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1. Introduction.

In this paper we consider the linear differential equation

(l.D y(n)(z) + (2)p2(
z)y(n"2)(z) + ••• + pn(

z)y(z) = o,

where the functions p.(z), j = 2,...,n, are regular in a simply-

connected domain D, which does not contain z = <».

Equation (1.1) is called disconjuqate in D, _if no (non-trivial)

solution of (1.1) has n zeros in D. (The zeros are counted by

their multiplicity.) Equation (1.1) is said to be m-m disconju-

gate in D _if n = 2m and no (non-trivial) solution of (1.1) has

two zeros of order m in D.

Necessary conditions for disconjugacy of equation (1.1) in

the unit disk as well as sufficient conditions for m-m disconju-

gacy of self-adjoint equations of the type (1.1) are given in this

paper.

In section 2 we consider the effect of a linear Mobius

transformation of the independent variable z on the form of

equation (1.1). Modifying a result of Wilczynski [10], we assert

(Theorem 1) the existence of certain combinations of the coeffi-

cients of equation (1.1) which remain invariant under the group
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of linear Mobius transformations. These invariants, which we

denote by I.(z), j = 2,...,n, play an important role in our

study of disconjugacy properties of equation (1.1).

Making use of Theorem 1, we obtain in section 3 bounds for

all the coefficients of the disconjugate equation (1.1) and all its

invariants. Thus, we prove (Theorem 2) that if equation (1.1) is

disconjugate in |z| < 1, then

M SM \ T {*\ \ s A( ~j , n) I ~ I s i -i _ o _

a n d

( 1 . 3 ) | p ^ ( z ) | <L o A > l z l < 1> J = 2 , . . . , n ,

D ( 1 - 1 z l ) ^

where A(j,n) and B(j,n) are constants which depend only on j

and n. Theorem 2 extends a former result [7, Theorem 5], where

a bound was given only for the first non-vanishing coefficient of

the disconjugate equation (1.1).

By a procedure essentially due to Fano [3], we obtain in

section 4 a differential equation of the type (1.1), such that

this n-th order equation and the second order equation

w"(z) + s(z)w(z) = 0

are simultaneously disconjugate or not disconjugate in D. Using

then a result of Hille [4], we show that (1.2) and (1.3) are of

the correct order of growth.

Finally, in section 5, we generalize a recent result of Kim

[6, Theorem 2.1], and give (Theorem 3) sufficient conditions for
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m-m disconjugacy of self-adjoint differential equations of order

2m. This is done by utilizing again the existence of the invariants

(Theorem 1) as well as a sharp integral inequality obtained by

Kim [6, Theorem 3.3],
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2. Linear invariants associated with equation (1.1).

We start with a remark concerning the form of equation

(1.1) and the choice of the domain D. Consider the differential

equation

(2.1) y(n)(z) + (n)p (z)y(n-1)(z) + (n)p ( z)y(n"2) ( z) + . . .+pn ( z)y( z) = 0,

where p.(z), j = l,2,...,n, are regular functions in the simply-

connected domain D, not containing z = a,. Let C(z) be a

regular one-to-one analytic transformation which maps the domain

D onto the domain A. Set

(2.2) y(z) = w[£(z)]r(z), r(z) / 0.

It is easily verified that by making a proper choice of T ( Z ) ,

say x

1-n

r(z) = [C(z)] 2 exp[j -Pl(t)dt],

equation (2.1) is transformed into the differential equation

(2.3) w ( n )(H + (n)q2(r)w
(n'2) (O + ... + q n(nw(O = 0.

Furthermore, (2.3) is disconjugate in A, if and only if (2.1)

is disconjugate in D. Hence, without loss of generality; we may

assume, as we did in (1.1), that the coefficient of y (z) is

identically zero. Moreover, it is sufficient to consider discon-

jugacy properties of equation (1.1) in the unit disk. This will

be done in sections 3 and 5.



Suppose now that £(z) is regular and one to one in D,

and set

1-n

(2.4) y(z) = 2

Equation (1.1) is transformed by the substitution (2.4) into equa-

tion (2.3), and we are concerned now with the relations between

the coefficients of these equations.

For second order differential equations (n=2) it is well

known (e.g. see [5, p. 394]) that

(2.5) p2(z) = q2[C(z)][r (z)]
2 + j

where

(2 6) S"'*2? if),ZJ - ^'(z) 2[ C'(z)J

is the Schwarzian derivative. For higher order differential

equations (n > 2), a similar relation holds [10, p. 24]; namely,

(2.5') p2(z) = q )][C(z)] + (5(2),Z}.

(2.5') can be verified directly; see also [7, Theorems 3 and 4].

As is well known, the Schwarzian derivative (2.6) vanishes identi-

cally, if and only if £(z) is a linear transformation of the

form

(2.7) C(z) = fS±|, ad - be ji 0.

In this case, (2.5') is reduced to

(2.8) p2(z) =
 2
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We say now, that p 2 (z) is an " invariant of weight 2" of the

differential equation (1.1) under linear transformations of the

type (2.7).

Simple relations like (2.8) do not hold between the other

coefficients of equations (1.1) and (2.3). However, (2.8) turns

out to be the simplest case of the following theorem.

Theorem 1.

Let equation (1.1) be transformed into equation (2.3) by

the substitution (2.4), where £(z) is given by (2.7). Then,

for every index j, 2 £ j <£_ n, there exists a_ linear combination

(2.9) I..(z) = Lj[p2(z),...,pj(z)] = £
 ajjSPs

J~S)(z>> D = 2,...,n,

such that

(2.10) I.(z) = J.[?(z)][C'(z)]i 2 £ j £ n,

where

3 3 2 3 s = 2

The coefficients a. are given by

r2 m » - (~ 1 ) j"siHi-i)i(i+s-2)j _
\^ ••>-•>•) <*̂  s — s.'fs-DJM-s) 1' 0" 5 ° x ' ' ~

and are uniquely determined up to a_ multiplicative constant.

Thus, theorem 1 asserts the existence of invariants of

weights 2,3,...,n, when equation (1.1) is subject to a transfor

mation (2.7) .



7

Invariants associated with linear differential equations were

studied by Brioschi, Forsyth, Fano, Wilczynski and others. In

[2], Brioschi considered general transformations £(z) and

established the existence of non-linear invariants of weights

3,4,...,7. These invariants may be reduced to linear invariants

of the form (2.9), if £(z) is assumed to be a linear transforma-

tion of the form (2.7). As we have already seen, (2.8) also holds

only for £(z) of the type (2.7). Wilczynski [10, p. 26-32] consi-

ders linear transformations C(z), but he assumes that p2(z) = 0.

However, by applying slight modifications to Wilczynski's proof,

one can show that it actually works even if Pj^2) ^ °> a n d thus

establish Theorem 1.

Remark. We note that the coefficients p.(z), j = 2,...,n, of

equation (1.1) not only determine the invariants I.(z), j = 2,...,n,

but are also uniquely determined by them. Indeed, if I.(z),

j = 2,...,n, are given regular functions in the domain D, it

follows from the very form of (2.9) that

P2(z) = I2(
z)> P3<z) = I 3 ( z ) ~ a3 2 P2 ( z ) = I 3 ( z ) + T 1 ^ 2 ) "

Thus, successive elimination of p~(z),•.•,p . (z) from (2.9) leads

us to

(2.12) p (z) = L b I^j"s)(z), j = 2,...,n
3 s=2 J)S s

where the constants b. , s = 2,...,j, j = 2,...,n, are uniquely

determined by (2.11). More specifically, if we complete the
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schemes of constants a. and b. s = 2,...,j, j = 2,...,n,
1>» II* s

given by (2.11) and (2.12) respectively, by setting a. = 0 ,
3 >s

b. = 0 for s = j + l,...,n, j = 2,...,n, we obtain two
3 >s

triangular matrices A = [a. ]_ and B = [b. ]_, and B is
j > s z J j S ^

the inverse of A.
We add the following corollaries to Theorem 1.

Corollary 1.

Let equation (1.1) be transformed to equation (2.3) by the

substitution (2.4), where C(z) is given by (2.7). If the co-

efficients of equation (1.1) are such that

p2(z) s p3(z) = ... s Pk_x(
z) = 0, pk(z) ^ 0, 2 £ k ^ n,

then the coefficients of equation (2.3) satisfy <a similar relation;

namely

q2(C) = q3(C) = ... = qk_i(C) = o , 2 ̂  k ̂  n,

and

Pk(z) = qk[^(z)][^'(z)]
k.

(cf. [10, p. 26]), [7, Theorem 4], [6, Corollary 2.1].).

Corollary 2.

Let

(2.13) y(n)(z) + (!J)P2(z)y(n~2)(z) + ... + p*(z)y(z) = o,

be the adjoint equation of (1.1), and let I . (z) and I . (z),
-j -,

j = 2,...,n, be the invariants of equations (2.13) and (1.1)

respectively. Then



(2.14) I*(z) = (-l)]I.(z), j = 2,...,n.

By the definition of the adjoint equation, (2.13) is given

by

Hence,

* •*
p o ( z) = p~ ( z), p_(z) = -p_,(z) + 3p9 ' ( z),

and in general

t-1
(2.15) p*(z) = ( - D V U ) + S 6. P;

t" r )(z), t = 2,...,n.
r r r=2 r^ r

* ft-r)
Expressing Pt(

z) in terms of pv (z), r = 2,...t-1, by means
• *

of (2.15) and substituting in I.(t), we obtain a linear combina-
(i-s)tion of pVJ (z), s = 2,...,j which is an invariant of weights

j. Since by Theorem 1 the linear invariant of weight j is

uniquely determined up to a constant factor, it follows that I.(z)

k. I.(z), j = 2,...,n. The constants k., j = 2,...,n, are

determined by the coefficient of p.(z) in l.(z); hence k. =

(-l)j. (cf. [2, p. 237], [10, p. 46].)

Corollary 3.

In order that equation (1.1) will be self-adjoint, it is

necessary and sufficient that all the invariants of odd weight

vanish identically; i.e.

(2.16) I.^^z) = 0, i = 1,2,... [^i].
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If equation (1.1) is self-adjoint then (2.16) follows from

(2.14). Conversely, if (2.16) holds then the differential

equation is self-adjoint. Indeed, by (2.16) and (2.14) the invariants

of the given equation coincide with the respective invariants of

the adjoint equation. Since the coefficients p.(z) are uniquely

determined by the invariants, (see the remark following the proof

of Theorem 1) it follows that the differential equation coincides

with its adjoint.

Corollary 4.

If £(z) is given by (2.7), then the substitution (2.4)

transforms adjoint equations into adjoint equations. in particular,

equation (2.3) is self-adjoint if and only if equation (1.1) is.

Theorem 1 and its corollaries play an important role in ,our

study of disconjugacy of equation (1.1) in the unit disk. We note

that the most general one-to-one analytic transformation which

maps | z | < 1 onto | £ | < 1 i s given by

e i e ( z - z )
(2.17) £(z) = 1 - z g o • , | z o | < 1, 0 <: 6 < 2TT, | Z | < 1.

For every choice of the parameters zQ and 0 in (2.17),

equation (1.1) is transformed by the substitution (2.4) into a

differential equation of the type (2.3). Since disconjugacy is

preserved by this transformation, both equations are either dis-

conjugate or not disconjugate in the unit disk. Finally since

(2.17) is of the type (2.7), Theorem 1 can be applied to yield the

relations between the coefficients of equations (1.1) and (2.3).
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Furthermore, any necessary condition for disconjugacy should be

satisfied not only by the coefficients of equation (1.1) but by

the coefficients of equation (2.3) as well. Hence, as will become

apparent in the following sections, it seems more intrinsic to

express disconjugacy conditions in terms of the invariants I.(z)

rather than in terms of the coefficients p . (z).
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3. Necessary conditions for disconjugacy.

We apply now Theorem 1 in order to obtain necessary conditions

for disconjugacy of equation (1.1) in the unit disk.

Theorem 2.

Let the coefficients p.(z), j = 2,...,n of equation (1.1)

be regular in |z| < 1, and assume that (1.1) is disconjugate

in |z| < 1. Then,there exist constants A(j,n) and B(j,n),

depending only on j and n, such that

(3.1) | l . ( z ) | = I l a _ P s
J " S ) ( z ) | £ A ( 1 t 2 ) i > lzl < 1* J = 2,...,n,

3 s=2 3>s s (l-\z\*)3

and

(3.2) |p (B)| £—BLLnL^, |*| < 1, j = 2,...,n.
1 (l-lzl 2) 3

In particular

(3.3) A(2,n) = B(2,n) = (n+1),

and this result is sharp. Moreover, for j = 3,...,n, (3.1) and

(3.2) are of the correct order.

We remark that the necessary conditions for disfocality of

equation (1.1) in |z| < 1, obtained in [8, Theorem 7], are of the

same order as (3.2).

The following lemma will be required in the proof of

Theorem 2.

Lemma 1.

Let h^(z), k = 1,2,..., be a. regular function in | z| < 1.

If



13

(3.4) | h . ( z ) | <£ —-rr , | z | < 1 ,
k a-Mr

t h e n

3.5) I t ^ ( z ) | £ * ' s + k , | z | < 1 , s - 1 , 2 , . . . ,

where C(s,k) are constants depending only on s and k.

Lemma 1 can be proved by applying the Cauchy integral formula

for the derivatives. While in general we shall be concerned only

with the existence of the constants C(s,k) and not with their

magnitude, it is worth noting that better estimates for the constants

C(s,k) are obtained by a method given in [8, Lemma 4).

Proof of Theorem 2.

Let

(3.6) y (z) = zn"2[l + E a . z ^ , |z| < 1,
1 t=2 r

and

(3.7) y,(z) = zn-1[l + E P ^ ] , |z | < 1,
* t=2 €

be two solutions of equation (1.1). Substituting (3.6) and

(3.7) in equation (1.1), the constants a. and & , t = 2,3,...,

are determined by the coefficients p.(z), j = 2,...,t, of (1.1)

in the following way:

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSItf
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P2(0)
2 2. £

(n-2)p3(O)+3p2'(O) (n-1)(n-2)p3(O)+6(n-l)p2 '(0)

a3 = 31 (n+1) ' 03 = " 3J (n+1) (n+2)

( 3 ' 8 ) (n-2)(n-3)p4(O)+8(n-2)p3' (O) + 12p2 "(o) -6n(n-l)p2 (0)
a4 = " — — 4J (n+1) (n+2)

(n-1)(n-2)(n-3)p4(O)+12(n-l)(n-2)p3 '(0)
e4 = - 4J (n+1) (n+2) (n+3)

36(n-l)p2"(O)-6n(n-l)2p2(O)

41 (n+1) (n+2) (n+3)

and

n!(n-2)Jp t(0) , .
at =- tJ(n-t)!(n+t-2)I + Q t [ p j

(3.8')
nJ(n-l)ip (0) ^ ( s )

" = + Q ["t =tl(n-t)J(n+t-l)J + Qt[Pj (z^lZ=0^ t-3,...,n,

where Q. and Q are polynomials of the arguments p. (z),

s = O,...t-j, j = 2,...,t-l.

Since equation (1.1) is disconjugate in |z| < 1, it follows

from [1, Theorem 1] that the function

(3.9) f ( 2 ) = ^ 2 f l + E y 2 ^ |2| < 1?
y 2 v ' t=2

is univalent in |z| < 1. This assertion can easily be confirmed.

Indeed, suppose that f(z;L) = f(z2) = ab"
1, where |z.|,|z2| < 1,

then the non-trivial solution ay1(z) - by2(z) has (n-2) zeros

at the origin (this follows readily from (3.6) and (3.7)) and two

zeros at z 1 and z2. But this contradicts our assumption that

equation (1.1) is disconjugate in |z| < 1.
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According to (3.9) the coefficients y. are given by

2
(3.10) y2 =

 a2 " P 2 ' y3 = a3 " 93* y4 = a4 " P4 + P2 " a2^2'

and

(3.10') yt = afc - p t + rt[a2,... iCtt_i> &2>• • *^
pt-l^ t = 4>5>'''>

where T. is a polynomial of the specified arguments. Insertion

of (3.8) and (3.8*) in (3.10) and (3.10') leads us to

Po^0) (n 7) n-4

(3.11)
hi(n-2)!p (0) f .

(s)where G. is a polynomial of the arguments p. (z), j = 2,...,t-l,

s = 0,...,t-j.

Having established the relations between the coefficients

y. of the function f(z) and the coefficients p.(z) of the

differential equation (1.1), we are ready to proceed with our proof.

As has already been mentioned, disconjugacy of equation (1.1) in

the unit disk implies the univalence of the function (3.9) there.

Applying now the area-theorem to the coefficients of the univalent

function (3.9), we obtain

(3.12) S (t-l)|y. |2 £ 1.
t=2 z

Hence,

\yt\ £ (t-l)"
1/2, t=2,3,..., .
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Combining (3.11) and (3.13) we shall obtain upper bounds for

|p2(0)|,.. ., |pR(0) | . Utilizing then Theorem 1 and Lemma 1, (3.1)

and (3.2) will be established by an induction on j. We proceed

now with the details.

Setting t = 2 in (3.13), it follows by (3.11) that

(3.14) |p2(0)| £ (n+1).

Applying now the transformation (2.17), equation (1.1) is trans-

formed by the substitution (2.4) into equation (2.3). According

to Theorem 1 and (2.17) we now have

(3.15) Ij( 2
o
) = Jj(0)[C'(zo)]

 j> J = 2,...,n,

where I.(z) and J.(z) are the invariants of equations (1.1)

and (2.3) respectively. For j = 2, it follows from (3.15) that

(3.16) P2(zo) = I2
(zo) = J

Since disconjugacy is preserved by a transformation of the type

(2.17), equation (2.3) is disconjugate in Id < !• Hence, according

to (3.14)

(3.14') |q2(0)| £ (n+1).

In view of the fact that for transformations of the type (2.17)

(3.17) k'(z)| = 1 - | < l 2 , |B| < 1,
11

it follows from (3.14') and (3.16) that

(3.18) [I2(zo)| = |p2(zo)| £ (
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Since (3.18) holds for every |zQ| < 1, this completes the proof

for j = 2.

Next, we consider j = 3. For t = 3, (3.11) and (3.13)

yield

(3.19) IP3(O)~n-2 P2 (0)I ^ (n-2)

By the Cauchy inequality, it follows from (3.18) that

(3.20) |p9'(0)| £ (n+1) Min (r^d-r
2) ~2} =

2 0^r<l

Combining (3.19) and (3.20), we obtain

(3.21) |p3(0)| ̂  j~^[{T(n+2)+^^(n-4)] =BQ(3,n)

and

(3.22) |I3(O)| = |p3(O)-|p2'(O)| l

Since by our assumptions equation (2.3) is disconjugate, it

follows from (3.22) that

(3.22-) |J3(0) | £ A(3,n).

Combining now (3.15), (3.17) and (3.22'), we obtain that

(3.22")

which proves (3.1) for j = 3. To establish (3.2), we apply

Lemma 1 to the function p2(z). According to (3.18) it follows

now that
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(3.20') | P 2 ' ( 2 ) | £
 ( n + 1 ? C , (

2
1 i ? , 1*1 < 1 ,

2 ( 1 - | « | V
where by [7, proof of Lemma 4]

(3.23) C(l,k) £ 2k + (-i—̂ )k"Vi+2k, k = 2,3, .

Combining ( 3 . 2 0 ' ) w i th ( 3 . 2 2 " ) , we conclude t h a t

A(3,n)+f(n+l)C(l,2) , , ,
(3.21') |p3(2o)| ^ ; | 2 3 = B 3 ' 4 3' l2ol < ! '

The general step in the induction is similar to the proof of

the case j = 3. We assume now that (3.1) and (3.2) were established

for j = 2,3,...,m, m <̂  n-1. Since by the induction assumption

the coefficients p2(2),...,p (z) satisfy (3.2), if follows by

Lemma 1 that

i.j) . M(m+l,n) . _ 2 ,< 3 ^ m|p. KZ) \ £ 2 , <̂  _
3 (l-\z\Z)m+1 (l-\z\Z)

where M(m+l,n) is a constant depending only on m and n. Note

that for z = 0 we may use the Cauchy inequality instead of Lemma

1 and thus obtain the better estimate

(3.24') |p("Hl-J) (0) 1 £B(j,n) Min

Setting t = m+1 in (3.13), it follows from (3.11), the induction

assumption and (3.24') that

lpm+l(0)' ̂  Bo(m+l,n)

and

ntf-1
(3.25) 1 1 l
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where B (m+l,n) and A(m+l,n) are constants depending on m

and n only. Since (3.25) holds with I ,,(0) replaced by
m+i

Jnvfl(0), it follows from (3.15) and (3.17) that

Combining (3.25') with (3.24), we conclude that (3.2) holds for

j = m + 1 <̂  n. This completes the proof of the main statement

of the theorem.

Sharpness of Theorem 2 will be discussed in the following

section by means of an example.
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4. Example.

Let u(z) and v(z) be linearly independent solutions of

the second order differential equation

(4.1) w"(z) + s(z)w(z) = 0.

If

wi(z) = rtKUfz) + n^yiz), i = l,2,...,n-l,

where m. and n., i = l,...,(n-l), are arbitrary complex constants,

then

n-1 n-1
(4.2) y(z) = ir w.(z) = 7T [m.u(z)+n.v(z) ]

i=l x i=l x x

is the general solution of a differential equation of order n.

Note that y(z) can also be represented as a bilinear form in

u(z) and v(z); namely

(4.3) y(z) = c1[u(z)]
n-1+c2[u(z)]

n-2v(z)+...+cn[v(z)]
n-1,

where c,,...,c are arbitrary complex constant. We now apply

a process given by Fano [3, p. 531-532] to obtain the explicit

form of the differential equation satisfied by (4.2). Let

(4.4) F Q ( Z ) = y(z), F]_(z) = y' (z)

and set

(4.5) Fk+1(z) = Ffc(z) + kdi-kJstzjF^U), k = 1,2,..., .

It is easily verified by induction that if y(z) is given by (4.2),

then
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i

Fl = ? wl* ••wi-lwi
1

F2 - 2!

and

Here the summation is over all possible sequences £„.... r

"-1 (o) (l) '• n" r

e . = 0 , 1 , s u c h t h a t E e . = k ; a n d w.. = w 4 , w ' = w •'• T h u s ,
l i=l x 1 1 1 1

Fn-1 = (n-l)lw1w2...w.n_1

and by (4.5) it follows now that

(4.6) F n = F ; _ 1 + (n-l)sFn_2 e o.

On the other hand, according to (4.4) and (4.5)

Fo = Y> Fi = y1* F2 = Fi + (n-DsFo = y" + (n-Dsy,

F3 = F2 + 2(n-2)sP1 = y'"+ (3n-5)sy
( + (n-l)sy,

F4 = y
(n) + (6n-14)syM + (4n-6)s'y' + [(n-l)s"+ 3(n-3) (n-1) s2]y

and

s(4.7) Fn = y
(n^ + (nf)sy(n-2)

 + 2(
nJ1)J ) s'y + 3(

+ 4()[s"' + ^ Z s s l ] y + m^ m

(cf. [2, p. 236], [3, p. 531]). Combining (4.6) and (4.7) we

conclude that (4.2) is the general solution of the differential equation
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(4.8) y ( n ^ ( 5 ) I ^ s y ^
2 ) + (5)-4

iI3'y(n-3) + ... + (^)Pjy
n-j+...+Pny= o.

Here p.(z), j = 2,...,n, is a polynomial of the arguments s (z),

t = 0,...,j-2, with positive coefficients. Moreover, by (4.5),

p.(z) is a homogeneous polynomial of weight j provided

[s ( t )(z)] m is of weight m(t+2).

We assert now: (4.8) is. disconjuqate in the domain D, if_ and

only if (4.1) is'disconjuqate in D. Indeed, according to (4.2),

a solution y(z) of (4.8) vanishes n times in D, if and only if

one of the solutions w .(z), 1 ̂  i <£ n-1, of equation (4.1)

vanishes at least twice in D. Note that if (4.8) has a non trivial

solution which vanishes n times in D, then there exists also

a solution which has two zeros each of order (n-1) in D..

Furthermore, (4.8) is non-oscillatory in D, (i.e. every solution

of (4.8) has a finite number of zeros in D) if and only if

(4.1) is non-oscillatory in D.

Let

(4.9) s(z) =
/i 2.2 >(1-z )

then according to a result of Hille [4], equation (4.1) is dis-

conjugate in |z| < 1, if and only if a e C, where C denotes

the interior and the boundary of the cardioid given by a =

-2e ^-e *. This cardioid goes through the points a = +1 and

a = -3, contains |a| <̂  1 and is contained in |a| <̂  3. By the

assertion made above, it follows now that (4.8) is disconjugate in

|z| < 1, if s(z) is given by (4.9) and a e C. Substitution
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of (4.9) in (4.8) leads us to a differential equation of the form

(1.1), whose first coefficients are given by

P2(z) =
2

(4.10) p,(z) = (n+1^S'<2> = 2j^±l)a«
3 Z (1-z )

p,(z) = H|±1I[8,,(B) + J>£±7 8 2 ( z ) ] = ^

Setting a = -3 and z = x, 0 _£ x < 1, (4.10) yields

(4.10-) Ip2(x)| =

which shows that (3.10) is sharp and the constants A(2,n) =

B(2,n) = (n+1) are the best possible. For 3 £ j £ n, (4.8)

and (4.9) show that (3.1) and (3.2) are of the correct order.'

Indeed, if s(z) is given by (4.9), then

lim s(t)(z)(l-z2)t+2 = lim(2z)t(t+l)ia = 2t(t+l)!a, t = 0,1,.

Since the coefficient p.(z) in (4.8) is a polynomial of the

arguments s(z ),.. .,s -*" (z) with positive coefficients (p.(z)

is homogeneous of weight j, provided [s (t)] is of weight

m(t+2)), it follows that

lim p (z)(l-z2)j = P.(a),
z-.l ^ 3

where P. (a) is a polynomial in a with positive coefficients.

Clearly, |P. (a)| > 0 for almost every a e C, where C denotes

the interior and the boundary of the cardioid. Hence, we conclude
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that there exist differential equations of the form (1.1), which are

disconjugate in |z| < 1 and such that

lim |p.(z) I (1-1 zj ) J > 0.

Moreover, for a fixed n, Max|p.(a)j, where a e C, yields

a lower bound for the constant B(j,n). For example, by (4.10)

p,(a) = lim p_(z)(1-z2)3 = 2(n+l)a.

Therefore,

Max|p,(a)| = | P (-3) | =
aeC J J

Hence, B(3,n) ;> 6(n+l). Comparing with the results obtained in

the proof of Theorem 2, we have according to (3.21')

(4.11) B(3,n) = A(3,n) + |(n+l)C(1,2).

It is easily verified that for equation (4.8) the invariant

I-(z) vanishes identically. (Actually, as will be shown later,

equation (4.8) is self-adjoint and therefore,according to Corollary

3 of Theorem l,all its invariants of odd weight vanish identically.)

Setting in (4.11) A(3,n) = 0 (because I3(z) = 0) and C(l,2) £7.5

(see (3.23)), it follows that for self-adjoint equations

We assert now that equation (4.8) is self-adjoint. To

verify this assertion we note that according to (4.3)
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Hence, r\ is a polynomial of order (n-1) in t(z) and therefore

satisfies the differential equation

(4.13) d̂ jQ = O.

dtn

In order to obtain from (4.12) and (4.13) the differential equation

satisfied by y(z), we proceed as follows. (cf. [10, p. 46-47],

[2, p. 235-237].) Without loss of generality we may assume that

the Wronskian u1(z)v(z) - u(z)v'(z) of equation (4.1) is identically

equal to 1. Hence,

,A IA\ $& = u'(z)v(z)-u(z)v'(z) =
dz 2 . . 2, .

v (z) v (z)
and therefore

..__. d 2, . d. .
(4.15) dt = V (z)di

Combining (4.12), (4.13) and (4.15), it follows that y(z) satis-

fies the n-th order differential equation

(4.16) v2(z) A .....v 2(z)^v 2(z)^ y{Z)
n^- 0.

az az az n *

In order to normalize (4.16) so that the coefficient of y will

be equal to 1, we multiply by [v(z)]~ ~ and obtain

( * ) [v(z)]
n-1 d z •" ( ) d z ( ) d z " 1

Hence, equation (4.8) can be expressed in terms of a solution

v(z) of (4.1) in the form (4.16')« The symmetric form of equation
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(4.16') implies now (see [5, p. 126]) that equation (4.8) is

self-adjoint whether n is even or odd.

We conclude our discussion of equation (4.8) with the

following observation. If equation (4.8) is disfocal in |z| < 1,

then it is also disconjugate there. Indeed, assume that equation

(4.8) is disfocal in |z| < 1, (i.e. no non-trivial solution of

(4*8) satisfies y(zx) = y« (z2) = ... = y^"
15 (zn) = 0, where

|zi| < 1, i = 1,2,..., n,) then according to [8, Theorem 7]

which is sufficient [9, Theorem 1] to imply the disconjugacy of

equation (4.1) in |z| < 1. Consequently, equation (4.8) is also

disconjugate in |z| < 1. (cf. [8, Theorem 8]•)
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5. m-m disconjuqacy of self-adjoint differential equations.

Considering the differential equation of even order

(5.1) y(2m)(z) + p(z)y(z) = 0,

Kim has recently established the following theorem [6, Theorem

2.1] .

Let p(z) be regular in jz| < 1. _if_

(5.2)
2 m
m

where

(5.3)
m-1

i)K(2m) = v (l+2i) , m = 1,2,...,
i=0

then the differential equation (5.1) _is_ m~ m disconjugate in

|z| < 1; i.e. no (non-trivial) solution of (5.1) has two zeros of

order m _in |z| < 1. The constants (5.3) are the best possible.

(Kim calls this property disconjugacy in the sense of Reid).

We generalize now Kim1s result to self-adjoint differential

equations of the form

y ( 2 m )
(z)

(5.4)

Theorem 3.

r2m(z)y{z) = 0 .
2 m

Let r 2 k(z), k = 1,2, ... ,m, be_ regular in < 1. There

exists positive constants R(2k,2m), k = 1,...,m, depending only

on k and m, such that if

(5.5) [r (z)l ̂ R(2
2k |
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then equation (5.4) jLs_ m-m disconjugate in | z| < 1.

As in [6], we require the following integral inequality.

Lemma 2.

Let U(x) be. a_ real function with s continuous derivatives

in the interval [~p,p] . .If. U(x) has two zeros of order s at

tp, then

P [ U ( s ) ( ) ] 2 d x > K(2s) 2 sJ P(5.6) JP [U ( s ) (x)] 2dx > K(2s)p
2 sJP tyWs > s = 1 ,2 , . . . ,

-p -p (p -x )

where K(2s) are given by (5.3).

Inequality (5.6) was established by Nehari [9] for s = 1 and

by Beesack [1] for s = 2. Kim proved (5.6) for any natural number s

[6, Theorem 3.3].

Proof of Theorem 3.

We first prove that if (5.5) holds and

(5 7) S R(2k.2m)
( ' r K(2k) ^ 1 '

then no solution of (5.4) has two zeros of order m at the symmetric

points tp, 0 < |p| < 1. Suppose to the contrary, that there

exists a solution y(z) of (5.4) which vanishes m times at +p.

Without loss of generality we may assume that o is real. Multi-

ply now (5.4) by y(z) and integrate along the real axes from -p

to p. Integration by parts leads us to

(5.8) |y^m; (x) Tdx = E (-1) rov(x)|y
(m"k

-P k=l -p
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since all the integrated parts vanish. Writing now y(x) =

u(x) + iv(x), we have |y|2 = u2 + v2 and |yfs)|2 = [u ( s )] 2 +

[ v ^ ] . Thus, we obtain from (5.8)

I(5.8M f [<u<"V+,v<"V]ax i I f
-p k=l-p

By (5.5), it follows from (5.8') that

k=r
-P

k=l _p ( 0 )

Since y(x) = u(x) + iv(x) is supposed to have zeros of order m

at to, the same is true for u(x) and v(x) separately. Applying

Lemma 2 to the real functions u (x) and v (x) we obtain

2kC° fu^m~k^2+fv^m"k^2 1 (*P (m) 2 (m) 2(5.10) p2kl iS ) +(v L _ d x < 1 ^ r [(u
(m))%(v(m))2]dx.

J-p (oZ-x ) K K ( 2 k ) J-p

Hence, it follows from (5.9) and (5.10) that

J-p k=l K(21c) J-p

which by (5.7) yields the desired contradiction.

We turn now to the general case and we assume that (5.5) is

satisfied. We shall prove that if the positive constants R(2k,2m),

k = l,...,m, are taken small enough, then equation (5.4) is m-m

disconjugate in ]z| < 1. Suppose to the contrary, that there exists

a solution y(z) of equation (5.4) with two zeros of order m at

z^ and z2, where z, and z2 are two (not necessarily symmetric)
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points in the unit disk. We apply now a transformation of the type

(2.17). It is well known [9] that by a suitable choice of the

parameters z and 6 in (2.17), it is possible to map |z| < 1

onto |Cl < 1 in such a way that z.. and z2 are mapped on two

symmetric points of the real axes +p, 0 < o < 1« By Corollary 4

of Theorem 1 the self-adjoint differential equation (5.4) is

transformed now into the self-adjoint differential equation

2

+ [(C) ( m- k )(C)] ( m" k ) ( O ( O = 0.

It follows now from our hypothesis that equation (5.11) has a solu-

tion which vanishes m times at to. Using Theorem 1 and Lemma

1 we shall show that (5.5) implies that

(5.12) ls2]c(Ol <: ^ J ^ k ' I C| < X, k = l , . . . , m ,

where S(2k,2m), k = l,...,m, are constants which depend on k and m

and on the constants R(2t,2m), t = l,...,k, but not on the

choice of the parameters z and e in (2.17). Moreover

S(2k,2m) is a linear homogeneous combination of the constants

R(2t,2m), t = l,...,k. Thus, if R(2k,2m), k = l,...,m, are small

enough, it is possible to guarantee that S(2k,2m) will satisfy

(5 7') E S(2kt2m)
{ ' ^ K(2k) ^ ±#

However, if the coefficients S2>(£) satisfy (5.12) and (5.7') it

follows from the first part of our proof that no (nontrivial) solu-

tion of equation (5.11) has two zeros of order m at ^p, 0 < |o| < 1;
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and this contradicts our hypothesis. Consequently, no solution

of equation (5.4) has two zeros of order m at z. and z2, where

We now give the details. Since equation (5.4) is self-adjoint,

it follows from Corollary 3 of Theorem 1 that the invariants

of odd weight vanish identically; i.e.

(5.13) I3(z) s I5(z) s ... s I2m_1(z) s o.

By comparing the forms of equations (5.4) and (1.1) it follows

from (2.9) that

(5 14) I (z) = Ta r(2k"2t)(z) k - 1 m

where [aov -,. ],, is a triangular constant matrix whose elements

are determined by the constants (2.11) and by the order 2m. In

2m -1particular ao, o, =[(,,)] , k = l,...,m. Moreover, successive

elimination of r2(z),...,r2 (z) from (5.14) yields

(5.15) r? (z) = E 39V O4.IAI
 ;(z), k = 1, ...,m,

t=l '

where the triangular matrix [poi, Ô -ITI1 *-S ttle inverse of the

triangular matrix ta2k 2 tl^ • (See the remark following the proof

of Theorem 1.)

Since we assume that (5.5) is satisfied, it follows by Lemma

1 that

(5.16) lr(2k-2t>(z)| <.C(2k-2t,2t)R(2t,2m)^ | z ) < 1 , k = 1,..., r

(l-|z|Vk

Combining (5.14) and (5.16) we conclude that
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(* M) IT (Z)\ S E(2k,2m) Izl ^ 1 k - 1 m
(5.17) |I2k(

z) I ̂  ... ,2,2k ' |ZI < 1> k ~ L>" ->m>

(l-|z| )

where

k
(5.18) E(2k,2m) = £ a~, 9 . C(2k-2t,2t)R(2t,2m), k = l,...,m.

t=l '

Clearly, the constants E(2k,2m), k = l,...,m can be made as small

as we wish by taking R(2t,2m), t = l,...,m, small enough

Denote by J.(£)> j = 2,...,2m the invariants of equation

(5.11), then according to Theorem 1(2.10) I_.(z) = J.[i:(z)][r(z)]j, j = 2, ...,2m,

where £(z) is the transformation (of the type (2.17)) which maps

|z| < 1 onto |CI < 1 and z± and z2 to tp, By (5.13), (5.17)

and (3.17), it follows from (2.10) that

(5.13') J

and

(5.17') |J 2 k(g)l £
 E ( 2 k t 2 m 2 k ' ICl < 1, k = l , . . . , m .

The relations between the coefficients S 2 v ^ ^ k = l,...,m of

equation (5.11) and the invariants J o v ^ ' ^ = l*««»*ni, are

given by

(5.14' V J~ (£) = T a sv-^-"'W ,f \ k

or by the equivalent relations

(5.15') so.
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Applying now Lemma 1 to J o v ^ ^ ^ follows from (5.171) that

(5.19) l4f
2t

Substituting (5.19) in (5.15') we arrive at (5.12) and the constants

S(2k,2m) are given by

k
(5.20) S(2k,2m) = £ p 2 k 2tC(2k-2t,2t)E(2t,2m), k = l,...,m.

Combining (5.18) and (5.20) we conclude that S(2k,2m) is a linear

homogeneous function of R(2i,2m), i = 1,.,.,k. Therefore, the

constants S(2k,2m), k = l,...,m, will satisfy (5.17') provided

R(2k,2m), k = l,...,m, are small enough. This completes the

proof of Theorem 3.

For the fourth order self-adjoint equation

(5.21) y(4)(z) + [r2(z)y'(z)]». + r4(z)y(z) = 0 .

Theorem 3 yields the following results. Let *"2(z) and r.(z)

satisfy (5.5).

(i) If

R(2,4) +

then no solution of (5.21) has double zeros at two symmetric points

±P, 0 < |o| < I-

(ii) If

(5.22) R(2,4)
R(4,4)+|c(2,2)R(2,4)

_ ^

then no solution of (5.21) has double zeros at any two points of the

unit disk; i.e. (5.21) is 2-2 disconjugate in |z| < 1. Since
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C(2,2) £ C(1,2)C(1, 3), it follows from (3.23) that C(2,2) .£7.5x10.2

and (5.22) takes the form

(5.22-) 6.1 R(2,4) + ^

Theorem 3 can also be stated in terms of the invariants in

the following way.

Theorem 3'

Let I.(z), j = 2,...,2m be regular functions in |z| < 1,-j

such that (5.13) and (5.17) are satisfied. Let S(2k,2m), k = 1, .. . ,m,

be defined by (5.2o) . I_f the positive constants E(2k,2m), k = 1, . . . ,m,

are small enough to guarantee that (5.7 ') jLs_ satisfied, then equation

(1.1) jLs m-m disconjugate in |z| < 1.

For fourth order equations Theorem 3' yields: Let i,(z) = 0

and let I2(
z) a n d 1^(z) satisfy (5.17). If

then the differential equation is 2-2 disconjugate in |z| < 1.

We conclude with the following remark. As has been shown in

the end of section 4, equation (4.8) is self-adjoint. Moreover, if

n = 2m, then equation (4.8) is m-m disconjugate in |z| < 1,

if and only if it is disconjugate there. Setting now s(z) =

a(l-z )~ " , 6 > 0, in (4.8), it follows from Theorem 2 that for

any choice of the complex constant a and the positive constant 6,

equation (4.8) is not disconjugate and therefore also not m-m

disconjugate in |z| < 1. Hence, (5.5) and (5.17) are of the
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right order of growth. Indeed, no condition of the type

lI2k(2)l^ g(2*222k+e * Izk1* e>°> E(2k,2m)>0, k=l,...,m,

can possible imply m-m disconjugacy of the self-adjoint differen-

tial equation (5.4) in |z| < 1, however small the positive

constants E(2k,2m) and € may be.
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