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1. INTRODUCTION. All spaces considered in this paper
are assuned to be netrizable, all ordinals considered are to
be countable, and k w1l denote an infinite cardinal.

Amp f between tw absolute Borel (netric) spaces is

bi neasurable if both f and f'l preserve absol ute Borel

sets. R Purves [6] has shown the follow ng:

THEOREM 1.1. If f is a bineasurable nmap between two
separ abl e absolute Borel netric spaces, then f~1(y) i's
count abl e except for at nobst countably many points in the

range of f.

The purpose of this paper is to obtain generalizations of
this theorem for non-separable spaces. |In place of counta-
bility we are led to considerations of the cardinality and
cr-discreteness of the sets f~l(y). Sunmari zi ng Theorens 4. 3,
4.4, 5.1, and 5.2, we obtain the following (definitions are

given in Section 2) :

THEOREM Let f be an a-binmeasurable map defined on an

absolute Borel space X of weight k. Let
B={yef (X : f~(y) not cr-discrete}
and | et
B* = {yef(X) : card f~*(y) > k}.

Then
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(i) card B < Kk,
(i) card B* <Kk,
(iii) if B is absolutely Ko-analytic, then B is
cr-discrete,
(iv) if B* 1is absolutely Nianalytic, then B* is
CT-di screte.

Each of the four conclusions in this theoremreduces to
the theoremof Purves if the spaces in question are separable,
i.e. if k= Ny

In Section 3 we prove that the set B is absolutely
k-analytic. This result (Theorem 3.3) partially generalizes
a classical theoremof Mazurkiewi cz and Sierpinski [5]. W
use both this result and Theorem 1.1 to prove the nmain theorens
in Section 4 (cf. (i) and (ii) above) .

In Section 5 we put additional hypotheses on the sets B
and B* (cf. (iii) and (iv) above). W also study the bineas-

urability of projection maps and di scuss the problemof finding

sufficient conditions that a neasurable map be bi neasurabl e.




2. DEFINITIONS AND NOTATION. The termnol ogy follows
[8], and we assune the reader is famliar with the definitions
and basic properties of the Borel classification of sets and
nmeasur abl e (= Borel -neasurable) maps, as in [8]. For future
reference and to fix notation we repeat sone of the definitions
in this section.

A (metric) space X is an absolute Borel set if X is

Borel in any netric space in which X is enbedded, or, equiv-
alently if X 1is Borel in sone conplete netric space. For a

(countable) ordinal a , a bineasurable map f is g-bineasurable

if f is neasurable of class a.

| f the range and domai n spaces are absolute Borel, then every
Borel isonorphism (1-1 map which is nmeasurable in both directions)
bet ween them is bineasurable and every generalized honeonor phi sm
(1-1 map which is neasurable of bounded class in both directions)
" between themis a-bineasurable for some a. Al so every neas-

urable map from an absol ute Borel space onto a CT-discrete space

00
is bimeasurable. (A (metric) space A is ClLdiscete if A = U A.

i =~
wher e each set Ai is relatively discrete, i.e. each point of
A1 is isolated in Ai.)
We have the follow ng result concerning neasurability and

wei ght (assum ng the generalized conti nuum hypot hesi s):

THEOREM 2. 1. If f is a neasurable map froma space X
onto a space Y and if X is of weight k, then Y has weight

at nost k.




Proof. Let m be the weight of Y, and assume m> k. Then
Y has 2" Borel subsets [7,p.106]. By considering the inverse

i mges under f of these sets, we conclude that X has at |east

2™ Borel subsets. But X has 2k Borel subsets, and under
the generalized continuum hypot hesi s 2k‘< 2™, Hence a contra-

diction, and therefore m<_k.

Baire space B(k) 1is the countable product of discrete

spaces, each of which is of cardinal k. B(k) is given the
product topology? and if t = (tujti,...)€B(k), a typical basic
nei ghborhood of t in the product topology is

V(tf,. "’Fﬁ): (s=(s1,S2, . ..)eB(k): slztl,...,sn:ttg

The space B(k) is nmetrizable, and may be given the netric d
where, for distinct s,teB(k), we define d(s,t) =%n if

s,=t,,...,s ,=t ,, s [/ t . The Cantor set C(N) is the
(0]

i X nJ n— n n - — N =
count abl e product of two-point discrete spaces. W regard the
Cantor set as a subspace of any space B(k), and so has as its
metric the restriction of the nmetric for B(K).

The following three theorens of A H Stone will be used
of ten subsequently:

THEOREM 2.2 [9,p.660]. [If X is an absolute Borel set,
then one and only one of the following alternatives is true:
X is cr-discrete, or X contains a subset honeonorphic to

CR,) .
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THEOREM 2.3 [8,p.10]. If X is an absolute Borel set of
wei ght £ k, then there is a continuous generalized honmeonor -

phism froma cl osed subset of B(k) onto X

THEOREM 2.4 [9,p.661]. If X is an absolute Borel set
which is Borel isonorphic to a cr-discrete space, then X is

cr-di screte.

Assune a space X and a cardinal k are given. Wite
00
B(k) = nT_I T, -and assunme that for each finite sequence

ty, .. ee> ('i®Ti) 2 closed set F(ty.,....ty) cx is given.

00
For t = (t, ,t ~...)eB(k) let Ht) = F(t,, ...,t ), andlet
F n oe*e n

n=l
A= UMHt) : teB(k) }'. Then A is a-k-analytic -subset of X
A space i s abselutely k—araly+e if it is k-analytic in any
metric spabe inwhich it is enbedded, or, equivalently [8,p.36]
if it is k-analytic in some conplete netric space. |In particu-
lar, if k = Ny and the space X 1is conplete and separabl e,

the classical analytic sets are obtained.




3. A THEOREM ON a- DI SCRETENESS. The follow ng theoremis
due to Mazurkiewicz and Sierpinski [5]: If f is a continuous
function defined on a separable, absolutely analytic space X
and if B = (yef(X): card f~l(y) > Ko}, then B is absolutely
anal yti c.

In this section a partial generalization of this theorem
is obtained for non-separable spaces. This extension is
obtained in three steps. The result is then used in Section

4 to obtain the main theorem of the paper

LEMMA 3.1. If f is a continuous map defined on a com

plete space X of weight k, and if
B = {yef(X): f~'(y) not cr-discrete},

then B 1is absolutely k-analytic.

Proof. Let B, = {yef(X): f"'A) contains a
dense-in-itself sequence of distinct points}.

We shall show that B = Bl and then that B 1is absolutely
k-anal ytic.

Let yeB. Then f~1(y) is a non-cr-discrete absol ute Borel
set and hence by Theorem 2.2 contains a honmeonorph C of C(No).
Since C is separable, then C contains a countable dense set D,
Then D contains no isolated points, and hence yeBl.

Conversely, if yeBl, t hen say X Xy on is a dense-in-
itself sequence contained in f~l(y). Let E be the closure

in f (y) of this sequence. Then E is dense-in-itself since




it is the closure of a dense-in-itself set. Since f is
continuous then f~*(y) is conplete; and hence by [2,p.444],
E contains a honeonorph of C(No). Hence (by Theorem 2.2)
f'l(y) is not cr-discrete, and so yeB.

Thus B = Bu.’ and it only remains to show that B, is
absol utely k-anal ytic.

Now let Y be the conpletion of f(X) and let W be
t he product space formed by taking the product of X wth

itself NO tines. Defi ne

B.= {(y, (x,J_, X2, ...))eYXW Xy X2y o is a dense-in-itself sequence],

B: = [ (Y, (Xl,Xz“, o)) eYXW f(xy)=Ff(x)= ... =y),
and

Bs = {(y, (Xy, X2, ...))EYXW if n'n, then X, X,).

Then each of the sets B,, Bz, and B* is Borel in YXW (for a
proof that B, is Borel, see [2, p.368]), and hence so is

Bn Bsn B,.  Note that W is of weight <k, and also Y is of
wei ght < k by Theorem 2.1. Hence YXW is of weight £ k. Finally
not e t hat B,-L: ir(Bg.n an B”r) where ir is the projection from
YXW onto Y. Therefore B,L is the continuous inmage of an

absol ute Borel set of weight £ k and so B,L is absolutely
k-anal ytic by [8, p.37].

Hence B is absolutely k-analytic, and the lenma is proved.

We now extend this lemma to continuous maps whose domai ns

are absolute Borel sets.




LEMVA 3.2. [If f is a continuous map defined on an
absolute Borel set X of weight k, and if
B = {yef (X : f~1 (y) not cr-discrete), then B is absolutely

k-anal ytic.

Proof. Let g be a continuous generalized homeonorphi sm

froma closed subset A of B(k) onto X (Theorem 2.3). Let
B: = {yefog(A): (f»g)"l(y) not a-discrete).

Usi ng Theorem 2.4 we see that B = B,l. Applying Lenmma 3.1 to
the continuous map fog defined on the conplete space A we

obtain that B 1is absolutely k-analytic.

W now extend this lemma to obtain the mai n theorem of

this section.

THEOREM 3.3. If f is a neasurable nmap of bounded cl ass
defined on an absolute Borel set X of weight k, and if B =
{yef (X): f~l (y) not a-discrete}, then B is absolutely

k-anal ytic.

Proof. Let Y denote the conpletion of f(X), and |et
Tc XXY be the graph of f. By [2,p.384], T is absolutely
Borel (since f is neasurable of bounded class). Let w be
the projection from T into Y and let B,L: [yeTr(r):
TTd (y) not cr-discrete]. Lemma 3.2, appliedto T and TT, yields
t hat B,-L is absolutely k-analytic. But it is easily seen that

B = B,J_. Hence the theoremis proved.




4.  NECESSARY CONDI TI ONS FOR a-BI MEASURABILITY. In this
section we obtain two extensions of Theorem 1.1. W first prove
two | enmas, and then use these together with Theorem 3.3 to

obtain the main theorens 4.3 and 4. 4.

LEMMA 4.1. If f is a bimeasurable map defined on an
(absolute) Borel set X" B(k), and if for every yef(X) the
set f~1(y) contains a homeonorph of C( No), then f(X) is

cr-di screte.

Proof. The proof proceeds by contradiction. |If f(X) is
not cr-discrete, then by Theorem 2.2 f (X contains a homeonorph
of the Cantor set, say C. Index C by an index set G to
obtain C = {y* aeQ@ . By the hypothesis of the |emm, each
set f~1(yd) contains a homeonorph, say C,, of the Cantor
set. Let D= U{c,: aeQ).

There are two cases to consider:

(a) iﬂ (D is countable for all positive integers n (where
W, is the projection from B(k) onto its n-th coordinate space
Tn);

(b) v_(D is uncountable for sone n.

We shall show that in either case we are led to a contra-

di ction.
00 -1
In case (a), let E = Trftr(D) andlet A=f*(QHE
n=l "

Since for every n, TP (D is Borel in the discrete space T®,
then the countable product, E, is Borel in B(k). Hence A is

Borel in X, and therefore absolutely Borel. Nowlet g be the
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restriction of f to A Then g 1is bineasurable. Since E
is the countabl e product of separable spaces (each factor vn([)
is countable by hypothesis), then E and hence A is separable.
Also, g(A) =C Finally note that if yeC, say y = Yo t hen
CC:- <3t (Xz ) > 2(3 hence the inverse i mage of every point in the
uncountable set C is uncountable. But this contradicts the

t heorem of Purves (Theorem 1.1).

We now proceed to obtain a contradiction in case (b).

Let m be a positive integer such that Tl'm(D) i's uncount -
able; let T = 'I‘I;n (D . For each ueT choose a point t (u) eD
such that IT_(t(u)) =u; say t(ueC,. ., . Since CH C =0
if a and j8 are distinct indices iﬁ -G then a(u) Iis
uni quely determned. Let & = (a(u): ueT}. Since T is
uncount abl e and since 'I‘_I'ﬁ(%) is finite for all a (because
each "n\hCZ‘}'/) NS @ conmpact subset of a discrete space), then
IB is uncountable. For each jSfe choose “g€T such that
8=a(up) . Let F={t(u): |8 . '

Let h be the restriction of the map f to F. Then h
is 1-1 and binmeasurabl e, hence, a Borel isonorphism Also
note that F is cr-discrete; in fact any two distinct points in
F are of distance at least 1/m apart. By Theorem 2.4 h(F)
is also a-discrete. Since IB is uncountable then F is
uncountable, and therefore sois h(F). But h(F) is a sub-
set of the Cantor set C, and hence we have a contradiction
since any cr-discrete subset of a separable space is countable.

Cases (a) and (b) both lead to contradictions, and therefore
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f(X) 1is in fact a-discrete.

We now extend this |lema fromBorel subsets of B(k) to

arbitrary Borel sets.

LEMMA 4.2. If f is a binmeasurable map defined on an
(absolute) Borel set X, and if for every yef(X) the set

f~l(y) contai ns a honeonor ph of C(Ko), then f(X) 1is a-discrete,

Proof. Let X be of weight Kk, and by Theorem 2.3 let g
be a generalized honeonorphismfroma closed subset H of
B(k) onto X If yef°g(H), then (f»g) ~l(y) contains a
homeonor ph of C(No) by Theorens 2.3 and 2.4. By applying
Lenrma 4.1 to the map fog and the set H, we obtain that

f(X) (=fog(H) is a-discrete.
We now prove the main theorens of this section.

THEOREM 4. 3. If f is an a-bimeasurable map defined on
an absolute Borel space X of weight k, and if B =

{yef (X): 1“:L (y) not a-discrete}, then cardB < k.

Proof. By Theorem 3.3, B is absolutely k-analytic. By
Theorem 2.1, f(X), and hence B, has weight at nost k. |If

cardB >k , then by [8,p.37], B contains a closed subset D
**
0

homeonorphic to a Baire space of cardinal k . Hence D con-
]

tains a set C honmeonorphic to 1C(N ). Let g be thejrestric-

tion of f to the Borel set f~ (C). Then if yeC g~ (y)

o
contains a homeonorph of C(K ) by Theorem 2. 2. Hence
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Lenuna 4.2 applied to the map g and the set f"l(C) yi el ds
the result that g(f~'(0O) = C isCT-discrete, a contradiction
since the Cantor set C is not cr-discrete. Therefore

card B < k

THEOCREM 4. 4. |If f is an a-binmeasurable map defined on
an absolute Borel space X of weight k, and if B* =

{yef(X): card f"*(y) >k), then card B* sk

Proof. W shall showthat B*c B, where B is the set defined
in the hypothesis of Theorem4.3. I|f yeB¥ then by [8,p.37] f"l(y)
contains a homeonorph of C(N). Therefore f~1(y) I s not CT-di screte
and hence yeB. Thus B*c B. |If <card B* >k, then card B > k

al so

a contradiction of Theorem4.3. Hence card B* < k.

Note that Theorens 4.3 and 4.4 each reduce to the theorem

of Purves if the spaces are separable. For if k =N, then the
0

property of being a-bineasurable for sone ordinal a is equiva-
lent to bimeasurability; also B =B* = [yef(X): f~*y) uncountabl e]
since cr-discreteness and countability are equivalent in separable
spaces.

Note al so that Theorens 4.3 and 4.4 can be extended from
a- bi mreasurabl e to bi neasurable maps if it can be shown that
Lemma 3.2 hol ds for continuous maps defined on absol utely
J*¢ analytic sets. For it isnotdifficult to verify that the graph
of any neasurable map is “-analytic, and using this in connec-

tion with the suggested extension of Lenma 3.2 would yield a new




Theorem 33 valid for any neasurable map (of bounded class or not),
Finally note that neither Theorem 4.3 nor 4.4 yield any

result regarding the Borel structure of the sets B and B*.

In the next section we study cases in which they do have a

strong Borel structure.
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5.  FURTHER CGENERALI ZATI ONS AND APPLI CATIONS. In this
section we study the sets B and B* of Theorens 4.3 and 4. 4.
We al so consider the binmeasurability of projection maps and the
preservation of cr-discreteness under bi measurable maps. W then
di scuss the problemof finding a sufficient condition for bineas-.

urability.

THEOREM 5.1. If f is a bineasurable map defined on an
absolute Borel space X of weight k, and if B =
{yef (X : fl‘ (y) not cr-discrete} is absolutely No-anal ytic,

then B is cr-discrete.

Proof. The proof turns on a theoremof El'kin [I|,p.874]
whi ch extends Theorem 2.2 of Stone from the class of absolute
Borel spaces to the class of absolutely No-anal ytic spaces.

If B is not cr-discrete, then by the theoremof El'kin
B contains a honeonmorph C of C(NO). Let g be the restric-
tion of f to the space f~1(c). Applying Lenma 4.2 to g
and f"l(Q yi el ds that g(f~1(C)) = C is cr-discrete —a con-

tradiction. Therefore B is cr-discrete.

THEOREM 5.2. If f is a binmeasurable map defined on an
absolute Borel space X of weight k, and if B* =
(yef(X): card f ol (y) >k} is absolutely Nganalytic, then

B* is cr-discrete.

Pr oof . If B* is not cr-discrete, then the theorem of

El" kin gives a honeonorph C of C(N3 in B*. By [8,p.37],
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if yeC then f~l(y) contai ns a honeonor ph of C(NO). Now
restrict f to 'f~1(C) and use Lemma 4.2 to obtain a contra-

di ction.

| f additional assunptions are placed on the map, we obtain

t he foll ow ng:

THEOREM 5.3. If f is a closed, O bineasurable map
defined on an absolute Borel space X of weight Kk, and if

B = (yef (X): f~*(y) uncountable], then cardB < k.

Proof. The proof is basically a piecing-together of
Theorem 4.3 and the follow ng theoremof Las*nev [3,p.1505]:
if f is a closed, continuous map defined on a netric space
X and mapping into a T’£ space, then f~1(y) i s conpact except
for a a-discrete set of points in f (X .

Using this theoremwe wite f(X = AU A:z wher e A;’ IS
a-discrete and if yeA, t hen f~l(y) I's conpact. Applying
Theorem 4.3 to the restriction of f on the absolute Borel set
f~1(A1) yields that A = AU A4 wher e cardA_3 <k and if
yeAz* t hen f~l(y) Is a-discrete. Hence if yeA‘.L t hen f‘l(y)
is both conpact and a-discrete; therefore f" 1(y) is countabl e.
Hence B <= A,UA;. But A, is a a-discrete subset of f (X , a
space of weight < k by Theorem 2.1, hence A2 is of cardinal < k,,

Since the cardinal of A_ is also £k, then card B < k.

We now study the binmeasurability of projection maps.
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THEOREM 5.4. Let X and Y be absolute Borel spaces
and let w be the projection map fromthe product space XXY
onto X. If ir is binmeasurable, then either X or Y is

cr-discrete.

Proof. Assune that Y is not cr-discrete. Let B =
{xeX: irl (x) not cr-discretej . Since vw;(x) I s honmeonor phi ¢
to Y for all xeX, and since Y is not a-discrete, then

B =X Applying Theorem 5.1 yields that X is cr-di screte.
As a partial converse we have the follow ng:

THEOREM 5.5. Let X and Y be absolute Borel spaces
and let ir be the projection fromthe product space XXY onto

X. If X is cr-discrete, then ir is bineasurable.

Proof. Since ir is continuous, it is nmeasurable. Since
X is cr-discrete then every subset of X is absolutely Borel

by [9, p. 660] . Hence ir is bineasurable.

Piecing together the results of both Theorens 5.4 and 5.5

we have the follow ng:

COROLLARY 5.6. Let X be an absolute Borel space and
let v Dbe a projection fromthe product space XXX onto X

Then v is binmeasurable if and only if X is cr-discrete.

In Theorem 5.5 if Y is cr-discrete but X is not, then
v need not be bi neasurabl e. To see this, let X be the Cantor

set and let A be a non-Borel subset of X Let Y be the
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set A with the discrete topology. If B = {(x,x): xeY],
then B is Borel in XXY, but ir (B = A which is not Borel.

Hence ir is not bimeasurabl e.

THECREM 5.7. If f is a bineasurable nap defined on a

cr-discrete space X, then f(X) is cr-discrete.

Proof. If not, then since f(X) 1is absolutely Borel,
f (X contains a honeonorph of G(I\&) by Theorem 2.2 and hence
a non-Borel set, say A Then f~l (A is not Borel —a
contradi ction since every subset of the cr-discrete space X is

Bor el .

THECREM 5.8. If f is a continuous map defined on a space

-1

X such that f(X) is cr-discrete and f “(y) is cr-discrete for

all yef(X), then X is cr-discrete.

: 00
Proof. Wite f(X) = U \C\ wher e each \r( Is relatively
n=| 1 00
discrete. For yef(X), wite f “(y) = UX (y) where X (y)
i m in

e
is relatively discrete. Let Xmn = WXW(Yy): yeY ]. Then
mn ) mn
X=U{X: mn=l,2,...}. To showthat each set X IS
0
relatively discrete, |et xeXm. Let y%: f(x) . Then vy
belongs to the relatively discrete set Y , and so there is

an open set U suchthat y eU and UDY = fy } . Since

0 n Jo
xeXn(yo Wwhich is relatively 8iscrete, there is an open set
V such that xeV and MIX (y ) = (xj . Then x .beI ongs t?){m
the open set f'~y-flv, and (f"*(U OV HXm = [x] . Hence

is relatively discrete, and therefore X 1is cr-discrete.

n
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We finally conment on the open problem of finding non-
trivial sufficient conditions that a nmeasurable nmap be bi neas-
ur abl e.

If the spaces in question are separable and absolutely
Borel, such a condition is known and is due to Lusin [4]:
nanmely, that the inverse imge of every point be countable.

In fact it is easily seen that this condition may be weakened
so that the condition in Purves' theoremis both necessary and
sufficient.

This "countabl e-to-one"” condition fails if the spaces are
not separable: let D be the Cantor set with the discrete
topology and let f be the identity map from D onto the
Cantor set. Then f is continuous but not bi measurable. Hence
even a 1-1 continuous map need not be bi neasurabl e.

Not e that an open, closed, continuous map need not be
bi measurable. For if IT is the projection fromthe unit square
onto the unit interval, then TT 1is open, closed, and continuous,

yet by Corollary 5.6. ir is not binmeasurable.
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