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1. Mappings on metric spaces which shrink distances in some

manner have been of interest for many years. Let (X,p) be a

complete metric space, and f be a continuous mapping of X

into itself. We list below some of these distance-diminishing

transformations for which various fixed or periodic point theorems

have been established.

(1) (Banach) f is called a strict contraction if there

exists X, 0 < A < 1 such that for all x,yeX, p(f(x),f(y))

< Ap(x,y) .

(2) (Boyd and Wong) f is said to be a nonlinear contraction

if there exists a continuous function $ on non-negative reals

R satisfying *(p) < p for p > 0 such that for all x,yeX,

p(f(x),f(y)) < *(p(x,y)).

(3) (Edelstein) f is said to be contractive if for all

x,yeX, x / y , p(f(x),f(y)) < p ( x , y ) .

(4) (Freudenthal and Hurewicz) f is said to be non-expansive

if for all x,y€X, p(f(x),f(y)) < p(x,y).

(5) (Bailey) f is said to be weakly contractive if for

every x,yeX, x ^ y, there is a positive integer n(x,y)el 9

such that p(fn(x),fn(y)) < p(x,y).

(6) (Kirk) f is said to have diminishing orbital diameters

if for each X G X , the diameter of the orbit &(x) = (f3 (x) , j=0,1,2,...},

say 6(&(x)), satisfies the property that 0 < 6(&(x)) < oo implies

6(&(x)) > lim 6(&(fn(x))). (Note that for any subset A £ X, the
n-*co

d^^meter of A is defined by 6 (A) = sup{p(x,y) : x,yeA}) .
CD
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(7) (Cacciopoli) f is said to be iteratedly contractive

if for each integer k there exists constants C, such thatC,

p(fk(x) ,fk(y)) < Cvp(x,y) for all x,yeX and £ C, < oo.
* k=l k

(8) (Bel luce-Kirk) f is said to have shrinking orbits

if for each xeX with 0 < 6(6(x)) < GO, there exists an integer

n such that &(fn(x)) t &(x).

(9,10) (Edelstein) f is said to be €-contractive (e-

nonexpansive) for some positive e > 0, if for all x,y€X, p(x,y) < e

implies p(f(x),f(y)) <p(x,y) (p (f (x) , f (y)) <p(x,y)).

(11) (Bailey) f is said to be e-weakly contractive for

some positive e > 0, if for all x,yeX, p(x,y) < e implies there

exists n(x,y)€l such that p(f (x),f (y)) < p(x,y).

(12) (Krasnoselskii) f is said to be asymptotically regular

if for each xeX, lim p(fn(x),fn+1(x)) = 0 .
n-co

Without any additional assumptions on X or the mapping f,

the following sequences of implications hold between the various

distance diminishing properties given above:

(7) =^(12) (5)

ir t t
(1) > (2)

(6) =A (8) .
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In proving fixed point theorems for these distance diminishing

mappings, various techniques involving iterates of the mappings

were used, often at the first sight one approach is disimilar

from the others. We observe, however, these results, among

others, may be proved by considering a suitable continuous or

lower semi-continuous function on X. In the following sections,

we show in several different settings how results concerning

fixed or periodic points may be derived from judicious choices

of continuous or lower semi-continuous functions on X,

Let <p : X -* R be a lower semi-continuous function on X.

We say that <p is invariant under f if <p(x) = 0 implies

f (x) = x and <p is regular with respect to f if lim <p(fn(x) )
n-*oo

exists for each X€X. Moreover, we say that <p is weakly con-

tractive on f if for each xeX, <p(x) > 0, there exists a

positive integer n(x)el such that <p(fn(x)) < <p(x) . Similarly,

<p is said to be e-weakly contractive if for every xeX with

<p(x) < 6 there exists n (x) el such that <p(fn(x)) < <p(x) .

Also, we call <p €-regular with respect to f if for every xeX

with <p(x) < •€ the limit lim<p(fn(x)) exists.
n-*oo

In section 2, X is assumed to be compact, and in section 3,

we consider »<p-regular» mappings on arbitrary complete metric

space. Periodic points and local distance diminishing mappings

are discussed in section 4. In the final section, we consider

problems concerning non-expansive and e-non-expansive mappings
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on compact metric spaces and in particular isometries and e-

isometries. There we also examine a question related to the converse

problem on compact metric space.
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2. Throughout this section, the metric space X is assumed

to be compact• We are now ready to state our first result:

THEOREM 1. Let X be. a. compact metric space and f a.

continuous mapping from X into itself. Suppose that there

exists â  non-negative lower semi-continuous function <p which

is invariant under f and weakly contractive on f, then f

has ja fixed point in X.

PROOF. Since <p is lower semi-continuous on the compact

space X, it must attain its minimum at some point zeX, [7, p. 227]

If <p(z) = 0, then z is a fixed point of f, otherwise there

exists n(z)el so that <p(fn(z)) < <p(z) contradicting that (p

is minimum at z.

Corollary 1. (Edelstein [8]) Let X be compact metric

and f be contractive on X. Then f has a fixed point in X.

Corollary 2. (Bailey [3]) Let X be compact metric and

f be weakly contractive on X. Then f has â  fixed point in X.

PROOF. Let <p(x) = p(x,f(x)) which is continuous on X

and invariant under f. Since f is weakly contractive on X,

(p is weakly contractive on f. Hence, it follows from the

theorem that f has a fixed point.
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Corollary 3, (Kirk [14]) Let X be compact metric and

f b£ _a continuous mapping from X into itself which has diminish-

ing orbital diameters. Then f has j* fixed point in X.

Corollary 4, (Belluce and Kirk [2]) Let X be compact

metric and f be asymptotically regular. Then f has a fixed

point in X.

Corollary 5. (Belluce and Kirk [2]) Let X b£ compact metric

and f have shrinking orbits. Then f has j* fixed point,

PROOF. Let <p(x) = sup p (fX (x) , f3 (x)) = 6(&(x)), which is
i, j

clearly invariant under f. Since for each pair of integers

i, j,p (f1 (x) ,£3 (x) ) is a continuous function of x, <p(x) is lower

semi-continuous ([7, p. 85]). By hypothesis, there exists for

each xeX a positive integer n(x)el such that &(fn(x)) ^ &(x)

which implies that <p(fn(x)) < <p(x) . Hence the existence of a

fixed point of f follows from Theorem 1.

Similarly, we can also introduce the notion that f has

diminishing orbital radii if r(x) = sup p(x,f3(x)) > limr(fn(x))
j n~*oo

for each X€X. More generally, we say f has weakly contractive

orbital radii if for each xeX there exists a positive integer

n(x)el so that r(fn(x)) < r(x). Consider <p(x) = sup p (x, f] (x) )
j

and apply a similar argument to get:

Corollary 6. Let X bê  compact metric and f _iŝ  continuous

from X into itself which has diminishing orbital radii. Then f

has a fixed point in X.
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Corollary 7. Let X be compact metric and f is continuous

from X into itself which has weakly contractive orbital radii.

Then f has <i fixed point.

We remark that in addition to the simplicity of the present

proofs as compared to those given earlier, there are two distinct

features of this approach. First, no explicit manipulation with

sequences or subsequences of iterates of f is required. Next,

in contrast to earlier proofs of Corollaries 3, 4, 5, in which

Zorn!s lemma were used, no form of Axiom of Choice is necessary

here.
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3. In this section, we consider fixed points of continuous

mappings on arbitrary complete metric spaces. By strengthening

hypothesis on f and hence the associated function <p, we may

establish a similar result as Theorem 1 without compactness of

X, provided that certain sequence of iterates possesses con-

vergent subsequences; specifically, we have:

THEOREM 2. Let X be a complete metric space and f be

_a continuous mapping from X into itself. Suppose that there

exists ^a non-negative continuous function <p which is invariant

under f, regular with respect to f, and weakly contractive on

f• ILiL there exists an element xeX for which the sequence of

iterates {fn (x) } possesses 3L convergent subsequence, then f

has ja fixed point in X.

nkPROOF. Let the convergent subsequence {f (x) } have a

limit zeX. Since <p is weakly contractive on f, there exists

a positive integer N(z) such that <p(f (z)) < <p(z) . Using the

continuity of <p and the regularity of <p with respect to f,

we have

n n +N
cp(z) = lim <p(f K(x)) = lim <p(f K (x) )

k-*oo k-*oo
n,+N _ n,

= <p(lim f K (x)) = <p(fN(lim f K(x)))
k-*oo k-*oo

= <p(fN(z)) < <p(z),

which is possible only if <p(z) = 0. In this case, f has a

fixed point.
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Corollary 8, (Belluce and Kirk [1]) Let X be a, complete

metric space and f be si non-expansive mapping of X into itself

which has diminishing orbital diameters. Suppose that for some

X €^ the sequence of its iterates has j* convergent subsequence.

Then f has ja fixed point in X.

Corollary 9. (Kirk [14]) Let X be. a. complete metric space

and f be â continuous mapping on X which in addition satisfies

ja uniform Lipschitz condition for all of its iterates, i.e. there

exists a, constant C such that, for each positive integer k

k kand for each x, yeX, p (f (x) , f (y) ) <. Cp (x, y) . Suppose in addition

that f has diminishing orbital diameters and that for some xeX,

the sequence of iterates {fn (x) } has a. convergent subsequence,

then f has ja fixed point in X,

PROOF. Denote <p(x) = sup p (f1 (x) , f ̂ (x) ) = 6(&(x)) which

we know from Corollary 5 that it is lower semi-continuous. To

show that <p(x) is also upper semi-continuous, we need to verify

that for each b > 0, fl {x : p (fx (x) , f3 (x) ) < b} = S, is open.
i, j

Let x eS, and choose 6 > 0 so that <p(x ) + 2C6 < b. Thus,

for all xeX, p(x ,x) < 6, we have

< p(fi(x),fi(xo)) + p(f
i(xo),f

j(xQ)) + p(f
j(xj,fj(x))

< Cp(x,xQ) + <p(xQ) + Cp(xQ,x)

= 2C6 + ^(x
o) <

 b-
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It is also clear that <p is invariant under f and also regular

with respect to f. That f have diminishing orbital diameter

implies that <p is weakly contractive on f, and the conclusion

follows from Theorem 2.

Corollary 10, (Edelstein [8]) Let X be a complete metric

space and f be contractive on X. Suppose that there exists

xeX whose sequence of iterates {f-1 (x) } has a. convergent subse-

quence, then f has ja fixed point in X.

Corollary 11, Let X be a. complete metric space and f

be ja non-expansive mapping of X into itself. Suppose that f

is also weakly contractive on X and there exists xeX such

that its sequence of iterates {f•*(x)} has ja convergent subsequence;

then f has ja fixed point in X.

Corollary 10 follows from Corollary 11 trivially. To see

how Corollary 11 follows from Theorem 2, one need only to

define <p(x) = p(x,f(x)) and observe that f non-expansive

implies that <p is regular with respect f. We also remark

that Corollary 9 remains valid if the hypothesis that f has

diminishing orbital diameters is replaced by the weaker assump-

tion that f has shrinking orbits. Similarly, we may formulate

results similar to Corollaries 6 and 7 using the notions of

diminishing orbital radii and weakly contractive orbital radii

respectively. Since the procedure is clear, we omit the details.
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At this point, we would also like to mention the following

generalization of the Contraction Mapping Principle:

Corollary 12, (Boyd and Wong [5]) Let X be ja complete

metric space and f b<e a, nonlinear contraction on X. Then f

has ja fixed point in X.

Let <p(x) = p(x,f(x)) it is easy to see that <p satisfies all

the required hypothesis in Theorem 2. The existence of some

element xeX whose iterates (f^(x)} contains convergent sub-

sequence follows from definition of nonlinear contraction, but

the details are a little complicated; hence, we refer the reader

to [5]. In this connection, Corollary 12 may also be considered

as a consequence of Corollary 10. (Cf also [17].)
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4. We shall now consider continuous mappings on complete

metric spaces which shrinks distances locally in the sense that

the various distance-diminishing properties holds between points

in X whose distances are small, e.g. properties (9) and (10).

There exists a close relationship between the existence of periodic

points and locally contractive mappings as reported in Edelstein

[8] and Bailey [3]. In this section, we show how results on

period points may similarly be obtained following the same lines

as in the previous two sections.

THEOREM 3. Let X b£ a. compact metric space and f at

continuous mapping from X into itself. Suppose that there

exists .a non-negative lower semi-continuous function <p which

is invariant under f for some positive integer and e-weakly

contractive on f for some e > 0. Ij. there exists zeX such

that <p(x) < e, then f has a_ fixed point in X.

PROOF. Define X, = {x : <p(x) <_ <p(z) } which is non-empty

by assumption. Since <p is lower semi-continuous, X, is also

closed and hence compact. Let x eX. be the point at which <p

attains its infimum. Since <p is €-weakly contractive on f,
n (x )

we have <p(f x ) < <p(x ) and hence <p(x ) = 0 or x is

a fixed point under f .

Corollary 13. (Bailey [3]) Let X be compact metric and

f jLj3 continuous which is e -weakly contractive on X. Then f

has at least one periodic point.
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PROOF. Using the compactness of X, we can deduce the

existence of the smallest integer k so that there exists at

k k
least one zeX satisfying p(z^T z) < e. Define <p(x) = p(x,T x)

It is readily verified that all hypothesis in Theorem 3 are

satisfied hence the existence of periodic point follows.

THEOREM 4. Let X be a. complete metric space and f be

a. continuous mapping from X into itself. Suppose that there

exists ja non-negative continuous function <p which is invariant

under f for some positive integer k, e-regular with respect

to f, and e-weakly contractive on f. JT£ there exists xeX

such that its sequence of iterates (f (x) } contains a. convergent

subsequence with limit zeX satisfying <p(x) < e, then f

has a. fixed point in X.

PROOF. Since <p is e-weakly contractive on f, there

exists a positive integer N(z) such that <p(f (z) ) < (p(z) < e.

The proof that (p(z) =0 is identical with that given in Theorem

2 and will be omitted.

Corollary 14. (Edelstein [8]) Let X be a complete metric

space and f JL£ e-contractive on X. Ij! there exists xeX

such that its sequence of iterates {fx(x)} contains ja convergent

subsequence with limit zeX, then f has a^ periodic point in X.

n.
PROOF. Let {f 1(x)} be the subsequence of (f1(x)} which has

ni 1z as its limit. Choose N so that p(f (x) ,z) < ~e for

CAUE8IE-MELL0M BHIVERSITT
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N . After n i + 1 - n^ iterations, we obtain

< f + p(f i(x),z) < f + f = €.

Denote k = n. - - n. for any i >. NQ and define <p(x) =

k k

p(x,f (x)) which is clearly invariant under f . We have just

seen that <p(z) < e. Since f is €-contractive it follows

that <p(fn(x)) is decreasing in n, thus showing that <p is

e-regular with respect to f. It follows from Theorem 4 that

f has a fixed point in X.

By considering various choices of the function <p and

imposing appropriate hypothesis on f, one can obtain similar

results as Corollaries 13 and 14. We leave the details to the

interested reader. We remark also that local contractive con-

ditions together with certain chainable condition on X may also

yield fixed points instead of periodic points, see for example

Edelstein [9] and Boyd and Wong [5]. These chainable conditions

on the metric space X are usually satisfied in metric linear

spaces, in particular, normed linear spaces. In this regard,

the results in this section may also be formulated as fixed point

theorems in these slightly specialized spaces.
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5. This section is devoted to a discussion of miscellaneous

questions concerning non-expansive and contractive mappings on

compact metric space. The following propositions are simple

observations from earlier results:

PROPOSITION 1. Let X be compact metric space and f
oo

be non-expansive on X. Then f .ijs an isometry on Y = 0 fn (x) .

n=l

PROOF. Clearly f(Y) = Y and Y is compact. Since f

is onto Y, it follows from the result of Freudenthal and Hurewicz

[12] that f is an isometry.

Corollary 15. (Edelstein [10]) Let X be a compact metric
oo

space and f be_ non-expans ive on X. Then for each xe fl f (X) ,

(fn(x)} forms an isometric sequence, i.e. p (fm(x) , fn (x) ) =

p(fm+k(x),fn+k(x)) for .all k,m,n, = 1,2,3,... .

PROPOSITION 2. Let X b<e compact metric space and f

be €-non-expansive on X. Then f jjs jan e-isometry on Y,

i.e. for all x,yeY with p(x,y) < €, we have p(f(x),f(y)) =

P(x,y) •

oo
PROOF. Consider Y = (1 f (X) . Since f(Y) = Y, and f is

n=l
onto Y, hence it follows from a result of Edrei [13] that f is

an €-isometry on Y.

A similar corollary as Corollary 15 holds for e-nonexpansive

mappings, in this case, every point XGY generates an €-isometric

sequence, in the sense that p (fm(x) , fn (x)) = p (fm+k(x) , fn+k(x) )

for all m,n,k = 1,2,... whenever p (fm(x) , fn (x)) < e. The main

result of this section is the following:
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THEOREM 5. Let X be compact metric space and f be

contractive on X. Then for each "X, 0 < A < 1, there exists

an equivalent metric p^ with respect to which f JLS ei con-

traction, namely satisfying (1).

We note that a contractive mapping f on a compact metric

space is not necessarily a contraction. Take for example

X = [0,1] given with the Euclidean metric and define f(x) =

1 1 2x + -jx . Clearly f (X) c x, and f is contractive on X, since

< i|x - y| + J | x + y||x - y|

< i|x - y| + ||x - y| = |x -

On the other hand, sup -*—*y*—= p^-L = i. (Take any two sequence
x,yeX lx " Y"

of numbers (x },{y } with x > y for all n and x -• 1,

y -> 1 as n -• oo.) In view of this example, Theorem 5 becomes

an interesting observation.

PROOF OF THEOREM 5. Since f is contractive on X, it
oo

follows from Theorem 3 that H f (x) = {co} a singleton set.
n=l

Now, a result of Janos [13] implies that for each ?\€(0,l),

there exists an equivalent metric pA relative to which f is
A

a contraction, namely p (f(x),f(y)) £ Ap^(x,y) for all x,yeX.
oo

We remark that the conclusion H f (X) = {co} is stronger than
n=l .

the convergence of successive approximations, i.e. p(fJ(x),x ) -• 0
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as j - oo for all xeX. Consider the example given in [16]:

X = {z : z = e1^} with the ordinary Euclidean metric and

f(z) =-rz. Clearly X is compact and fn(z) - 0 as n - oo
oo

for all zeX, but n f (X) = X. Note also that f is not
n=l

contractive there.
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