EXTREME POINTS OF THE UNIT CELL IN

LEBESGUE-BOCHNER FUNCTIONS SPACES II

by

K. Sundaresan

Report 69-13

March, 1969

.

University Libraries Carnegie Mellon University Pittsburgh PA 15213-3890

Extreme Points of the Unit Cell in Lebesgue-Bochner Function Spaces II

Kondagunta Sundaresan[®]

The extremal structure of the unit cell in CL₁(X), the Banach space of continuous functions on a compact Hausdorff space into a Banach space B with the supremum norm has received Х considerable attention in recent years. For these and related results see the papers of Blumenthal, Lindenstrauss and Phelps [1], Phelps [2] and Peck [3]. As pointed out in [1] and [2] part of the motivation to the problem stems from an attempt to characterize the extreme operators on a Banach space B into C(X), the space of real valued continuous functions on a compact Hausdorff space X with the usual supremum norm. A similar problem of interest is to characterize the extreme operators on Banach spaces L, (X, £, JU) into a reflexive Banach space. From the representation theorems for such operators in Dunford and Schwartz [4] it is easily verified that the problem mentioned above is related to the extremal structure of the unit cell in Lebesgue-Bochner function spaces. For a detailed account of these spaces we refer to Bochner and Taylor [5], Edwards [6], Hille and Philips [7] and Bogdanowicz [8] and Dinculeanu [9].

With the above motivation we consider in this paper the problem of characterising the extreme points of the unit cell in Lebesque-Bochner function spaces $lR_{\mathbf{E}} \ 1 < \mathbf{p} < 2 \ ^{\circ \circ}$, which are abstract generalisations of the classical L^{p} spaces. The case when E is @This work was supported in part by Scaiffe Faculty Grant administered by Carnegie-Melion University.

ģ

0

HURT LIBRARY CABNE6IE-MELL8N UNIVERSITY finite dimensional has been considered in an earlier paper, Sundaresan [10].

We adhere to the following notation throughout the paper. $(X, T_{u}^{*}|u)$ is a fixed measure space with X a locally compact Hausdorff space, £ the cr-ring of Borel sets in X and ju a regular positive measure. For a definition of these terms see Halmos [11]. As there is certain divergence in the terminology concerning vector valued measurable functions we wish to point out the terminology adopted here is the same as in the Chapter 8, Edwards [6]. Thus if E is a locally convex vector space then a function f: $X \rightarrow E$ is measurable if f has the Lusin property, i.e. if K is a compact subset of X then for each \in > 0 there exists a compact set $C \subset K$ such that $u(C \sim K) < e$ and the restriction of f to C, f|c, is continuous. The definition of a vector valued measurable function in [9] differs from the above definition. However when the range of f is metrizable then either of the definitons implies the other. If E is a Banach space then a function f: X -• E is measurable if it is measurable with respect to the strong topology on E. A function $f: X \rightarrow E$ is $w(w^*)$ measurable if f is measurable with respect to the weak (weak* topology if appropriate) on E. If E is a Banach space the linear space of measurable functions f on X to E such that the function $x - ||f(x)||^p (1 \le x >)$ is ju-suramable is denoted by $L_{\mathbf{F}}^{P}$. After the usual identification of functions agreeing a.e. it is verified that $L^{p}_{\mathbf{k}}$ is a Banach space when equipped with

the norm $\|f\| = [\int \|f(x)\|^p d\mu]^{1/p}$. Likewise L_E^{∞} is the Banach space of essentially bounded measurable functions f on Xto E with the norm $\|f\| = \operatorname{ess Sup} \|f(x)\|$. We denote the norm in $L_E^p(1 \le p \le \infty)$ and the norm in E by the same symbol $\|\|\|$ as there is no occasion for confusion. U_E^p is the unit cell in L_E^p and $U_E(S_E)$ is the unit cell (unit sphere) in E. If f is a measurable function S_f is the set $\{x \mid f(x) \neq 0\}$ and P(f)is the measurable function defined by $P(f)(x) = \frac{f(x)}{\|f(x)\|}$ if $x \in S_f$ and P(f)(x) = 0 if $x \notin S_f$. If A is a set X_A is the characteristic function of A and if C is a convex set ext Cis the set of extreme points of C.

Before proceeding to the main results we deal with the simpler case of L_E^1 and then state a preliminary theorem of considerable use in the subsequent discussion.

Proposition 1. A function $f \in L_E^1$ is an extreme point of U_E^1 if and only if there exists an atom $A \subset X$ and a point $e \in Ext U_E$ such that $f(x) = \frac{+X_A(x)e}{\mu(A)}$ for x a.e..

Proof. As a first step we verify if there exist two disjoint measurable sets $C_1, C_2 \subset S_f$ of positive measure then f is not an extreme point of U_E^1 . If such a pair of measurable sets exist and $C = C_1 \cup C_2$ let λ_i , $0 < \lambda_i < 1$, i = 1, 2 be the numbers defined by

 $\int_{C_{i}} \|f(\mathbf{x})\| d\mu = \lambda_{i} \int_{C} \|f(\mathbf{x})\| d\mu.$

Let g_i , i = 1, 2 be the functions defined by

$$g_{i} = fx_{X \sim C} + (1 + \lambda_{j})fx_{C_{i}} + (1 - \lambda_{i})fx_{C_{j}}$$

where j = 2 if i = 1 and j = 1 if i = 2. It is verified that $g_i \in L_E^1$, $||g_j|| = 1$, $f = \frac{g_1 + g_2}{2}$ and $g_1 \neq g_2$. Thus $f \notin Ext U_E^1$.

From the observation in the preceding paragraph and the regularity of the measure μ it follows that if $f \in \text{Ext } U_E^1$ then S_f does not contain any measurable set M of positive measure, $\mu(M) < \mu(S_f)$. Since ||f(x)|| is summable it is verified that S_f is an atom. Hence there exists a real number c and a vector $e \in E$ such that $f(x) = cX_{S_f}(x)e$ for x a.e.. Since $f \in \text{Ext } U_E^1$ it is verified that $c = \frac{1}{2} \frac{1}{\mu(S_f)}$ and $e \in \text{Ext } U_E$. This completes the proof of the "only if" part. Since the "if" part is easily verified the proof of the proposition is complete.

Theorem 1. If $1 then a function <math>f \in L_E^p$ with ||f|| = 1is an extreme point of U_E^p if and only if $\frac{P(fX_M^p)}{[\mu(M)]^{1/p}} \in Ext U_E^p$ for every Borel set M such that $0 < \mu(M) < \infty$ and $M \subset S_f$. Proof. Before proceeding to the proof of the "only if" part let us recall the well-known Clarkson inequalities for L_R^p where R is the real line. If $f,g \in L_R^p$ then

$$\|f+g\|^{p} + \|f-g\|^{p} \le 2^{p-1} [\|f\|^{p} + \|g\|^{p}]$$
 if

 $2 \leq p < \infty$ and

 $\|\mathbf{f}+\mathbf{g}\|^{\mathbf{q}} + \|\mathbf{f}-\mathbf{g}\|^{\mathbf{q}} \le 2[\|\mathbf{f}\|^{\mathbf{p}}+\|\mathbf{g}\|^{\mathbf{p}}]$

if $1 and <math>q = \frac{p}{p-1}$. Using these inequalities it is

verified (*) if $f = \frac{g_1 + g_2}{2}$ and $||f|| = 1 = ||g_i||$ then $||f(x)|| = ||g_i(x)||$, i = 1, 2. Let now $f \in L_E^P$ with ||f|| = 1. Let M be a Borel set such that M c S_f and $0 < (i(M) < \infty$. Let $g = [/i(M)] \sim {}^{1/AP}P(fX_M)$. If possible let $g / ^ Ext U_P^P$. It follows from (*) that there exist $g_{\pm} \in U_E^P$ such that $g = ?i_2^{+g}2_{and} ||_{g(x)}|, = |,_{gi(x)}|| = ||g_2(x)f|$ a.e.. Thus if $h_{1,2}$ i = 1,2 are the functions defined by $h_{1/2}(x) = [u(M)]^{1//p} ||f(x)||g_x(x)$ if $x \in M$ and $h_x(x) = f(x)$ if x / M then $f = -\frac{1}{2\pi}$ and ||h.|| = 1. Hence $f / Ext U_E^R$ completing the proof of the n only if^{ft} part.

Conversely if $f \in iZ_{\underline{k}}$ IIf $I^1 = 1$ and $f / Ext \cup \underline{k}$ then there exist $g_{\underline{1}} \in \bigcup_{\underline{j}}^{12}$ such that $f = \frac{g_{\underline{1}} + g_{\underline{2}}}{2}$ and $g_{\underline{n}} - g_{\underline{2}}$. Hence from (*) it follows that $|\underline{j}f(x) II = 1!g_{\underline{2}}(x)||$ there exists a measurable set $M c S_f$, 0 < JU(M) < 00 such that for all $x \in M$, $g_{\underline{1}}(x) \land g_{\underline{2}}(x)$. It is verified that

$$\frac{P(fX_{M})}{[\mu(M)]^{1/p}} = \frac{\frac{1}{2} \frac{P(g_{1}X_{M})}{[\mu(M)]^{1/p}} + \frac{P(g_{2}X_{M})}{[\mu(M)]^{1/p}}].$$

Since the functions appearing in the right bracket are verified to be in U^p it follows that $() \xrightarrow[E]{E} / Ext U^p$ completing the $[W(M)]^{1/p}$ Eproof of ^{f1} if¹¹ part.

Remark 1.A characterization of extreme points of U[^] similar to the one provided in the preceding theorem is evident for if $f \in \text{Ext } \coprod_{i=1}^{\infty}$ E then ||f(x)|j = 1 a.e.. The verification of this assertion is as follows. If possible let $f \in \text{Ext } \amalg_{i=1}^{\infty}$ and M be a Borel set, 0 < jit(M) < 00 such that for $x \in M$, $|\texttt{jt}(x)|^{-1} < 1$. Since fi is a regular measure there exists a compact set C c M of positive measure such that f|C is continuous. Hence f(C) is a compact set in the interior of U_E . Thus there exists a vector V in U_E (choose for V any vector with $0 < ||V|| < 1 - \max_{x \in C} ||f(x)||$) such that $||f(x) + V|| \le 1$ for all $x \in C$. Let now g_i , i = 1, 2 be the functions $(f_-^+V)X_C + fX_{X\sim C}$ where V is the constant function with $\{V\}$ as the range. It is verified that $||g_i|| = 1$, $f = \frac{g_1 + g_2}{2}$ and $g_1 \neq g_2$. Thus $f \in \text{Ext } U_E^{\infty}$ completing the proof of the assertion

Next we proceed to the main results. We study the case when E is a separable conjugate Banach space (in particular when E is a separable reflexive Banach space) and show in this case the extreme points in U_E^p , 1 could be related to the extreme $points in <math>U_E^p$.

Before proceeding to these we recall some facts required in the proof of the next theorem.

(a) The W*-topology relativised to the unit cell of E where E is a separable conjugate Banach space is metrizable. We can further assume that a metric d on U_E could be defined to satisfy the additional requirement $d(p,q) \leq ||p-q||$ for all $p,q \in U_E$. For if $E = B^*$ then B is also a separable space. Thus there exists a countable dense subset $\{x_n\}_{n\geq 1}$ of the unit cell U_B with respect to the norm topology relativised to U_B . Let us define for $p,q \in U_E$, $d(p,q) = \sum_{n\geq 1} \frac{1}{2^n} |p(x_n)-q(x_n)|$. Then d has the required properties. See in this connection Theorem 1, p. 426 Dunford and Schwartz [4]. (b) Concerning set valued mappings we recall a definition and a useful theorem. Let X,Y be two topological spaces and 2^Y be the set of all closed subsets of Y. A function F: $X \to 2^{Y}$ is called upper semi continuous (u.s.c.) if the set $\{X | F(X) CG\}$ is open in X for all open sets G in Y. If X,Y are two topological spaces a function $f: X \to Y$ is said to be Borel measurable if $f(G) \in T$ for all open sets G in Y where f is the cr-ring generated by open sets in X. We state a theorem due to Engelking [12] in a form suitable for our purpose here.

Theorem [Engelking] Let X be a paracompact perfectly normal topological space and (y,d) be a separable metric space which is d-complete. If F: X'-» 2^{Y} is a u.s.c. map then there exists a Borel measurable function f: X -• Y such that $f(x) \in F(x)$ for all $x \in X$.

Theorem 2. Let E be a separable conjugate Banach space and $1 . If <math>f \in L^{n} ||f\{I = 1 \text{ then } f \in Ext U^{n} \text{ if and only if}$ $f(x) \in Ext U_{E}$ for x a.e. in S_{f}^{n} . If $p = \infty$ and $f \in I_{Z}^{n}$ with |f| = 1 then $f \in Ext U_{E}^{n}$ if and only if $f(x) \in Ext U_{E}$ for x a.e. in S_{f} .

Proof. Let $1 . if <math>f_{\in L}g$, ||f|| = 1 and $\lim_{H} f_{\int J} TI \in Ext U_{E}$ for x a.e. in S[^] then it is verified that if M is a Borel set, 0 < ju(M) < co and $M c S_{f}$ then $[fl(M)]^{"} h^{1} f^{*}$) $e Ext U^{*}$. this completes the proof of the u if 11 part.

To complete the proof of the "onXy if^{f!} part we start noting that since $U_{\underline{E}}$ is a compact convex metrizable subset in w*-topology the set Ext $U_{\underline{E}}$ is a Gg subset of $U_{\underline{E}}$. See proposition 1.3, Phelps [13]. Hence Ext $U_{\rm F}\,$ is a Borel set in the norm topology of E. Now let $f \in Ext U_{\mathbf{E}}^{p}$ and if possible let $n_{\mathbf{f}} \in \mathbf{E} \times \mathbf{U}_{\mathbf{E}}$ for x a.e. in S[^]. Since Ext U_ is a Borel set in U_ it follows that there exists a measurable set $\mbox{ M c } S_{\rm f}$ of positive measure such that $H_{\overline{II}}^{f}(x)$ n 4 Ext U. Since g is a measurable function and ju is a regular measure there exists a compact set $C \subset M$, 0 < JU(C) < oo such that g|c is continuous. Hence g(C)is a compact set in S_p . We note that for $x \in C$ there exist ${}^{p}x'{}^{q}x \in {}^{S}E' {}^{p}x * {}^{q}x$ Such that $g(x) = {}^{X}2 * {}^{p+q} * {}^{For}P^{o}$ sitive 6 let $C_{\mbox{\scriptsize fi}}$ be the subset of C of points $\ x$ such that there exist ${}^{p}\mathbf{x} \stackrel{\text{g}}{=} \mathbf{x} \stackrel{\text{g}}{=} \mathbf{x} \stackrel{\text{g}}{=} \mathbf{x}^{+q_{x}}$ is the metric defined in (a) preceding the statement of the Theorem. We verify that $\ensuremath{\,C_{fi}}$ is a Borel set in X, in fact a closed subset of the compact set C. For let $\{t_n \mid neD\}$ be a net in $C_{\overline{\mathbf{0}}}$ such that tn -• t for some t \in C. Let 9($\mathbf{\hat{n}}$ 0 = $\frac{p+q}{2}$ $\frac{n}{2}$ n^{-n} $\frac{d}{2}$ P_n^{-q} n^{-n} $\frac{d}{2}$ P_n^{-q} n^{-n} $\frac{d}{2}$ P_n^{-q} $p_n, q_n \in S_{\underline{m}}$. Since $(U_{\underline{n}}^d)$ is a compact metric space there exist convergent sequences $\{p_{n_i}\}, \{q_{n_i}\}$ in $\{p_n\}$ and $\{q_n\}$ respectively. From the continuity of g it follows that $g(t) = ^{ } if p - * p$ and $q \rightarrow .q_{\#}$ Further $d(p_{3}a) \rightarrow 6$ implies $d(p,q) \rightarrow 6$. Thus $t \in C_{fi}$ and C_{fi} is a closed subset of C. By considering the sequence of disjoint Borel sets $C^{-} \sim C_{-}$ for integers $m_{J\geq} 1$ and itH-1 noting that 0 < /x(C) < w it follows that there exists a positive number k, a compact set $C = C_{9v} c c$ and two functions $g_{1} \stackrel{\circ}{\xrightarrow{}} \stackrel{\overset{\circ}{\xrightarrow{}}}{\underset{1}{\overset{}}} such that for all x \in C, g(x) = \underbrace{\begin{array}{c}g_{1}(x)+g_{2}(x)\\ g_{1}(x)-g_{2}(x)\\ g_{1}(x)-g_{2}(x)-g_{2}(x)\\ g_{1}(x)-g_{2}(x)\\ g_{1}(x)-g_{2}(x)-g_{2}(x)\\ g_{1}(x)-g_{2}(x)-g_{2}(x)\\ g_{1}(x)-g_{2}(x)-g_{2}(x)\\ g_{1}(x)-g_{2}(x)-g_{2}(x)\\ g_{1}(x)-g_{2}(x)-g_{2}(x)-g_{2}(x)\\ g_{1}(x)-g_{2}(x) |jg_1(x)-g_2(x)||$ ^ d(g₁(x),g₂(x)) ^ 2k. Thus there exists a function

υĘ f: g(Co) -• 2 with the w*-topology on E relativised to XJE such that for all $f \in 9(c_{\circ}^{*} F^{*})^{\text{is the nonem}} P^{t}y w^{*}$ -closed set of points a in $S_{\underline{E}}$ satisfying the condition for some p e $S_{\underline{E}}$ $f = 3\overline{p}e$. and $||a-p|| 2 d(a,p)' 2^{2k}$ With the norm topology on E relativised to $g(C_{\mathbf{0}})$ we proceed to verify that F is a u.s.c. map. Let G be an open set in (U_E,d) and let $G^* = \{f | F(f) cG\}$. Suppose that t e $g(C_{\mathbf{O}})$ and that there is no neighbourhood N of t such that for all rj e N, F(T)) C G. Thus there exists a sequence $\{t_n'\}$ in $g(C_Q)$, $t_R - t$, $P(t_n) \pounds g(C_Q)$ for all $n \uparrow 1$ which in turn implies the existence of a sequence $\{t \}$ in S_ with $t_n^1 \in F(t_n Y \sim G$. Considering a sequence $[t_n^2]$ in \coprod_{hi} such that $tn = -\frac{1}{2} - \frac{1}{2} - \frac{1$ it follows that there exists a subsequence $\{t_n^1\}$ in $\{t_n^1\}$ converging to some point t in the space $(U_{\mathbf{E}},d)$ such that for some point $t^2 \in u_E$, $t = \frac{1}{t^c}$ and $d(t^1, t^2)$ ^ 2k. Thus $t^1 \in F(t) \subset G$. Since G is a neighbourhood of t there exist $t_{n_i} \in G$ leading to a contradiction. Thus F is a u.s.c. map. It is verified that g(C) and (U_{d}) satisfy the conditions on X and Y

Е

respectively in Engelking^Ts theorem stated earlier in the paper. Hence there exists a Borel measurable function h: $g(C) \rightarrow (U_{-},d)$ such that $h(f) \in F(f)$ for all $f \in g(C)$. Let $g^{1}: C \rightarrow U^{-}$ be $O \qquad C \qquad E$ the function defined by g = hog. It is verified that g is a u^{*} -measurable function. Since E is a separable Banach space by the Theorem 3.5.5(2) on p. 74 in [7] it follows that g is a measurable function. Further from the definition of F and the choice of h it is inferred that there exist $g^2(x) \in S_{\underline{p}}$ such that $g(x) = \frac{g^1(x) + g^2(x)}{2}$ and $||g^1(x) - g^2(x)|| \ge d(g^1(x), g^2(x))^2 \ge 2k$. Since g, g^1 are measurable the function g^2 is also measurable and $g|_{C_0} = \frac{g^1 + g^2}{2}$. Now defining the functions $f^i: X \to U_E$, i = 1, 2by the equations $f^i(x) = g^i(x)$ if $x \in C_0$ and $f^i(x) = g(x)$ if $x \in X \sim C_0$ it is verified that $f^i \in U_E^p$, $g = \frac{f^1 + f^2}{2}$ and $f^1 \neq f^2$. Thus $g \notin \text{Ext } U_E^p$ which in turn by Theorem 1 implies that $f \notin \text{Ext } U_E^p$ contradicting the choice of f. This completes the proof of Theorem 2 if 1 .

The case $p = \infty$ is similarly dealt after noting the remark following Theorem 1 and the details are not supplied.

Corollary. If E is a separable reflexive Banach space and $f \in U_E^p$, 1 and <math>||f|| = 1 then $f \in Ext U_E^p$ if and only if for x a.e. in S_f , $\frac{f(x)}{||f(x)||} \in Ext U_E$.

The corollary follows from the preceding Theorem since a separable reflexive Banach space satisfies the condition on E in the Theorem.

We proceed to the case when E is a reflexive Banach space not necessarily separable. All subspaces in the rest of the paper are closed subspaces. If f is a measurable function then the range f is said to be essentially in the set M if $f(x) \in M$ a.e..

Theorem 3. If E is a reflexive Banach space and 1 $then a function <math>f \in L_E^p$ with ||f|| = 1 is an extreme point of U_E^p if and only if $\frac{f(x)}{||f(x)||} \in Ext U_M$ a.e. in S_f for every separable subspace M essentially containing the range f.

Proof. Suppose $f \in Ext U_E^p$ and M is a separable subspace essentially containing the range f. If necessary redefining f on a set of measure zero it could be assumed that $f \in U_M^p$. Since $U_M \subset U_E$ clearly $f \in Ext U_M^p$. From the corollary to the Theorem 2 it follows that $\frac{f(x)}{\|f(x)\|} \in Ext U_M$. Conversely let there be a separable subspace M of E essentially containing the range f such that $\frac{f(x)}{\|f(x)\|} \in Ext U_M$ a.e. in S_f is false. Since it could be assumed that $f \in L_M^p$ and since $\|f\| = 1$ it follows from the Corollary to Theorem 2 that $f \notin Ext U_M^p$. Since $U_M^p \subset U_E^p$, $f \notin Ext U_E^p$. This completes the proof of the Theorem.

We next turn to some special Banach spaces E and study the extremal structure of U_E^p . We adopt the following notation. If Y is a compact Hausdorff space then C(Y) is the Banach space of continuous real valued functions on Y with the supremum norm. If Γ is a discrete space $C_o(\Gamma)$ denotes the Banach space of real valued functions vanishing at ∞ with the supremum norm. In what follows p is either a real number $1 or <math>p = \infty$.

Theorem 4. If E = C(Y) or $C_o(\Gamma)$ and $f \in L_E^p$, ||f|| = 1 then $f \in Ext U_E^p$ if and only if $\frac{f(x)}{||f(x)||} \in Ext U_E$ for x a.e. in S_f . Proof. Let E = C(Y). Let $f \in Ext U_E^p$. Let g = P(f). Since $e \in Ext U_E$ implies $|e(x)|^2 = 1$ for all $x \in X$ it follows that Ext U_E is a closed subset of U_E in the norm topology on E. Thus if $\frac{f(x)}{||f(x)||} \in Ext U_E$ for x a.e. in S_f is false then there exists a Borel set $M \subset S_f$, $\mu(M) > 0$ such that for all $x \in M$, $g(x) \notin Ext U_E$. Hence by the regularity of ji there exists a compact set $C \subset M$, 0 < ix(C) such that for all $x \in C$, $g(x) / Ext U_E$ and g|c is continuous. Let K = g(C). Thus K is a compact subset of Sw. Let F e K. Since F / Ext U, there exists a t. e Y and a positive number e_p such that $-1 \pm 2e_{\mathbf{F}} \pm {}^{\mathrm{F}(fc}p) \wedge 1 - {}^{2e}F^{*}$ If $F_{\pm} \in K$ such that $||F-F_1|| \leq : \in_F$ then $-1 + e_p \pounds (t \pounds 1 - e_p)$. Since K is a compact set there exists a finite set $[F_{i}]$ -icicn c K such that if B_p $\;$ is the subset of K defined by $\{F \mid \; | \, |F-F_i| \, | \, ^e_p \; \}$ i $\{B_{F}\}$ 1 jf i jf n is a covering of K. Since g is a continuous then compact subsets of C covering C. Hence one of the sets 1 g~ (B^) has a positive measure. For definiteness let $u(g (B_)) > 0$. With $6 = \mathfrak{E}_{n}$ it is verified that $G \in B^{\wedge}$ implies r 1₀ $-1 + 6 < G(t_{\mathbf{F}}) < 1 - 6$. By Ascoli-Arzela^f s theorem on compact sets in C(Y) it follows that there exists an open neighbourhood U such that for all f $e~\mbox{U}$ and for all G $e~\mbox{B}_{\rm p}$, tf of $-1 + *2" < G(^) < 1-6/2$. Since Y is a compact Hausdorff space there exists a continuous function F : Y - + [0, 6/2] such that F_Q vanishes on Y ~ U and $F_{\sim 0}^{-1}(6/2)$ is a nonempty subset of U. Let g_{i} , i = 1, 2 be the functions on X to C(Y) defined by $9_{X} = X_{X} \uparrow_{T} g + X_{T}(g+F_{Q})$ where $T = g''^{1}(B_{F>})$ and g_{2} is the same as g, except that the constant function F is replaced by \sim_{0}^{F} ^{t:} is verified that $g_{1} \in U_{-}^{2}$ and $g = -g_{2}^{g_{2}}$ and $g_{1} = g_{2}^{g_{2}}$ and $g_{1} = g_{2}^{g_{2}}$ Thus g / Ext U[^]. Hence it follows by Theorem 1 that f / Ext U[^] thus completing the proof of the '1 only if ft part.

The proof of the ^{!1} if " part is the same as the proof of the corresponding assertion in the Theorem 2. This completes the proof of the Theorem when E = C(Y). The case when $E = C_0$ (D is similarly dealt.

Remark 2. It is easily verified that the set $\operatorname{Ext} U_{\mathbf{E}} = 0$ if $\mathbf{E} = C_{\mathbf{0}}(T)$. Thus it follows from the Proposition 1 and the preceding Theorem that $\operatorname{Ext} U^{*} = 0$ if $1 < 2 P < 2^{\circ}$ and $\mathbf{E} = C_{\mathbf{0}}(T)$.

We proceed to indicate an application of some of the results in the paper. More specifically we apply the corollary following the Theorem 2 to determine the extreme operators in the unit cell of $B(E_{I}, E_2)$, the Banach space of operators on E_{I} , to E_2 with the usual supremum norm when $E_{, I}$ is the function space L, (X, T, , p)and E_2 is a separable reflexive space. The measure space $\{X_3^{fx}\}$ here is the same as the one considered in the introduction in addition to being cr-finite. We recall the following representation Theorem for such operators which is an easy corollary of the Theorem 10, p. 507 [4] after noting that every operator on a Banach space to a reflexive Banach space is weakly compact.

Theorem 5. If $B(L_{\underline{i}}, E)$ is the Banach space of operators on the function space L^X, Z, fl into a separable reflexive Banach space E then the following map TT: $B(L, E) \rightarrow lZ$ is an isometric J = Eisomorphism onto L^A . If T e BfL^AE) then TT(T) is the function in L_{Ti} such that

Tf = J7r(T)(x)f(x)dji(x).x

From the corollary to the Theorem 2 and the preceding theorem we obtain the following characterization.

Theorem 6. An operator $T \in B(L_1, E)$ with ||T|| = 1 is an extreme point of the unit cell of $B(L_1, E)$ if and only if $\frac{\pi(T)(x)}{||\pi(T)(x)||} \in Ext U_E$ a.e. in S_f .

Before proceeding to the conclusion we wish to make a remark concerning the hypothesis on the measure space (X, Σ, μ) . Remark 3. As already mentioned in the introduction (X, Σ, μ) is a topological measure space. More specifically X is a locally compact Hausdorff space. However this hypothesis is not too restrictive for by a well-known Theorem of Kakutani, see for example Theorem 2, p. 372 [9], if $1 and if <math>(Y, \Sigma_1, \mu_1)$ is a finite measure space then there exists a topological measure space (X, Σ, μ) of the type considered here such that $L_E^p(Y, \Sigma_1, \mu_1)$ is isometrically isomorphic with L_E^p .

In conclusion it might be mentioned that the characterization of $\operatorname{Ext} U^p_E$ when E is an arbitrary (even separable) Banach space has not been dealt here. This case and generalisations of the results presented here to the class of Orlicz-Bochner Function Spaces with applications to the theory of operators and approximation will be dealt elsewhere.

I wish to express my gratitude to Professor R. R. Phelps for very helpful suggestions.

Bibliography

- R. M. Blumenthal, J. Lindenstrauss, and R. R. Phelps, Extreme Operators into C(K), Pacific Journal of Mathematics, 15 (1965), 141-156.
- R. R. Phelps, Extreme Points in Function Algebras, Duke Math. J., 32 (1965), 265-277.
- 3. N. T. Peck, Representation of Functions by means of Extreme Points, Proc. Amer. Math. Soc, 18 (1967), 133-135.
- 4. N. Dunford and J. T. Schwartz, Linear Operators Part I, Interscience publishers, New York.
- S. Bochner and A. E. Taylor, Linear Functioneiis on Certain Spaces of Abstractly Valued Functions, Annals of Matheitatics, 39 (1938), 913-944.
- R. E. Edwards, Functional Analysis, Holt, Rinehart and Winston, New York (1965).
- 7. E. Hille and R. S. Phillips, ^{!1} Functional Analysis and Semigroups, ^{ft} Amer. Math. Soc. Coll. Publ. XXXI, 1957.
- W. M. Bogdanowicz, An Approach to the Theory of Lebesgue-Bochner Measurable Functions, Math. Annalen, 164 (1966), 251-269.
- 9. N. Dinculeanu, Vector Measures, Veb Deutscher Verlag Der Wissenschaften, Berlin (1967).
- K. Sundaresan, Extreme Points in Lebesque-Bochner Function Spaces I (To appear).
- P. R. Halmos, ¹¹ Measure Theory^M, D. Van Nostrand, New York, 1950.
- 12. R. Engleking, Selectors for the First Baire Class for Semicontinuous Set Valued Functions (to appear).
- R. R. Phelps, Lectures on Choquet's Theorem, Van Nostrand Math. Studies, No. 7, Van Nostrand, Princeton (1966).