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Extreme Points of the Unit Cell in
Lebesgue-Bochner Function Spaces II

Kondagunta Sundaresan

The extremal structure of the unit cell in CL.(X), the

Banach space of continuous functions on a compact Hausdorff space

X into a Banach space B with the supremum norm has received

considerable attention in recent years. For these and related

results see the papers of Blumenthal, Lindenstrauss and Phelps

[1], Phelps [2] and Peck [3]. As pointed out in [1] and [2]

part of the motivation to the problem stems from an attempt to

characterize the extreme operators on a Banach space B into

C(X), the space of real valued continuous functions on a compact

Hausdorff space X with the usual supremum norm. A similar prob-

lem of interest is to characterize the extreme operators on

Banach spaces L,(X, £,JU) into a reflexive Banach space. From

the representation theorems for such operators in Dunford and

Schwartz [4] it is easily verified that the problem mentioned

above is related to the extremal structure of the unit cell in

Lebesgue-Bochner function spaces. For a detailed account of these

spaces we refer to Bochner and Taylor [5], Edwards [6], Hille and

Philips [7] and Bogdanowicz [8] and Dinculeanu [9].

With the above motivation we consider in this paper the

problem of characterising the extreme points of the unit cell in

Lebesque-Bochner function spaces lRs 1 <^ p <2 °°, which are abstract

generalisations of the classical Lp spaces. The case when E is
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finite dimensional has been considered in an earlier paper,

Sundaresan [10] .

We adhere to the following notation throughout the paper.

(X, T%|u) is a fixed measure space with X a locally compact

Hausdorff space, £ the cr-ring of Borel sets in X and ju a

regular positive measure. For a definition of these terms see

Halmos [11] . As there is certain divergence in the terminology

concerning vector valued measurable functions we wish to point out the

terminology adopted here is the same as in the Chapter 8, Edwards

[6]. Thus if E is a locally convex vector space then a

function f: X -• E is measurable if f has the Lusin property,

i.e. if K is a compact subset of X then for each € > 0

there exists a compact set C c K such that u(C~K) < e and the

restriction of f to C, f|c, is continuous. The definition of

a vector valued measurable function in [9] differs from the above

definition. However when the range of f is metrizable then

either of the defintions implies the other. If E is a Banach

space then a function f: X -• E is measurable if it is measurable

with respect to the strong topology on E. A function f: X -> E

is w(w*) measurable if f is measurable with respect to the

weak (weak* topology if appropriate) on E. If E is a Banach

space the linear space of measurable functions f on X to E

such that the function x - ||f (x) |]p (1<£<«>) is ju-suramable is

denoted by LP. After the usual identification of functions agreeing

a.e. it is verified that Lp is a Banach space when equipped with



the norm ||ff|| - [J ||f (x) || pd^] 1 / p. Likewise L^ is the Banach

X
space of essentially bounded measurable functions f on X

to E with the norm ||f|| = ess Sup||f(x)||. We denote the norm
xeX

in LMl^p^j50) and the norm in E by the same symbol || |j as

there is no occasion for confusion. U P is the unit cell in L P

and U-fS.-) is the unit cell (unit sphere) in E. If f is

a measurable function S f is the set {x|f(x) / 0} and P(f)

is the measurable function defined by P(f)(x) = -rr=)—rjr if
l!r v x ; ii

x e S f and P(f)(x) = 0 if x / Sf. If A is a set XA is the

characteristic function of A and if C is a convex set ext C

is the set of extreme points of C.

Before proceeding to the main results we deal with the simpler

case of L F and then state a preliminary theorem of considerable

use in the subsequent discussion.

Proposition 1. A function f e L_- is an extreme point of U__

if and only if there exists an atom A c X and a point e e Ext tL.
XA(x)e

 E

such that f (x) = i r—z— for x a. e. .

Proof. As a first step we verify if there exist two disjoint

measurable sets C,,C2 c Sf of positive measure then f is not

an extreme point of U-_. If such a pair of measurable sets

exist and C = C^ U C 2 let 1\±) 0 < 7^ < 1, i = 1,2 be the

numbers defined by

J ||f(x)||d^ = \± J||f(x)||dM.
Ci



Let g., "i = 1,2 be the functions defined by

* ( 1- Ai ) f xc
j

where j = 2 if i = 1 and j = 1 if i = 2. It is verified

•l 9*1+ 2̂ 1

that g± e L^, |jgi|| = 1, f = - ^ and g1 ̂  g2. Thus f / Ext uj.

From the observation in the preceding paragraph and the regu-

larity of the measure u it follows that if f e Ext U_ then Sf

does not contain any measurable set M of positive measure, jLt(M)<jLt(S-)

Since ||f(x)|| is summable it is verified that S f is an atom.

Hence there exists a real number c and a vector e € E such

that f(x) = cX_ (x)e for x a.e.. Since f € Ext U_ it is
f i

verified that c = + —, v and e e Ext U . This completes the

proof of the !l only ifff part. Since the fl if11 part is easily

verified the proof of the proposition is complete.

Theorem 1. If 1 < p < «> then a function f € L P with ||f|| = 1

is an extreme point of U^ if and only if • jy- e Ext U F

for every Borel set M such that 0 < /LI(M) < » and M c Sf.

Proof. Before proceeding to the proof of the lf only if11 part let

us recall the well-known Clarkson inequalities for l£ where R

is the real line. If f,g G L^ then

||f+g||P + |jf-g|p ^ ^P^tllfllP+llgJlP] if

2 ^ p < oo and

||f+g||q + ||f-gjlq ^ 2[|]f||p+||g||p]

if 1 < p <£ 2 and q = —̂ r- . Using these inequalities i t is
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v e r i f i e d (*) if f = ^ and ||f|| = 1 = | |g i | | then | | f (x) | | =

| | g i ( x ) | | , i = 1 ,2 . Let now f e LP wi th ||f|| = 1. Let M be a

Borel s e t such that M c Sf and 0 < (i(M) < ». Let g = [/i(M) ] ~ 1/^pP(fXM).

If p o s s i b l e l e t g /^ Ext UP. It fo l lows from (*) that there e x i s t

g± e Up such that g = ? i ~ 2 a n d | | g ( x ) | , = | , g i ( x ) | | = | |g2(x)f|

a . e . . Thus if h . , i = 1,2 are the functions defined by h . (x ) =

[u(M)] 1 / / p | | f (x ) | |g . (x) if x e M and h. (x) = f (x) if x / M then
h +h2

 x x

f = —±~— and llh.ll = 1. Hence f / Ext U£ completing the proof

of the n only if f t part .

Conversely if f e iZ, IIf I1 = 1 and f / Ext U|L then there
g + gJ? g l + g 2 _,exist g. € Ul such that f = — 5 — and gn ^ g Hence from

1 JE Z L Z,

(*) it follows that |jf (x) II = l!g-(x)|| there exists a measurable

set M c Sf, 0 < JU(M) < 00 such that for all x e M, g.(x) ^ g2(x)

It is verified that

ir

Since the functions appearing in the right bracket are verified to
()

be in Up it follows that . > / Ext Up completing the
E [W(M)]1/P E

proof of f1 if11 part.

Remark l.A characterization of extreme points of U^ similar to the

one provided in the preceding theorem is evident for if f e Ext ll_

E

then ||f(x)|j = 1 a.e.. The verification of this assertion is as

follows. If possible let f € Ext U^ and M be a Borel set,

0 < jit(M) < 00 such that for x e M, |jf (x) || < 1. Since fi is a

regular measure there exists a compact set C c M of positive measure
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such that f|c is continuous. Hence f(C) is a compact set in

the interior of UE* Thus there exists a vector V in UE

(choose for V any vector with 0 < |jv|| < 1 - Max||f(x)||) such
xeC

that ||f(x) + v|| £ 1 for all x € C. Let now g^ i = 1,2 be the

functions (f+V)X + fX where V is the constant function with

° „ gl+g2
{V) as the range. It is verified that llĝJI = 1, f = — ^ — and
g- ?£ g2. Thus f € Ext U^ completing the proof of the assertion

Next we proceed to the main results. We study the case when

E is a separable conjugate Banach space (in particular when E

is a separable reflexive Banach space) and show in this case the

extreme points in U^, 1 < p <£ » could be related to the extreme

points in IL_.
hi

Before proceeding to these we recall some facts required in the

proof of the next theorem.

(a) The W*-topology relativised to the unit cell of E where E

is a separable conjugate Banach space is metrizable. We can further

assume that a metric d on U_ could be defined to satisfy the

additional requirement d(p5q) <£ ||p-q|! for all p,q e U . For if

E = B* then B is also a separable space. Thus there exists a

countable dense subset {x } - of the unit cell u with respect
n ni B

to the norm topology relativised to U_. Let us define for p,q € U_,

<*(P,q) = S_ — |p(xn)-q(xn) | . Then d has the required properties.

See in this connection Theorem 1, p. 426 Dunford and Schwartz [4].

(b) Concerning set valued mappings we recall a definition and a

useful theorem. Let X,Y be two topological spaces and 2 Y be the



Y
set of all closed subsets of Y. A function F: X -» 2 is called

upper semi continuous (u.s.c.) if the set {X|F(X)CG} is open

in X for all open sets G in Y. If X,Y are two topological

spaces a function f : X -• Y is said to be Borel measurable if

f (G) € T for all open sets G in Y where £ is the cr-ring

generated by open sets in X. We state a theorem due to Engelking

[12] in a form suitable for our purpose here.

Theorem [Engelking] Let X be a paracompact perfectly normal

topological space and (y,d) be a separable metric space which

Yis d-complete. If F: X'-» 2 is a u.s.c. map then there exists

a Borel measurable function f: X -• Y such that f (x) e F(x)

for all x € X.

Theorem 2. Let E be a separable conjugate Banach space and

1 < p < oo. If f € L^ ||f{I = 1 then f € Ext U^ if and only if
f (x) £ Ext U- for x a . e . in S^. If p = oo and f € lZ with

l f lxJl l E f E
|jf |! = 1 then f e Ext U~ if and only if f (x) e Ext UE for

x a.e. in Sf.

Proof. Let 1 < p < oo. if f € Lg, ||f|| = 1 and llf ĵ j II € E x t U
E

for x a.e. in S^ then it is verified that if M is a Borel

set, 0 < ju(M) < co and M c Sf then [fl(M)]"" ^ f ^ ) e Ext U^.

this completes the proof of the u if11 part.

To complete the proof of the " onXy iff! part we start noting

that since UE is a compact convex metrizable subset in w*-topology

the set Ext U- is a Gg subset of U . See proposition 1.3,
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Phelps [13]. Hence Ext UF is a Borel set in the norm topology

of E. Now let f € Ext Up and if possible let nf |*| M fL Ext

for x a.e. in S^. Since Ext U_ is a Borel set in U it

follows that there exists a measurable set M c Sf of positive

f (x)
measure such that H-) { n 4 Ext U_. Since g is a measurablejjr (x; I] E

function and ju is a regular measure there exists a compact set

C c M, 0 < J U ( C ) <oo such that g|c is continuous. Hence g(C)

is a compact set in Sp. We note that for x e C there exist
p +q

px'qx € SE' Px * qx S U C h t h a t g ( x ) = X2 *' F o r P ° s i t i v e 6

let Cfi be the subset of C of points x such that there exist
P +qx

px'qx € SE W i t h g*X* = —2 a n d d*px'qx* ^ 6 where d is thex'qx € SE W i t h g*X* = —2

metric defined in (a) preceding the statement of the Theorem. We

verify that Cfi is a Borel set in X, in fact a closed subset of

the compact set C. For let {t |neD} be a net in C- such that
p +q

t -• t for some t € C. Let 9(^0 = n
2
 n^ d^Pn^

qn^ -^ ^ f o r s o m e

p ,q € S_. Since (U_^d) is a compact metric space there exist
n n iii hi

convergent sequences {p }, {q } in {p } and {q ) respectively.

From the continuity of g it follows that g(t) = ^^ if p -* p

and q -».q# Further d(p 3a ) ^> 6 implies d(p,q) ^ 6. Thus
ni ni ni

t € Cfi and Cfi is a closed subset of C. By considering the

sequence of disjoint Borel sets C^ ~ C - for integers m J> 1 and

m itH-1
noting that O < /x(C) < » it follows that there exists a positive

number k, a compact set C = C 9 V c c and two functions
° K g1(x)+g2(x)

g.: C -> S__ such that for all x € C , g(x) = ^ and
1 O Hi O Z

|jg1(x)-g2(x) || ̂  d(g1(x) ,g2(x) ) ^ 2k. Thus there exists a function



UE
f: g(C ) -• 2 with the w*-topology on E relativised to XJ

such that for all £ e 9 ( c
o ^

 F^ is t h e n o n e mP ty w*-closed

set of points a in SF satisfying the condition for some p e S 9

£ = 3+e. and ||a-p|| 2 d(a,p)' 2 2;k* With the norm topology on E

relativised to g(C ) we proceed to verify that F is a u.s.c.

map. Let G be an open set in (UE,d) and let G^ = {£|F(£)cG}.

Suppose that t e g(C ) and that there is no neighbourhood N of

t such that for all rj e N, F(T)) C G. Thus there exists a

sequence {tn'} in g(CQ), tR - t, P(tn) £ g(CQ) for all n ^ 1

which in turn implies the existence of a sequence {t } in S_
n ht

1 2with t e F(t y ~ G. Considering a sequence [t } in LL, such
n n n hi

x 2

that t = —^2—^^(t ,t ) ^ 2k by standard compactness arguments

it follows that there exists a subsequence {t } in {t } conver-
i 1

ging to some point t in the space (U_,d) such that for some
1 2

point t2 € uE, t =
 fc ^ and d(t1,t2) ^ 2k. Thus t1 e F(t) c G.

Since G is a neighbourhood of t there exist t e G leading

to a contradiction. Thus F is a u.s.c. map. It is verified

that g(C ) and (U_,d) satisfy the conditions on X and Y
O E

respectively in EngelkingTs theorem stated earlier in the paper.

Hence there exists a Borel measurable function h: g(C ) -> (U_,d)
O £

such that h(£) e F(£) for all £ e g(C ). Let g1: C -» U^ be
O O E

the function defined by g = hog. It is verified that g is a

w*-measurable function. Since E is a separable Banach space by

the Theorem 3.5.5(2) on p. 74 in [7] it follows that g is a

measurable function. Further from the definition of F and the
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2
choice of h it is inferred that there exist g (x) € S £ such

that g(x) = q <x)+q ( X ) and Hg^x) -g2(x) || ;> d(g1(x), g2(x))2 ^ 2k.

1 2
Since g,g are measurable the function g is also measurable

1 2

and qlc = ^ t^ . Now defining the functions f : X -• U_, i = 1,2

by the equations fX(x) = gX(x) if x e C Q and f1(x) = g(x) if

x e X ~ C it is verified that f L e u£, g = f t f and fL ^ f .
O ill Z

Thus g jL Ext U^ which in turn by Theorem 1 implies that f / Ext U^

contradicting the choice of f. This completes the proof of Theorem

2 if 1 < p < •.

The case p = » is similarly dealt after noting the remark

following Theorem 1 and the details are not supplied.

Corollary. If E is a separable reflexive Banach space and f e U^,

1 < p < » and ||f|| = 1 then f e Ext U^ if and only if for x a.e.in sf> TiHUie Ext V
The corollary follows from the preceding Theorem since a

separable reflexive Banach space satisfies the condition on E in

the Theorem.

We proceed to the case when E is a reflexive Banach space

not necessarily separable. All subspaces in the rest of the paper

are closed subspaces. If f is a measurable function then the

range f is said to be essentially in the set M if f(x) e M

a.e. .

Theorem 3. If E is a reflexive Banach space and 1 < p <£ <»

then a function f e iZ with ||f || = 1 is an extreme point of U

f (x)
if and only if MV)VC n € 12xt UM

 a*e« in Ŝ - for every separable
11 J. I x / 11 w ji

subspace M essentially containing the range f.
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Proof. Suppose f € Ext U^ and M is a separable subspace

essentially containing the range f. If necessary redefining f

on a set of measure zero it could be assumed that f € IrJ. Since

n c: n clearly f e Ext u£. From the corollary to the TheoremM E - 1 M
f (x)2 it follows that -trrf—Hr e Ext U... Conversely let there be a
||r(x) I) M

separable subspace M of E essentially containing the range f

f (x)
such that llf)x\ 11 e Ext U M a.e. in Sf is false. Since it

could be assumed that f € l£ and since ||f|| = 1 it follows from

the Corollary to Theorem 2 that f / Ext U^. Since U^ c u ^

f 4 Ext u£. This completes the proof of the Theorem.

We next turn to some special Banach spaces E and study the

extremal structure of U^. We adopt the following notation. If

Y is a compact Hausdorff space then C(Y) is the Banach space

of continuous real valued functions on Y with the supremum norm.

If T is a discrete space C (F) denotes the Banach space of

real valued functions vanishing at °° with the supremum norm. In

what follows p is either a real number l < p < « or p = e»#

Theorem 4. If E = C(Y) or C Q(D and f e L^, ||f|| = 1 then

f e E x t uP i f a n d o n l y i f l|f i x j II e E x t U E f o r x a - e * i n s
f -

P r o o f . L e t E = C ( Y ) . L e t f e E x t U^* L e t g = P ( f ) . S i n c e
III

e e Ext U__ implies |e(x)| = 1 for all x e X it follows that

Ext U E is a closed subset of U in the norm topology on E. Thus

f (x)i f l|4r/v( || e Ext U_ for x a.e. in S^ is false then there exists
||r ̂ x ; |i £i t

a Borel set M c Sf, /Ll(M) > 0 such that for all x e M, g(x) 4 Ext U
E"
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Hence by the regularity of ji there exists a compact set

C c M, 0 < ;x(C) such that for all x € C, g(x) / Ext UE and

g|c is continuous. Let K = g(C). Thus K is a compact subset

of Sw. Let F e K. Since F / Ext U_ there exists a t. e Y

and a positive number ep such that -1 -f- 2e £ F(fcp) ^ 1 - 2 € F #

If F± € K such that ||F-F1|| <: €F then -1 + ep £ ^ ( t ^ £ 1 - ep.

Since K is a compact set there exists a finite set [F .}- . c K

such that if Bp is the subset of K defined by {F| ||F-Fi||^ep }
i i

then { B F } 1 j£ i j£ n is a covering of K. Since g is a continuous

function the family (g (Bp ) } l < l i ^ n is a finite family of

compact subsets of C covering C. Hence one of the sets

g~ (B^ ) has a positive measure. For definiteness let u(g~ (B_ ))> 0.
With 6 = €„ it is verified that G e B^ implies

r . r .

-1 + 6 < G(t ) < 1 - 6. By Ascoli-Arzelaf s theorem on compact sets

in C(Y) it follows that there exists an open neighbourhood U

of tf such that for all £ e U and for all G e Bp ,

-1 + *2"<G(^) < 1-6/2. Since Y is a compact Hausdorff space

there exists a continuous function F : Y -+ [0,6/2] such that

FQ vanishes on Y ~ U and F~ (6/2) is a nonempty subset of

U. Let g., i = 1,2 be the functions on X to C(Y) defined by

9X = Xx ^T g + XT(g+FQ) where T = g""1(BF> ) and g2 is the

o
same as g, except that the constant function F is replaced

by ~F
O*

 It: is verified that g. e U^ and g = —=~— and g.. / g .

Thus g / Ext U^. Hence it follows by Theorem 1 that f / Ext U^

thus completing the proof of the !l only ifft part.
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The proof of the !l if" part is the same as the proof of the

corresponding assertion in the Theorem 2. This completes the

proof of the Theorem when E = C(Y). The case when E = C (D is

similarly dealt.

Remark 2. It is easily verified that the set Ext U = 0 if E =

C (T) • Thus it follows from the Proposition 1 and the preceding

Theorem that Ext U ^ = 0 if 1 <2 P <2 °° and E = C (T) .

We proceed to indicate an application of some of the results

in the paper. More specifically we apply the corollary following

the Theorem 2 to determine the extreme operators in the unit cell

of B(E,,E2), the Banach space of operators on E, to E2 with

the usual supremum norm when E, is the function space L, (X, T,, p)

and E2 is a separable reflexive space. The measure space {X3^fx)

here is the same as the one considered in the introduction in addition

to being cr-finite. We recall the following representation Theorem

for such operators .which is an easy corollary of the Theorem 10,

p. 507 [4] after noting that every operator on a Banach space

to a reflexive Banach space is weakly compact.

Theorem 5. If B(L,,E) is the Banach space of operators on the

function space L^X, Z, fl) into a separable reflexive Banach

space E then the following map TT: B(L,,E) -> lZ is an isometric
J- E

isomorphism onto L^. If T e BfL^E) then TT(T) is the function

in L* such that
hi

Tf = J7r(T)(x)f(x)dji(x)
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From the corollary to the Theorem 2 and the preceding theorem

we obtain the following characterization.

Theorem 6. An operator T e B(L..,E) with ||T|| = 1 is an extreme

IT (T) ("ic)

point of the unit cell of B(L, ,E) if and only if \\ ;!,{ ) { n e Ext U
J- I Iff"v J- / \x; I!

a.e. in Sf.

Before proceeding to the conclusion we wish to make a remark

concerning the hypothesis on the measure space (X̂ Ŝ jit)-

Remark 3. As already mentioned in the introduction (X, S, ̂ ) is

a topological measure space. More specifically X is a locally

compact Hausdorff space. However this hypothesis is not too

restrictive for by a well-known Theorem of Kakutani, see for

example Theorem 2, p. 372 [9], if 1 < p < « and if (Y,!^,^)

is a finite measure space then there exists a topological measure

space (X, Sj ji) of the type considered here such that L^(Y, £L , |Lt,)

is isometrically isomorphic with L^.

In conclusion it might be mentioned that the characterization of

Ext U^ when E is an arbitrary (even separable) Banach space has

not been dealt here. This case and generalisations of the results

presented here to the class of Orlicz-Bochner Function Spaces with

applications to the theory of operators and approximation will be

dealt elsewhere.

I wish to express my gratitude to Professor R. R. Phelps

for very helpful suggestions.
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