AN EVALUATION OF THE O>-COMPLEXITY OF FIRST ORDER ARITHMETIC WITH THE CONSTRUCTIVE CO-RULE

Mariko Yasugi

Report 69-16

AN EVALUATION OF THE CO-COMPLEXITY OF FIRST ORDER ARITHMETIC WITH THE

CONSTRUCTIVE CO-RULE1

Mariko Yasugi

§0. Introduction. Concerning first order arithmetic with the restricted (constructive) co-rule, Shoenfield showed the following in [5]. First we quote his definition.

For each ordinal a, define a class S_{σ} of sentences (of arithmetic) as follows. S_{σ} is the class of provable sentences of Z_{μ} . $S_{\sigma+1}^{\bullet}$ is the class of sentences which are provable from sentences of S_{σ} by the co-rule, together with their logical consequences. If a is a limit number,

$$S_{\sigma} = \bigcup_{\tau < \sigma} S_{\tau}$$
.

He claims:

If we replace the co-rule by the restricted co-rule (in the above definition), then S $^{\wedge}$ is the class of true sentences of Z $_{\pmb{\mu}}$.

He attained this result by analyzing his proof of the completeness of the restricted to-rule and considerations of [3].

Part of this work was done while the author was at the University of Bristol.

(See also [1].) Here, we shall show that a subset of S_2 will do for all the true sentences of Z_{μ} . The argument is an application of Shoenfield's main result (the completeness of the restricted ω -rule) and the cut elimination theorem for the first order arithmetic with the constructive ω -rule (cf. [4]).

S1. The system and the ω -complexity. The first order arithmetic with the constructive ω -rule was formulated, for example, in [5]. Here, however, we adopt a Gentzen type formulation of arithmetic.

Definition 1. A formulation of the system Z. The formulas and the sequents are defined like in [2] except that we now permit only closed formulas (sentences) in the sequents. The rules of inference in [2] except 'V in the succedent', '∃ in the antecedent' and 'VJ' are adopted. Instead of those three rules, we introduce the 'constructive ω-rule' into our system. Like in [5], we assume that Gödel numbers have been assigned to the formulas and the sequents, and to the partial recursive functions. We write 「A¬ for the Gödel number of a formula A and 「S¬ for the Gödel number of a sequent S. The notion of a number of a proof-figure in Z is defined naturally in terms of Godel numbering of the rules of inference in [2] (except 'V in the succedent', '∃ in the antecedent' and 'VJ'). The ω-rule is formulated as follows.

HUNT LIBRARY CARNEGIE-MELLON UNIVERSITY Let ${}^{r}P._{1}^{m^{1}}$ be a number of a proof-figure in Z of a sequent $F ext{-} \bullet 0$, $F(\underline{i})$ for every natural number i, where \underline{i}^{\wedge} is the numeral which denotes i and T and 0 stand for finite sequences of formulas. If e is a number such that $(e)(i) = {}^{n}$ for all i, then $3.5^{e}.7^{e}.7^{e}.8^{e}> {}^{v\times F(x)}$ is a number of a proof-figure in Z (of the sequent $T ext{-} \bullet 6$, $V\times F(x)$).

We say a sequent S is provable in Z if there is a number of a proof-figure in Z of S. A formula A is said to be provable in Z if -> A is provable in Z.

In order to simplify the presentation, we shall often say a 'formula', a 'proof-figure', etc., instead of 'a number of a formula, a proof-figure, etc. Thus, we may simply say ^{f}P is a proof-figure of a sequent S in Z^{f} ; we may even omit 'in Z^{f} . The co-rule shall then be expressed as follows.

$$\frac{P_{\pm} \quad i < \infty}{r - 0, \ VxP(x)}$$

where P. is a proof-figure of T-0, F(i) for every natural number i, and there is a recursive function f such that f(i) produces P_i (or, $f(i) = {}^{fp}i^{i}$) \bullet

As in [5], we assume that definitions of all primitive recursive functions have been introduced in our formal system.

Definition 2. The ω -complexity of a proof-figure P, denoted by $\omega(P)$, which is a countable ordinal (cf. 1.3 of [6]) is defined as follows.

- 1) If P consists of a beginning sequent only, then $\omega(P) = 0$.
- 2) If P is of the form $\frac{P_1}{S}$ or $\frac{P_1P_2}{S}$, then $\omega(P) = \omega(P_1)$ or $\omega(P) = \max(\omega(P_1), \omega(P_2))$ respectively.
 - 3) If P is of the form $\frac{P_i + i < \omega}{S}$, then $\omega(P) = \sup_{i \le \omega} \omega(P_i)$.

Definition 3. Let σ be a non-zero countable ordinal. $S_{\sigma}^{!}$ is defined as the set of all the sentences (of Z) which are provable with proof-figures whose ω -complexities are less than σ . Note. Although there is a slight difference in the definition, our $S_{\omega}^{!}$ is S_{ω}^{2} in [5].

\$2. The theorem and some known results. Our purpose is to prove the following.

Theorem. $S_{\omega^2}^{\dagger}$ is the class of true sentences of arithmetic.

We shall prove this theorem by using the following well-known results. (The proof of the theorem shall be given in §4.)

Theorem 1. (cf. [5].) Any true sentence of arithmetic is provable in Z.

Theorem 2. (cf. [4].) There is a partial recursive function f such that if P is a proof-figure, then $f(^{r}P^{\wedge})$ is defined and is a number of a cut free proof-figure of the end sequent of P.

Proposition. If A is a sentence of arithmetic, then there is a prenex normal form in alternating quantifiers, say B, such that A s B is provable with a proof-figure whose o>-complexity is finite (i.e. A \equiv B belongs to S'_{ω}).

§3. Some lemmas.

Definition 4. A condition (*) on a sequent $T - \bullet 8$ is the following.

(*) All (sequent) formulas of T are quantifier free and every (sequent-) formula of 6 is either quantifier free or in the alternating prenex normal form.

Definition 5. Suppose 8 satisfies the condition on 9 in (*) and there are k (sequent-) formulas in 6 which start with the universal quantifier. Then $8[n_1, \ldots, n_k]$ denotes a sequence of formulas which satisfies the following.

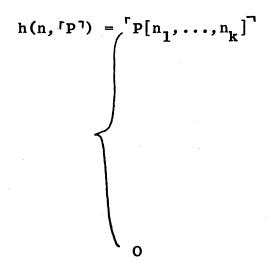
- (1) If the jth formula of 8 (from the left) is of the form VxA(x) and it is the ith formula which starts with the universal quantifier, then $A(n_i)$ is the jth formula of $8[n_i, \ldots, n_k]$.
 - (2) If the jth formula of 8 does not start with the

universal quantifier, then it is the jth formula of $\theta[n_1, ..., n_k]$.

(3) Every formula of $\theta[n_1, \ldots, n_k]$ is one of the formulas described in (1) and (2) above.

The number k as above shall be denoted by $k(^{\Gamma}\theta^{\gamma})$, or $k(^{\Gamma}P^{\gamma})$ if the $\Gamma \to \theta$ above is the end sequent of P.

Lemma 1. There is a recursive function h of two arguments which has the following property.



if P is a proof-figure whose end sequent, say $\Gamma \to \theta$, satisfies (*), $n = 2^{n_1+1} \cdot 3^{n_2+1} \cdot \dots \cdot p_k^{n_k+1} \cdot \ell$, where ℓ has none of the factors 2, 3,..., p_k (p_k is the k-th prime number), and $k \ge k(f^{n_1})$, where $P[n_1, \dots, n_k]$ is a proof-figure of $\Gamma \to \theta[n_1, \dots, n_k]$; otherwise.

Proof. This is obvious, since $\forall xF(x) \rightarrow F(\underline{i})$ is provable in Z for an arbitrary natural number i.

Lemma 2. There is a partial recursive function g such that $g(\lceil P \rceil)$ (= $\lceil \widetilde{P} \rceil$) is defined whenever P is a cut free prooffigure in Z whose end sequent, say $\Gamma \rightarrow \theta$, satisfies (*) and, in such a case, \widetilde{P} is a proof-figure of a sequent $\Gamma \rightarrow \widetilde{\theta}$ which satisfies the following condition (~).

- (~) (1) If a formula in 8 is of the form 3yA(y), then there are a finite number of terms s, ...,t such that A(s),...,A(t) are in #.
 - (2) If a formula in 9 does not start with the existential quantifier, then it is in *\$.
 - (3) Only the formulas described in (1) and (2) above are in ^.

r - # is said to satisfy (~) for \mathbb{T}^1 -> 6. We can actually specify the order of the formulas in Tf effectively, though we omit such details throughout. Notice also that T -* # again satisfies (*), and that g and P determine the terms s, ...,t (in the condition (~)).

Proof. First consider the following transformations (of P into according to the last inference in P, say I. It should be noted that, as P is cut free, every sequent in P satisfies the condition (*), and hence every subproof of P possesses the same property as P.

- 0) P consists of a beginning sequent only. Then take P itself as P, since P has no quantifier in this case*
- 1) I is an a>-rule. Let P be of the form

$$P_{\pm} = \begin{cases} \vdots, \\ \downarrow \downarrow \downarrow \\ r - A, F(i) & i < \infty \end{cases}$$

$$T - A, VxF(x)$$

Suppose $\widetilde{P}_{\mathbf{i}}$ is already defined for every i.

1.1) F(i) has no quantifiers. Then the end sequent of \widetilde{P}_{i} is of the form T - *K, F(i). Define \widetilde{P} as

$$\widetilde{P}_{i} = \begin{cases} \frac{1}{2}, & \text{if } i < \omega \\ \hline F - \widetilde{A}, & \text{VxF}(x) \end{cases}$$

1.2) F(i) is of the form 3yA(i,y). Then, the end sequent of \widetilde{P} , is of the form $T - \bullet \ \widetilde{A}$, $A(i,s), \ldots, A(i,t)$, where s, \ldots, t depend on i. Define P as

where $^{\prime}$ means that there are $^{\prime}$ 3's in the succedent applied to A(i,s),...,A(i,t), as well as some interchanges and contractions

2) I is a 3 in the succedent. Let P be of the form

$$Q \int_{T-A, F(s)} T - A, 3yF(y)$$

Suppose \widetilde{Q} is defined. Notice that F(s) does not start with Ξ and hence the end sequent of Q is T-+A, F(s). Take \widetilde{Q} as \widetilde{P} .

3) I is one of the inferences which introduce propositional connectives. We shall present only one such example -- I is a 1 in the succedent. Let P be of the form

$$\frac{P_{1} \quad \left\{ \begin{array}{c} \Gamma \rightarrow \Delta, A \end{array} \right. \quad P_{2} \quad \left\{ \begin{array}{c} \Gamma \rightarrow \Delta, B \end{array} \right.}{\Gamma \rightarrow \Delta, A \wedge B}$$

Suppose \widetilde{P}_1 and \widetilde{P}_2 are defined. Since A \wedge B has no quantifier, \widetilde{P} may be defined as

4) I is a contraction in the succedent. Let P be of the form

$$\begin{array}{c}
Q & \Gamma \rightarrow \Delta, D, D \\
\hline
\Gamma \rightarrow \Delta, D
\end{array}$$

Suppose \widetilde{Q} is defined.

4.1) D does not start with the existential quantifier. Then the end sequent of \widetilde{Q} is of the form $\Gamma \to \widetilde{\Delta}$, D, D. Define \widetilde{P} as

$$\frac{\widetilde{\mathbf{Q}} \left(\begin{array}{c} \Gamma \rightarrow \widetilde{\Delta}, \ \mathbf{D}, \ \mathbf{D} \end{array} \right)}{\Gamma \rightarrow \widetilde{\Delta}, \ \mathbf{D}}$$

- 4.2) D is of the form 3yD(y). Then the end sequent of \widetilde{Q} is of the form $T \to A$, D(s...), ..., D(s...), $D(t-...), x \bullet \bullet$, D(t) for $x \leftarrow x \bullet \bullet x$ m some $\&1, \bullet \cdot \bullet \cdot , \& \bullet \bullet$, t-...., tm. Take Q and P.
- 5) I is a contraction in the antecedent. For this case an argument similar to 4.1) goes through.
- 6) I is a weakening in the succedent. Let P be of the form

$$\frac{Q \left\{ \begin{array}{c} \vdots \\ \mathbf{r} - \mathbf{A} \end{array} \right.}{\Gamma \rightarrow \Delta , \ \mathbf{D}}$$

Suppose Q is defined.

6.1) D does not start with the existential quantifier. Define \widetilde{P} as

$$\frac{\sqrt[3]{r-A}}{r-A, D}.$$

6.2) D is of the form 3yD(y). Define P as

$$\begin{array}{c}
f \ V \\
Q \ (r-A) \\
\hline
r-\widetilde{A}, D(O)
\end{array}$$

7) I is a weakening in the antecedent. This case is treated similarly to 6.1).

Now define a partial recursive function $q(r, P^n)$ according to the above transformation. We shall quote the case numbers j) in the above transformation.

 $q(r,V)^{sr}p^{n} if 0);$

- $\equiv 3.5^{e}1.7^{r} \rightarrow \tilde{\Delta}, \forall xF(x)^{r} \text{ if } 1.1), \text{ where}$ $e_{i} = Ai(\{r\}(\{e\}(i))) \text{ and } e \text{ is a number}$ $\text{determined by } ^{r}P^{\wedge}) \text{ such that } (e)(i) = ^{r}P^{\wedge};$
- ^ . S * 2 / 1 ^ * 1 VxF(x) 1 if 1.2), where e_2 Ai(E({r)){e)(i)),{e}(i)), e is as above, and E(f R'^^R) is a recursive function which produces a proof-figure of ir f, $3y^B(y)^{-if}$ the end sequent of R^1 is of the form $ir -> ci_9$ B(s)^..^B(t) and gyB(y) is the last formula in the succedent of the end sequent of R;
- = {r}(V) if 2);
- I({r}(^rP_i^),{r}(^rP₂"¹)) if 3), where iCl^"¹/R^)
 is a recursive function which produces a proof figure of T A, A A B if Rj and R_g are the
 proof-figures of T A, A and T A, B respectively;
- Like Case 3) for other propositional connectives;
- ≡ C({r}("Q")) if 4.1), where C("R"¹) is a recursive function which produces a proof-figure from R by a contraction in the succedent:

- $= \{r\}(\lceil Q \rceil) \text{ if } 4.2);$
- $\equiv C'(\{r\}(\lceil Q \rceil))$ if 5) for an appropriate $\lceil Q \rceil$ and a recursive C':
- ≡ W({r}(¬P¬),¬P¬) if 6.1), where W(¬R¬,¬P¬) is a recursive function which produces a proof-figure of $\pi \to \Lambda$, D from R by adding D as a weakening formula provided that $\pi \to \Lambda$ is the end sequent of R and D is the last formula in the end sequent of P;
- ≡ W_O({r}(ΓP[¬]),ΓP[¬]) if 6.2), where W_O(ΓR¬,ΓP¬) is a recursive function which produces a proof-figure of π → Λ, D(O) by a weakening of D(O) provided that the end sequent of R is π → Λ and the last formula in the end sequent of P is ∃yD(y).
- \equiv Similarly to 6) if 7).

By recursion theorem, there is a number r such that

$$\{\mathbf{r}_{\mathbf{O}}\}({}^{\mathsf{\Gamma}}\mathbf{P}^{\mathsf{T}}) \simeq \mathbf{q}(\mathbf{r}_{\mathbf{O}},{}^{\mathsf{\Gamma}}\mathbf{P}^{\mathsf{T}}).$$

Let us call the partial recursive function which is represented by $\mathbf{r}_{\mathbf{O}}$ g. Then

$$g(\lceil p \rceil) \simeq q(r_0,\lceil p \rceil).$$

It is easily seen that $g(^{r}P^{7}) = ^{r}\widetilde{P}^{7}$ under appropriate circumstances. Hence we can see that g is defined if P cut free proof-figure whose end sequent satisfies (*) and g(P) (or \widetilde{P}) is a proof-figure of a sequent whose end sequent satisfies (~). The precise proof is carried out by transfinite induction on the length of P^{\neg} (which is less than ω_{\parallel} (cf. §3 of [6])). Notice that, if P is cut free and its end sequent satisfies (*), then all subproofs of P have the same property. Thus, if a $\{r\}(\lceil Q \rceil)$ occurs in the definition of q, then the induction hypothesis applies since it can be easily proved that Q is a subproof of P and hence the length Q is less than the length of P. It should be also noted that the cases $0) \sim 7$) exhaust all the possibilities of the last inference of P. In cases 1.1) and 1.2), e_1 and e_2 respectively represent the constructive ω -rule, since $\text{Ai}[\{r_0\}(\{e\}(i))] \text{ and } \text{Ai}[E(\{r_0\}(\{e\}(i)),\{e\}(i))] \text{ represent}$ partial recursive functions of i, and, if P is a proof-figure in Z, then they are defined for all i (by the definition of and induction hypothesis).

Lemma 3. There is a partial recursive function of two arguments, say ν , such that $\nu(n, \lceil P \rceil)$ (= $\lceil P[n_1, \ldots, n_k]^{\dagger \rceil}$) is defined if P is a proof-figure whose end sequent, say $\Gamma \to \theta$, satisfies (*), $k = k(\lceil \theta \rceil)$ (= $k(\lceil P \rceil)$), and $n = 2^{n_1+1} \cdot n_2+1 \cdot n_k+1 \cdot n_k+1$, where $P[n_1, \ldots, n_k]^{\dagger}$ is a proof-figure of a sequent which satisfies (~) for $\Gamma \to \theta[n_1, \ldots, n_k]$.

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY

Proof. Let f be a partial recursive function which gives the transformation in Theorem 2 in §2. Thus, if P is a proof-figure, then $f(^{r}P^{n})$ is a cut free proof-figure of the same end sequent. Define

$$I/Cn/P^1) = g-f-h(n,^rP^1)$$
,

$$n_{x}+1$$
 $n_{x}+1$ n_{x

is well-defined if P is as above and $k = k(^r8^1)$. The end sequent of $P[n_{\bar{1}}, \ldots, n_{\bar{K}}, \bar{1}]$ then satisfies (~) for F- $8[n_{\bar{1}}, \ldots, n_{\bar{K}}]$ by the definition of g.

Proof. The proof is carried out by mathematical induction on m.

We first give an intuitive idea of the construction of Po. Let $k - k(^r6^1)$ (= h^P^1). Then, by Lemma 3, Pfnj, ..., n_k] f is a proof-figure of a sequent, say $T \to efnj, \bullet ..., n_k]^{\dagger}$, which satisfies (~) for T - 0 8[n_1, \ldots, n_k] for every k-tuple (n_{-1}, \ldots, n_k). It is easily seen that $m(P[n_{i}, \bullet \bullet ., n_{i}]^{\dagger}) = m - 1 < m$. Furthermore, $F - 8[n_1^{\leftarrow}, \dots, n_n^{+}]$ ' also satisfies (*) • Hence by induction hypothesis $(P[n_1, ..., n_k]^{\frac{1}{i}})^{\circ}$ is defined and its end sequent is $\Gamma \rightarrow \theta[n_1, \ldots, n_k]^{\dagger}$.

Let 8 consist of $\forall x-.A-Cx...$, ..., $\forall x_n A_n(x_-)$, $\exists y_1 B_1(y_1)$,..., $3y_q^B_q(y_q) > Vz_13u_1C_1(z_1,u_1),...,Vz_r3u_rC_r(z_r,u_r), 8^{\land}, where$ $A^{1}(x^{1}), \bullet \bullet \bullet, A^{p}(x^{p})$ are quantifier free and 6^{f} consists of $C_1(n_1, t_1), \dots, C_1(n_k, t_k), \dots, C(n_k, t_1), \dots, C(n_k, t_1), \dots, C(n_k, t_k), 8^1$ n_k ,..., n_{fc} , q_- ,..., q_{fc} ,..., q_{fc} are determined by P and $(n_1, \ldots, n_{K'})$. P is defined in terms of the following $Q(n, \dots, n,)$. First $Q(n-, \dots, n,)$ is defined as follows:

 $(P[n_1,\ldots,n_k]^{\dagger})^{\circ}$

11/

 $[n_1, \dots, n_k]^4$ 3 in the succedent applied to t's in the C's, '3's in the succedent applied to s; in the B's, 'interchanges and 'contractions'

 $\Gamma \rightarrow \theta'$, 8^{11} , $^{\text{y}}$ BjCyj),..., $3\underline{y}_{Q}B(\underline{y})$, $^{\text{i}}$ Cn $^{\text{c}}$, $^{\text{i}}$ j),..., $3\underline{^{\text{u}}_{r}}^{\text{c}}$

for appropriate θ ". Note that

$$\omega(Q(n_1,\ldots,n_k)) = \omega((P[n_1,\ldots,n_k]^{\dagger})^{\circ}) < \omega \cdot (m-1)$$

Let $\forall x_1^{D_1}(x_1), \ldots, \forall x_k^{D_k}(x_k)$ be all the formulas of θ which start with \forall and suppose $\forall x_1^{D_1}(x_1)$ corresponds to n_1 , (Those are among $\forall xA(x)$'s and $\forall z \exists uC(z,u)$'s. Exactly one such formula corresponds to one n_1), and let θ^* be $\theta^!$, $\exists y_1^{B_1}(y_1), \ldots, \exists y_q^{B_q}(y_q)$. P^O is defined as the following Q_k .

$$Q_{1}^{(n_{2},...,n_{k})} \begin{cases} I_{1} & \frac{Q(n_{1},...,n_{k})}{\Gamma - \theta^{*}, D_{k}^{(n_{k})},...,D_{1}^{(n_{1})} - n_{1} < \omega} \\ \frac{Q_{1}^{(n_{2},...,n_{k})}}{\Gamma - \theta^{*}, D_{k}^{(n_{k})},...,\nabla^{2} I_{1}^{(n_{1})} - n_{1} < \omega} \\ \frac{Q_{2}^{(n_{3},...,n_{k})}}{\Gamma - \theta^{*}, \nabla^{2} I_{1}^{(n_{1})}, D_{k}^{(n_{k})},...,D_{2}^{(n_{2})} - n_{2} < \omega} \\ \frac{\Gamma - \theta^{*}, \nabla^{2} I_{1}^{(n_{1})}, D_{k}^{(n_{k})},...,\nabla^{2} I_{2}^{(n_{2})} - n_{2} < \omega} {\Gamma - \theta^{*}, \nabla^{2} I_{1}^{(n_{1})},...,D_{k}^{(n_{k})},...,\nabla^{2} I_{2}^{(n_{2})}} \\ \frac{\Gamma - \theta^{*}, \nabla^{2} I_{1}^{(n_{1})},...,D_{k}^{(n_{k})},...,D_{k}^{(n_{k})},...,\nabla^{2} I_{2}^{(n_{2})} - n_{2} < \omega} {\Gamma - \theta^{*}, \nabla^{2} I_{1}^{(n_{1})},...,D_{k}^{(n_{k})},...,D_{k}^{(n_{k})},...,\nabla^{2} I_{2}^{(n_{2})}} \\ \frac{\Gamma - \theta^{*}, \nabla^{2} I_{1}^{(n_{1})},...,D_{k}^{(n_{k})},...,D_{k}^{(n_{k})},...,\nabla^{2} I_{2}^{(n_{2})} - n_{2} < \omega} {\Gamma - \theta^{*}, \nabla^{2} I_{1}^{(n_{1})},...,D_{k}^{(n_{k})},...,D_{k}^{(n_{k})},...,\nabla^{2} I_{2}^{(n_{2})}} \\ \frac{\Gamma - \theta^{*}, \nabla^{2} I_{1}^{(n_{1})},...,D_{k}^{(n_{k})},...,D_{k}^{(n_{k})},...,D_{k}^{(n_{k})},...,D_{k}^{(n_{k})}} {\Gamma - \theta^{*}, \nabla^{2} I_{1}^{(n_{1})},...,D_{k}^{(n_{k})},...,D_{k}^{(n_{k})},...,D_{k}^{(n_{k})}} \\ \frac{\Gamma - \theta^{*}, \nabla^{2} I_{1}^{(n_{1})},...,D_{k}^{(n_{k})},...,D_{k}^{(n_{k})},...,D_{k}^{(n_{k})}} {\Gamma - \theta^{*}, \nabla^{2} I_{1}^{(n_{1})},...,D_{k}^{(n_{k})},...,D_{k}^{(n_{k})},...,D_{k}^{(n_{k})}} \\ \frac{\Gamma - \theta^{*}, \nabla^{2} I_{1}^{(n_{1})},...,D_{k}^{(n_{k})},...,D_{k}^{(n_{k})},...,D_{k}^{(n_{k})}} {\Gamma - \theta^{*}, \nabla^{2} I_{1}^{(n_{1})},...,D_{k}^{(n_{k})},...,D_{k}^{(n_{k})}} \\ \frac{\Gamma - \theta^{*}, \nabla^{2} I_{1}^{(n_{1})},...,D_{k}^{(n_{k})},...,D_{k}^{(n_{k})},...,D_{k}^{(n_{k})},...,D_{k}^{(n_{k})}} {\Gamma - \theta^{*}, \nabla^{2} I_{1}^{(n_{1})},...,D_{k}^{(n_{k})},...,D_{k}^{(n_{k})}} \\ \frac{\Gamma - \theta^{*}, \nabla^{2} I_{1}^{(n_{1})},...,D_{k}^{(n_{k})},...,D_{k}^{(n_{k})},...,D_{k}^{(n_{k})},...,D_{k}^{(n_{k})}} {\Gamma - \theta^{*}, \nabla^{2} I_{1}^{(n_{1})},...,D_{k}^{(n_{k})},...,D_{k}^{(n_{k})}} \\ \frac{\Gamma - \theta^{*}, \nabla^{2} I_{1}^{(n_{1})},...,D_{k}^{(n_{k})},...,D_{k}^{(n_{k})},...,D_{k}^{(n_{k})},...,D_{k}^{(n_{k})}} {\Gamma - \theta^{*}, \nabla^{2} I_{1}^$$

where I_1, I_2, \ldots, I_k are the only ω -rules under $Q(n_1, \ldots, n_k)$. Since $\omega(Q(n_1, \ldots, n_k)) < \omega \cdot (m-1)$, $\omega(Q_1(n_2, \ldots, n_k)) \le \omega \cdot (m-1)$, $\omega(Q_2(n_3, \ldots, n_k)) \le \omega \cdot (m-1) + 1, \ldots$; in general $\omega(Q_j(n_{j+1}, \ldots, n_k)) \le \omega \cdot (m-1) + (j-1)$, $1 \le j \le k$. Thus $\omega(P^0) \le \omega \cdot (m-1) + (k-1) < \omega \cdot m$.

The definition of the required function μ goes as follows.

First define recursive functions $^{^{^{\circ}}Q}(i, ^{^{\circ}}Q ^{^{\circ}}P^{^{\circ}}), \$_1 < ^{^{\circ}}Q \setminus ^{^{\circ}}P^{^{\circ}}),$ $\psi_2(^{^{\circ}}Q \vee P^{^{\circ}}), (?_{^{\circ}}Q \vee P^{^{\circ}}), (?_{^{\circ}Q}$

$$\psi_{0}(0, Q^{T}, P^{T}) = Q$$

$$\psi_{0}(1, Q^{T}, P^{T}) = \frac{P}{Q}$$

$$\frac{Y - V, C(S)}{T - + V, ByC(Y)}$$

if C(s) is the right most formula among those which are in the end sequent of Q and which satisfy that there is a formula of the form 3yC(y), C(y) being quantifier free, in the end sequent of P, while C(s) is not in the end sequent of P;

$$r - V_3 c(n,s)$$

$$r - V_7 3yc(n,y)$$

if there is no C(s) as above and C(n,s) is the right most formula among those which are in the end sequent of Q and which satisfy that there is a formula of the form Vx 3yC(x,y) in the end sequent of P, where n is a numeral, while C(n,s) is not in the end sequent of P*

= 0 otherwise.

$$\psi_{0}(i + 1, {}^{r}Q^{1}, {}^{r}P^{1}) = \psi_{0}(1, \psi(i, {}^{r}Q^{1}, {}^{r}P^{1}), {}^{r}P^{1})$$

 $\psi_{\mathbf{I}}(^{r}Q^{\wedge}, ^{r}P^{n}) =$ the number of formulas C(s) or C(n,s) which satisfy the conditions in the definition of w_{\circ} .

$$\psi_2(^{\mathsf{r}}\mathsf{Q}^{\mathsf{q}},^{\mathsf{r}}\mathsf{P}^{\mathsf{q}}) \ = \ \psi_0(\psi_1(^{\mathsf{r}}\mathsf{Q}^{\mathsf{q}},^{\mathsf{r}}\mathsf{P}^{\mathsf{q}}),^{\mathsf{r}}\mathsf{Q}^{\mathsf{q}},^{\mathsf{r}}\mathsf{P}^{\mathsf{q}}) \, .$$

$$0_3(c,k,V) = An_1...An_k \psi_2(\{c\}(n_1,...,n_k), P^T)$$

$$4>_4(c, V) = tf>3(c,k(^P),^P)$$

$$< p(e, 0, ^{r}P^{n}) = 0;$$

Note. If I = 1, then there is no $^{\dagger}\Lambda n_2 \dots \Lambda n_{L}^{\dagger}$.

$$M_o(0,e,V) = \langle P(e,k,V) ;$$

$$/x_{Q}(i + I^{/P^{-1}}) - \langle p(.iM_{o}(1,e,^{r}P^{,t}), k \rightarrow (i + 1),^{r}P^{-***}, \text{ where}$$

$$k - k^{P^{-1}}).$$

$$\widetilde{\psi}(b, P, k) = \Lambda_1 ... \Lambda_k(\{b\}(\nu(2^{n_1+1}...k_k^{n_k+1}, p))).$$

$$4>_5(b, fp^{-1}) = \widetilde{\psi}(b, P^{-1}, k(P^{-1})).$$

$$f|(b,^{r}P^{n}) = \mu_{0}(k(^{r}P^{n}) + 1, \psi_{4}(\psi_{5}(b,^{r}P^{n}),^{r}P^{n}),^{r}P^{n}).$$

By recursion theorem, there is a number b such that

$$\{b_{\mathbf{0}}\}(^{\mathsf{\Gamma}}\mathbf{P}^{\mathsf{T}}) \simeq \iint (b_{\mathbf{0}},^{\mathsf{\Gamma}}\mathbf{P}^{\mathsf{T}}).$$

Call the partial recursive function which is defined by b_0 μ . We show by induction on m(P) that μ is defined for all P which satisfy the condition in Lemma 4, $\mu(^{r}P^{7})$ is a proof-figure of the end sequent of P for such a P, and that $\omega(P) < \omega m$.

Suppose P satisfies the condition and $k = k(^rP^7)$. Then $\nu(2^{n_1+1} \dots p_k^{n_k+1}, ^rP^7) = ^rP[n_1, \dots, n_k]^{\dagger 7}$ (cf. Lemma 3) and $m(P[n_1, \dots, n_k]^{\dagger}) = m-1 < m(P)$. Thus, by induction hypothesis, $\mu(\nu(2^{n_1+1} \dots P_k^{n_k+1}, ^rP^7))$ is defined and is a proof-figure of the end sequent of $P[n_1, \dots, n_k]^{\dagger}$ (hence is written as

$$\lceil (P[\underline{n_1}, \ldots, \underline{n_k}]^{\dagger})^{o \rceil}) \cdot m((P[n_1, \ldots, n_k]^{\dagger})^{o}) < \omega \cdot (m-1)$$

obviously holds. Observe the following.

$$\psi_{2}(\lceil (P[n_{1}, \dots, n_{k}]^{\dagger})) \rceil, \lceil P \rceil) = \lceil Q(n_{1}, \dots, n_{k}) \rceil.$$

$$\psi_{5}(b_{0}, \lceil P \rceil) = \Lambda n_{1} \dots \Lambda n_{k}(\lceil (P[n_{1}, \dots, n_{k}]^{\dagger})) \rceil).$$

$$\psi_{4}(\psi_{5}(b_{0}, \lceil P \rceil), \lceil P \rceil) = \Lambda n_{1} \dots \Lambda n_{k} \lceil Q(n_{1}, \dots, n_{k}) \rceil$$

$$\text{where } k = k(\lceil P \rceil).$$

$$\mu_{0}(0, \psi_{4}(\psi_{5}(b_{0}, \lceil P \rceil), \lceil P \rceil), \lceil P \rceil)$$

$$= \varphi(\Lambda n_{1} \dots \Lambda n_{k} \lceil Q(n_{1}, \dots, n_{k}) \rceil, k, \lceil P \rceil)$$

$$= An_2...An_k(3-5 \xrightarrow{x} _{\underline{+}} _{-\underline{+}} ^{r_Q(n...,n...p)} -7^s)$$
where $k = k(^rP'''*) > 0$ is assumed and
$$s \ll j] \xrightarrow{*} ^{\wedge} (n_2,...,n_k), VxDjCx) \text{ for appropriate}$$

$$\prod_{j=1}^{n} \sum_{k=1}^{n} p_k(x).$$

 $Suppose \quad i \ < \ k \quad and \quad$

$$\mu_{o}(\mathtt{1},\psi_{4}(\psi_{5}(\mathtt{b}_{o},\mathtt{'P}^{\mathtt{T}}),\mathtt{'P}^{\mathtt{T}}),\mathtt{'P}^{\mathtt{T}})$$

= $\Lambda_{n_2} \dots \Lambda_{n_k} (Q_1 (\underline{n_2}, \dots, \underline{n_k}))$.

Then supposing i + 1 < k, $k^{(rQ)}i + 1^{(\frac{n}{2}+2)} - \frac{n}{2}k^{(n)}$ holds where $k = k^{(p)}$.

$$\mu_{o}(i + 1, \psi_{4}(\psi_{5}(b_{o}, {}^{r}P^{7}), {}^{r}P^{7}), {}^{r}P^{7})$$

$$= \varphi(\mu_{o}(i, \psi_{4}(\psi_{5}(b_{o}, {}^{r}P^{7}), {}^{r$$

Thus

$$\mu(\lceil P \rceil) = \prod (b_0, \lceil P \rceil) = \mu_0(k - 1, \psi_4(\psi_5(b, \lceil P \rceil), \lceil P \rceil), \lceil P \rceil) = \lceil Q_k \rceil$$

or,
$$p^{0} = \mu(p^{1}) = Q_{k}^{1}$$

For the proof of $\omega(P^0) < \omega$ m, see the preceding, intuitive description of P^0 . Note. 1) It is easily seen that for each i < k, $\mu_0(i, \psi_4(\psi_5(b_0, P^1), P^1), P^1)$ yields a constructive ω -rule. 2) In fact, μ_0 should be defined so that it includes some necessary interchanges in order to obtain $Q_i(n_{i+1}, \ldots, n_k)$. We have omitted such details

§4. Proof of Theorem (see §2). From Theorem 1 and Proposition in §2, it suffices to show that all provable sentences (of \mathbf{Z}) which are in the prenex form with alternating quantifiers are provable with the proof-figures whose ω -complexities are less than ω^2 . If A is provable and is in prenex normal form with alternating quantifiers, then any proof of \rightarrow A satisfies the condition on P in Lemma 4: i.e., \rightarrow A satisfies the condition (*). Thus, from Lemma 4, A is provable with an ω -complexity less than ω^2 , or A belongs to S'₂. Therefore all true sentences belong to S'₂. This completes the proof of our theorem.

REFERENCES

- [1] J.E. Fenstad, ^TOn the completeness of some transfinite recursive progressions of axiomatic theories¹, JSL, 33[^]No. 1(1968), 69-76.
- [2] G. Gentzen, ^fDie gegenwartige Lage in der mathematischen Grundlagenforschung¹, Neue Fassung des Widerspruchsfreiheitsbeweises für die reine Zahlentheorie, Forschungen zur Logik und zur Grundlegung der exakten Wissenschaften, £(1938), Hirzel, Leipzig.
- [3] G. Kreisel, J. Shoenfield and H. Wang, 'Number theoretic concepts and recursive well orderings¹, Archiv fur mathematische Logik und Grundlagenforschung, 5/1959), 42-64.
- [4] K. Schitte, Beweistheorie, 1960, Springer, Berlin, x + 355.
- [5] J. R. Shoenfield, 'On a restricted OKrule¹, Bulletin de l'Academie Polonaise des Sciences, Serie des sci. math., astr. et phys., 7/7)(1959), 405-407.
- [6] M. Yasugi, 'Cut elimination theorem for the second order arithmetic with the J_J^{-1} -comprehension axiom and the a>-rule.