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1. INTRODUCTION. All spaces considered in this paper

are assumed to be metrizable, all ordinals considered are to

be countable, and k will denote an infinite cardinal.

A map f between two absolute Borel (metric) spaces is

bimeasurable if both f and f preserve absolute Borel

sets. R. Purves [6] has shown the following:

THEOREM 1.1. If f is a bimeasurable map between two

separable absolute Borel metric spaces, then f~ (y) is

countable except for at most countably many points in the

range of f.

The purpose of this paper is to obtain generalizations of

this theorem for non-separable spaces. In place of counta-

bility we are led to considerations of the cardinality and

cr-discreteness of the sets f~ (y) . Summarizing Theorems 4.3,

4.4, 5.1, and 5.2, we obtain the following (definitions are

given in Section 2) :

THEOREM. Let f be an a-bimeasurable map defined on an

absolute Borel space X of weight k. Let

B = {yef (X) : f~1(y) not cr-discrete}

and let

B* = {yef(X) : card f ~1 (y) > k}

Then
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(i) card B <_ k,

(ii) card B* < k,

(iii) if B is absolutely K -analytic, then B is

cr-discrete,

(iv) if B* is absolutely N-analytic, then B* is

CT-discrete.

Each of the four conclusions in this theorem reduces to

the theorem of Purves if the spaces in question are separable,

i.e. if k = N .

In Section 3 we prove that the set B is absolutely

k-analytic. This result (Theorem 3.3) partially generalizes

a classical theorem of Mazurkiewicz and Sierpinski [5]. We

use both this result and Theorem 1.1 to prove the main theorems

in Section 4 (cf. (i) and (ii) above) .

In Section 5 we put additional hypotheses on the sets B

and B* (cf. (iii) and (iv) above). We also study the bimeas-

urability of projection maps and discuss the problem of finding

sufficient conditions that a measurable map be bimeasurable.
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2. DEFINITIONS AND NOTATION. The terminology follows

[8], and we assume the reader is familiar with the definitions

and basic properties of the Borel classification of sets and

measurable (= Borel-measurable) maps, as in [8]. For future

reference and to fix notation we repeat some of the definitions

in this section.

A (metric) space X is an absolute Borel set if X is

Borel in any metric space in which X is embedded, or, equiv-

alently if X is Borel in some complete metric space. For a

(countable) ordinal a , a bimeasurable map f is g-bimeasurable

if f is measurable of class a.

If the range and domain spaces are absolute Borel, then every

Borel isomorphism (1-1 map which is measurable in both directions)

between them is bimeasurable and every generalized homeomorphism

(1-1 map which is measurable of bounded class in both directions)

between them is a-bimeasurable for some a. Also every meas-

urable map from an absolute Borel space onto a CT-discrete space
oo

is bimeasurable. (A (metric) space A is CT-discrete if A = U A.
i=l x

where each set A. is relatively discrete, i.e. each point of

A. is isolated in A..)

We have the following result concerning measurability and

weight (assuming the generalized continuum hypothesis):

THEOREM 2.1. If f is a measurable map from a space X

onto a space Y and if X is of weight k, then Y has weight

at most k.
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Proof. Let m be the weight of Y, and assume m > k. Then

Y has 2m Borel subsets [7,p.106]. By considering the inverse

images under f of these sets, we conclude that X has at least

2m Borel subsets. But X has 2 Borel subsets, and under

the generalized continuum hypothesis 2 < 2m. Hence a contra-

diction, and therefore m <_ k.

Baire space B(k) is the countable product of discrete

spaces, each of which is of cardinal k. B(k) is given the

product topology? and if t = (t,,t_,...)€B(k), a typical basic

neighborhood of t in the product topology is

V(tx, . . .,tn)= (s =(s1,s2, . . .) eB(k) : s1= t1,...,sn= tn) .

The space B(k) is metrizable, and may be given the metric d

where, for distinct s,teB(k), we define d(s,t) = x/n if

s,= t,,...,s ,= t , , s / t . The Cantor set C(N ) is the
j_ x n—J- n—i n n • — — ^ ^ — — — — o

countable product of two-point discrete spaces. We regard the

Cantor set as a subspace of any space B (k), and so has as its

metric the restriction of the metric for B(k).

The following three theorems of A. H. Stone will be used

often subsequently:

THEOREM 2.2 [9,p.660]. If X is an absolute Borel set,

then one and only one of the following alternatives is true:

X is cr-discrete, or X contains a subset homeomorphic to
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THEOREM 2.3 [8,p.10]. If X is an absolute Borel set of

weight £ k, then there is a continuous generalized homeomor-

phism from a closed subset of B(k) onto X.

THEOREM 2.4 [9,p.661]. If X is an absolute Borel set

which is Borel isomorphic to a cr-discrete space, then X is

cr-discrete.

Assume a space X and a cardinal k are given. Write
oo

B(k) = TT T and assume that for each finite sequence
n=l n

t1, . . ••>
t
n(

tieTi) a closed set F(t..,...,t ) c x is given.
oo

For t = (t, ,t ,...)eB(k) let H(t) = D F(t,, . . . ,t ) , and let
J- ^ n = l •*• n

A = U{H(t) : teB(k) }'. Then A is a k-analytic subset of X.

A space is absolutely k-analytic if it is k-analytic in any

metric space in which it is embedded, or, equivalently [8,p.36]

if it is k-analytic in some complete metric space. In particu-

lar, if k = NQ and the space X is complete and separable,

the classical analytic sets are obtained.
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3. A THEOREM ON a-DISCRETENESS. The following theorem is

due to Mazurkiewicz and Sierpinski [5]: If f is a continuous

function defined on a separable, absolutely analytic space X,

and if B = (yef(X): card f~ (y) > K Q}, then B is absolutely

analytic.

In this section a partial generalization of this theorem

is obtained for non-separable spaces. This extension is

obtained in three steps. The result is then used in Section

4 to obtain the main theorem of the paper.

LEMMA 3.1. If f is a continuous map defined on a com-

plete space X of weight k, and if

B = {yef(X): f ~1 (y) not cr-discrete},

then B is absolutely k-analytic.

Proof. Let B± = {yef(X): f"1^) contains a

dense-in-itself sequence of distinct points}.

We shall show that B = B, and then that B^ is absolutely

k-analytic.

Let yeB. Then f~ (y) is a non-cr-discrete absolute Borel

set and hence by Theorem 2.2 contains a homeomorph C of C(N ).

Since C is separable, then C contains a countable dense set D,

Then D contains no isolated points, and hence yeB,.

Conversely, if yeB,, then say x..,x , ... is a dense-in-

itself sequence contained in f~ (y). Let E be the closure

in f (y) of this sequence. Then E is dense-in-itself since
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it is the closure of a dense-in-itself set. Since f is

continuous then f~1(y) is complete; and hence by [2,p.444],

E contains a homeomorph of C(N ). Hence (by Theorem 2.2)

f (y) is not cr-discrete, and so yeB.

Thus B = B,, and it only remains to show that B, is

absolutely k-analytic.

Now let Y be the completion of f(X) and let W be

the product space formed by taking the product of X with

itself N times. Defineo

B2= {(y,(x,,x2,...))eYXW: x,,x2,... is a dense-in-itself sequence],

B3 = [(y, (x1,x2, .. .)) eYXW: f(xx)= f(x2)= ... = y),

and

B4 = {(y,(x1,x2,...))€YxW: if m^n, then x m/ x n ) .

Then each of the sets B2,B3, and B^ is Borel in YXW (for a

proof that B2 is Borel, see [2, p.368]), and hence so is

B2n B3n B.. Note that W is of weight < k, and also Y is of

weight < k by Theorem 2.1. Hence YXW is of weight £ k. Finally

note that B, = ir(B2n B.,n B^) where ir is the projection from

YXW onto Y. Therefore B, is the continuous image of an

absolute Borel set of weight £ k and so B, is absolutely

k-analytic by [8, p.37].

Hence B is absolutely k-analytic, and the lemma is proved.

We now extend this lemma to continuous maps whose domains

are absolute Borel sets.
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LEMMA 3.2. If f is a continuous map defined on an

absolute Borel set X of weight k, and if

B = {yef(X) : f~ (y) not cr-discrete), then B is absolutely

k-analytic.

Proof. Let g be a continuous generalized homeomorphism

from a closed subset A of B(k) onto X (Theorem 2.3). Let

B1 = {yefog(A): (f»g)" (y) not a-discrete).

Using Theorem 2.4 we see that B = B,. Applying Lemma 3.1 to

the continuous map fog defined on the complete space A, we

obtain that B is absolutely k-analytic.

We now extend this lemma to obtain the main theorem of

this section.

THEOREM 3.3. If f is a measurable map of bounded class

defined on an absolute Borel set X of weight k, and if B =

{yef(X): f~ (y) not a-discrete}, then B is absolutely

k-analytic.

Proof. Let Y denote the completion of f(X), and let

T c XXY be the graph of f. By [2,p.384], T is absolutely

Borel (since f is measurable of bounded class). Let w be

the projection from T into Y and let B,= [yeTr(r):

TT~ (y) not cr-discrete]. Lemma 3.2, applied to T and TT, yields

that B, is absolutely k-analytic. But it is easily seen that

B = B,. Hence the theorem is proved.
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4. NECESSARY CONDITIONS FOR a-BIMEASURABILITY. In this

section we obtain two extensions of Theorem 1.1. We first prove

two lemmas, and then use these together with Theorem 3.3 to

obtain the main theorems 4.3 and 4.4.

LEMMA 4.1. If f is a bimeasurable map defined on an

(absolute) Borel set X ^ B (k) , and if for every yef(X) the

set f~ (y) contains a homeomorph of C(N ), then f(X) is

cr-discrete.

Proof. The proof proceeds by contradiction. If f(X) is

not cr-discrete, then by Theorem 2.2 f (X) contains a homeomorph

of the Cantor set, say C. Index C by an index set G to

obtain C = {y^: aeG] . By the hypothesis of the lemma, each

set f~ (y ) contains a homeomorph, say C , of the Cantor

set. Let D = U{ca: aeG).

There are two cases to consider:

(a) ir (D) is countable for all positive integers n (where

w is the projection from B(k) onto its n-th coordinate space

(b) v (D) is uncountable for some n.

We shall show that in either case we are led to a contra-

diction.
00 -1

In case (a), let E = TT ftr (D)) and let A = f x (C) H E.
n=l n

Since for every n, TT (D) is Borel in the discrete space T ,

then the countable product, E, is Borel in B(k). Hence A is

Borel in X, and therefore absolutely Borel. Now let g be the
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restriction of f to A. Then g is bimeasurable. Since E

is the countable product of separable spaces (each factor v (D)

is countable by hypothesis), then E and hence A is separable.

Also, g(A) = C. Finally note that if yeC, say y = y , then

C <- <3~ (y ) > an(3 hence the inverse image of every point in the

uncountable set C is uncountable. But this contradicts the

theorem of Purves (Theorem 1.1).

We now proceed to obtain a contradiction in case (b).

Let m be a positive integer such that TT (D) is uncount-

able; let T = TT (D) . For each ueT choose a point t (u) eD

such that IT (t(u)) = u; say t (u) eC . , . Since C l~l Co = 0

if a and j8 are distinct indices in G, then a(u) is

uniquely determined. Let & = (a(u): ueT}. Since T is

uncountable and since TT (C ) is finite for all a (because

each "nVntC/y) ^s a compact subset of a discrete space), then

IB is uncountable. For each jSefe, choose ug€T such that

|8 = a (up) . Let F = {t(ug) : j8€B} .

Let h be the restriction of the map f to F. Then h

is 1-1 and bimeasurable, hence, a Borel isomorphism. Also

note that F is cr-discrete; in fact any two distinct points in

F are of distance at least 1/m apart. By Theorem 2.4 h(F)

is also a-discrete. Since IB is uncountable then F is

uncountable, and therefore so is h(F). But h(F) is a sub-

set of the Cantor set C, and hence we have a contradiction

since any cr-discrete subset of a separable space is countable.

Cases (a) and (b) both lead to contradictions, and therefore
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f(X) is in fact a-discrete.

We now extend this lemma from Borel subsets of B(k) to

arbitrary Borel sets.

LEMMA 4.2. If f is a bimeasurable map defined on an

(absolute) Borel set X, and if for every yef(X) the set

f~ (y) contains a homeomorph of c(K ), then f(X) is a-discrete

Proof. Let X be of weight k, and by Theorem 2.3 let g

be a generalized homeomorphism from a closed subset H of

B(k) onto X. If yef°g(H), then (f »g) ~ (y) contains a

homeomorph of C(N ) by Theorems 2.3 and 2.4. By applying

Lemma 4.1 to the map fog and the set H, we obtain that

f(X) (= fog(H)) is a-discrete.

We now prove the main theorems of this section.

THEOREM 4.3. If f is an a-bimeasurable map defined on

an absolute Borel space X of weight k, and if B =

{yef(X): f" (y) not a-discrete}, then card B < k.

Proof. By Theorem 3.3, B is absolutely k-analytic. By

Theorem 2.1, f(X), and hence B, has weight at most k. If

card B > k , then by [8,p.37], B contains a closed subset D

**o

homeomorphic to a Baire space of cardinal k . Hence D con-

tains a set C homeomorphic to C(N ). Let g be the restric-

tion of f to the Borel set f~ (C). Then if yeC, g~ (y)

contains a homeomorph of C(K ) by Theorem 2.2. Hence
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Lenuna 4.2 applied to the map g and the set f" (C) yields

the result that g(f~1(O) = C is CT-discrete, a contradiction

since the Cantor set C is not cr-discrete. Therefore

card B < k.

THEOREM 4.4. If f is an a-bimeasurable map defined on

an absolute Borel space X of weight k, and if B* =

{yef(X): card f"1(y) > k ) , then card B* < k.

Proof. We shall show that B*c B, where B is the set defined

in the hypothesis of Theorem 4.3. If yeB , then by [8,p.37] f" (y)

contains a homeomorph of C ( N ) . Therefore f~ (y) is not CT-discrete

and hence yeB. Thus B*c B. If card B* > k, then card B > k

also a contradiction of Theorem 4.3. Hence card B* < k.

Note that Theorems 4.3 and 4.4 each reduce to the theorem

of Purves if the spaces are separable. For if k = N , then the
o

property of being a-bimeasurable for some ordinal a is equiva-

lent to bimeasurability; also B = B* = [yef(X): f~1(y) uncountable]

since cr-discreteness and countability are equivalent in separable

spaces.

Note also that Theorems 4.3 and 4.4 can be extended from

a-bimeasurable to bimeasurable maps if it can be shown that

Lemma 3.2 holds for continuous maps defined on absolutely

J*o- analytic sets. For it is not difficult to verify that the graph

of any measurable map is ^-analytic, and using this in connec-

tion with the suggested extension of Lemma 3.2 would yield a new
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Theorem 3.3 valid for any measurable map (of bounded class or not)

Finally note that neither Theorem 4.3 nor 4.4 yield any

result regarding the Borel structure of the sets B and B*.

In the next section we study cases in which they do have a

strong Borel structure.

-" unirr imm
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5. FURTHER GENERALIZATIONS AND APPLICATIONS. In this

section we study the sets B and B* of Theorems 4.3 and 4.4.

We also consider the bimeasurability of projection maps and the

preservation of cr-discreteness under bimeasurable maps. We then

discuss the problem of finding a sufficient condition for bimeas-

urability.

THEOREM 5.1. If f is a bimeasurable map defined on an

absolute Borel space X of weight k, and if B =

{yef (X) : f~ (y) not cr-discrete} is absolutely N -analytic,

then B is cr-discrete.

Proof. The proof turns on a theorem of El'kin [l,p.874]

which extends Theorem 2.2 of Stone from the class of absolute

Borel spaces to the class of absolutely N -analytic spaces.

If B is not cr-discrete, then by the theorem of El'kin

B contains a homeomorph C of C(N ). Let g be the restric-

tion of f to the space f~ (c). Applying Lemma 4.2 to g

and f" (C) yields that g(f~ (C)) = C is cr-discrete — a con-

tradiction. Therefore B is cr-discrete.

THEOREM 5.2. If f is a bimeasurable map defined on an

absolute Borel space X of weight k, and if B* =

(yef(X): card f" (y) > k} is absolutely NQ-analytic, then

B* is cr-discrete.

Proof. If B* is not cr-discrete, then the theorem of

El'kin gives a homeomorph C of C(N ) in B*. By [8,p.37],
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if yeC then f~ (y) contains a homeomorph of C(N ). Now

restrict f to f~ (C) and use Lemma 4.2 to obtain a contra-

diction.

If additional assumptions are placed on the map, we obtain

the following:

THEOREM 5.3. If f is a closed, O-bimeasurable map

defined on an absolute Borel space X of weight k, and if

B = (yef(X): f~ (y) uncountable], then card B < k.

Proof. The proof is basically a piecing-together of

Theorem 4.3 and the following theorem of Las'nev [3,p.1505]:

if f is a closed, continuous map defined on a metric space

X and mapping into a T,-space, then f~ (y) is compact except

for a a-discrete set of points in f (X) .

Using this theorem we write f(X) = A,U A2 where A? is

a-discrete and if yeA, then f~ (y) is compact. Applying

Theorem 4.3 to the restriction of f on the absolute Borel set

f~ (A1) yields that A1 = A3U A. where card A. < k and if

yeA. then f~ (y) is a-discrete. Hence if yeA. then f (y)

is both compact and a-discrete; therefore f" (y) is countable.

Hence B <= A2U A3. But A2 is a a-discrete subset of f (X) , a

space of weight < k by Theorem 2.1, hence A is of cardinal < k,

Since the cardinal of A_ is also £ k, then card B < k.

We now study the bimeasurability of projection maps.
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THEOREM 5.4. Let X and Y be absolute Borel spaces

and let w be the projection map from the product space XXY

onto X. If ir is bimeasurable, then either X or Y is

cr-discrete.

Proof. Assume that Y is not cr-discrete. Let B =

{xeX: ir~ (x) not cr-discretej . Since w~ (x) is homeomorphic

to Y for all xeX, and since Y is not a-discrete, then

B = X. Applying Theorem 5.1 yields that X is cr-discrete.

As a partial converse we have the following:

THEOREM 5.5. Let X and Y be absolute Borel spaces

and let ir be the projection from the product space XXY onto

X. If X is cr-discrete, then ir is bimeasurable.

Proof. Since ir is continuous, it is measurable. Since

X is cr-discrete then every subset of X is absolutely Borel

[9, p. 660] . Hence ir is bimeasurable.

Piecing together the results of both Theorems 5.4 and 5.5

we have the following:

COROLLARY 5.6. Let X be an absolute Borel space and

let v be a projection from the product space XXX onto X.

Then v is bimeasurable if and only if X is cr-discrete.

In Theorem 5.5 if Y is cr-discrete but X is not, then

v need not be bimeasurable. To see this, let X be the Cantor

set and let A be a non-Borel subset of X. Let Y be the



-17-

set A with the discrete topology. If B = {(x,x): xeY],

then B is Borel in XXY, but ir (B) = A which is not Borel.

Hence ir is not bimeasurable.

THEOREM 5.7. If f is a bimeasurable map defined on a

cr-discrete space X, then f(X) is cr-discrete.

Proof. If not, then since f(X) is absolutely Borel,

f (X) contains a homeomorph of C-(N ) by Theorem 2.2 and hence

a non-Borel set, say A. Then f~ (A) is not Borel — a

contradiction since every subset of the cr-discrete space X is

Borel.

THEOREM 5.8. If f is a continuous map defined on a space

X such that f(X) is cr-discrete and f (y) is cr-discrete for

all yef(X), then X is cr-discrete.

oo
Proof. Write f(X) = U Y , where each Y is relatively

n=l n_ 1 oo n

discrete. For yef(X), write f (y) = U X (y) where X (y)
__ i m in

m=l

is relatively discrete. Let X m n = U{Xm(y): yeY ]. Then

X = U { X : m,n=l,2,...}. To show that each set X is

relatively discrete, let xeXmn. Let yQ = f (x) . Then y

belongs to the relatively discrete set Y , and so there is

an open set U such that y eU and UDY = fy } . Since
o n J o

xeXm(yQ) which is relatively discrete, there is an open set

V such that xeV and VflX (y ) = (xj . Then x belongs to

the open set f'^Uj-flV, and (f "1 (U) OV) HXmn = [x] . Hence

is relatively discrete, and therefore X is cr-discrete.
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We finally comment on the open problem of finding non-

trivial sufficient conditions that a measurable map be bimeas-

urable .

If the spaces in question are separable and absolutely

Borel, such a condition is known and is due to Lusin [4]:

namely, that the inverse image of every point be countable.

In fact it is easily seen that this condition may be weakened

so that the condition in Purves' theorem is both necessary and

sufficient.

This "countable-to-one" condition fails if the spaces are

not separable: let D be the Cantor set with the discrete

topology and let f be the identity map from D onto the

Cantor set. Then f is continuous but not bimeasurable. Hence

even a 1-1 continuous map need not be bimeasurable.

Note that an open, closed, continuous map need not be

bimeasurable. For if IT is the projection from the unit square

onto the unit interval, then TT is open, closed, and continuous,

yet by Corollary 5.6. ir is not bimeasurable.



-19-

BIBLIOGRAPHY

[1] A.C. El'kin, MA-sets in Complete Metric Spaces," Soviet

Math. Dokl., 8 (1967), pp. 874-877.

[2] K. Kuratowski, Topology Volume I (J. Jaworowski, transl.),

Academic Press, New York, 1966.

[3] N. Lasnev, "Continuous Decompositions and Closed Mappings

of Metric Spaces," Soviet Math. Dokl., 6 (1965), pp. 1504-

1506.

[4] N. Lusin, Legons sur les Ensembles Analytiques et leurs

applications, Gauthier-Villars, Paris, 1930.

[5] S. Mazurkiewicz and W. Sierpinski, "Sur un probleme con-

cernant les fonctions continues," Fund. Math., 6 (1924),

pp. 161-169.

[6] R. Purves, "Bimeasurable Functions," Fund. Math., 58 (1966),

pp. 149-157.

[7] A.H. Stone, "Cardinals of Closed Sets," Mathematika, 6

(1959), pp. 99-107.

[8] , "Non-separable Borel Sets," Rozprawy Matematyczne

28, Warsaw, 1962.

[9] , "On a-discreteness and Borel Isomorphism," Amer.

Jour, of Math., 85 (1963), pp. 655-666.


