet, is currently undervay, supported out 

of the present ARPA funds. But even here, ve are not prepared to state future 

costs, since the current phase involves a design study to estimate vhat sort of 

additions are necessary. Consequently, ve have placed in the budget a relatively 

modest lump sum for each year. 

Hardware research. While the case for a hardware development group is 

straight-forward, the question of hardvare research is somevhat subtle. The center 

as organized contains no real effort on hardvare research. On the other hand, ve 



- In -

feel that there are strong flovs back from programming research Into hardware, 

and we would have been happy to have such an effort an integral part of the center. 

However, w.e feel no need to make a major attempt to obtain such an effort in order 

to "complete" the center: it stands on its own feet as a software oriented group. 

We shall encourage the growth of hardware research; this is one of the freedoms 

that the concept of joint faculty gives us. With the engineering development 

group we will have enough latitude to encourage initial efforts in this direction. 

But whether Carnegie Tech grows strongly in the hardware direction depends on 

opportunities we cannot now forsee. 

Composition of the Faculty. 

The growth in work in information processing over the last two years at 

Carnegie Tech, made possible chiefly by ARPA funds, has been used mostly to 

strengthen the research approach along the lines described in the earlier section. 

However, it should not be concluded that we feel the current distribution of effort 

is optimal. Further modest growth of the central faculty, as implied by the 

creation of the center, will permit us to adjust the composition of our effort in 

ways that seem appropriate to us now. 

The first is greater strength in the mathematical theory connected with 

programming. Our own empirical orientation does not blind us to the slowly 

increasing relevance of more formal treatment, especially if done in an environ

ment which is empirically informed. 

A second area is that of natural linguistics and a concern with human 

communication. Whether appointments in this area would be in the full time faculty 



- k2 -

or jointly with psychology is an open question and in fact irrelevant. But there 

is a large gap in the Carnegie Tech environment in the linguistics area, and this 

needs filling. 

We have already commented that our plans for the full time faculty do not 

include scientists working on computer hardware. Yet this should be mentioned 

here again, since we propose to be opportunistic about it. The most likely 

candidate is a faculty member whose hardware interest lies adjacent to particular 

programming strengths of the center; for example, a concern with the communication 

interface between man and computer, or a concern with ways to embed organizations 

for problem solving into hardware. 

As far as the joint faculty is concerned, we intend to be opportunistic. 

That is, we believe that we should not actively recruit our own image of an 

"optimal" composition, but should cooperate with the rest of the campus to en

courage good research in information processing wherever it naturally arises. 


