EXTREME PO NTS OF THE UNIT CELL IN

LEBESGUE- BOCHNER FUNCTI ONS SPACES | |

by

K. Sundar esan

Report 69-13

March, 1969

University Libraries
Carnegie Mdlon University
Pittsburgh PA 15213-3890



N> =6

Extreme Points of the Unit Cell in
Lebesgue- Bochner Function Spaces |1

Kondagunt a Sundar esan®

The extremal structure of the unit cell in C.(X), the
Banach space of continuous functions on a conpact Hausdorff space
X into a Banach space B wth the suprenmum norm has received
consi derable attention in recent years. For these and rel ated
results see the papers of Blunenthal, Lindenstrauss and Phel ps
" [1], Phelps [2] and Peck [3]. As pointed out in [1] and [2]
part of the notivation to the problem stens froman attenpt to
characterize the extrenme operators on a Banach space B into
C(X), the space of real valued continuous functions on a conpact
Hausdorff space X wth the usual supremumnorm A simlar prob-
lemof interest is to characterize the extrene operators on
Banach spaces L,ng, £,JU into a reflexive Banach space. From
the representation theorens for such operators in Dunford and
Schwartz [4] it is easily verified that the probl emnentioned
above is related to the extremal structure of the unit cell in
Lebesgue- Bochner function spaces. For a detailed account of these
spaces we refer to Bochner and Taylor [5], Edwards [6], Hille and
Philips [7] and Bogdanowi cz [8] and Dincul eanu [9].

Wth the above notivation we consider in this paper the
probl em of characterising the extreme points of the unit cell ‘in
Lebesque- Bochner function spaces IRy 1 <t p <2°° which are abstract

generalisations of the classical LP spaces. The case when E is
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finite dinmensional has been considered in an earlier paper,
Sundar esan [ 10] .

W adhere to the followi ng notation throughout the paper.
(X, T™™u) is a fixed neasure space with X a locally conpact
Hausdorff space, £ the cr-ring of Borel sets in X and ju a
regul ar positive neasure. For a definition of these terns see
Hal nros [11] . As there is certain divergence in the term nol ogy
concerni ng vector val ued neasurable functions we wi sh to point out
term nol ogy adopted here is the same as in the Chapter 8, Edwards
[6]. Thus if E is alocally convex vector space then a
function f: X-« E is nmeasurable if f has the Lusin property,
i.e. if K is a conpact subset of X then for each € > 0
there exists a conpact set C c K such that u(C-K) < e and the
restriction of f to C, flc, is continuous. The definition of
.a vector valued nmeasurable function in [9] differs fromthe above
definition. However when the range of f is netrizable then
either of the defintions inplies the other. |If E is a Banach
space then a function f: X-« E is nmeasurable if it is measurable
with respect to the strong topology on E. A function f: X->E
is w(w) nmeasurable if f is neasurable with respect to the
weak (weak* topology if appropriate) on E. If E is .a Banach
space the linear space of measurable functions f on X to E

such that the function x - [|[f(x) |]P" (1<£<>) is ju-suramable is

t he

denot ed by L;j After the usual identification of functions agreeing

a.e. it is verified that LEE:’ i s a Banach space when equi pped with




the norm ||£|| = [I Hf(x)”pdp] 1/p . Likewise L; is the Banach

X
space of essentially bounded measurable functions £ on X

to E with the norm |f|| = ess Sup||f(x)||. We denote the norm
in Lg(lngP) and the norm in ;exby the same symbol | | as
there is no occasion for confusion. Ug is the unit cell in Lg
and .UE(SE) is the unit cell (unit sphere) in E. If f is
a measurable function S¢ is the set ({x|f(x) # 0} and P(f)
is the measurable function defined by P(f)(x) = ﬂ%%ﬁ%ﬂ if
X € S¢ and P(f)(x) = 0 if x /£ Sg- If A is a set X, is the
characteristic function of A and if C is a convex set ext C
is the set of extreme points of C.

Before proceeding to the main results we deal with the simpler
case of Lé and then state a preliminary theorem of considerable
use in the subsequent discussion.

Proposition 1. A function £ ¢ L; is an extreme point of Ué

if and only if there exists an atom A < X and a point e € Ext UE

X (x)e
such that f(x) = (A) for x a.e..

Proof. As a first step we verify if there exist two disjoint
measurable sets Cl,C2 c Sf of positive measure then f 1is not
an extreme point of Ué. If such a pair of measurable sets
exist and C = Ci U C, let xi, 0 < %i <1l, i = 1,2 Dbe the
numbers defined by

[ lgco lan = ay Jligco fap.

Ci C




Let gi,'i = 1,2 bDe the functions defined by

gi = fXXl\C + (1+7\j)fxci + (l—xi)fxcj

where j 2 if i=1 and j=1 if i = 2. It is verified

that g;

m

2
Lé, ”gi“ =1, £ = 5 and 9, # gy- Thus f £ Ext Ué.

From the observation in the preceding paragraph and the regu-

larity of the measure u it follows that if f ¢ Ext Ué then Sf

does not contain any measurable set M of positive measure, u(M)<u(sf).

Since ||£(x)| is summable it is verified that S¢ is an atom.

Hence there exists a real number ¢ and a vector e € E such

that £(x) = cXS (x)e for x a.e.. Since f ¢ Ext Ué it is
f
verified that ¢ =t H(é y and e € Ext U, - This completes the
£

roof of the " only if!" part. Since the " if!'" part is easily
P

verified the‘proof of the proposition is complete.

Theorem 1. If 1 < p < » then a function £ ¢ I with |£| =1

p(fxﬁ)

is an extreme point of Ug if and only if ——*———T75 e Ext Ug
(u(M)]

for every Borel set M such that 0 < pu(M) < « and M C Sf.

Proof. Before proceeding to the proof of the '" only if'" part let

us recall the well-known Clarkson inequalities for Lg where R

is the real line. If £f,g ¢ Lg then

I£+gl® + lle-glP < 2P~ {|1£|Palig)Py  if
2 S_ P <o and
l£rg)® + NE-gll¥ < 20 )€ ]+ [|g||P)

if 1<p<K2 and g = B?T . Using these inequalities it is




verified (*) if f = EL-‘-—g-: and |If]l = 1 = ||lgill] then |If(X)]| =

[lgi(x)[], i = 1,2. Let now f e L; with |[If|| = 1. Let M be a

Borel set such that M c & and O < (i((M) <» Let g = [iM)] ~l”‘"’P(fXM).
If possible let g /A Ext Y. It follows from (*) that there exist |
g. e UE‘:’ such that g = ?i-;EZ and ool = Ligiocoll = [1920G)f]

a.e.. Thus if hi’ i = 1,2 are the functions defined by hi(x) =
[u(M)]Y'? ||f(x)|l|g)2(x) if xe M and Q.(x) = f(x) if x/M then

f = E;E and llhll = 1. Hence f / Ext UE completing the proof

of the " only if!' part.
Conversely if f e iZE Hfl* = 1 and f / Ext U|E then there
. 99 +g
exist g. € t]JE such that f = @1_2_)2_ and g@n—" & - Hence from
(*) it follows that [jf (x) Il = 1!g-(x)|| there exists a neasurable
set Mc S, 0<JUYM <00 suchthat for all xe M g;(x) " g2(x)-

It is verified that
P(EX,) - L Plg; Xy N Plgy¥Xy) ).
T V8 2 weo1VP o ruen1 P

Since the functions appearing in the right bracket are verified to

be in W it follows that O =—> |/ Ext U conpleting the

E [V\(M)]l/P E

proof of " if! part.

Remark | . A characterization of extrenme points of W' simlar to the

one provided in the preceding theoremis evident for if f e Ext Ilf

E
then ||f(X)]j = 1 a.e.. The verification of this assertion is as

fol | ows. If possible let f € Ext U0 and M be a Borel set,
0 <jit(M <00 suchthat for xe M |jff(x)|] <1. Since fi is a

regul ar neasure there exists a conpact set Cc M of positive neasure




such that £|C is continuous. Hence £(C) is a compact set in

the interior of U,. Thus there exists a vector V in Up

(choose for V any vector with 0 < ||V|| < 1 - Max||£(x)]) such
xeC

that ||£(x) T v|]l <1 for all x e C. Let now g;, i = 1,2 be the

functions (ftv)Xx_ + £X where V is the constant function with
- C X~LC g.1g
(v} as the range. It is verified that HgiH =1, f = 12 2 and

9, # gy- Thus f € Ext U; completing the proof of the assertion
Next we proceed to the main results. We study the case when
E 1is a separable conjugate Banach space (in particular when E

is a separable reflexive Banach space) and show in this case the

uP

B’ l < p Lo could be related to the extreme

extreme points in

points in UE.
Before proceeding to these we recall some facts required in the

proof of the next theorem.

(a) The W¥*-topology relativised to the unit cell of E where E

is a separable conjugate Banach space is metrizable. We can further

assume that a metric d on UE could be defined to satisfy the

additional requirement d(p,q) < “p-q” for all p,g e U For if

E.
E = B¥ then B 1is also a separable space. Thus there exists a

countable dense subset {Xn}nzl of the unit cell UB with respect

to the norm topology relativised to UB. Let us define for p,q € UE’

- 1
d(p,q) —néa on Ip(xn)—q(xn)l. Then d has the required properties.
See in this connection Theorem 1, p. 426 Dunford and Schwartz [4].

(b) Concerning set valued mappings we recall a definition and a

Y

useful theorem. Let X,Y be two topological spaces and 2 be the
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set of all closed subsets of Y. A function F X-» 2Y is called
upper sem continuous (u.s.c.) if the set {X/F(X)CG is open
in X for all open sets G in Y. If X Y are two topol ogical
spaces a function f : X-¢« Y is said to be Borel neasurable if
f (G € T for all open sets G in Y where £ is the cr-ring
generated by open sets in X. W state a theoremdue to Engel king

[12] in a formsuitable for our purpose here.

Theor em [ Engel ki ng] Let X be a paraconpact perfectly nornmal

t opol ogi cal space and (y,d) be a separable nmetric space which

Is d-complete. If F X-» Y isa us.c. map then there exists
a Borel neasurable function f: X-« Y such that f(x) e F(x)

for all x € X

Theorem 2. Let E be a separable conjugate Banach space and

1 <p<oo If f€L™ |ffl =1 then f € Ext U if and only if

X £ Ext U- for x a.e. in SN |If =00 and f € | with
gy & B Y f P ¢

[jf |! 51 then f e Ext ﬁ# if and only if f (x) e Ext U for

X a.e. in Ss.

Proof. Let 1<p<oo if fewgZ [Ifll =1 and IrfrAj--I]-li € Exty
for x a.e. in sh then it is verified that if M is a Borel
set, O0<juM <co and Mc & then [fI(I\/)]""l’-‘f ") e Ext WM.
this conpletes the proof of the Y if' part.
To conplete the proof of .the " onXy iff part we start noting
t hat since UE is a conmpact convex netrizable subset in w'-topol ogy

the set Ext Ui:: is a G subset of UE. See proposition 1.3,




Phel ps [13]. Hence Ext U- is a Borel set in the normtopol ogy
of E. Nowlet f € Ext LPE and if possible |et nf|||&|§N1|'fL Ext Ug
for x a.e. in S Since Ext U, is a Borel set in U, it
follows that there exists a neasurable set Mc S of positive

measur e such that I-J-lfrﬁ((—xl- q]4 Ext l.ll5 Since g is a neasurable

function and ju is a regular neasure there exists a conpact set
CcM o0<Ju(c) <oo such that g|c is continuous. Hence g(C
is a conpact set in S,. W note that for x e C there exist
Py' dy € SE' Py % dy SUChthat g(x) = Xo iuw'l—'or positive 6

let G; be the subset of C of points. x such that there exist
. Py dx
Py Ox € S Wilth 89 ==_25 = and depyrdyx A6 phere d s the

netric defined in (a) preceding the statenent of the Theorem W

verify that G; is a Borel set in X in fact a closed subset of

the conpact set C. For let {tn|neD} be a net in Cb such t hat

p_+q .
tn - t for sone t € C. Let 9(A0 = ", "™ dap Adpa A A Torsome
A € S_T_ﬁ. 'Si nce (Uh_r,"d) IS a conpact netric space there exist

conver gent sequences {pn.}, {qn }oin {pn} and {qn) respectively.
i i
Fromthe continuity of g it follows that g(t) =" if p -*p

1
and q_ >0 Furt her d(pn_gaﬁ_) A> 6 inmplies d(p,gq) ™ 6. Thus
[ [ |
t € G and G; 1is a closed subset of C. By considering the

sequence of disjoint Borel sets C* ~C o for integers mJ> 1 and
m  itH1
noting that O< /x(Q < » it follows that there exists a positive

number Kk, a conpact set C = CgKV c ¢, and two functions

° g1(x) +g2(x)
g.: C ->S_ such that for all x € C, g(x) = 2 AV’
1 o) H 0

i 91(X)-g20x) || ~d(gi(x),g2(x)) ~ 2k. Thus there exists a function

and




U

E
f: g(G) -+ 2 with the w'-topology on E relativised to XJE
such that for all £ e 9(°¢,n~ Fa Is themonempty yw_c|posed

set of points a in Sg satisfying the condition for sone p e SE
£ =3%. and ||ap| 2d(a,p)' 2% Wth the normtopology on E
relativised to g(Cgs) We proceed to verify that F is a u.s.c.
map. Let G be an open set in (Ugd) and let G = {£|F(£)cG.
Suppose that t e g(C) and that there is no nei ghbourhood N of
t such that for all rj e N F(T)) CG Thus there exists a
sequence {ty} in g(Cq, tr-t, P(ty) £ 9(Cy for all n~"1

. : . . : 1 .
which in turn inplies the existence of a sequence {t } in S.
n ht

Wi th tr}e F(t Yo G Considering a sequence [tn2} in LI!Tr such
ehee2

that tn = —£2-27"(tn,tn) ~ 2k by standard conpactness argunents

it follows that there exists a subsequence {t111.} in {tg'l} conver -

i 1

ging to sone point t~ in the space (Ug,d) such that for some
1 2
point t%2¢ ug, t =TA Tand d(t! t?) A 2k.- Thus t! e F(t) c G,

Since G is a neighbourhood of t there exist ty, e G leading
1
to a contradiction. Thus F is au.s.c. map. It is verified

that g(C ) and (U,d) satisfy the conditions on X and Y
O E

respectively in Engel king's theorem stated earlier in the paper.

Hence there exists a Borel neasurable function h: g(C) -> (U,d)

. @] £

such that h(£) e F(£) fokall £ e g(C). Let g C -»xU be
@] 0] E

the function defined by g = hog. It is verifiedthatlg s a

wr-neasurable function. Since E is a separable Banach space by
the Theorem 3.5.5(2) onp. 74 in [7] it follows that g is a

measur abl e functi on. Further fromthe definition of F and t he




1o

' . 2
choice of h it is inferred that there exist g (x) € SE such

1 2 '
that g(x) = LT ang gl0-? (0] > atgh(x), g° ()% > 2x.

Since g,gl are measurable the function 92 is also measurable

1, 2 .

and g|co =.g_%g_ . Now defining the functions £t X o Up» i=1,2
by the equations £ (x) = g (x) if x e Cj ang gl(x) = g(x) if

x € X ~C_ it is verified that £ ¢ 0B, g = £4f  ana £l # £

Thus g £ Ext Ug which in turn by Theorem 1 implies that £ £ Ext Ug
contradicting the choice of £f. This completes the proof of Theorem
2 if 1 < p <K =~

The case p = @ is similarly dealt after noting the remark

following Theorem 1 and the details are not supplied.

Corollary. If E 1is a separable reflexive Banach space and £ ¢ Up,
l1<p<e=® and €] = 1 then £ e Ext Ug if and only if for x a.e.
in Sf, “%%i%w e Ext UE'

The'corollary follows from the preceding Theorem since a
separable reflexive Banach space satisfies the conditionon E in
the Theorem.

We proceed to the case when E 1is a reflexive Banach space
not necessarily separable. All subspaces inthe rest of the paper
are closed subspaces. If f 1is a measurable function then the
range f is said to be essentially in the set M if £f(x) e M

a.e. L]

Theorem 3. If E is a reflexive Banach space and 1 < p =«

then a function f£f ¢ Lg with ||£]] = 1 is an extreme point of Ug

. . f(x - .
if and only if f(x)” € Ext.UM a.e. in Sf for every separable

subspace M essentially containing the range F£.
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Proof. Suppose f ¢ Ext Ug and M is a separable subspace
essentially containing the range f. If necessary redefining £

on a set of measure zero it could be assumed that f ¢ U Since

Mo

Uy © UE clearly £ € Ext Uﬁ. From the corollary to the Theorem

2 it follows that ﬂ%%ﬁ%ﬁ e Ext UM' Conversely let there be a

separable subspace M of E essentially containing the range £
f(x . P . , . .

such that ﬂ?%EL“ e Ext UM a.e, in Sf is false. Since it

could be assumed that £ ¢ Lﬁ and since |f|| = 1 it follows from

the Corollary to Theorem 2 that f £ Ext Uﬁ. Since Uﬁ c Ug,

f £ Ext U This completes the proof of the Theorem.

B

We next turn to some special Banach spaces E and study the
extremal structure of Ug. We adopt the following notation. If
Y 1is a compact Hausdorff space then C(Y) is the Banach space
of continuous real valued functions on Y with the supremum norm.
If T is a discrete space CO(13 denotes the Banach space of

real valued functions vanishing at <« with the supremum norm. In

what follows p 1is either a real number 1 < p < ® or p = =,

Theorem 4. If E = C(Y) or CO(F) and f ¢ Lg, “fH = 1 then
P . f(x .
f e Ext UE if and only if HE%;%W € Ext Up for x a.e. in Sf.

Proof. Let E = C(Y). Let f ¢ Ext UE. TLet g = P(f). Since

E
e ¢ Ext Uy implies |e(x)|”® =1 for all x e X it follows that
Ext UE is a closed subset of UE in the norm topology on E. Thus
. f . . .
if -Wf%ﬁ%“ € Ext UE for x a.e. in Sf is false then there exists

a Borel set M C Sgs (M) > O such that for all x e M, g(x) £ Ext U-
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Hence by the regularity of ji there exists a conpact set

CcM 0<;x(Q such that for all x € C, g(x) / Ext U and

glc is continuous. Let K=g(C. Thus K is a conpact subset

of S.. Let F e K Since F/ Ext U, there exists a t,.e Y

and a positive number e, such that -1 f 2e; £F("p) M1 - ZER

If F. € K such that ||FF|| <t € then -1+ e, £"(t" £1 - ep.

Since K is a conpact set there exists a finite set [F'1 Icign c K

such that if By is the subset of K defined by {F| ||FFK||"e }
| i

then {Br} 1j£i jEn is a coveringof K Since g is a continuous

function the famly (g (I_%'pi)}lzli"n is a finite famly of

cogpact subsets of C covering C  Hence one of the sets 3

g~ (B ) has a positive nmeasure. For definiteness let u(g~ (B_ ))> 0.

Wth 6 = €, it is verified that Ge B" i nplies

ri r .
O

-1+ 6 < G(tF ) <1 - 6. By Ascoli-Arzela's theoremon conpact sets

in CY) it follows that there exists an open nei ghbourhood U

of ty such that for all £ e U and for all Ge By ,

-1 + ®¥2"<@ ") < 1-6/2. Since Y is a conpact Hausdorff space
there exists a continuous function FO: Y-+ [0,6/2] such that

FQ vani shes on Y ~ U and F~°1(6/2) IS a nonenpty subset of

U Let 9y i = 1,2 be the functions on X to C(Y) defined by
9y = X« *t g + X7(g+Fg where T = ¢g""YB= ) and g, is the
1l 1
0
same as g, except that the constant function F is replaced
- g
_F % It: A - -2
by 0 is verified that g, e O\ and g = —=3— and g.L/ 9 5

Thus g/ Ext U. Hence it follows by Theorem1 that f / Ext W

thus conpleting the proof of the only iff* part.
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The proof of the '' if" part is the same as the proof of the
correspondi ng assertion in the Theorem2. This conpletes the
proof of the Theoremwhen E = C(Y). - The case when E = CO(D i's

simlarly dealt.

Remark 2. It is easily verified that the set Ext uE =0 if E-=
Co(T) e Thus it follows fromthe Proposition 1 and the preceding
Theoremthat Ext Ur=0 if 1 <2 P<2°° and E = C(gT) .

We proceed to indicate an application of sonme of the results
in the paper. Mre specifically we apply the corollary follow ng
the Theorem 2 to determne the extrene operators in the unit cell
of B( El, E,), the Banach space of operators on Ei to E_z W th
t he usual suprenmumnor mwhen E, L is the function space L, (f<’ T,, p)
and E, is a_separable refl exi ve space. The neasure space {X"fXx)
here is the same as the one considered in the introduction in addition
to being cr-finite. W recall the follow ng representation Theorem
for such operators .which.is an easy corollary of the Theorem 10, |
p. 507 [4] after noting that every operator on a Banach space

to a reflexive Banach space is weakly conpact.

Theorem 5. |If B(L,J_, E) is the Banach space of operators on the
function space L"X, Z fl) into a separable reflexive Banach

space E then the following map TTI: B(L,,E) ->1Z is an isonetric
J E
i somor phismonto L». If T e BfL"E) then TT(T is the function

in Li such t hat
hi

TF = 370 (D) () (X) dji (%) .
X
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From the corollary to the Theorem 2 and the preceding theorem

we obtain the following characterization.

Theorem 6. An operator T ¢ B(Ll,E) with HTH = 1 1is an extreme

. . . . T(T) (x
point of the unit cell of B(Ll,E) if and only if T (T) (=) € Ext U

a.e. in S..
Before proceeding to the conclusion we wish to make a remark

concerning the hypothesis on the measure space (X,Z,u).

Remark 3. As already mentioned in the introduction (X,Z,u) is
a topological measure space. More specifically X is a locally
compact Hausdorff space. However this hypothesis is not too
restrictive for by a well-known Theorem of Kakutani, see for
example Theorem 2, p. 372 [9], if 1 < p < » and if (Y,zl,ul)

is a finite measure space then there exists a topological measure
space (X,XZ,u) of the type considered here such that Lg(Y’Zi’ul)
is isometrically isomorphic with Lg.

In conclusion it might be mentioned that the characterization of
Ext Ug when E is an arbitrary (even separable) Banach space has
not been dealt here. This case and generalisations of the results
presented here to the class of Orlicz-Bochner Function Spaces with

applications to the theory of operators and approximation will be

deak elsewhere.

I wish to express my gratitude to Professor R. R. Phelps

for very helpful suggestions.
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