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Several interesting results have been announced recently
concerning the extremal structure of the unit cell in CB(X), the
space of continuous Banach space valued functions on a compact
Hausdorff space X with the supremum norm. For these and related
results see Blumenthal, Lindenstrauss, and Phelps [l1] (hereafter
referred to as BLP), Phelps [2], Peck [3], and Cantwell [4]. The
present paper is concerned with the extreme points of the unit cell
of a space of Banach space valued functions which is an abstract
analogue of the space Lp. For a detailed account of these spaces
we refer to Bochner and Taylor [5],Bogdanowicz [6], Edwards (7]
and Dinculeanu [8].

We adhere to the following notation; pu denotes the contraction
of the Lebesgue measure to the unit interval I = [O,1]. XE
denotes the characteristic function of the set E < I. If C
is a set then Ext C denotes the set of extreme points of C.

If f is a Banach space valued function, S; = {(t|£(t) # o}. 1f
B is a Banach space with the norm | || and £ is a function on
I - B then P(f) is the function on I - B defined by

f(t

P(£) () = TED)

if t e Sf,

P(£f) (t)

(o] if t £ Sg-
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Definition. Let B Dbe a Banach space. The class of all B-
valued Lebesque measurable functions £ on I such that the
function t - ||£(t)|| is p-summable on I(p > 1) is denoted by
Lp{B}. Identifying the functions in Lp[B} which agree a.e.
and equipping the resulting linear space with the norm |[f| =
[I Hf(t)”gu]% we obtain a Banach space. We continue to denote
this Banach space by Lp{B].

Throughout the paper U is the unit cell in B, Up(B)
is the unit cell in Lp{B]. Our first proposition concerns the
cell .Ul(B)‘ It is known when B 1is the real line Ul(B) has no

extreme points (see for example page 81, Day [11]).

Proposition 1. The cell Ul(B) has no extreme points.

Proof. Let f € U;(B) with €]l = 1. since the function
X

X - f lE(t)||du 4s a continuous function on I there exist a
o

pair of disjoint measurable sets Ay and A, such that

[ lewllap = [ et llap # 0. ret B =aUA, and let g, i= 1,2
Ay Ay
be the functions on I defined by g, = XI~Bf + (l+e)XA f + (l—e)XA f

1 2
and g, is the same as 97 except that € 1is replaced by -6.-

With 0 < € €< 1 it is verified that g; € Ul(B), i=1,2, 9, # d,
9,t+9
12 2 . fThus Ext U,(B) = ¢ as was to be shown.

and f =

Next we proceed to the case of Lp{B}, 1l <p< .

Theorem 1. If 1 < p < » then a function £ ¢ Lp[B} with
€]l = 1 is an extreme point of UP(B) if and only if
—EEL o ¢ mxt U (B).

1
(u(sg)lp




Proof. Let f e LP{B) with |[.f||l = 1. Let us recall the well-
known O arkson inequalities for ngR). | f x,y6"£,{R) t hen
Ix+ylP + x-y|I” £ 2°-*iix|"+[]ylI"] if 2 £p and

XU+ lIx-yllf<s 2tx|PLAy!PT if 1<P <12 and q=jEf .

Using these inequalities it is verified (*) if f = 99
2
and g1, g.e UEB) then [[f(t)]] = [lg(t) [| = [lg(t)[{ ae.. Thus,
it —PEE-—=f[ Ext UP(B) then there exist g. € UéB) i =12
fu(se) 1P g +g
such that gx » g2 and —tLf+_,- 2 2_where ||gut)|| =
lp(sp) 1P
I £ hi +h2
[1og(t)]] = U(S;)]~P a.e.. Hence f = %  where h.(t) =

[Fi(S)] P[If(t)]|g(t). 1t isverifiedthat f jL Ext UP(B).

Conversely i#¢ f / Ext U(B) then there exist g. € U gﬁ) such
t hat f = /\y/\_ A A g2_ HenCe bY (n) uf(t)ll = Hgl(t =

|jgz(t)_|! a.e,. Inparticular X =X =X . Wth these
Sf S S
9l g2
observations it foll ows thatipA—fL‘-r-:""SZ, a.1 £ a,, where
[u(S)]P
a. = i—+-, i =1,2. S nce aiGlIJ)(B), ==/ Ext UP(B)
P P
[u(sgi)]P [u(Sf)]

conpl eting the proof. _
It is natural to inquire whether f e Ext U (B)(p>l) i f and

only if -[-I%%I;-!p e Ext U for t a.e. in S$. The results that
foIIowshdwthét this assertion is true if B is finite dinen-

sional while the if part is always true.
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Theorem 2. If 1< p < - then f e Ext UyB) if. |f] = 1 .and

.“i(E)_n e Ext U for t a.e. jLn S;.
f(t) -

Proof. Let g be the function —H)——f+F 90 dEgext U'p-ﬂ:)B) t hen
tu(s 1P

9| "’92 .
there exist g. e U (B) such that g = —g —23"% 9 ~92%
1 P

Since 1 <p<» as observed in (¥) in the proof of Theorem 1

it follows that [[g(t)[| = T1g*t) [| = [[gAt)|] = A for t a.e.
: [p(Sf-]§
. 9] *92
in SN Hence in particular X =xX =X . Since —5_= g
1 f . gI %
. ey

feAsut a®l & sétl f (g =t &) UeSYLPL (3 "2 t ndh) W Mhus o fand  LeMting) =
fi(M and for t e Mnisy, 'ﬁ{)A(:'W'/ Ext U contradicting the

it ] ( t—)

hypot hesis. Hence g € Ext UP(B) but this inmplies f e Ext UP(B)
by Theorem 1.

Bef ore proceeding to the converse of Theorem 2, we establish

two useful lemmas. W state these lemmas in a nore general setting

t han required.

Lemma 1. Let C bhe_a” conpact convex subset of <a finite dinen-

si onal Banach space and K <a conpact subset of . Let
f: K-« C bf a. _continuous mapping such that for all t e K

f(t) / Ext C Then there exists'g_rreasurable set Mc K fi(M >0, ja

positive nunber 6 such that if t e M there exist " >%, € C

with the properties f(t) = ——= and |[|Y-Z|| ~ 6.

Proof. Since for t e K f(t) e C—Ext C, for each t e K
Y.+
there exist Y.,Z € C such that f(t) = —"7— and ||Y%-Z|]|. > O.

Let e >0 and Me be the set of all points t in K such
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yt+zt
that there exist Yis2Zg € c, f(t) = - and “Yt-zt“ > €.
M, is a closed subset of K. For let {tn} be a sequence in

M€ such that tn - t for some t € K. Let [yn},{zn} be sequences

y. +2z
in C such that £f(t ) = D_1 and Hy -z H > €. Since C is
n 2 n n' -
a compact set there exist convergent subsequences {yn } and
i
[zni} in y and 2z respectively. Let Yo, T Yo and zniﬂ z,-
v ¥z,
Since £ is continuous f(tn ) - £(t) =— . Further Hyo—on =
i

lim”yn -2, ” > €. Thus teM€ and M€ is a closed subset of K.
i i
Let {Bn} be the sequence of Borel sets in K defined by

B, =M, ~M. Then {Bn] is a measurable partition of K. Since

n+1 n
K(K) > O there exists an integer m such that p(Bm) > 0.

Thus choosing E%T for 6 and B for M the proof is completed.

Before proceeding to the next lemma, we

recall a definition and a theorem concerning set valued functions.

Let X,Y be two topological spaces and 2¥

Y

be the set of closed
sets in Y. A mapping F : X - 2 is called upper semicontinuous
(u.s.c.) if the set {x|F(x) © G} is open in X for all open

sets G € Y. We state a selection theorem, Kuratowski and Ryll-
Nardzewski [12] Theorem [Kuratowski and Ryll-Nardzewski]. Let
X,(Y,d) be two metric spaces and y d-complete and separable. If

Y . .
F : X~ 2 is a u.s.c. map then there exists a Borel measurable

function f : X o Y such that f£f(x)eF(x).
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Lemma 2. rf CKIf are as in the preceding |lemm, then there

exi st two neasurabl e functions f,l_,fz cm K-> C such that

f =—%—-A- and Mt|f.(t) ~ fo(t) } > 0.

Proof. It follows fromthe preceeding |l enma that there exist

a conpact set K ¢ KM MK, > 0 and two functions g,,ge oOnN
' gntj +ght) P2

: E
K. - C such that f(t) = —_ A and 1|gat) - 92nan 226
for sone positive nunber 6. Thus, there exists a function
F: K - 2C, F(t) being the non-enpty cl osed set of points

CeC such that for some TjeG f (t) =A7] rand [|"f - r)\\ > 26.
Further F is a u.s.c. map as shown below. Let G be an open
subset of C and Gl= {x|F(x) CG . Suppose that X=€Gl and'
that there exists no neighborhood N of x such that for all
yeN, F(y) CIG. It follows that there exists a sequence [xn) in
Kn, X = x!, such that F(xn) \ G for all n. Thus there exists

a sequence {"£n}, "nG:(xn) * G Considering a sequence {77n) W th

f(xn) =—”2—”—and ||t o 77 L| > 26, assured by the function F,

it follows by straightforward conpactness argunents that there
exi sts a subsequence [%n} in {"§n} !=>n -« A for some “er(¥).
i .
Since G is a neighborhood of x' there exists *’?rl GG contradicting

1
the choi ce of "n. Thus F is a u.s.c. map. Hence by the

Kur towski and Ryll-Nardzewski theorem there exists a neasurable
function f : K - C wth f(x)G(x) for all

x€eK, . Let f,(x)GC be such that [|[fo(x) - f2(x) || > 26




,
fy (0223

and f (x) = —= Then the function fZ is also nmeasurable
and fl(x) / f;(x) for all xeKl and the proof of the lema is
conpl et e.

Since the unit cell of a finite dinensional Banach space
is a conpact convex set the preceding lenmma inplies the follow ng

t heor em

Theorem 3« gl_t B jis a _finite_dinmensional Banach space then
feExt u (B (1< p<co) .if aidonly if [Ifl =1 dnd \~9f~ﬂ{ HeExt U

for t a.e. St.

for jln
Proof. The if part is taken care of by Theorem 1. Conversely if
f eExt UP(B) then clearly |[[f||] = 1. Since Ext U is a &G subset
of U (see proposition 1.3 [9]) and since P(f) is neasurable if

f is neasurable the set (t] ii-l- .:%;—il-li JLExt U teS;} is neasurable.
Thus if 4|-l£r{-§-; -I-II 4 Extu Tor ¢+ g e. in S—t then there exists a
measurable set M<=S, MM > 0 such that for teM \\--f—f(—(il---i-l | Extux

220

Since jt 1is regular there exists a conpact set K<=M with fi(K)y >0

such that the restriction of g = [jL(S) ]"]'/F> P(f) to K is

1,

a continuous function into [/xX(&)]" ™"(U ™ Ext U . Hence by

lemma 2, there exist measurable functions 9y =12 on K

to [jIt(§)]1"¥'P(U~ Bxt U such that lirg™t) 2 go(t) > 0 and

g¥ g2 w o :

== N°Wdefining f. ; ! -+ B

by f.(t) =g.,(t) if teK and f. (t) = g(t) if t*K it follows
1 1 fo+fp 1

t hat g.leUp (B and g =—%=and f1 ? f,.  Thus g™Ext UP(B)

the restriction of g to K= —
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which in turn by Theorem 1 implies f£Ext Up(B) contradicting our

choice of. £f.

Remark. In view of theorem 1, p. 490 of [ll1l], theorem 3 in BLP
deals with the same question as our theorem 3, except that they
consider CB(X) the space of continuous functions on a compact
Hausdorff space into the space B with the supremum norm. It
might be worthwhile to summarize this theorem in [1]. Denoting
the unit cell of CB(X) by V the theorem states that fecExt V
if and only if ||[£(t)]l = 1 for all teX and £(t)ecExt U for t
in a dense subset of X if dim B < 3 or B 1is finite dimen-
sional with a polyhedral unit cell. Even in the case when X =1I
and B 1is 4-dimensional they provide a counter example by exhib-
iting a function £eExt V but for all teI, f(t)£Ext U. Thus
theorem 3 0f this paper is in sharp contrast with theorem 3 in
BLP [1].

Next we proceed to the case of the Banach space LOO[B] of

measurable functions £ on I into B such that the function

t - “f(t)“ is essentially bounded with €]l = ess sup”f(t)
tel

. Let

Ua>(B) be the unit cell of LOO{B].

Theorem 4. £fecExt UOO(B) if f(t)eExt U a.e. Further if B
is finite dimensional then the above condition is necessary and
sufficient.

The proof of the more difficult part of the theorem i.e.
the necessity of the condition, is essentially the same as that

of theorem 3 and the details are not supplied.
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In conclusion it mght be nmentioned that a conplete characteri--
zation of extrene points of UP(B) Is not provided here when B
is infinite dinmensional and we hope to consider this question

el sewher e.
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