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80. Introduction. Concerning first order arithmetic
W th the restricted (constructive) co-rule, Shoenfield showed
the following in [5]. First we quote his definition

For each ordinal a, define a class §; of sentences
(of arithmetic) as follows. SN is the class of provable
sent ences of Zp‘ Sb+[
provabl e from sentences of Sb by the co-rule, together with

1s the class of sentences which are

their |ogical consequences. |If a is a limt nunber,
TLO T

He cl ai ns:

If we replace the co-rule by the restricted co-rule (in
t he above definition), then S ~* is the class of true

c0
sent ences of Z”.
He attained this result by analyzing his proof of the

conpl eteness of the restricted to-rule and considerations of [3].

1Part of this work was done while the author was at the University
of Bristol.
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(See also [1].) Here, we shall show that a subset of S ,
w
will do for all the true sentences of Z_ . The argument is

M
an application of Shoenfield's main result (the completeness
of the restricted ®wrule) and the cut elimination theorem

for the first order arithmetic with the constructive w-rule

(cf. [4]).

81. The system and the w-complexity. The first order arith-
metic with the constructive w-rule was formulated, for example,
in [5]. Here, however, we adopt & Gentzen type formulation

of arithmetic.

Definition 1. A formulation of the system Z. The formulas
and the sequents are defined like in [2] except that we now
.permit only closed formulas (sentences) in the sequents. The
rules of inference in [2] except 'V in the succedent', '3 in
the dntecedent' and 'VJ' are adopted. Instead of those three
rules, we introduce the 'constructive w-rule' into our system.
Like in [5]; we assume that Godel numbers have been assigned to
the formulas and the sequents, and to the partial recursive
functions. We write 'A" for the GGdel number of a formula A
and 'S ' for the Godel number of a sequent S. The notion of
a number of a proof-figure in. Z 1is defined naturally in terms
of Godel numbering of the rules of inference in [2] (except 'V

in the succedent', ' in the antecedent' and 'VJ'). The w-rule

is formulated as follows.

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY

WY 306




Let rPﬁf be a nunber of a proof-figure in Z of

a sequent F - 0, F(i) for every natural nunber i, where i*
Is the nuneral which denotes i and T and O stand for
finite sequences of formulas. If e is a punber such

that (e}(i) = \" for all i, .then 3.5%.7 F ~x 9% VXF(X)I1

Is a nunber of a proof-figure in Z (of the sequent T -« 6, VXF(X))-.

W say a sequent S is provable in z if there is a nunber
of a proof-figure in Z of S Aformula A is said to be

provable in Z if -» A is provable in Z

In order to sinplify the presentation, we shall often say
a 'formula®, a 'proof-figure', etc., instead of 'a nunber of!
a formula , a proof-figure , etc. Thus, we may sinply say

P is a proof-figure of a sequent S in Z'; we may even onmit

‘in Z'. The co-rule shall then be expressed as foll ows.
P. i <
r- 0, WP(x)
where P. is a proof-figure of T- 0, F(i) for every natura
nunber i, and there is a recursive function f such that f(i)

produces P (or, f(i) ="Pi"%) .
As in [5], we assume that definitions of all primitive

recursive functions have been introduced in our formal system




Definition 2. The w-complexity of a proof-figure P, denoted
by w(P), which is a countable ordinal (cf. 1.3 of [6]) is

defined as follows.

1) If P consists of a beginning sequent only, then w(P) = O.

Py PPy
2) If P is of the form § or S

or w(P) = max(uKPl),axpz)) respectively.

, then w(P) = w(P;)

P i< w

S

i

3) If P is of the form , then w(P) = sup uKPi).

i<w
Definition 3. Let 0O be a non-zero countable ordinal. Sy 1is
defined as the set of all the sentences (of Z) which are provable
- with proof-figures whose w-complexities are less than O,

Note. Although there is a slight difference in the definition,

our S', is S g in [5].
: w w

82. The theorem and some known results. Our purpose is to

prove the following.

Theorem. S'2 is the class of true sentences of arithmetic.
w

We shall prove this theorem by using the following well-

known results. (The proof of the theorem shall be given in 84.)

Theorem 1. (cf. [5].) Any true sentence of arithmetic is

pfovable in Z.




Theorem 2. (cf. [4].) There is a partial recursive function  f
such that if P is a proof-figure, then f('P*) is defined and

Is a nunber of a cut free proof-figure of the end sequent of P.

Proposition. If A is a sentence of arithnetic, then there
Is a prenex normal formin alternating quantifiers, say B, such
that A° B is provable with a proof-figure whose o> conplexity

is finite (i.e. A=B belongs to 8}).

8§3. Sone | enmmas.

Definition 4. A condition (*) on a sequent T -+ 8 is the

fol | ow ng.

(*) Al (sequent) formulas of T are quantifier free
and every (sequent-) formula of 6 1is either quantifier free

or in the alternating prenex normal form

Definition 5. Suppose 8 satisfies the condition on 9 in
(*) and there are Kk (sequent-)' formulas in 6 which start with
the universal quantifier. Then 8 N-p o, nk] denotes a sequence

of fornulas which satisfies the follow ng.

(1) If the j'" fornmula of 8 (fromthe left) is of the
form VxA(x) and it is the i'" fornula which starts with the

uni versal quantifier, then .A(n.l) Is the jth formul a of 8[n1,...,nk].

P——

(2) If the j'" fornula of 8 does not start vvi‘th t he




universal quantifier, then it is the Jth formula of G[nl,...,nk].

(3) Every formula of O[nl,...,nk] is one of the formulas

described in (1) and (2) above.

The number k as above shall be denoted by k(67), or

k("P") if the I - 6 above is the end sequent of P.

Lemma 1. There is a recursive function h of two arguments

which has the following property.

h(n,P7) = rP[nl,...,nk]ﬂ if P 1is a proof-figure whose end
sequent, say I - 0, satisfies (¥),
n = 2n1+1-3n2+1...pknk+1°b, where 4
has none of the factors 2, 3,...,pk
(pk is the k-th prime number),
and k > k('6"), where Plng,...on.]
is a proof-figure of T o G[nl,...,nk];

0 otherwise.

Proof. This is obvious, since VxF(x) - F(i) is provable in Z

for an arbitrary natural number i.

Lemma 2. There is a partial recursive function g such that
g("PT) (=TP7 is defined whenever P is a cut free proof-
figure in Z whose end sequeﬁt, say I' - 6, satisfies (*) and,
in such a case, P is a proof-figure of a sequent’ r-19

which satisfies the following condition (~).




(~ (1) If a formula in 8 is of the form 3yA(y), then
there are a finite nunber of terms s, ...,t such
that A(s),...,A(t) are in #.

(2) If aformulain 9 does not start with fhe
existential quantifier, then it isin *$.
(3) Only the formulas described in (1) and (2) above

are in .

r - # is said to satisfy (9 for I"->6. W can actually
specify the order of the fornmulas in Tf effectively, though
we onit'sUch details throughout. Notice also that T -* # again
satisfies (*), and that g and P determne the terns s, ..., t

(in the condition (~)).

Proof. First consider the following transformations (of P into P},
“according to the last inference in P, say |. It should be

noted that, as P is cut free, every sequent in P satisfies

the condition (*), and hence every subproof of P possesses

the same property as P.

0) P consists of a beginning sequent only. Then take P

itself as P, since P has no quantifier in this case*

1) | is an a>rule. Let P be of the form

L}
LI

P. [r -fﬁ& F(i) I <
T- A WXF(x)




Suppose 3.1 is already defined for every i.

1.1) F(i) has no quantifiers. Then the end sequent of 'I5".1 is

of the form T- *K, F(i). Define P as

B, {I‘-.'K, F(1) 1< w
F- A WxF(x)

1.2) F(i) is of the form_ 3yA(i,y). Then, the end sequent

of I3.']L is of the form T-« A A(i,s),...,A(i,t), where s, ..., t
depend on i. Define P as
~ f v
Po [ T A—Af e A<
T-ff, 3yA(i,y) i < co

T- A VX3YyA(X,Yy)

where ~ nmeans that there are ' 3's in the succedent' applied

to A(i,s),...,A(i,t), as well as sone interchanges and contractions
2) | is a 3 in the succedent. Let P be of the form
QJT-A F(s)
T- A 3yF(y)

Suppose 6 is defined. Notice that F(s) does not start with 3
and hence the end sequent of Q is T-+ A F(s). Take Q

as P.




3) I 1is one of the inferences which introduce propositional
connectives. We shall present only one such example -- I is
a 'N in the succedent'. Let P be of the form

P, {I‘-'A,A P, - A, B

I'- A, AAB

Suppose 31 and 52 are defined. Since A A B has no

quantifier, P may be defined as

v L}
B, {I‘-K,A P r-7%, B

r-% AAB

4) I 1is a contraction in the succedent. Let P be of the

form '

vy
Ve

Q {(T~4a, DD

I'- A, D
Suppose 6 is defined.

4.1) D does not start with the existential quantifier. Then
the end sequent of Q is of the form I' = %, D, D. Define P

as ,
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4.2) D is of the form 3yD(y). Then the end sequent of Q@
isof theformT-* A Os..),...,Ds.), D(t-),«e, Dt ) for
X ~> X m
some &i,°*.°*, &, tr,...,tm. Take Q and P.
5 | is a contraction in the antecedent. For this case an
argument simlar to 4.1) goes through.
6) | is a weakening in the succedent. Let P be of the form
Q { r- A
I'= A D
Suppose Q is defined.
6.1) D does not start with the existential quantifier. Define P
as /‘l
olr-A
r- A D
6.2) D is of the form 3yD(y). Define P as
f Vv
Q(r-A
r- A Do)
7) | is a weakening in the antecedent. This case is treated

simlarly to 6.1).
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Now define a partial recursive function q(r,"P") according

to the above

transformation. W shall quote the case nunbers

]) 1n the above transformation.

q(r, V) ®'

p"if 0);

T - %, ¥xF(x)

€1
3.5 .7 if 1.1), where

&, = Ai({r}({é}'(i))) and e is a nunber
determ ned by "P*) such that (e)(i) = r-P";

S* 2/ ax VXFOOL jf 1.2), where
e; - A(E({r)){e)(i)).{e}(i))), e is as above,
and E(rR' ANRY) is a recursive function which
produces a proof-figure of ir —£, 3yB(y) 'f
the end sequent of R is of the form
ir ->cio B(s)"..”B(t) and gyB(y) is the last

formula in the succedent of the end sequent of R

{ry(v) if 2);

L({r}("Pi?), {r}("P,"Y) if 3), where id”"'/ R")
Is a recursive function which produces a proof-
figure of T- A AAB if R and R, are the

proof-figures of T-» A/ A and T-« A B respectively;
Li ke Case 3) for other propositional connectives;

C({r}("qQ@)) if . 4.1), where C('R'Y) is a recursive
function which produces a proof-figure from R by

a contraction in the succedent:
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(r}('Q") if 4.2);

c'({r}("Q")) if 5) for an appropriate 'Q ' and

a recursive (C':

w({r}(PY),™") if 6.1), where W('R','P') is a
recursive function which produces a proof-figure of
m= A, D from R by adding D as a weakening
formula provided that 7 - A 1is the end sequent

of R and D 1is the last formula in the end

sequent of P;

=W ({r}("P"),"P") if 6.2), where W_('R,"P") is
a recursive function which produces a proof-figure
of 7 - A, D(O) by a weakening of D(O) provided
that the end sequent of R is 7 - A and the

last formula in the end sequent of P is JyD(y).

Similarly to 6) if 7).

By recursion theorem, there is a number ry such that

(ro}(rP’) ~ q(r_,"P").

0,
Let us call the partial recursive function which is represented

by r, 8. Theq

g("P™") =~ q(ro,"P-') .
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It is easily seen that g(rpﬂ) = ri-’ under appropriate
circumstances. Hence we can see that g is defined if P 1is a
cut free proof-figure whose end.sequent satisfies (*) and

g("P") (or P) is a proof-figure of a sequent whose end sequent
satisfies (~). The precise proof is carried out by transfinite
induction on the length of 'P' (which is less than w

(cf. B3 of [6])). Notice that, if P is cut free and its

end sequent satisfies (*), then all subproofs of P have the
same property. Thus, if a {r}('Q') occurs in the definition

of q, then the induction hypothesis applies since it can be
easily proved that Q is a subproof of P and hence the length
of Q 1is less than the length of P. It should be also noted
that the cases 0) ~ 7) exhaust all the possibilities of the

last inference of P. 1In cases 1.1) and 1.2), e and e,

1
respectively represent the constructive w-rule, since

AMi[{r }({e}(1))] and Ai[E({r_}({e}(1)),(e}(1))] represent
hartial recursive functions of i, and, if P is a proof-figure
in Z, then they are defined for all i (by the definition of

e and induction hypothesis).

Lemma 3. There is a partial recursive function of two arguments,
9
say v, such that v(n,"'P') (= rP[nl,...,nk]+ ) is defined if

P is a proof-figure whose end sequent, say I - 0, satisfies

n.+1 n,+1 n, +1
(*), k = k(8" (=kx('P"H), and n=21 .3 2 “eePy ko

where P[nl,...,nk]T is a proof-figure of a sequent which

satisfies (~) for T *'G[nl,...,nk].

HUNT LIBRARY
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Proof. Let f be a partial recursive function which gives
the transformation in Theorem2 in 82. Thus, if P is a
proof-figure, then f('P") is a cut free proof-figure of the

same end sequent. Define
|/ Cn/PY) =g-f-h(n,"P),

where h and g are the functions in Lemma 1 and Lemma 2
respectively. Then it is obvious that v 1is a partial re-

cursive function which is defined if P 1is a proof-figure
n.+1 ng+1 n, +1

whose end sequent satisfies (*) and n = 2 1 7432 "arap K
for sone k, where 1 has none of the factors 2,3,...,pk,
and k > k('p"). In particular
n.+1 n.+1 nk+1 r TA
1/(2 X _3 z oooPk r -I!) * = /\[/\ooos/\]
is well-defined if P is as above and k = k('8!). The end
sequent of P[ni,..., %,f' then satisfies (9 for F- 8[n1,..-,nk]

by the definition of g.

Lemma 4. There is a partial recursive function /Mt such that
MAPYY (="P°"?') is defined if P is a proof-figure whose end
sequent, say T-* Q satisfies (*) and, in such a case, P°
is a proof-figure of T-« 8 and co(p°) < o*m where m is
t he maxi mum anong the nunbers of quantifiers in the fornul as

of 8 (hence m may be denoted by m(P)).

Proof. The proof is carried out by mathematical induction on m
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We first give an intuitive idea of the construction of P°.
Let k - k("6Y) (=h~PY)). Then, by Lenma 3, Pfnj, ..., ny]"

is a proof-figure of a sequent, say T->efnj,e..,ny f, whi ch

satisfies (9 for T - 8[n-1,...,nk] for every k-tuple (n-l...,nk).
It is easily seen that m(P[n-I--.,n,K]'J') =m- 1 <m Furthernore,
F-e 8[ni<, .. 19+] al so satisfies (*) » Hence by induction

hypot hesi s (P[nl,...,nk] '+)° is defined and its .e'nd sequent is

- O[nl,...,nk]+ .

Let 8 consist of W-.AQ.), .. ., WKAL(XZ), J¥yBy(¥y)seee,
X X 4 rr P
3quq(yq)'> Vz.3u:Ci(z4,U1),...,VZ,3u,C(z,,u;), 8" where
AL(x%) e AP(xP) are quantifier free and 6ff consi sts of
quantifier free fornmulas. Then 8[nd ..., 3% gonsists of
A nJB,“.J\&njg, B &f,.. BJngf,..”Bg(a),.-”Bq(i )
Co(ng st7)seeesC(ny sty )seaasC (g 5t3)se-e,C (g 51t )s h
1 * 1 r r 'I i r r a r a
correspondingly, where n. ,eeen. , sS,.*.,SK ,...,SlL, ¢ 5 |
I p 1 9q
t1 1 r r .
Ng ,...,N& , G-,..7,tsc ,..., ta,..., t¢c are determned by P
1 r 1 r
and (nl,...,rk,). P is defined in terns of the follow ng
Qn,, .. .,n, ). First Qn-, ...,n ) is defined as foll ows:
X XK X K

(P[nl,...,nk]+)o

1
i

, 4 3's in the succedent! applied
r. B[nl,...,nk] PP

to t's in the C's, 3?s in the

succedent® applied to sé in the B's,

\\/ "interchanges® and 'contractions’

I'- 8", gt AyrBjCyj), ..., BygB(y ), M1 ACNA Nif), L, BYSATSE ANrA
) 1 r
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for appropriate 6". Note that
WQ(ny, ...,n)) = (@l .00 1H%) < w@m - 1)

Let Vx 1Py (x ),...,Vx k(xk) be all the formulas of 6 which
start with V and suppose Vx,D i(x ) corresponds to ny,
(Those are among VxA(x)'s and Vz 3JuC(z,u)'s. Exactly one
such formula corresponds to one ni), and let 6* be 61,

o .
Blel(yl),..., quBq(yq) P~ is defined as the following Q.

Q(nl,...,nk)

T - 6*, Dk(nk),...,Dl(nl) n, < w

L]

Ql(n2""’nk) 1
T . 6%, Dk(nk),...,VxlDl(xl)

T - 6*, Vx Dl(x ), Dy (n ),...,D (n ) n,<w

Qz(ns,...,nk) 12
Qe T - 6x, vx Dl(x ), Dk(nk),...,szDz(xz)

) ’
LI
[

T - 6%, vx D (x ),...,Qk(n n, < w

T - 6%, vx 101 (%1 ),...,kaDk(xk)

-6

where 11,12,...,1k are the only w-rules under Q(nl,...,nk).
Since aKQ(nl,...,nk)) < w(m - 1), aKQl(nz,...,nk)) < w(m - 1),
aKQZ(nB,...,nk)) L w(m- 1) + 1,...,; in general
aKQj(nj+1,...,nk)) Lwm-1) + (j - 1, 1 <Jj<k. Thus

wP® < w@m-1) + (k - 1) < wm.

The definition of the required function pu goes as follows.
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First define recursive functions ~o(i, "Q*"P"), $,<'Q\ "P"),
wz('QVPl) , +gCc”k/PY), </>(e "P"), <p(e,'P"), and Myi, e, "pi).

wo(o, I'Qﬂ, I'p"l) ) Q

LI Y -

$0(1’ rQ s P ) - r Q
r-V, c(s)
T-+V, By(C(y)

if C(s) is the right nost fornula anmong
those which are in the end sequent of Q
and which satisfy that there is a fornula
of the form 3yC(y), C(y) being quantifier
free, in the end sequent of P, while C(s)

is not in the end sequent of P,

[ -V, ¢(n,s)
r -V, 3yc(n,y)

if there is no C(s) as above and C(n,s)
is the right nost fornula anong those
which are in the end sequent of Q and
- which satisfy that there is a fornula of
the form Vx 3yC(x,y) in the end sequent
of P, where n is a nuneral, while C(n,s)
is not in the end sequent of P*

= 0 otherw se.
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b+ 1,79 P = 9 (1,601, 7Q", P, P
¢i1(rQ‘, P = the nunber of formulas C(s) or C(n,s)

whi ch satisfy the conditions in the definition

of o.
¥, P = ¥ (77, PM), "7, P ).
O3(c,k, V) = Any...And,({ed(ng,.n.,n), " PY)
4>(c, V) =tf>3(c, k¢"PhH,™PYH

<p(e, O "P") = 0;

An ({e)(n.., ..., . «,
ple,|,P") = An,. .. An (3-5 e ) ))-75)

_ rv; -
if 1 >0 {e)(n,..., 110 - J| ~ i FGnp) o,

s = [f-j,, WF(x) and VxF(x) is in the

end sequent of P

Note. If | =1, then there is no 'Anz...m’b'.

M(0,e, V) = <Rek, V) ;

Ixdi + 1727 P by -<p(.iM(l,e,"P'Y), k * (i +1),"P'*> where
k - kAP"1),

+l n, +l

n,
P(b, PV, K = Aageon ((B}@(2 Loy, 2 D).

4>4(b, fp'!) = P(b,"PY,("PT)).

f](b,"P) = B (P = 1, ¥, (b,"PY), P, P,
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By recursion theorem, there is a number bo such that
[ , r.n
(b (P = [[v,,"PY).

Call the partial recursive function which is defined by b0 u.
We show by induction on m(P) that u is defined for all P
which satisfy the condition in Lemma 4, p("P') is a proof-
figure of the end sequent of P for such a P, and that
w(P) < wmn,
Suppose P satisfies the condition and k = k('P").
n_+1 n +1

r 1
Then v (2 1 ...pkk ,'PY = P[nl,...,nk]f (cf. Lemma 3) and

m(P[nl,...,nk]f) =m- 1< m(P). Thus, by induction hypothesis,
n_+1 n, +1
pwez ! .k

end sequent of P[nl,...,nk]f (hence is written as

,er)) is defined and is a proof-figure of the

r u
(P[nl,...,nk]*)o ).m((P[nl,...,nk]f)o) <w(m-=- 1)

obviously holds. Observe the following.

Yo @Inys .o, 11°%, 72" = Qa7

b5 (b "PY) = Any ... hn (TRIng, e 1O,

$,W@g(b, PYH,™pY) = An, .. .Aner(ill, .o .,I_IE).'
where k = k('p").
B (0,4, (bs(b_, PN, "PY), P

= @(An;...00, "Q(ng, ..., )7 ,k, 7P
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An .
= An,...An(3-5 * - e T%)
where k = k('P'*) >0 is assuned and

_j]' o* A(n,,...,nx), VxDjCx) for appropriate

S
M 2, py0.

A

mp— ——

- r, T
= Anz...Ank( Ql(-n_g,...,n_k) ).
Suppose i < k and
B (1,8, (b5(b,, "PT,TPY), P

= Anj 4% #FAN(TQ 4| (M 420 MOM  holds where k = BCPT).
Then supposing i + 1 < Kk,

k(L + 1,9, ,P™), PN, P
= o (1,4,(5(b_,"P),"PY),"PT), k- (1 + 1,"PY)

A“1+2([A“1+27"““k(rQ1+1(“1+2’""EE?)

B
- M 5...0 (35 .75)

where s =rTT-' E(Eﬁg,...,i), VxDi_'_z(x)-'.
= Aay g AN Qg a0y 5, ).
= k(P
- Thus

pCPY = [(o,, P = p (k ~ 1,9,(b5(b, B),"PY,"PY) = Q7
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I on r
or, p°  =puCpH = QQI

For the proof of aKPO) < w'm, see the preceding, intuitive
description of P°. Note. 1) It is easily seen that for

each i < Kk, uo(i,¢4(¢5(bo,rP’),rP“),rpw) yields a constructive
w-rule. 2) 1In fact, Ko should be defined so that it includes
some hecessary interchanges in order to obtain Qi(ni+1""’nk)'

We have omitted such details

§4. Proof of Theorem (see 82). From Theorem 1 and.Proposition
in 82, it suffices to show that all provable sentences (of 2Z)
which are in the prenex form with alternating quantifiers are
provable with the proof-figures whose w-complexities are less
than a?. If A is provable and is in prenex normal form
with alternating quantifiers, then any proof of - A satisfies
the condition on P in Lemma 4: i.e., -A satisfies the
condition (*). Thus, from Lemma 4, A is provable with an
w-complexity less than u@, or A belongs to S'2. Therefore
W
all true sentences belong to S;P. This completes the proof

of our theorem.
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