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ON FIXED POINTS OF DISTANCE DIMINISHING
TRANSFORMATIONS ON METRIC SPACES

James S. W. Wong

1. Mappings on metric spaces which shrink distances in some
manner have been of interest for many years. Let (X,p) be a
complete metric space, and £ be a continuous mapping of X
into itself. We list below some of these distance-diminishing
transformations for which various fixed or periodic point theorems
have been established.

(1) (Banach) f 1is called a strict contraction if there

exists A, O < AN < 1 such that for all x,yeX, p(f(x),£f(y))
< M(x,y) .

(2) (Boyd and Wong) f is said to be a nonlinear contraction

if there exists a continuous function @ on non-negative reals
Rt satisfying &(p) < p for p > O such that for all x,yeX,
PE(x),£(y)) < ®(p(x,y)).

(3) (Edelstein) £ is said to be contractive if for all

X,yeX, x #y, P(£(x),£(y)) < p(x,y).

(4) (Freudenthal and Hurewicz) f is said to be non-expansive

if‘for all x,yeX, p(f(x),£f(y)) < p(x,y).

(5) (Bailey) £ 1is said to be weakly contractive if for

every x,yeX, X #y, there is a positive integer n(x,Y)€I+,
such that p(fn(x),fn(y)) < p(x,y).

(6) (Kirk) f is said to have diminishing orbital diameters

if for each xeX, the diameter of the orbit 6(x) = {fj(x),j=0,l,&..J,
say 6&6(6(x)), satisfies the property that 0 < §(6(x)) < oo implies

5(6(x)) > lim é(@(fn(x))). (Note that for any subset A C X, the
n—co .
djgameter of A is defined by 6(A) = sup(p(x,y) : X,yeAl}).
w .
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(7) (Cacciopoli) f is saidto be iteratedly contractive

if for each integer k there exists constants %{ such that

p(f¥x) ,f%y)) < Cp(x,y) for all x,yeX and £ C,k < 00.
' * - k=l

(8 (Belluce-Kirk) f 1is saidto have SNTTTKITg Oroirts
I f for each xeX—wth 0<6L6(x)) < GO, there exists an integer
n such that &(f”(x)) t &(x).

(9,10) (Edelstein) f is said to be €£-Tontractive (e- -
nonexpansive) for sone positive e >0, if for all x,y€X p(x,y) < e
implies p(f(x),f(y)) <p(x,y) (p(f(x),f(y) <p(x,y)).

(11) (Bailey) f is said to be e-Weakry tontractrirve for

some positive e+> 0, if for all nx,yex,Irl p(x,y) < e inplies there

exists n(x,y)éEl such that p(f (x),f (y)) < p(x,y).

(12) (Krasnoselskii) f is said to be asynptoticalty Tegurar
if for each xeX, lim p(f"(x),f"?(x)) =0.

n-co
Wt hout any additional assunptions on X or the mapping f,

the follow ng sequences of inplications hold between the various
di st ance di m ni shing properties given above:
T”r:” 11:) f5) =5(11) .
() =—=> (2) == (3) ==y (4) ==3(10) .
(9)

(6) =A,(8) .
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In proving fixed point theorems for these distance diminishing
mappings, various techniques involving iterates of the mappings
were used, often at the first sight one approach is disimilar
from the others. We observe, however, these results, among
others, may be proved by considering a suitable continuous or
lower semi-continuous function on X. In the following sections,
we show in several different settings how results concerning
fixed or periodic points may be derived from judicious choices
of continuous or lower semi-continuous functions on X.

Let ¢ : X~ R+ be a lower semi-continuous function on X.

We say that ¢ 1is invariant under £ if ¢(x) = O implies

f(x) = x and ¢ 1is reqular with respect to £ if 1lim w(fn(x))
n—oo
. exists for each xeX. Moreover, we say that ¢ is weakly con-

tractive on f if for each xeX, ¢(x) > 0, there exists a
positive integer n(x)eI+ "such that w(fn(x)) < @o(x). Similarly,

¢ 1is said to be ¢-weakly contractive if for every xeX with

0(x) < € there exists n(x)eI+ such that @(fn(x)) < @(x).

Also, we call ¢ e-reqular with respect to f if for every =xeX

with ¢(x) < € the limit 1lim ¢(fn(x)) exists.

In section 2, X 1is asgu;Zd to be compact, and in section 3,
we consider '¢-regular' mappings on arbitrary complete metric
space, Periodic points and local distance diminishing mappings

are discussed in section 4. In the final section, we consider

problems concerning non-expansive and ec-non-expansive mappings




on conpact netric spaces and in particular isonetries and e-
isometries. There we also examne a question related to the converse

probl em on conpact netric space.
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2, Throughout this section, the metric space X is assumed

to be compact. We are now ready to state our first result:

THEOREM 1. et X Dbe a compact metric space and f a

continuous mapping from X into itself. Suppose that there

exists a non-negative lower semi-continuous function ¢ which

is invariant under f and weakly contractive on £, then £

has a fixed point in X.

PROOF. Since ¢ 1is lower semi-continuous on the compact
space X, it must attain its minimum at some point zeX, [7, p. 227].
If ¢(z) = 0, then z is a fixed point of f, otherwise there
exists n(z)eI+ so that ¢(fn(z)) < ¢(z) contradicting that ¢

is minimum at =z.

Corollary 1. (Edelstein [8]) Let X be compact metric

and f be contractive on X. Then f has a fixed point in X.

Corollary 2. (Bailey [3]) Let X be compact metric and

f be weakly contractive on X. Then £ has a fixed point in X.

PROOF. Let o¢(x) = p(x,£f(x)) which is continuous on X
and invariant under f£. Since f is weakly contractive on X,
¢ 1is weakly contractive on £. Hence, it follows from the

theorem that f has a fixed point.
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Corollary 3, (Kirk [14]) _Let X be conpact netric and

f bE _a_continuous_napping from X _into itself which has dininish-

ing orbital dianeters. Then f has j* _fixed point in X

Corol lary 4, (Belluce and Kirk [2]) _Let X be conpact

netric and f be asynptotically reqular, Then f has a fixed

point in X

Corollary 5. (Belluce and Kirk [2]) _Let X bf conpact netric

and f have shrinking orbits. Then f has j* fixed point,

PROOF. ' Let <p(x) = sup p(f*(x) , F3(x)) = 6(&x)), which is
N
clearly invariant under f.J Since for each pair of integers

i,j,p(f'l(x) ,é3(x)) is a continuous function of x, <p(x) is |ower

sem -continuous ([7, p. 85]). By hypothesis, there exists for"

each xeX a positive integer n(x)el+ such that &(f"(x)) ~ &x)
which inplies that <p(f"(x)) < <p(x) . Hence the existence of a
fixed point of f follows from Theorem 1.

Simlarly, we can also introduce the notion that f has

dimnishing orbital radii if r(x) = sup p(x,fé(x)) > linr (f"(x))
] n*oo

for each X€EX. Mre generally, we say f has weakly contractive

orbital radii if for each xeX there exists a positive integer

n( x) el so t hat r(f"(x)) <r(x). Consider <p(x) = sup p (X, fl(x))

and apply a simlar argunent to get: :

Corollary 6. Let X bhet conpact netric and f _is® continuous

from X into itself which has dimnishing orbital radii. Then f

has a fixed point in X
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Corollary 7. Let X be conpact netric and f is continuous

from X into itself which has weakly contractive orbital radii

Then f has_<i fixed point.

W remark that in addition to the sinplicity of the present
proofs as conpared to those given earlier, there are two distinct
features of this approach. First, no explicit manipulation with
sequences or subsequences of iterates of f is required. Next,
in contrast to earlier proofs of Corollaries 3, 4, 5, in which
Zorn's lemma were used, no formof Axiomof Choice is necessary

here.
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3. In this section, we consider fixed points of continuous
mappi ngs on arbitrary conplete metric spaces. By strengthening
hypothesis on f and hence the associated function <p, we may
establish a simlar result as Theorem 1 w thout conpactness of
X, provided that certain sequence of iterates possesses con-

vergent subsequences; specifically, we have:

THEOREM 2. Let X be a conplete metric space and f be

_a_continuous _mapping from X into itself. Suppose that there

exi sts "a_non-negative continuous function <p which _is invariant

under f, reqular with respect to f, and weakly contractive on

fe IUL_there _exists an_element xeX _for which the sequence of

iterates {f"(x) } possesses 3L_convergent subsequence, then f

has ja_fixed point in X

n
PROOF. Let the convergent subsequence {f k(m } have a
limt zeX Since <p is weakly contractive on f, there exists
a positive integer N(z) such that <Mf’%z)) < <p(z) . Using the

continuity of <p and the regularity of <p wth respect to f,

we. have
n, +N
cp(z) = i m<p(f (X)) = lim<p(f © (x))
k-*00 k-*00
N . n
:<ps<|mf'< ) = <p(fNlimf ¥(x)))
k-*00
= <p(fY2)) < <p(2),
which is possible only if <p(z) =0. In this case, f has a

fixed point.
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Corollary 8. (Belluce and Kirk [1]) Let X be a complete

metric space and f be a non-expansive mapping of X into itself

which has diminishing orbital diameters. Suppose that for some

xeX the sequence of its iterates has a convergent subsequence.

Then £ has a fixed point in X.

Corollary 9. (Kirk [14]) Let X be a complete metric space

and f be a continuous mapping on X which in addition satisfies

a uniform Lipschitz condition for all of its iterates, i.e. there

exists a constant C such that for each positive integer k

and for each x,yeX, p(fk(x),fk(y)) < Cp(x,y). Suppose in addition

that £ has diminishing orbital diameters and that for some xeX,

the sequence of iterates [fn(x)} has a convergent subsequence,

then f has a fixed point in X.

PROOF. Denote ¢(x) = sup p(fi(x),fj(x)) = §(6(x)) which
we know from Corollary 5 that’gt is lower semi-continuous. To
show that ¢(x) is also upper semi-continuous, we need to verify
that for each b > O, 'ﬂ‘[x : p(fi(x),fj(x)) < b} = Sb is open.
Let xoeSb and choosel’g > 0 so that w(xo) + 2C6 < b. Thus,

for all xeX, p(xo,x) < &, we have

p(e (0,83 () < ptet (0, e (x ) + o (et (x ), £ (x ) + p (£ (x), 3]
S Cp(x,x ) + o(x ) + Cp(x_,x)

= 2CH + w(xo) < b.
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It is also clear that ¢ is invariant under £f and also regular
with respect to f. That £ have diminishing orbital diameter
implies that ¢ 1is weakly contractive on £, and the conclusion

follows from Theorem 2.

Corollary 10. (Edelstein [8]) Let X be a complete metric

space and f be contractive on X. Suppose that there exists

xeX whose sequence of iterates [fj(x)} has a convergent subse-

quence, then f has a fixed point in X.

Corollary 11, Let X be a complete metric space and f

be a non-expansive mapping of X into itself. Suppose that £

is also weakly contractive on X and there exists xeX such

that its sequence of iterates {fj(x)} has a convergent subsequence;

then £ has a fixed point in X.

Corollary 10 follows from Corollary 1l trivially. To see
how Corollary 11 follows from Theorem 2, one need only to
define ¢(x) = p(x,f(x)) and observe that £ non-expansive
implies that ¢ is regular with respect £f. We also remark
that Corollary 9 remains valid if the hypothesis that f has
diminishing orbital diameters is replaced by the weaker assump-
tion that £ has shrinking orbits. Similarly, we may formulate
results similar to Corollaries 6 and 7 using the notions of
diminishing orbital radii and weakly contractive orbital radii

respectively. Since the procedure is clear, we omit the details.
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At this point, we would also like to nmention the follow ng

general i zation of the Contraction Mapping Principle:

Corollary 12, (Boyd and Wng [5]) Let X be ja conplete

netric space and f b a _nonlinear _contraction on X  Then f

has ja _fixed point in X

Let <p(x) = p(x,f(x)) it is easy to see that <p satisfies all
the required hypothesis in Theorem 2. The existence of some

el ement xeX whose iterates (fx(x)} contai ns convergent sub-
sequence follows fromdefinition of nonlinear contraction, but
the details are a little conplicated; hence, we refer the reader
to [5]. In this connection, Corollary 12 may al so be consi dered

as a consequence of Corollary 10. (& also [17].)
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4. We shall now consider continuous mappings on complete
metric spaces which shrinks distances locally in the sense that
the various distance-diminishing properties holds between points
in X whose distances are small, e.g. properties (9) and (10).
There exists a close relationship between the existence of periodic
points and locally contractive mappings as reported in Edelstein
[8] and Bailey [3]. 1In this section, we show how results on
period points may similarly be obtained following the same lines

as in the previous two sections.

THEOREM 3. Let X be a compact metric space and f a

continuous mapping from X into itself. Suppose that there

exists a non-negative lower semi-continuous function ¢ which

is invariant under fk for some positive integer and e-weakly

contractive on f for some ¢ > 0. If there exists zeX such

that ¢(x) < €, then fk has a fixed point in X.

PROOF. Define Xk = {x : ¢(x) < ¢(2)} which is non-empty
by assumption. Since ¢ is lower semi-continuous, Xk is also
closed and hence compact. Let xoexk be the point at which ¢

attains its infimum. Since ¢ 1is e¢-weakly contractive on £,

: n(x.)

we have o(f ° x ) < ¢(x_) and hence o¢(x ) =0 or x is
o o o o

a fixed point under fk.

Corollary 13, (Bailey [3]) Let X be compact metric and

f is continuous which is e-weakly contractive on X. Then f

has at least one periodic point.
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PROOF. Using the conpactness of X, we can deduce the

exi stence of the smallest integer k so that there exists at

k k
| east one zeX satisfying p(z"T z) < e. Define <p(x) =p(x,Tx)’

It is readily verified that all hypothesis in Theorem 3 are

satisfied hence the existence of periodic point follows.

THEOREM 4. Let X be a. conplete netric space and f Dbe

a._continuous_mapping_from X into itself. Suppose that there

exi sts ja_non-negative continuous function <p which is invariant

under f"™ for sone positive integer Kk, e-regular with respect

to f, and e-weakly contractive on f. JE there exists xeX

such that its sequence of iterates (f i‘x) } contains a. convergent

subsequence with limt zeX satisfying <p(x) < e, then ™

has a. _fixed point in X

PROOF. Since <p is e-weakly contractive on f, there
exi sts a positive integer N(z) such that <p(f Fz) ) < (p(z) < e.
The proof that (p(z) =0 1is identical with that given in Theorem

2 and will be omtted.

Corollary 14. (Edel stein [8]) _Let X be a conplete netric

space and f JLE e-contractive on X |j! there exists xeX

such that its sequence of iterates {f*(x)} contains ja convergent

subsequence with |imt zeX then f has a" periodic point in X

—————

n. :
PROOF. Let {f *(x)} be the subsequence of (f!(x)} which has
0
z as its limt. Choose No so that p(f I(x) , 2) <%~e for

CAUEBIE-MELLOM  BHIVERSTT
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i Z.No- After n;+1 - n® iterations, we obtain

n. -n, o n, n, n. -7,
plz,£ 1 i) < plz, g Pl +ote M, e Y )
<f+p(fh(x),z) <f+f=¢&
Denote k = Ny - Ny for any i > Ny and define <p(x) =
K k
p(x,f (X)) which is clearly invariant under f . W have just

seen that <p(z) < e. Since f is €-contractive it follows
that ~ <p(f"(x)) is decreasing in n, thus showing that <p is
ejregular with respect to f. It follows from Theorem 4 that
f has a fixed point in X

By considering various choices of the function <p and
I mposi ng appropriate hypothesis on f, one can obtain simlar
results'as Corollaries 13 and 14. W leave the details to the
interested reader. W remark also that |ocal contractive con-
ditions together with certain chainable condition on X may also
yield fixed points instead of periodic points, see for exanple
Edel stein [9] and Boyd and Wong [5]. These chai nabl e conditions
on the metric space X are usually satisfied in netric linear
spaces, in particular, normed |inear spaces. |In this regard,
the results in this section my also be fornmulated as fixed point

t heor ens in-these'slightly speci al i zed spaces.
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5. This section is devoted to a discussion of mscellaneous
questions concerning non-expansive and contractive mappi ngs on
conpact netric space. The follow ng propositions are sinple

observations fromearlier results:

PROPOSI TI ON 1. Let X be conpact netric space and f

f

00
djs. an isonetry on Y =0 f"(x) .
n=l

be non-expansive on. X Then

PROOF. Cearly f(Y) =Y and Y is conpact. Since f
is onto Y, it follows fromthe result of Freudenthal and Hurew cz

[12] that f is an isonetry.

Corollary 15. (Edel stein [10]) Let X be a conpact netric
o o o _ 00

space and f be_ non-expansive on X Then for each xe fl f X,

(f"(x)} forns an isonmetric sequence, i.e. p(ff{x), f"(x)) =

p(f™k(x), f"™ (x)) for .al k,mn, =1,23,...

PROPOCSI TION 2. Let X be conpact netric space and f

be, €-non-expansive on X Then f jjs jan e-isonetry on Y,

l.e. for all x,yeY with p(x,y) < € we have p(f(x),f(y)) =

P(x,y)e

o

0
PROOF. Consider Y = ( fn(X). Since f(Y) =Y, and f is
n

onto Y, hence it follows froma result of Edrei [13 that f s
an €-isonetry on Y.

A simlar corollary as Corollary 15 holds for e-nonexpanéive
mappi ngs, in this case, every point XGY generates an €-isonetric
sequence, in the sense that p(f"(x), f"(x)) =p(f™(x) , f"*(x))
for all mn,k = 1,2,... whenever p(f"(x), f"(x)) < e. The main

result of this section is the follow ng:
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THEOREM 5. Let X Dbe compact metric space and f ‘Qg

contractive on X. Then for each A, O < A\ < 1, there exists

an equivalent metric P with respect to which f is a con-

traction, namely satisfying (1).

We note that a contractive mapping £ on a compact metric
space is not necessarily a contraction. Take for example
X = [0,1] given with the Euclidean metric and define £(x) =
1 1.2

32X + 7% Clearly £(X) € X, and f 1is contractive on X, since

1 1 12 1 1
EX+ZX _Ey_zy|s-z—lx-y|+'4'|X+Y||x"Y|

1 1
<Flx -yl +Flx -yl =[x -yl

Oon the other hand, sup If(T; - ffY)[ =1
X,yeX -y
of numbers [xn},[yn} with x >y for all n and x -1,

. (Take any two sequence

y. "1 as n - o.) In view of this example, Theorem 5 becomes

an interesting observation.

PROOF OF THEOREM 5, Since £ 1is contractive on X, it
0o
follows from Theorem 3 that N fn(X) = {w} a singleton set.
n=1
Now, a result of Janos [13] implies that for each Ae(0,l),

there exists an equivalent metric Py relative to which £ is

a contraction, namely px(f(x),f(y)) < kp\(x,y) for all x,yeX.
(o)
We remark that the conclusion I fn(X) = {w} is stronger than
n=1 .
the convergence of successive approximations, i.e. p(fj(x),xo) -0




as Jj - oo for all

X ={z

f(z) =

= ..

(0 0]

xeX.

z = ele} with the

z. Clearly X is

for all zeX, but N £7 (%)

contractive there.

n=1

17
Consider the example given in [16]:
ordinary Euclidean metric and
compact and £%(z) =0 as n - oo

= X. Note also that £ is not
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