NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Proposal for a
Center for the Study of Information Processing
submitted by
Carnegie Institute of Technology
to the
Advanced Research Projecte Agency

of the
Department of Defense

Allen Newell
Institute Professor
Systeme and Communication Sciences

Alan J. Perlie
Director, Computation Center
Professor, Mathematice

Edward R. Schatz
Dean of Research

October, 1964
(Proposal submitted April 27, 1964)

Iy

Proposal for a Center for the Study of
Information Processeing

This document proposes the establishment of a Center st Carnegie
Institute of Technology for the study of the science of Information processing.
It vas submitted to the Advanced Research Projects Agency in April, 1964, for
consideration at their request, in support of a request for funds. It des-
cribes in broad terms what such a center would be like -« what problems 1t
would tackle, how it would proceed in its work, end how it integrates into the
larger intellectual community of Carnegle Tech.

We start with a broad discussion of the goals of the proposed center
and an attempt to pla.ée it in context. From this follows e more substantive

discussion of the science of information processing, its current etate and

important problems. We then tske up the major issues that condition the organi-

zatlon and operation of the center.

The Goals Of The Center

The continuing, fundemental) aim of the center is understanding the
nature of information processing. It must be so. We sbide by the fmith that
out of deep understanding of a part of nature arises bhoth control and eppli-
cation. Further, the attempt to produce a science in an area that not long
ago was purely a technology -- to have first rate intelilects devote their
professional lives to it, to train young men to work in it, to raise centers
devoted to 1its exclusive study -- implies a belief that there is much to dis-

cover and deep understanding to be had.

.

"}

-2 -

Any attempt to define the field of information processing (called by
this or any other name) by 1ts inherent subject matter encounters difficulties.
Clearly, the fleld 1s concerned ﬁith information, the systems thet process and
transform it, and the way it is used to control, integrate and coordinate other
systems. But then the fields of control systems, information theory, computer
engineering, programming, automata theory, documentation and information re-
trieval, linguistics, dynemic programming, ﬁodem logio, statistical decision
thoery, and others as well, come one and all to be included. This 18 an
ungainly collection of subfields, comprising men who know little of each other's
work, perspective and goals, with boundaries that have been determined by the
history of parent disciplines and the flowering of specific techniques.

No institute can exist to study this field! 8election is necessary:

a narrowing of the focus to some coherent wedge. Even the attempt to state

the problems of the field, as we do below, adopts some point of view conditioned
by one of the subfields, and misstates the total as some god would see it.

This i@ the atate of the science and we make no apology for it. It does mean
that our statement of basic problems is itself a depcription of the viewpoint
and comitment of the proposed center.

Matters are even worse, All intellectual activities presume infor-
mation processing; all systems require communication snd control. As complexity
increases and as performance demands became more stringent, the information
processing component of all these activitles and systems becomes critical and

must be more deliberately studied and engineered. Eventually, recourse must be

N

-3

had to the range of devices used to build information processing systems --
to computers, sensors, communication equipment, etc. The professionals in the
substantive fields begin perforce to be specialists in information procesasing:
conducting research, designing syetems, etc. Thus the sclence of informaetion
processing pervades and interpenetrates all other fields,

No institute will range throughout so vast a domain. Of all the sub-
gtantive fields and regions of iIntellectual endeavor, only & few will be
represented in any cénter. Selection, mostly historical and fortuitous, will
be necessary. More important, there is no way in which research on information
processing can be the exclusive concern of a center, the way physicists are
the only ones who do physics, or biologists the only ones who do biology.
Important research con information processing -- important in its own right and
important in terms of the center's own specialized interests -- will occur
throughout the scientific community. This is emphatically the case at Carnegie
Tech, as we shall see later.

It might be thought that the issue is one between the science ard its
application: there is the pure science of information processing (to be done
in 8 center) end the applied science (to be done in the various disciplines).
In mathemetics, for instance, which also pervaedes all fields, we do talk of
pure mathematics and of applied mathematics. But information processing is
much more closely tied to its epplicatione. The new ideas and insights that

move 1t towerds being a science arise mostly from epplications rather than from

-4 .

any self-generative character of the pure science of information processing.
(The same is often argued of mathematice as vell, but that is a different
story.)

To summarize:' Any center 1s narrow by comparison with the whole.
More importent, s center is better characterized by 1ts selections of specific
probleme, methods and attitudes, than by its most general goals. Almost a
decade of research in information processing at Carnegie Tech has produced an
approach which sti11l seems to its major participants to be extremely pro-
ductive. The proposed center will be, by and large, a continuation of this
approach. We sre oriented towards "software" -« towards programs written on
digifal computers, We are empiricel, in that we believe in constructing pro-
grems thet do things; and in learning ebout information processing from the
difficulties of construction end from the behavior of the resulting progrems.
We are theoretical, although not so much by a dependency on formel models (such
a8 automats theory), es by trying to formulate the essential nature of infor-
mation processing. Thus many, although by no means all, of the tasks for which
ve bulld programs are selected for the understanding they yield and not for
their usefulness in applied work. This particular combination of theory and
empiric;sm stems from the view that the key problems today in the sclence of
information processing are those of discovery, formulation, representation, and
immediate generalization -- and thet we are not yet at the place of building
very elaborate or formal mathemstical structures that are significant.

As in all sciences, we devote a major effort to tool building and to

the understanding of what tools are needed. Tools, in this field, are largely

-5

programming langueges and programming systems. Since the most important
application of the science of information processing is the development of these
tools of progremming, the concern with tools can be made to yield double
dividends. Thus, we try to pose our tool building taskse so they shed light on
Tundamental scientific questions.

The work in information processing at Carnegle Tech has strong ties
wlth the behaviorel and management sclences as well as with the natural
sclences. We are concerned with how the human processes information, both in
1solation and in organized contexts. 1In fact, one of the other major appli-
cations of a sclence of Information processing 1s to permit finally a deeper
understending of how humans think, learn and decide es well as to supply
improved tools for proceseing increasingly complex problems. The intertwining
of concern with artificial systems and natural systems -- whether artificial
and natural languages or artificial and natural problem solving systems -« is
mutually beneficial, and will continue to characterize the approach of the

proposed center.

The Science Of Information Processing

With the genersl discussion of the previous section to put the work
of the proposed center in context, we can now describe what appears to us to
be the main problems and avenues of attack in developing a science of infor-

mation processing.

Problems of Discovery.

Teke any area of application of programming -- arithmetical calculation
vith matrices, numerical control of machine tools, theorem proving in logic,
translation programs for programming langueges -- any area whataoever. The
first programs that are written for the area are narrovw in application and
particular in conception. They tend to be‘Just great, aggregates of code. Thgy
may be impressive, if they do important tasks not previously done by computers
or if they exhiblt great exercises in ingenuity and tricky coding. But they
often do not appear to the outsider to be more then a techmnological stunt.
However, an important process hes been started, which is the main path of
advancement in our science. Subsequent progrems generalize the range of appli- |
cetion, or change the internal representation to increase time or space effi-
ciency, or simply clean up the program to meke smoother or neater or more
esthetic certéin of 1ts subastructures. Eventually, the structure of the task
enviromment, its relatione to other tasks, and its demands for processing become
transparent. It becomes sbidingly clear how the date structures and Interfaces
should be represented, and exactlj vwhat choices there are with the relevant
properties of each. It becomes clear what generally useful processes of inter-
mediate complexity should exlist and how to build complete sets of these from
vhich to construct total progrems. When this stage is reached, and the 1mport-
tant features of the class of programs have been stated in concise terms, it
cﬁn fairly be said that a real addition has been made to the science of infor-

mation processing., The sclentific knowledge is contained, not in a formal

-7 -

theory, but in the knowledge, however expressed, of the structure of a class of
information processing tasks end the programs that can do them. The validation
of this ascientific knowledge lies in the fact that operating programs run end
accomplish the tasks in the area, and that this know-how for the area can be
commnicated to new progremmers, who can then produce new programs of high
effectiveness in the area without themselves recapltuleting all the mistekes
end grotesqueries of the past. The degree of progress is often obscured beceuse
the end product, being e transparent way of structuring the task and its pro-
cessing, makes it difficult to understand how muddy the issues once were. As
in all science, the progress 1s contingent: the set of ideas generalizes only
so far; new tasks cannot be handled, though everyone was sure they vere easy;
and so on.

This pregmatlc process of achleving clarity of structure is not by any
means the whole story in the development of s sclence of informetion processing,
a3 we shall see, Yet currently and for some time to come it 1s the main source
of new idems and nev starting points. Since the epproach at the stert seems so
often to be brute force, particular, and task bound, it 1s worth illustrating

some important advances which developed thise way.

Example 1: Algebraic compilers. The construction of the programs that
translate progrems of algebralc statements into machine code has followed |
ekactly the routine described mbove. The originel compllers (e.g., FORTRAN)
vere impressive schlevements, but vere extremely complex and obscure., They,

and the other early efforts, gave birth to the myth that is still with us: the

B

-8 -

many man years it takes to construct a compiler. Yet within five years, through
the use of parenthesis free languages (so-called Polish notation), the develop~
ment of notations for expressing the syntax of a progremming lengusges (so-
called Backus Normal Form), and the development of translation schemes utilizing
push-down 1ists (or stacks, as they are also called), an important part of the
translation process has become crystel clear. This part 1s the syntectlc snaly-
8is of the source language (i.e., of the langusge ss written by the user). The
problem of the final preoduction of mechine code from an sppropriste internsl
representation 1s not yet so well understood, and 18 in fact an ares of much
current concern. Even so, the totel task of constructing a new compiler has
become only a modest task, as opposed to the horrendous one it once was -- and
fortunately so, since the pressure for new languages increases.

The construction of translators, although 1t i1llustrates the general
point, is thus an egpecially lmportant task area. New programming languages
are the tools for buillding information processing systems: Hence tools to
build translators are tools to build tools, with all the multiplication of
effect without multiplication of effort that is implied. Consequently, any
center for the science of information processing will have a major effort in
this area. Our own has involved the development of a special programming
Jangusge for speclfying syntactic snalysis, We have used g simllar scheme to
build up a languasge for specifying code production, that at least pushes the

translation proﬁlem back another step. From this and eimllar efforts by others

-9 -

it 1s a safe predictlon that soon the production of translators for langusges
inherently no more complicated than ALGOL, FORTRAN, or COMIT will become a

routine task.

Example 2: Formula manipulation. The task srea is that of manipu-

lating algebraic formuiles -- of simplifying, differentiating, factoring,
integrating, constructing, etc., Languages such a.B.ALGOL or FORTRAN do only
arithmetic, and extension into the area of handling the literal expresslions
would yleld a vast Increase in power. Formidable manipuletion problems in the
naturel sciences would become simply computations. Thls area 1s less far along
than the area of translator construction. A few systems have been built uti-
lizing isolated sets of subroutines for doing a few basic operations, esnd some
of these heve been used to yleld useful results. A progrem has been written
that performs integration, but es & demonstration progrem and an example of more
general symbolic processes. Qur own work involves embedding a scheme in ALGOL
{called FORMULA ALGOL) which permits the complete integration of arithmetical
and symbolic processes and should be one more step beyond existing programs.
Already the line of development is sufficiently spparent in the work of our-
selves and others to forsee the eventual incorporation into every algebrailc
language of symbolic manipulation without great sdditional complexity. On the
other hand, no clarification of the task analogoues to the use of stacks in |

trenslation has yet occurred.

Example 3: Monitors. By a monitor is meant a routine that controls

the computer processing of many different Jjobs. Many monitors have been written.

- 10 -

One impetus is the time lost in & very fest machine by requiring the human
operator to do any of the processing 1n initlating each new job. A second
impetus (Just coming into full force)} is the problem of handling many users
gimulteneously in time shering mode. Yet a third comes from systems which have
more than one processor and require a monitor to coordinate and assign jJobs. In
spite of the number of monitors, their importance, end the first class talent
that has gone into their development, we are still at the beginning of the trail.
Each monitor is an organizetion unto itself, each just a monstrous piece of code.
No structure has yet emerged; no consensus exists on what the crucial design
considerations are, from which the rest of the organization logically follows,
¥While we do not have progress to report yet, this is an ares in vwhich research

will be pushed.

Example k: Chess languages. We humens use a wide collection of

linguilstic devices to communicate with one another. Some small set of these
{4including some important ones) have been incorporated into programming langusges,
vhereby we communicate with machines. The devices left out we either do not
understand, are too difficult to implement, or are not thought to be worthwhile.
In order to explore a new linguistic device 1t 1s sometimes expedient to move to
a new tesk area in which it can be implemented and 1s useful. Thus, one may
start the process of understanding. Based on an initial use, other programming
langueges will incorporate it in different ways, or by different underlying pro-
cesses, until it becomes clear what the function of the linguistic device is and

how 1t affects the other parts of languages.

Fom

-1 -

An example 18 some work we are doing Iln developing a chess language
that permits one to designate cbjJects in the chess situetion simply by stating
the various relationships it satisfies. The translator must analyse the various
relationships and their interactlon, select an appropriate method to find en
object satisfylng these conditlions, and construct the program to carry out the
method. In generial, such an analysis is exceedingly herd (and is, in fact, vhat
good programmers are paid to do for e living). For instence, in an algebraic
language to permit the user to simply write down "the x such that F(x) = 0,"
for some genersl clase of functions, F, requires that the translator be able to
solve the equation for x. 1In general this 1s too hard a problem, asnd con-
sequently, current translators are not cepable of it. But in chess the relation-
ships are sufficlently tracteble that we hope to be able to characterize gen-
erally how the analysis and program construction chould go. It is m good bet
that once we do the analysis for chess, we will see ways to incorporate similar
facilities in more limlted ways into classlical command langueges.

There are other exemples of thie roed to discovery: list processing,
simulation langusges, numerical control, graphical langueges (Jjust starting with
programs such as SKETCHPAD) and so on. Each starts particular and gredually
becomes a vehlcle for revealing a little more of the structure of information
procesaiﬁg. Each tende to solve, with varying degrees of success, problems in
e multiplicity of new areas: list processing for pattern recognition now an
essential part of high energy physics research; numerical control for rocket

experimentation; graphicel languages for automating design, etc,

- 12 -

Problems of Integration.

The approach to discovery described above 18 divisive: a multitude
of separate strands, Clearly there 1g much common structure. In fact, whatever
is abidingly true in the nature of Information processing must occur again end
again in all these separate efforts. If you will, these efforts, when successful,
represent the elementary generalizations of our science. The problem is to ex-
tract from then the really fundementel characteristics and techniques of infor-
mation processingjl.e., to formalize. The difficulty, of course, lies in the
separate genesls of each strand. Each was made by differnet researchers re-
sponding to different formulatlons, and was shaped to the nature of particular
task areas.

There are at least two ways to go about an integration. Omne can
develop & formal theory of information processing systems, including the develop-
ment of the associated mathematics. This route is well traveled; the going is
rough but progress is by no means impossible, Indeed, some of the most lmpres-
slve dividends of this approach were given to the field as its birthright. In
1937, before any of the technology existed that has made the study of information
processing ah imperative, Turing formulated the concept of a unlversal computer‘
and proved that not all things were computable.

Such formal theories consist of postulated basic scheme for the
representation of all information and a set of primitive information processes

out of which 211 more complex systems must be fashioned. Their virtues lie in

- 13 ~

in being able to esteblish extremely genersal properties of information processing
systems within the model; thelr major difficulty ie limited power on relevant
problems. They cannot yet give any answer to efficlency, optimal design,
correctness, etc., when asked sbout programs of practicel complexity. We are not
working much in this area. On the other hand, good talent 1s being epplied by
others, and the power of this approach will steadily increase in time.

An alternative to developing formal theories is to incorporate all of
the important features of the separate strands into a single unified programming
structure. This 1s & ﬁuch more pragmatic approach than the formal one. As in
the processes of basic diecovery}ite_euccess 18 measured by the clarity of
structure schieved, validated by useful programming systems sppliceble to a
diversity of nev problems. Note that we sre not taelking ebout constructing e
monltor or supervisory structure in which all the separate specisl programming
syetems can co=exlet as separate equals. We mean a single linguistic structure
with mechanisms for creating and asslgning names, ebbrevieting, delimiting lex-
icel units, etc., Within this there should be a single set of mechanisms for
organizing processes.=~~ g pingle command structure., Particular data represen-
tations with their proper operations should be incorporated as neat subsystems
vwith clean interfacee between subsystems.

This process is not a simple one, nor one that can be hurried or done
by fiat. Let us illustrate. We are currently very active in this enterprise,
using ALGOL a8 a basic vehicle and producing a growing system which we can call
EXTENIED ALGOL. Now consider COMIT, e programming language developed for lin-

guistic snelysis, and containing a number of unique features. How does one

o 1 -

extend ALOOL, so that it has all the additionsl powere (of expression and of
processing) of COMIT without at the same time duplicating many of the functions
already in ALGOL <= and in COMIT in qulte different ways? One cannot just embed
COMIT in ALGOL es an undigested monstrous subroutine. One must find instead thet
natural elegant extension of ALGOL which accomplishes the importent new functions
thet COMIT has revealed.

One sees here clearly the complementary role of seperate, almost
isolated, efforts to bulld programming systems in new territory on the discovery
side, and the effort to bulld a single universal progremming system on the inte-
grative side, We wish to emphasize thls dual process, since we feel that 1t is
the main road to the development of a sclence of information processing during

these early, somevwhat progmatic decades.

Problems of Proof.

The programming profession is engaged at all times In constructing
large and complex symbolic structures that purport to do things and to have
certain properties. This program claims to invert metrices; that program claims
to post an accurate and complete status summary for e commander's view; a third
claims to translate any progrem in ALGOL into a machine langusge subroutine that
accomplishes the seme processing as the ALGOL program. How do we know they
accomplish their tasks?

The current ansver, of course, is that we don't know. Instead, we
are prepared to continually debug our programs. However, we do know that a large
proportion of programming effort is spent in this debugging; but also that

no really complex program ever becomes completely error free, One of the major

- 15 -

indications of the scientific maturity of information processing will be the
development of direct techniques of verifying that programs are correct and have
various properties. In short, we must learn to prove assertions about progrems.
By phrasing the task as one of proof, we wish to emphasize that a progrem is in
fact a mathematical object, snd that the techniques to be used are maxﬁematical
ones.

.Aggiﬁ; thére are two approaches to the problem of proving things ebout
programe. Starting from the formal theories of information processing eystems,
mentioned above, the concern with proof techniques is already uppermost. As we
stated earlier, the difficulty is that there eppears to be such a long way to go
before we are able to prove things about the complex algorithms that interest us.
Hovwever some rather general things can be shown. For instence, there cannot
exist any single general acheme that will determine the correctness of arbitrary
programe. The second alternative i1s to tackle complex algorithms directly, not
vworking vithin e completely formalized system, but trying to prove things more
in the style of an eighteenth century mathematiclan. Agaein, consistent with our
general epproach, we have been more concerned with this latter possibility.

Progrems are indeed very large and complex. Consequently, proofs
about programs are also complex. Invariably they involve the extensive mnalysis
of different cases -- as when one hes to ask how the program would behave if

the input data had a certain property (or if it didn't). However, the internsal

- 16 =
relationships in the program upon which the proofs rdepend mey not he very deep
or subtle, and it may be possible to conetruct progrems that will carry out this
case analysis. These will be true theorem proving progrems; they will try to
f111 4in the deteil of proof schemes suggested by human mathemeticiens. Since the
case analysis may run into thousands of cases «= each of which must in some
sense be discovered by the mathematician trying to prove the theorem ~= 1t mey be
that these mechanicel alde will be an essentlal ingredient in developlng proof -
techniques for programs and will provide a good exsmple of the power of man-
machine cooperation. We have been doing some work in theorem proving progreams

that use case analysis, in order to explore this possibility.

Problema of Efficlency.

It should teke no special argument to assert that the efficiency of a
program in processing information is one of its most important features. A
science of information processing should certainly heve some techniques for
asgesging efficlency and for knowing whether some theoretical limit 1s being
approached. Such concepts as the conservation of energy and (much closer to
home)} the channel capacity for information convince us of the power of such
general lawe. We believe in them in programming too. For instance, all pro-
grammers believe that you can trade time for memory and time for equipment. But
to date, no good theoretical formulations of this trede-off exists, and it can be
used only as the roughest qualitative guilde, Except in some special areas, such
as sorting, the problems of efficiency mst simply be put down as future scien-

tific business, but one whose study is critical.

- 17

Probleme of Representation.

To be processed, information must be represented in some concrete
form. The representation determines how much space must be used to hold a given
collection cof data. It also determines the processes required to write infor-
mation into the representation, to read information out of it, and to maintain
the information. Given a task to be programmed, the varlety of ways to represent
the informetion in it are not well understood. Yet what representation is
chosen will determine the program's efficlency and'flexibility and differently
80 at different times of the program's use. It is a commonplace that the hard
part of programming & new task 18 creating and selecting the representatlion;
most of what follows is routine coding.

Having pronounced the importance of representation, and by implicetion
asserted that a science of information processing must contain a theory of
representation, we confess that matters are in a very primitive state theoret-
ically. We are st111 at the stage of the natural historiean -- discovering new
representations under odd rocks mpd gradually collecting them and cataloguing
their interesting properties. An important exemple of this is list structures.
These were developed in connection with a apecific tesk area (problem solving
.programa) and have since become a well understood and widely used representation.
However, there exists no wider framework within which to relate list structures
to the various other existing representations or from which to generate new rep-

resentations in any systematic way to meet new requirements.

- 18 -

Problems of Problem Solving Pover

The following is elementary: a computer delivere raw processing powerj
hovw it is shaped to useful ends depends upon the progrem. Assured though we are
by basic theoretical results that we cen do anything ve can specify, there are
narrow limits to our understanding of how to achieve complex ends through complex
processed. One major part of a sclience of information processing is concerned
with advancing our problem eclving power.

As elsevhere, formal theory about problem solving is worse than
rudimentary. Instead, progress 1s achieved by selecting task areas that, while
well defined, demand excessively difficult end unknown processing, and then
trying to construct progresme that do these tasks. The process is quite snelogous
to that described in the sections on discovery and integration. However, tech-
niques of programming are to be distinguished from techniques of problem solving.
One does not (yet) try to incorporate into an integrated programming system, such
es EXTENDED ALGOL, the concepts that have arisen in conetructing theorem proving
programs. This separation is only temporary, reflecting a difference of starting
point -- & concern with linguistic mechanisms, such as naming, es opposed to e
concern with reasoning mechanisms, such as heuristic search. The dietinction
disappears as soon as we ask our language processors to do any substantial smount
of inference and selection of methods of solution.

The whole area of problem solving makes & pretty illustration of the
discovery-integration process. Many separate problem solvers have been written;

the tasks have usually been idiosyncratic and non-utilitarisn -+ gemes, puzzles,

- 19 -

and areas of elementery mathematics. BHome of the individual results have been
impressive. Qut of these separate efforts has emerged a clear understanding
of two related important problem solving mechanisms; the formulation of a
problem as the search through an exponentially growing tree of possible solu-
tions; and the role of various heuristice to narrow and guide the search so 1t
can be successful w:lth:lh reasonable processing times.

A current problem in this area is that of generality: how to build
programs that can do a wide range of tesks. In normal applied work the interest
focuses on a specific task, and in the interests of efficliency the program 1is
adapted as much es poesible to the particular features of the task. As a
consequence, little experience exists sbout the organization of general problem
solvers; end when the need srises to build progrems with fairly general cepe-
bilities (as in command and control enviromments) we are stuck with extra-
polating techniques adapted to an opposite goal. This limitation of our past.
experience to highly specislized progrems lies at the root of the myth sbout
the inherent rigldity of programmed systems. One epprosch to this problem,
and an approach we are taking, is to tske a single problem solving progrem
(called GPS) and try to make it solve a wide range of problems (about ten).
GPS initially proved theorems in elementary logic. It 1s being extended to
various puzzles, elementary methematical menipulations, more advanced proof
procedures, etc. As with most of the work on problem solving, the tasks them-
selves are not yet of practical importance; also, one could probebly design

for each task a separate progrem that would be more efficient. But by trying

- 20 -

to use the same set of mechanisms for all the tasks we increase the efficlency
with which we learn the netursl generalizations of program organization and
descriptione of task enviromments. This approach is the direct anelog of the
attempt to build an EXTENDED ALGOL, except that it is at & more primitive and

experimental state,

Problems of Mass Information.

The problems of storing and accessiné information undergo radical
change a8 one goes from fairly modest emounts of information to massive files,
Partly this is due to a radical discontinuity in the nature and relative speed
of the accessing mechanism -« from rendom access in microseconds to serial or
cyclic access in tens of milliseconds (snd recently to pseudo-random accees in
tenthe of seconds or seconds). Much more constrained strategies of accessing
rust be used and great care given to the rationale and timing of each access,
These special features alone would be enough to dictete concern with the clesses
of processes involved, They are perhaps most of vwhat is involved in handling
large well ofgeniied files (as in most business date processing).

But the more general problem of large amounts of information i1s that
the progrem (i.e., the progremmer) knows very little about the data he wants.
In e small program, the progremmer knows exactly what information is stored
where and how it relates to the tesk of his program. But in extracting
information from an encyclopedis, an intelligence file, or even a table of

integrals, only the most general features of the data are known. The

- 21 -

relevant data could be in the file in many different forms, fractured in many
different parts.

Concern with this problem of organizing complex retrieval systems is
conditioned by the accessing characteristics of the physical store, but would
exist even if we had billion word random mccess memories. The problem is
intimately involved with natural languege. It is not that we must use English,
because (say) we want to be essy on the user. Rather, netural languege 1s the
only universal vehicle known for expressing arbitrary information. The formal-
ized languages that will eventually develkp to handle large wlde renging masses
of information will contain most of the important mechanieme of natural languegg
and will develop out of the study of natural lasnguage. The problem of massive |
information is also intimately involved with mechanized inference techniques,
ao that a fact can be gleaned from fregments of deta in the store thet have
never before been brought together. One can pursue these inference problems
along the same line as the problem solving programs -- Working with formalized
syetems, rules of' traneformation, and so on. Alternstively, one can vork at
developing internal models, such that as each parcel of information is added to
the syatem it is essimilated into the internal model. When requests are made
of the system, the information is obtained ‘by an investigation of the current
state of the model. This latter spproach currently seems very profitable, both
tp us and to other worke.ra in the field, end some of the early vwork in this

direction was done at Carnegie Tech in the form of question-answering programs.

- 22 =

The imminent advant of large scale commercial aysﬁeme possessing
enormous storage will make mass-information handling and retrieval problems,
hitherto a specialized task ares, standard fare for all large scale computer
users, This flood to fill and use available storage will be arranged with
langueges that heve increased naming, state, and search sophistication. The

design of excellent I.R. langueges cannot wait much beyond 1967.

Problems of Communication.

A languege is Janus-liket one face towerd each communicant. When both
are human and substentially identical one is hardly awere of the two-faced
nature, When there 18 great inequality -- a mother to her child, a boy to his
dog, a man to a comput.er == We view the language only in terms of the weaker.
The problem is to get the computer to understand the instructions we give it;
the man can shift for himself. Wé have already partially learned our lesscn
with respect to computere; the whole development of programming langueges
reflects an attempt to ease the task of the humen. But at each step the course
is roughly the same: a new linguistic feature is proposed (for human benefit)
and the problem is how to cnstruct the systems to interpret it and uee it
efficiently. All the science is built around the machine side of the language
problem; the "new linguistic features" come of themselves, full blown, out of
the minds of those experienced in the programming art, or these struggling with
8 problem.

8t111, the human is en information processing system in his own right

with 'his own epecial properties and limitetions. At some point, when our

- 23 -

ability to construct programming languages becames sufficiently great, we will
need to know a great deal more sbout the human and his cammnication problems.
What are his languages? How does he interpret linguistic expressions? What
stages of gradual refinement and definition do his intentions go through on the
way to becoming a set of instructions to be given to a computer? What >:Ls the
role of mnemonic symbols for him, and how complex cen they become before they
ceage to be helpful? All these questions are fundamentally psychologicel and
linguistic, and they have interest in their own terms. Our concern with them
here is as applied psychology -=- as the humen engineering of language and
commnication with the cowmputer.

Let us give two examples of work in thie area that we have an interest
in pursuing, and vhere .we have given some preliminary consideration to the prob-
lems. The first concerns on-line continuous camnuncq.tions (8o celled conversa-
tional mode) between men and computer. We are currently pushing thie problem,
and like everyone else We are proceeding by designing systems, putting them into
operation, discovering the difficulties and revamping the system. But 1t is
clear that the humen has difficulties thinking clearly in real-time -~ witness
the difference between Bpokep and written English. Ultimately {after the first
exploitation of the new powers opened up by the hardware), the communication
languege must adept to these i;lmitat:lons of the human. One could believe this
 would heppen eventually jJust by successive approximation. One could proceed a
good desal faster by understanding in some depth the nature of the human limi-
tations, and then with this understanding in hand, designing language systems

to reflect 1it.

D!

- 24 -

The second example stems from searching for alternatives to on-line
interaction: Perhaps the human could simply communicete his rough plens to the
machine, and let the computer fill in the detalls. This puts the computer in
the role of probiem solver again, but the problems would not be very difficult
(that is what it means to be & "detail"). However, before one can worry about
the computer progrem, one needs to knovw a good deal about the nature of human
plans = about what it is that the humen can communicate while he 1s still vagué
about the details. (The GPS program referred to earlier, used to simulate humen
problem solving, has already given us some information ebout this.)

We have ranged rather widely over approaches and problems in the
sciencé of information processing. The pattern adds up to a substantial and
integrated attack on the science, and the one that will characterlize the center
in the coming few years. But to return to the theme in the earliest section,
much has been left ocut. 8ome of that missing reflects our focussing on the
center 1tself and not on the totel Carnegle Tech enviromment. Although we have
mentioned the work on psychology, using simulation as a major tool, we have
underplayed it. And we have not mentioned at all the work in management science
nor the task aress that.arise out of physics' relatively new concern with data
processing. But there are still other areas that currently have no strong
representation at Carnegie Tech: the translation of natural languages; the
problems of pattern recognition in various difficult and noisy environmenté
{handwriting, picture interpretation, biological enalysis); the problems of

error correcting and detecting codes. We have not mentioned computing hardware

B

- 25 -

even oncel! 1In one sense there is space for these researches in our earlier
descriptions the ti1lling of speclal areas provides the initial glimpses of
important structure. But no particular subset are essential to the center's
own program of research and so the cholce of which ones exist and flourish in
our total enviromment will be time dependent on more external. factors. The
matter of herdware is a special caese and we will treat it more fully in the

next section.

Organizational Issues Concerning The Center

Given the picture of the substantive orientation of the proposed
center; we can turn to questions of orgaenization. There are a few major issues
and pointes of view, each of vwhich requires discussion. Once these have been set
forth, the actual details or organization and growth follovw simply and without

further justificetion in the final section.

Relationship to the Carmegie Tech Research Community.

We have already commented at length about the way information proc-
enssing pervades other flelds and the way research on information processing
wltimately becomes an integral part of many fields. As a consequence, the
center must be "open" towards the entire campus. Regearch on information
processing must grow up and flourish throughout Carnegie Tech because the Center
is here, not in spite of it. Nothing would be more fatal than to erect an
organization whose natural tendency was to ebsorb sll such research within its

confines, or which even operated to create a gradient of sophistication, in

1

- 26 -

which those "outside" the center have little access to the advances achieved
"inside."” Thus, in a sense, a very substantial segment of Cernegie Tech should
become the laboratory for the study of information processing.

The organizationel form that seems most adapted to this goel 18 a
center with a relatively small full time faculty and a very substantial joint
faculty. The full time group, consisting ultimately of six to seven members,
hes 1ts research objectives directly focussed on the science of information
processing, substantislly within the purview of the preiious section, The joint
faculty have thelr interests and motivations split between a concern with infor-
mation processing and some other substantive field. This "other," of course,
may slmply be one of the meny espects of informetion processing thet happens to
grow up in one of the departments -~ e.g., & concern with redundancy techniques,
or with hardware devices, or menagement control systeme -~ anything that happens
to settle more comfortebly elsevhere,

The important distinction is the following: We 1n the Center are
comtitted to a line of research, as outlined; vwe are not committed to any
particulaer size or composition of the Joint faculty. The joint arrengements
form an opportunity to encourage research on information processing wherever
it most naturally occurse on campus by offering partial financiael support for

faculty members, support for graduate students, end an official way of blurring

" the lines of separation between those inside and outside the center.

The current sltuation at Carnegie Tech 18 consistent with this organi-

zational form, and supports the proposition that this is the correct way to

B

- 27 -

organize a center for the study of information processing. We have an inter-
departmental doctoral program in Systems and Communication Sciences. The heart
of this graduate program is s concern with information processing, but 1t covers
the full range from control systems, through cognitive processes, to lqgic. The
current participating departments are Electrical Engineering, Mathematics,
Pgychology and the Graduate Schocl of Industrial Administration. There are over
fifteen faculty members involved, and sbout fifty graduate students, mostly inl
Mathematics and Electrlcal Engineering, all of whom are going toward the doctor-
ate. In each of these four departments there 1s already much work on information
processing that fits the "joint feculty" concept. Most of the work in Mathematics
connected with Information processing is directly related to the center, but not
gll., The arrival of good facilities for formal manipulation will produce an
inereese in the involvement with advanced information processing techniques. In
Electrical Engineering, for example, there has been developed a programming system
called SCADS (under ARFA support, in fact) for handling continuous dynemic systems
on the digital computer. (This is not the first such programming system of this
kind, but appears to be the most sophisticated to date.) SCADS, which was done
by two graduate students in EE last summer, is a nice example of many points -~
of what, graduste students can do if glven their head; of the way new systems get
born by users fighting with problems, and then get incorporated into the reguler
system; and of the way Information processing further interpenetrates a field,
since one of the developers of the system will be doing his thesis on programming

aids for apalysing non-linear dynamic systems,

- 28 -

Both the Psychology department and the Qraduate School of Industrial
Administration are thoroughly saturated with a concern with information processing
and much of the research in information processing done at Carnegie Tech in the
last eight years has been done in these two departments (including the development
of programming languages and problem solving programs).

We have mentioned so far only the four depertments that heppen to be
involved in the interdepartmental graduate progrem. But other departments are
also involved in information processing research. The Physics department has
Just added to its faculty an expert on information processing as related to high
energy physics research. There is a substantial research project in Civil
Engineering to develop a programming langusge and system for the area of hydrologyn
As one final indicetion, & young post-doctoral fellow from the Chemistry depart~
ment is being supported by ARPA this year to vwork on doing formel analysis in

chemical energy calculations by camputer,

Relationship to Graduate Students and Education.

We have always felt that graduate education 1s part of the growth of a
geience -~ not Jjust a logistic function to be performed, but an integral part of
the process of advencing the sclence, ‘The act of teaching refreshes and stretches
the mature researcher. The impact of the uncoomitted and iconoclastic mind of
the graduate student forces the continual re-examination of old solutions; and
offers the best chance for the emergence of something really new. We fully expect
a major part of the research output of the center to come from the work of thé

advanced graduate students.

- 29 -

A consequence of thig viewpoint 18 that there will be no permanent
group of full time non-faculty research fersonnel at the center., Thus, we will
differ from a resesrch institution in that all the research people here will
also be concerned with graduate education. There will, of course, be all sorts
of arrangemente that involve exclusive commitment to researcht post-doctoral
appointments, visiting appointments, semesters with no teeching duties, etc.
But all these are esgsentially temporary in nature.

In the finel section we estimate the number of graduate students vwho
will be associated with the center, either through the full time faculty or the
Joint faculty. The number is currently about 25 and will increase to about 60
during ‘the next four years. Most of these students are in the Systems and
Communication Sciences doctoral progrem, mentioned earlier. Only a certain
fraction of these students will be supported out of the center's funds, since

meny of the other research efforts on cempus have thelr own support.

Mixing Service and Research.

In all events there will exist at Carnegie Tech a Computation Center,
whoée function 1t will be to provide the Carnegie Tech community with whatever
computing power it needs. The relationship between the Computation Center and
the proposed center for research is a crucial one. The problems are whether, on
the one hand, those who just want some computing done, even as part of informe~
tion processing research, will be short changed, everything being in & constant

state of flux due to research in progress and no one in the camputation center

- 30 -

caring sbout enything but research, or whether, on the other hand, no one in
the proposed center will get any research done because they are so busy pro=-
viding service. All solutlons endeavor to separate the function in one wey or
another, ranging‘at the extreme end to using separate computers or even to
creating completely separate organizations. Our proposed solution 1s to incor-
porate the Computation Center into the proposed center organizationally, to
utilize a single computer facility, and to structure the internal organizatioﬁ
of the proposed center to deal with the mixing of service and research.

The most important argument for the use of a single facility is that
nothing can be gained by having two. Under all circumstances the vest meajority
of people working on informetion processing research are not concerned with
modifying the currently operating programming system or equipment configuration.
These people have as big an investment in a stable, efficent, smoothly running
system as any chemist or physicist, who only wants to get his celculation done.
Consequently, in terme of service provided the computer system devoted to
information processing research differs not one whit from that devoted to
"gervice computation."”

The real probiem ia how to live with a system which 1s being sdvanced
almost continually, both in the basic progremming systems. and langusges, and in
the equipment configuretion. The theoretical answer 1s easy: simply control the
process of change sufficlently well to avoild instebllity. The cepability for
doing this may have arrived only with effective time sharing systems, which
permit systems work to proceed in paraliel with other use under suitable protec-
tion. In any event, this is the path we are pursuing with out system and we |

expect to be able to make it work eventually.

- 3] -

S0 far we have addressed only one side of the issue; how to assure
adequate service while doing research. The other side -- how to essure adequate
regearch whille dolng service -= must still be deelt with. Our solutlion here is
to divorce research from development and mainteﬁance. No member of the research
group (roughly, the faculty and greduate students) will heve any cperating
responslbility. Conversely, there will exiet a substential full time program-
ming staff, whose function 1t will be to institute change and to malntain the A
programming systems. This programming group wlll conslst entirely of systems
programmers, as that term is currently used in the programming professiocn. Their
work will be information processing oriented as distinct from epplication pro-
gramming. It hes never been the policy of Carnegle Tech to provide epplication
programming, and no change in this policy is anticipated.

It was stated earlier that no permanent full time reseach personnel
would exist at the center. The programming staff under discussion does not
violate this statement, and 1t 1s quite importsnt to understand the distinc-
tions that ere being made. Much programming, even at the higheat technical
level, is not research. The programming and installetion of a language already
available on other machines, is not research. The reworking of the ALGOL system
already in use to improve its efficiency by a factor of two, is probably not
research -« aslthough it may involve some very 1ngenious programning tricks, and.
is certainly worthwhile. The improvement of the monitor system by adding new
features ls not research, even though it may take the best programmer to accom-

plish it, since storege and timing constraints are so tight. The incorporation

-32 -

of a new programming system, created in tl}e center as a plece of research, into
the current operating system is not research, even though 1t is & necessary
follow thrqugh before research becomes useful.

This last example is worth additional expansion. The typical life
history of much research done at the center will be as follows. A graduate
student will get interested in some aspect of programming, say in monitor Bystems.
Working with one of the professors es advisor, he develops a programming language
in vhose terms monitor routines may be expressed, including a technique for
. translating the symbolically expressed monitor into machine code thet meets the
various timing constraints of the hardware configurstion. Focussing on the
essentidls, he works with a " pseudo-machine" that he has defined for his own
purposes end simulates it on the computer. This pseeudo-mechine differs from the
existing machine in many ways -~ simpler in many respects, more complex in a few,
At the termination of this research it has become abundantly clear that this
monitor language should be used :l’_o'r the Carnegle Tech system. At that point there
may be a full man-year of hard development work ahead, for it is unlikely that
any such nevw ldea could be applied for the first time wlthout considerable effort.
Yet this next man-year ié Just development work; it 1s not research. Further, it
is inappropriate to ineist that this student personsally engage in this develop-
ment. At that poin'b the full time programming staff assumes contrcl, and does
the additional wbrk necegsary to incorporate it into the system. They will con-
tinue to improve its use in the operating system. Meenwhile its limitations
become spparent. In coping with them they may make a substa.nt;a.l enough contri-

bution to the progremming art so that, in retrospect, research has been done:

-33 -

revealed as a sideline to the task of mak_ing the Carnegle Tech operating system
system as good as possible.

.The point in presenting ‘such an extended example 18 to show that there
can be a meaningful difference in function -~ snd even in creativity -- without
8 difference in intellectual level. The best part of the systems programming
vorld todsy does not do much research by the definition implicity given above; it
does high clasa engineering.

We have labored this long to establish the legitimacy, in a propos_a.l
for a research center, of a large full time progremming staff whose function is
not research. The large size 1s dictated by the need to keep the total system
stable in the face of contlnuous advancement in the state of the art. The group
is in fact larger than 1t appears. It 1s sugmented by a substantial number of
undergraduates; in fact, it is from the pool of undergraduates that the addi-
tional programming power comes to do meny of the extra features and provide the
necegsary extra puéh for their rapid accomplishment. At Carnegle Tech we have
used large numbers of undergraduates as programeers for many years, and have
found this to be an admirable practice, paying a very large educational bonus as
well. 1Its one main disa.(ivantage, heving students responsible for operating system
systems, We propose to rectify by the presence of the full time prog:r"amm:lng ataff.

In general every one at Carnegie Tech involved in information proc-
esa:ing research does his own progring == Just as a ma.thematiéian does his own
mathematics. A very few projects exist of such large megnitude thet this is an

unreasonable mode of operation. An exemple vwould de a large question-answering

-3 -

program. Consequently, a small number of full time programmers will exist to
work on these projects. These are to be considered ms full time technicians,
and not independent research sclentists.

With a single computational facility kept in stable performance with
an extremely advanced software system, everyone benefits -- the researcher on
information processing and the researcher who only wants his information proc-.
esged. There 18 no cleen answer to the question of what proportion of the
center's cost should be assigned to research and what to service. If all the
non~informatlon-processing-research peopie would vanish, the costs of the center
and the facilities would not be much less. If all the informetion-processors
venished, the cost would be & lot less, slthough still not esmall, end those left
would get less advanced software. However, ARPA should not support research
which is not related to information processing résearch. The administrative

control will, of course, lie with those responsible for the center.

Equipment, Hardware evelopment and Hardware Research.
The center, by inclination, talent and past action, is a center of
software research. What 1s needed on the hardwere side? The issues naturally

break into the three parts in the heaeding and we will take them up in that orden

Equipment. Four things determine how much equipment one needs at any
time. First is the number of users. Second is the emount of processing per user,

both in time and memory. Third is the style of use these users will adopt. And

- 35 -

fourth 1s the basic proposition in programming research: have available substan-
tielly more capaclty than one can Jjustify.

The oddest of theselis style. It refers to the transition now begin-
ning to a time-sharing mode of operation in which the user is ablé to keep vast
amounts of informstion in the machine at all times, instantly availlable at his
call. This new style, hurried into existence by ARPA itself, carries with 1t a

large saltues in equipment per man. Large secondary stores, high capacity trens-

"~ fer rates, remote stations, a large incresse of time spent by all users in commu-

nicating with the machine -- all these add up to a substantially higher "overhead!
Bince this 1ssue of style relates directly to the researcher's effectiveness in
using the machine, it is clear that the center must remain relatively close to
the best available in this department (independent of the fact thet one part of
our research interest is concerned with how to develop this style).

Carnegle Tech 18 e relatively small envirommentj consequently the
total number of users is relatively small (compared, say, to the University of
Illinois or MIT), even when one takes into account the high density of scientists
concerned with information processing. The computatlon requirements of the univer
8lty background are not_éonsistently excessive. Thus, although large computers
are required for information processing research, their total demands lie well
belov the most powerful systems availeble in the country. For instance, our
current system has somewhat less power (in qperatiéns per gecond) than an IBEM
TOOk. The situation on memory is somewhat different. Progreamming research, and
especially work in problem solving, requires as much random accese storage as one
can reasonably get. In this last department, we sgain need to be near the top

of what 1a available.

- 36 -

The finel consideration -- the need for "over capacity" -- is based on
the need to ignore questions of space and time efficiency in order to get on with
discovery. An‘example will meke this clear. The initial, uniform resction of
the programming world to list processing when it was first introduced in 1956
{when big machines hed 4,000 words of storasge) was incredulity that someone would
throw helf the memory to store the links to other words. Yet 1t was precisely
this dis-efficiency that allowed many other features to be exploited, and whicﬁ
beceme less and less important as large memories became aveilable.

Generally, for an active installation the need for computing power has
grown exponentially. Our own growth is from an IBM 650 in 1956 to a Bendix G20
in 1961 (an increase in power by around two hundred) to a CDCe~Bendix G21 in 1963
(another increase of over four times). This ie a growth rate in pover of some-
thing like three per year, and is in no way unusual. The emount of computing
obtainable per doller is also growing exponentially, end has absorbed some, but
not all of the cost of this growth in power. Consequently an increasing invest-
ment in hardware is still indicated. That this exponential growth must stop
eventually 1s clear. Yet the continued expansion of our knowledge of how to use
the computer in sophistiéated ways end the continued change in style in using
them (always in the direction of increased leverage for the human mind, hence
requiring increased qperafions per thought) virtually guarantees that the expan-
sion will continue for another decade at least. |

Another factor that tends to increase the emount of equipment needed,
although by an amount small in comparieson with the total growth rate, 1s the need

to balance the system while keeping it stable. The sequence goes like this: At

- 37 -

time T a decision is made for a substantial increase in the equipment configu-
ration, to provide new capabilitles, a chbnge in style, etc. This involves e
change in the prbgramming systems and work on these is initimted. After the
eqniﬁment arrives, the new programming systems are installed and operational
experience accumulates, it is discovered thet the vislon at time T of the state
of affairs at installation wes faulty: the disc capacity is limiting, or trans-
lation takes too long to permit on-line compilation, or what not. The performapce
of the totel system falls eppreciebly below that predicted due to a particular
feature that becomes limiting: the system 1s out of balance. Theoretically, at
this point, the system could be balanced by a readjustment of the total configu-
ration keeping total dollars fixed. However, to do so 1s to unstsblize the whole
system -~ to require réworking of the just finished programming system beceuse
meny features of the hardware configuration have been altered again. The alter-
native == and the one that Js slways teken -- 18 to leave the existing configura-
tlon fixed and to add some incremental equipment to try to achleve balance. This
permits one to mekxe as small = change as posslble in existing programming systems.
The net result, of course, is to remove the offending limiting factor.and to re-
veal the next one == thus ceusing the addition of yet another small increment of
equipment'and prograxming system. The root source of thise rather wobbly way of

business 1s lmperfect vision in the face of a dynemic enviromment; end vwhile there

. is no intention to condone 1t, there does not seem to be anyway to avoid it and -

st111 progress.
The net result of these considerations is a projection of the total

equipment configuration that rises from a current rental equivalent of somewhat

- 38 -

under a million dollers a year to sbout two million dollers a yeaer in 1967-68.
The exact configuration is given with the budget, including estimated cost. The
grovth is made ﬁp of four parte: a relatively modest increase in central processor
power; a more substantial attempt to keep up with the secondary storege require-
ments; a reasonable growth rate on remote terminals of falrly conventional type;
and the acquisition of a random access "bulk" store (half-million words and up)
when it becomes available. Although cne high performance console is included
(1964-65), no other attempt 1s made to keep abreast of advances in such man-machine
communication devices (but see the section on hardware development).

This total configuration is shared between all users and its costs must
likewise be shered. These estimates on this division are shown in the budget

request.

Herdware development. There 18 a need for a modest sized engineering

group in the center, independent of any major research into hardware. The needs
are several. First, 1t 1s essential thet there exist in the center a first rate
knowledge of, end sophisticetion in, the herdwere state of the art. Otherwvise
one is at a decided disadvantage in any negotiations with the camputer industry
that involves new or special equipment. Estimations of reliebllity, ease of herd-
ware adaptation into the existing system, probability of successful delivery on
time, and definition of ecceptance criteria,are all exsmples of what must be done
in-house, independently of the manufacturer. In a large and experimental configu-

ratlon, even the question of maintenance cannot be left wholly to the manufacturer.

)

- 39 -

An informed technicel Judgment of the seriousness of maintenance difficulties
independent of that of the menufecturer's maintenence engineers is essential,

The kinds of needs described ebove extend both to the writing of speci-
ficaﬁions for epecial equipment end the monitoring of any special contracts, end
to the estimation of the future configurations both needed end possiblé in the
1ight of on-going hardware advances.

A more substantial need 1n terms of the smount of people and budget
required concern the design and constructicn in-house of a small amount of equip-
ment. The argument 1s simple, Programming research often demands slight equip-
ment additions and modification beyond conventicnal configurations in order to
meke certain developments possible. These are first seen by the researchersg be
fore the industry i1s prepared to provide the new gear. A siandard example from
the recent past 1ls the provision of comnunication terminals with visual display
and graphical input capebility. Another example 1s the addition of & list proc-
essing adjunct tora standard configuration, something that maskes no sense except
at en installation tﬁat is doing & great deal of list processing. Yet for such
en installation, a modest capitsl expenditure on a plece of equipment could pay
for i1tself many times over. It could even permit modes of operation otherwise
denied, such as conversational modes of interaction with list processing systems.
No manufacturer will provide such a plece of gear. It must at least be designed
in-house; and, glven the judicious use of subcontractors, it might be faster and
cheaper to construct the gear oneself,

One finel and important examplé is the construction of Interfaces to the

existing configuration to ellov a new device to communicate with the central

- bo -

machine. Many of these will arise from the demands of the joint faculty to auto-
maete vérioua experimental and exploratory arrengements. These will all be one-of-
a-kind jobs that regular manufacturers will not touch. While part of the cost will
be born by other sources of funds, there needs to be the whereWwithal to meet them
half way.

Note that none of these items is research. Even the list processing edjunct
mey be a perfectly stralght-forwerd wired progrsm machine. It is Justified by
what it allows for progremming research, not because i1t ls an engineering achieve-
ment.

It is our estimation that there will be a continuous enough étream of these
projeéts to Justify a modest engineering group. As with the programming steff,
this group is full time, and is not considered to be a research group. Likewise,
we anticipate that they will male considerable use of undergraduate students, which
w11l provide that varisble pool of manpower for special projects.

Unlike the situation with the baesic equipment configuration, we are not
prepared to submit coste for specific projecte. One small project, involving the
incorporation of the RAND graphical tablet, i1s currently underway, supported out
of the present ARPA funds. But even here, we are not prepasred to state future
costs, since the current phase involves a design study to estimate what sort of
additions are necessary. Consequently, we have placed in the budget a relatively
modest lump sum for each year,

Hardware research. Wwhile the case for a hardware development group is

straight-forward, the question of hardware research is somewhat subtle. The center

as organized contains no real effort on hardware research. On the other hand, we

- 41 -

feel that there are strong flows back from programming research into hardware,

and we would have been happy to have such an effort en integral part of the center.
However, e feei no need to meke a major attempt to obtain such en effort in order
to "complete” the center: it stands on its own feet as & software oriented group.
We shall encourege the growth of hardware research; this 1s one of the freedoms
that the concept of Jjoint faculty gilves ue. With the engineering development
.group we will have enough latitude to encourage initisl efforts in this direction.
But whether Carnegle Tech grows strongly in the hardware direction depends on

opportunities we cannot now forsee,

Composition of the Faculty.

The growth in vwork in informetion processing over the last two years at
Carnegie Tech, mede possible chiefly by ARPA funds, has been used mostly to
strengthen the research approach alc;ng the lines described in the earlier section.
Hovever, it should not be concluded that we feel the current distribution of effort
1s optimal. _Further modeet growth of the central faculty, es implied by the
creation of the center, will permit us to adjust the composition of our effort in
ways that seem sppropriete to us now.

The firet ls greater strength in the mathematicel theory connected with
programming. Our own empirical orlentation does not blind us to the slowly
increasing rele\fance of more formal treatment, especially if done in an environ-
ment which is empiricelly informed.

A second area is that of natural linguistics and a concern with human

cammunlcation. Whether appointments in this area would be in the full time faculty

- 42 -

or Jolntly with psychology is sn open question and in fact irrelevant. But there
is a large gap in the Carnegle Tech enviromment in the linguistics area, and this
needs filling.

We have already commented that our plans for the full time faculty do not
include scientists working on computer hardware. Yet this should be mentioned
here again, since we propose to be opportunistic about it. The most likely
cendidate is a faculty member whose hardware interest lies adjacent to particular
programming strengths of the center; for exemple, a concern with the communication
interface between men and computer, or e concern with ways to embed organizations
for problem solving into hardware.

As far as the joint faculty 1s concerned, we intend to be opportunistic.
That 1s, we belleve thaet we should not actively recruit our own image of an
"optimal" composition, but should cooperate with the rest of the cempus to en-

courage good research in information processing wherever it naturally arises.

