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Several interesting results have been announced recently

concerning the extremal structure of the unit cell in C (X), the

space of continuous Banach space valued functions on a compact

Hausdorff space X with the supremum norm. For these and related

results see Blumenthal, Lindenstrauss, and Phelps [1] (hereafter

referred to as BLP), Phelps [2], Peck [3], and Cantwell [4]. The

present paper is concerned with the extreme points of the unit cell

of a space of Banach space valued functions which is an abstract

analogue of the space L . For a detailed account of these spaces
P

we refer to Bochner and Taylor [5],Bogdanowicz [6], Edwards [7]

and Dinculeanu [8] .

We adhere to the following notation; w denotes the contraction

of the Lebesgue measure to the unit interval I = [0,1]. X^

denotes the characteristic function of the set E c I. If C

is a set then Ext C denotes the set of extreme points of C.

If f is a Banach space valued function, Sf = (t|f(t) ^ 0}. If

B is a Banach space with the norm j| || and f is a function on

I -> B then P(f) is the function on I - B defined by

if

P(f)(t) = 0 if t 4 Sf.

®This work was supported in part by Scaife Faculty Grant administered
by Carnegie-Mellon University.
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Definition. Let B be a Banach space. The class of all B-

valued Lebesque measurable functions f on I such that the

function t - |jf(t)|| is p-summable on I(p ̂> 1) is denoted by

L {B}. Identifying the functions in L {B} which agree a.e.

and equipping the resulting linear space with the norm ||f || =

[| ||f (t) ||djn]p we obtain a Banach space. We continue to denote

this Banach space by L {B} .

Throughout the paper U is the unit cell in B, u p(
B)

is the unit cell in L {B}. Our first proposition concerns the

cell U, (B) . It is known when B is the real line U..(B) has no

extreme points (see for example page 81, Day [11]).

Proposition 1. The cell U,(B) has no extreme points.

Proof. Let f G U-^B) with ||f|| = 1. Since the function

x -+ I ||f(t)||dju is a continuous function on I there exist a
o

pair of disjoint measurable sets A, and A^ such that

J | |f(t)| |djx = [ | | f( t) | ld/i ^ 0. Let B = A1UA2 and l e t g± i = 1,2
Al A2

be the functions on I defined by g, = X f + ( 1 + G ) X f + (l-e)X. f

and g2 is the same as g, except that e is replaced by -6.

With 0 < G < 1 it is verified that gi G ̂ ( B ) , i = 1,2, g± ̂  g2

gx+g2

and f = — 5 — • Thus Ext U^B) = ̂  as was to be shown.

Next we proceed to the case of L {B}, 1 < p < ».
Theorem 1. Jl£ 1 < p < «> then â  function f G L {B} with

p
ll̂ ll = 1 A§. a n extreme point of U (B) if and only if

p
_. € E x t Up(B).

[ f i (S f ) ]p



Proof. Let f e L {B) with ||.f|| = 1. Let us recall the well-

known Clarkson inequalities for L {R). If x,y 6 ^p{R) then

||x+y||p + ||x-y||p £ 2p-1tiix||P+|]y||P] if 2 £ p and

||x+y||q + ||x-y||q<: 2t||x||p+!|y!!p] if 1 < P <1 2 and q = j E - .

Using these inequalities it is verified (*) if f = * 2

2
and g1,g2e U (B) then ||f(t)|| = ||g]_(t) || = ||g2(t)|| a.e.. Thus,

if —P( £) ± f[ Ext U (B) then there exist g± € U (B) i = 1,2

such that gx ^ g2 and —LLfi__ = ^ 2 where ||g1(t)|| =

I hi+h?

||g2(t)|| = U(Sf)]~P a.e.. Hence f = X
2 where h±(t) =

[fi(Sf)] P ||f(t)||gi(t). It is verified that f jL Ext U (B) .

Conversely if f / Ext U(B) then there exist g. € U (B) such

that f = ̂ y^-, ^1 ̂  g2- HenCe bY (") "f(t)ll =

|jg (t) |! a.e,. In particular X = X = X . With these
Sf S

9 l
 Sg 2

observations it follows that P^ ^ 1 = ̂ ^32, a.1 £ a2, where

[u(Sf)]P

a± = i—j- , i = 1,2. Since ai G U (B) , — s ' 1 / Ext U (B)

completing the proof.

It is natural to inquire whether f e Ext U (B)(p>l) if and

only if [|f;. I n e Ext U for t a.e. in Sf. The results that

follow show that this assertion is true if B is finite dimen-

sional while the if part is always true.
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Theorem 2. If 1< p < - then f e Ext Up(B) if |!f|| = 1 and

e Ext U for t a . e . jLn S f .

P(f.) T-F o d F.xt L

P
Proof. Let g be the function P ( f )

 r If 9 / Ext Up(B) then

f
gl + g2

there exist g. e U (B) such that g = — g — a n d gl ^ g2*
1 P

Since 1 < p < » as observed in (*) in the proof of Theorem 1

it follows that ||g(t)|| = llg^t) || = ||g2(t)|| = ^ for t a.e.

f

. gl + g2
in S^. Hence in particular X = X = X . Since —5—= g

f gl %
f(t) - gl + g2

for t e Sf llf(t)|| = t|u(Sf)]P (
 x

2 )(t). Thus if M is themeasurable set (tlgj^tt) ^ g2(t)} then W(M) > 0 and u(MfiSf) =

fi(M) and for t e Mnsf, nf )̂ ( u / Ext U contradicting the

hypothesis. Hence g € Ext U (B) but this implies f e Ext U (B)

by Theorem 1.

Before proceeding to the converse of Theorem 2, we establish

two useful lemmas. We state these lemmas in a more general setting

than required.

Lemma 1. Let C be a^ compact convex subset of <a finite dimen-

sional Banach space and K <a compact subset of I. Let

f: K -• C b£ a. continuous mapping such that for all t e K9

f (t) / Ext C. Then there exists a measurable set M c K, fi(M) > 0, ja

positive number 6 such that if t e M there exist Y
t >

z
t € C

with the properties f(t) = 2 and ||Yt-Zt|| ^ 6.

Proof. Since for t e K f(t) e C — Ext C, for each t e K
Y +Z

there exist Y t,Z t € C such that f(t) = ^2 and ||Yt-Zt|| > 0.

Let e > 0 and M be the set of all points t in K such
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that there exist Yt*
z
t € C, f (t) = —^ and ||yt-zt|| >. e.

M is a closed subset of K. For let {tn} be a sequence in

M such that t - t for some t e K. Let {y l,(z. } be sequences
£ n n n

y + z
in C such that f (tn) =

 n
2
 n and ||yn - zn|| >. e. Since C is

a compact set there exist convergent subsequences {yn } and

{z } in y and z respectively. Let y -> yQ and z -• ZQ.
1 y iz

Since f is continuous f (tR ) - f (t) = ° 2 ° . Further ||yo-zol| =

lim||y -z || >. G . Thus teM and M is a closed subset of K.

Let (B } be the sequence of Borel sets in K defined by

B = M 1 ^ M1 . Then (B ) is a measurable partition of K. Since
n+1 "n

jLt(K) > 0 there exists an integer m such that ju(B ) > 0.

Thus choosing — T V for 6 and B for M the proof is completed.J m+1 m

Before proceeding to the next lemma, we

recall a definition and a theorem concerning set valued functions.

Y
Let X,Y be two topological spaces and 2 be the set of closed

Ysets in Y. A mapping F : X - 2 is called upper semicontinuous

(u.s.c.) if the set (X|F(X) C G} is open in X for all open

sets G <= Y. We state a selection theorem, Kuratowski and Ryll-

Nardzewski [12] Theorem [Kuratowski and Ryll-Nardzewski]. Let

X,(Y,d) be two metric spaces and y d-complete and separable. If

F : X -• 2 is a u.s.c. map then there exists a Borel measurable

function f : X - Y such that f(x)eF(x).
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Lemma 2. rf C,K,f are as in the preceding lemma, then there

exist two measurable functions f, ,f2 cm K -> C such that

f = X
2 ^ and M{t|f1(t) ^ f2(t) } > 0.

Proof. It follows from the preceeding lemma that there exist

a compact set K. c: K^ M(Kn) > 0 and two functions gn ,g9 on
1 g^tj+g^t) 1 2

K± - C such that f(t) = — ^ a n d llSĵ t) - 9 2 ^ " — 26

for some positive number 6. Thus, there exists a function

CF : K1 - 2 , F(t) being the non-empty closed set of points

such that for some TjeC, f (t) = ̂ j1 and ||"f - r)\\ >. 26.

Further F is a u.s.c. map as shown below. Let G be an open

subset of C and G, = {x|F(x) C G} . Suppose that X€G and'

that there exists no neighborhood N of x such that for all

yeN, F(y) CIG. It follows that there exists a sequence [x ) in

xn , x x1, such that F (x ) \ G for all n. Thus there exists

a sequence {"£ }, ̂  GF (x ) *, G. Considering a sequence {77 ) with

f (x ) = n n and ||t - 77 || >_ 26, assured by the function F,

it follows by straightforward compactness arguments that there

exists a subsequence [% } in {"§ } !> -• ̂  for some ^e

Since G is a neighborhood of x1 there exists *? GG contradicting

the choice of ^ . Thus F is a u.s.c. map. Hence by the

Kur towski and Ryll-Nardzewski theorem there exists a measurable

function f : K̂ ^ - C with f(x)GF(x) for all

. Let f2(x)GC be such that ||f L (x) - f 2 (x) || > 26



f (x)+f2(x)
and f (x) = — 5 . Then the function f~ is also measurable

and f (x) / f~(x) for all xeK, and the proof of the lemma is

complete.

Since the unit cell of a finite dimensional Banach space

is a compact convex set the preceding lemma implies the following

theorem.

Theorem 3 • JIf B jjs a. finite dimensional Banach space then

feExt u (B) (1 < p < co) .if arid only .if ||f|| = 1 aind \u[^{ II eExt U

for t a.e. jln Sf.

Proof. The if part is taken care of by Theorem 1. Conversely if

feExt U (B) then clearly ||f|| = 1. Since Ext U is a G& subset

of U (see proposition 1.3 [9]) and since P(f) is measurable if

f is measurable the set (t| iif). f ii jL Ext U, teSf} is measurable.

Thus if iif). ( II 4
 E x t u f o r t a.e. in S- then there exists a

measurable set M <= Sf, M(M) > 0 such that for teM, \\f(Zl II / E x t u*

Since jit is regular there exists a compact set K <= M with fi(K) > 0

such that the restriction of g = [jLi(Sf) ]" '
P P(f) to K is

a continuous function into [/x(Sf)]" ^^(U ^ Ext U) . Hence by

lemma 2, there exist measurable functions g., i = 1,2 on K

to [jlt(S )]"1//p(U ^ Ext U) such that li^q^t) ? g2 (t) > 0 and

g+g
the restriction of g to K = — ~ — • N o w defining f. : I -• B

by f.(t) = g.(t) if teK and f.(t) = g(t) if t^K it follows
f,+fP

that g. eU (B) and g = 2 and f ? f 2. Thus g^Ext U (B)
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which in turn by Theorem 1 implies f^Ext U (B) contradicting our

choice of, f.

Remark. In view of theorem 1, p. 490 of [11], theorem 3 in BLP

deals with the same question as our theorem 3, except that they

consider C_ (X) the space of continuous functions on a compact

Hausdorff space into the space B with the supremum norm. It

might be worthwhile to summarize this theorem in [1]. Denoting

the unit cell of Co(X) by V the theorem states that feExt V

if and only if ||f(t)|| = 1 for all teX and f(t)eExt U for t

in a dense subset of X if dim B <_ 3 or B is finite dimen-

sional with a polyhedral unit cell. Even in the case when X = I

and B is 4-dimensional they provide a counter example by exhib-

iting a function feExt V but for all tel, f(t)/Ext U. Thus

theorem 3 of this paper is in sharp contrast with theorem 3 in

BLP [1] .

Next we proceed to the case of the Banach space L {B} of

measurable functions f on I into B such that the function

t - ||f(t)|| is essentially bounded with ||f|| = ess sup||f(t)||. Let
tel

UOD *B* b e t h e u n i t c e l 1 o f Lo

Theorem 4. feExt UQO (B) if f(t)eExt U a.e. Further if B

is finite dimensional then the above condition is necessary and

sufficient.

The proof of the more difficult part of the theorem i.e.

the necessity of the condition, is essentially the same as that

of theorem 3 and the details are not supplied.
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In conclusion it might be mentioned that a complete characteri-

zation of extreme points of U (B) is not provided here when B

is infinite dimensional and we hope to consider this question

elsewhere.
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