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1. Introduction.

In a number of recent papers ([1],[2],[3]) Coleman and Mizel
have investigated evolution equations of a type arising in
continuum mechanics. The form of these equations can be described
as follows. One has an underlying Banach space 8 of functions
¢,¥,... mapping [0,0) into a finite dimensional space € and
a continuous map ‘g from B8 into €. One is given an element
@eB. Then it is required to find a function x mapping (-o0,T),

T > 0, into € such that:

(i) 5"is differentiable on (0,T),
(ii) the functions §t defined by zt(f) =x(t -7,

Te[0,00), are in B8 for each te[O,T],

and such that x satisfies the equations,

It

x(t) = £(x5) te(0,T) (1.1,

},S(t) g(—t) te(-00,0] (L.2).

Coleman and Mizel studied the stability of processes of the
above type. Suppose that £ is zero for the zero function.
Then the zero solution of (1.1) and (1L.2) is called stable if
for every € > O there exists a 6 > O such that for “2”3 < d
every solution of (1.1) and (1.2) has “ijtﬂk < € and a solution
exists for arbitrary T. 1If, in addition, there is a ‘gi> 0o
such that every solution of (1.1) and (1.2) with ”g“B < & exists
for all t and obeys: 1lim H§(t)He = 0, then the zero solution

t—> o
is called asymptotically stable.
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The paper [3] discusses the connection between stability
and the ideas of [l1] and [2]. The latter two works explore
possible structures for the space 8 and the restrictions which
thermodynamics places on the mapping f£.

The purpose of this paper is to indicate some situations in
which the stability is actually exponential, that is in which
solutions of (1.1) and (1.2) decay exponentially in time. The
major goal is to show that conditions for exponential stability
can be related to the nature of 8 and ‘g, as described in [1]
and [2].

The basic tool in [3] was an analog of Lyapunov functions for
(1.1) . In contrast, our approach is via perturbation theory and
thus a central role is played by the linearized version of (1.1).
For the spaces 8 under consideration here, the linearized

equation has the form,
x(t) = Ax(t) + fpgmg(t - T)dr + g(t) (1.3),
o "~

where A and B are linear transformations. Actually, we
confine ourselves to single equations of the type arising in a
discussion of the extension of filaments (see [3], section 6).

In this case, € is just R and equations (l1.1) and (1.3) become*,

V() = -£(y9) (1.4),
v(t) = -L(y%) + g(t) (1.5),

where,

*The minus signs are introduced to make the notation of section
three correspond to that of [3].
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L(y9) = Oy(t) + XG(Ty(t - r)dT (1.6).
0

Equations (1.4) and (1.5) could be put into the form (1.1)
or (1.3) by introducing y = (y,y) and taking 6 = R . It turns
out to be unnecessary to do this, but a little care nust be exer-
cised in the prescription of initial conditions. |If we did
reduce to a system and then used (1.2) we would have to prescribe
y(t) = (0a.t) and y(t) «=(|)2-t) for t€(-ao,C. Actually, it

suffices to prescribe y only at t =0, as was observed in [3] .

Thus our initial conditions for (1.4) or (1.5 wll have the form
y(t) = (>-1) te(-co, 0] 48
y(0) - Yo (1.7

Preci se statenents of our results require some discussion
of the space B and are given in section 2. However, we.can
summari ze themhere. First, we require that B should be a
history space (of LN type) in the sense of' [1].. Then we require
that L, as defined in (1.6), be continuous on B. This intro-
duces certain restrictions on G W then inpose conditions on
L in order that it be.cﬂmlal_i_b.Lem_UJmeled;mam_c;s. in the
sense of [2].

W inpose a final restriction. This is rather technical to
state but it inmplies that the influence function of B is an
obliviator of all orders (see section 2). (This condition is
introduced in [1] as a part of the study of retardation and its

*0One could also study solutions which are discontinuous at t = 0.
That is, one could require that y(t) = (|)(-t) on (-00,0) and
y(0") =vy,. This would nmake only a minor change in equation (5.2)
of Section 5.
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appearance in stability theory we find interesting but difficult

to understand.)

With B and G subject to all the restrictions above we

call L, as defined by (1.6), exponentially stable.

We can now outline our results. These are closely analogous
to results for ordinary differential equations. Consider first
the homogeneous equation corresponding to (1.5), that is g = O.

Then there will exist what might be called a natural decay rate.

This is a number B > O such that every solution y of the homo-

geneous equation must satisfy the relation,

y(t) = O(efﬁt) as t—- o (L.8),
independently of what the initial function ¢ may be.

For the nonhomogeneous equation (1.5) there exists a kind of
dichotomy. If g(t) = O(e'ﬁ't) with B' > B then the solution
still obeys (1.8). If g(t) = O(e-ﬁ't) with B' < B then (ordin-
arily) the solution y will satisfy vy(t) = O(e” 't)*.

For the nonlinear equation, we prove the following. Suppose
that £ in (1.4) vanishes at the zero function OT. Suppose
further that f is differentiable at o  and that its differ-
ential (which will have the form (1.5)) is exponentially stable.

Then given any € > O there exists a & such that if

Idllg + Iy ! < o (1.9),

*The case in which g(t) = O(e'Bt) can also be treated but
requires more detailed assumptions about g and we omit the
discussion (see [6]).




then any solution of (1.4) and (1.7) satisfies
ly(t) | =0(e" /3O as t-*co

where O 1is the natural decay rate corresponding to the differ-
ential of f at O*.

It turns out that our nethods for |inear equations are also
applicable to the equation of one-dinensional, |inear visco-
elasticity. In this case, one seeks a function u of x and t

whi ch satisfies the equation*,
Ut (X, 1) =L(ur(x,-)) +g(x,t). (1.10)

This equation is to hold on 0 < x < L and boundary conditions

of the form
u(o,t) =a(t), u(L,t) =Db(t) (1.112)
are inposed. Conditions (1.7) are replaced by,

u(x,t) = <p(x,-t) on (-00,Fd, u(x,0) = L°(x) (1.12)

The results for the above problem are of the sanme type as
for (1.5) . Again there exists a natural decay rate S for the
honogeneous problem (not the sane rate, however, as for (1.5)).
This rate is still independent of <p and G(°. Solutions of
t he nonhonobgeneous problemw || decay at the same rate if a,b,
and g are all 0(e""~?'), £ >j8 but will be 0(e~*") if ab
or g is 0O(e'® J, j» < j8 Thus the results resenble those

of [6] for parabolic equafions.

*Here we are assumng-'that L 1s as in (1.6) . This corresponds
t o honogeneous. vi scoel asticity. In the nonhonobgeneous case G
can depend on x and this case could also be treated as we
indicate in section 5.
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It is to be noted that equation (1.10) is outside the scope
of [3] since S is infinite dinensional and L contains an
unbounded operator. We have no results on the very interesting
probl em of the nonlinear version of (1.10).

It appears that if one relaxes the obliviator condition we
inmpose on B, then it is possible to find |linear equations for
whi ch one has asynptotic stability which is not exponential.
Thus, there appears to be an essential difference in this respect
bet ween our equations and ordinary differential equations. W
hope to return to this question in the near future.

The author wi shes to thank Professor V. J. Mzel for a nunber

of interesting discussions concerning this manuscript.

2. Prelimnaries and Statenent of Results.

Qur basic space will be one of past histories in the sense
of [1] . The space B w Il consist of neasurable functions
defined on [O,co). W require that | / (0) | < oo for each "CeB.
Moreover, there is tobe a p> 1 and a non-negative function k

on (0, ,0D) such that for each %e™ we have

1, = « Pr*1P)P< oo
We set °
9 190) | + 1M, (2.D

and then B becones a Banach space. The function k 1is called

t he +nfHdenee $unret+on of the space.
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The work of [1] gives quite precise results concerning the
restrictions placed on k Dby various physical considerations.
We refer to [1] for details but we state that these considerations

lead to the follow ng assunptions concerning Kk:

keL'( O cr>) (A1),
ae"?s < k(s) < c a.e. on (0,o00) (A2,

for_ sone positive constants a,b,c
sk(s) -> 0 essentially as s -»o00 (A 3) .
There are two further possible restrictions on k which are
considered in [1]. These concern the quantity N(a) defined by,

N(a)P = ess sup ‘Liptg?) -,
se (QCID) * o

The condition,

lim ( sup N(a)) = co< CD - (2.2),
y -* CD <re[y,00)

Is shown to be equivalent to what is called the +etexat+on
property. The stronger condition,

[im Na) =0 (A 4) ,
a-* o

is shown to inply that k 1is an obliviator of all orders, a
condition which is inportant in retardation theory.

Once again we make no effort to expand on these notions
other than to state that they have physical inplications. W
shal | however inpose on k the conditions (A l)-(A 4) and then
we can infer from[1] the following result (see theorem 10, p. 121

and its proof) :
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Lemma 2.1. f k satisfies conditions (A.l) -(A.4) then we must

—

have,

YO

N(o) < e~ for some ¥ > O (2.3)

and,
k (o) S,Me—pyo for some M > O (2.4).

We consider next functionals defined on £#. These are maps

f: B-»R. f 1is continuous if 'f'nﬂx in B implies f()zn)—q £(x) .

It is easy to see that all linear functionals over 8 must have

the form,
@
£(®) = ay() + [ R(T)x(m)ar (2.5),
[}
where A 1is a constant and,
K = kl/pM’ where NeLq, p_l + q'l =1 (2.6).

A functional f on 8 is differentiable at X if

FE(L + 0) = £() + A% + o(lla) (2.7),

where A(%|-) is a linear functional over 8.
We are now ready to discuss evolution equations over ®.
The ones we consider have the form
Y& = -£(y") (2.8),
and are to be interpreted as follows. f is assumed to be a

continuous functional on 8, A solution of (2.8) on

(-00,T] with initial history (¢’§o% is a function y defined on

(- ,T] and satisfying the conditions:




(i) If y°(m) = y(t - 7), then y‘eB for te[0,TI],

(ii) y(t) = o(-t)t < 0, ¢eB, ¥(0) = 1lim y(t) =y

2 t40 o’
(iii) yec”™(0,T),
(iv) y satisfies (2.8) on (0,T).
Equations of the form,
u,, (x,t) = £(u,  (x,°)) (2.9),

with initial histories

u(x,t) = p(x,-t) on t<O0

u, (x,0) = a° (x) (2.10),

can also be studied with obvious modifications of (i) -(iv).
Suppose that the functional £ in (2.8) is differentiable
at O and vanishes for yt(T) = 0. Then, by (2.5) and (2.7),

equation (2.8) can be written in the form,

(1) w t
y(t) = -A y(0) - [ RK(MDy(t - 7) + F(y) (2.11),
O
where

t t
F(y) = olllyIh.
It follows immediately from (2.6) and (A.l) that KeLl(O,oo).
Let us assume further that K is continuous in [0,00). Then

the function,
T
G(T) = A+ [ K(§)a¢

o

is differentiable on [0,00), G(oo) exists, and (2.11) can be

written,

[X] t t

y(t) = -L(y") + F(y) (2.12),
where I, has the form (1.6).
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W are now ready to give a precise statenment of our results.

We inpose one further condition for technical convenience:

Fromnow on, it is to be understood that our basic space IB
has an influence function k which satisfies conditions (A.l)-
(A.4). in addition, L wll always denote a l|linear functional
on B. it will then have the form (1.6). W call such a l|inear

functional exponentially stabl e if it satisfies the additional conditi ons;;

G uniformy continuous on (Qoo) and G eC* [04c0) (B. 1)
G o00) >0 (B 2) ,
G(T) >0 for all T (B.3).

Condition (B) is inposed for technical convenience while (B.2) and
(B.3) connect our work with thernodynam cs, as we show in the next
section. We make the fol | ow ng observations. Since G = KelL”"Q Oo)

and is unifornmy continuous, we deduce that G tends to zero as T

tends to infinity. Then (B.3) yields the inequality,

G (T) <0 on [0,00) (2.13).

We propose to establish the following results:

Theorem (1). _Let L DE exponentially stable. Then there

exists a, _nunber /J > 0 _such_that the follow ng statenents hold;
(i) -1f: o(t) =0(6""~) as, t ~00 wth /i >j8 then.,

for any <peB .and y’ , there exists a unique solution of (1.5)
' P Q - R

and (1.7) and Thrs soturion Sarfsfttes y(t) = 0(e~P ).
(i) 177 g(t.) = Q-te"’\) & t-~co with fi < jS Then, Tor
Y Rk Ad W, TTIhere exists “aunrtgque Tsotution of (1.5) and (1.7)
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and this solution satisfies vy(t) :O(e"""i for any jlt» < /i.

Theorem (2). The results of theorem (1) hold for eguations (1.10),

(1.11) and (1.12) provided that a _and b satisfy the sane

restrictions as g.

Theorem (3) . Let f be differentiable and f (0*) be. zero, so that

]

(1.4) -een be wtten +n the form (2. 12). -Suppese-that L +s
exponenteatty stabte. Fhen there extsts-ja 6 > 0 stueh that- H= (1.9)
frotds; then any sotution of (1.4) ard (1.7) e+ (-00,T) -€aR -be extended
to (-00,00) @ant tends to zero exporehnt+aty a5 t  +erds +£ RE-Ri-tas
Renmar ks; (1) The techniques used for the |linear equations

i nvol ve the Laplace transformand are simlar to those in [6].

In analogy to the term nology used in that paper we could sunmarize
the results of theorens (1) and (2) by saying that the solution
»follows» g (or g,a and b) if /i > jS in this connection, we
remark that one need not require g, a or b to decay exponentially.
They can decay al gebraically or even tend to infinity and then

the solutions will exhibit the sane behavior (see [6]). \What is
inportant is that one can never hope to achieve a decay rate

faster than e~"® no matter how rapidly g, a and b decrease.

(2) It mght be suspected that the rate of decay j8 in theorens
(1) and (2) is the same as the number y of lemma (2.1). This
is not so and in fact, as we show later by an exanple, j8 can be

arbitraril'y smal | .
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3. Stability and Thermodynamics.

The goal of this section is to provide some motivation for
conditions (B.2) and (B.3) and to establish some implications of
those conditions. We begin by reviewing some ideas from [2] and
[3].

A free energy functional for the equation,

.o t
y(t) = L(y") (3.1),
(L as in (1.6)) is a functional p of the following type. p

should be differentiable and we write,

Ap(H o) = Dp(¥) a(0) + sp(k| ) (3.2),
where 6p(¢|a) is a linear functional on the space Br. This
space consists of restrictions to (O,m) of functions of @&,

with the norm Ha”r of section (2). It is required that

L(y®) = pp(yH (3.3),
and that,

sp(y°|¥5) < o (3.4,
for all reqular histories. A regular history is one such that
yt(T) is differentiable for all 7T and such that yO(T) has

compact support.

If such a free energy functional exists we say that the

functional L is compatible with thermodynamics. The reason

for this terminology is that it is shown in [2] that if (3.1)

derives from a thermodynamic process, obeying the second law, then
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its free energy nust be a functional satisfying (3.3) and (3.4).

One says that the zero solution of (3.1) is stable if given
any e > 0 there exists a 6 > O such that if y 1is a solution
of (3.1), withinitial history (<P,yd such that (\ <p\\ + [yd) <8,
then y exists for all t and satisfies |y(t)|] < e for all t.
[f, in addition, there is a 6 such that each solution of (3.1)"
withinitial history (<P, Yo suchthat (\\<p\\ +1yd) <& satisfies

lim]|y(t)] =0 one says that the zero solution is asynptotically

t 39>co _
stable. The results of [3], when specialized to (3.1), yield

the following result.

Theorem (4) . _Let L be, conpatible with thernodynam cs. Let

P ]2 its free energy functional _and define p° ai R by,

p°(x) = p(x*) , ;*(T) =x_for_all r. _Tg p° has a strict 1ocal

mnimumat O then the zero solution of (3.1) JLS stable.’

In order to insure asynptotic stability, we nust inpose a
stronger condition on p, one that is not a consequence of therno-

dynam ¢ considerations. p is called a strictly dissipative

functional if whenever y 1is a solution of (3.1) the quantity

£(t) =\ y(t)2 + pfyA

satisfies

with equality only if y is a constant. If y is a regular history

then (3.3) and (3.4) showthat (see [3], p. 261)

%ﬂ = y(e) V() +L(y")y(t).

HUNT LIBRARY
GAIUEGIE-MEUGN  UKIVEASTY




14
Thus, for a strongly dissipative functional, strict inequality
should hold in (3.4) for regular histories unless the history is
identically zero.
W can connect these ideas with our conditions in section 2
provi ded that we inpose a stronger condition on the function

K =G appearing in the linear functional L. This condition is,
p>2 and K = k¥PK, KGLY, g"! + 2p~t =1 (A.5) .

Note that (A5) inplies (2.6) . W enphasize that the assunption
(A5 is in no way necessary for the validity of theorens 1, 2
or 3. It is used here only in the construction of free energy

functi onal s.

Theorem (5). Under conditions (A l1)-(A5 and (B.1)-(B.3),

L jis conpatible with thernodynam cs. Furthernore, for reqular

histories strict inequality holds in (3.4) unless y = 0.

Proof; W assert that p, defined by the equation,

p(g) =\ G(0)*(0)2 + %0) fmG ()% T)dT
O (3.9),
1 ® ' 2
-5 }':3 (M7t dT
0

is a free energy functional and that p° has a strict |ocal
m ni mrum at 0.

W |et p1 denote the first two terns on the right side of
(3.5 and p2 denote the last term Since G =K we see

i medi ately from (2.6) that pl is differenfiable and t hat,
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o

w .
c@x© + e (Na(nidar)e©) +x(0) [ (nNa(nar
(o] o]

o (%l o)

(e o]
L(x)a(0) +¥(0) [ G (T a(r)ar (3.6) .
(o]

The functional p2 is more complicated and it is here that
we need condition (A.5). Let g be defined as in (A.5). Then

we have, by HOlder's inequality and(2.13),
I K"Z < ( J-(Kk—z/p) 69 l/(i( I(kz/px_z)P/Z) 2/p

(§ %92/ 12 (3.7).

Hence p2 is defined on 8. We have, moreover,

SG‘%ZdT

(0 0] oo
PP+ o) =p(® +2 [Kpa+ fKd (3.8) .

o o
By (3.7) we see that

(e 0]
{ ke = o(lldl® .
o

Finally, we assert that the second integral on the right side of
(3.8) is a bounded linear functional of «. As we have seen before
this fact will be established if we show that K k'l/peLq.

Once again we apply Holder's inequality and obtain (note that

p/d=p -1> 1, since p> 2),
S kxx~ /Py o I (kk™ /Py G~ VP /Pyd - j(Kk—Z/p) %I/ Py
< ( S(Kk-z/p) qs) 1/s( f (kY Py 9 p/q) VP (y {as) VSIIXIIE

L,9a_ =
where S + p = 1 or gs = q.
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We have thus shown that p2 is a differentiable functional

on B, We have in fact,
©

2 (o) = - £K(‘r)x(‘r) a(r) ar (3.9) .

If we decompose Ap into two parts as in (3.2) we find from

(3.6) and (3.9),

Dp(X) = L(x) (3.10),
(e8] .
sp(xle) = - § R(T) (X(T) - )X (0))o(r)drT (3.11).

o
Equation (3.10) shows that p satisfies (3.2). If y is a regular

history then we have from (3.11),

K(T) (y(t - T) - y(&))y(t - m)ar

.t
sp(yt|¥5)

1 (3.12).

L eyt -1 - y(e)lar

oo}
|
e o)
:
An integration by parts in (3.12) yields (recall that G' (o0) =

K(o) = 0),
o
t, -t 2
sply"13%) = 3 feri(n (vt - 1 - y(w)’ar.
o
By (B.3) this is less than or equal to zero and equal to zero
only if yt(T) = y(t) that is y = 0.

Finally, we note that

(e o] 2 o0
p°(x) =3 G(0)x* + x CS> Gr(rar - %= gG'(’r)d‘r
=-%-G(oo)x2

and this shows that po(x) has a strict minimum at x = 0. This

completes the proof of theorem (5).
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The concept of dissipativity for linear evol ution equations

I n one which arises often in network theory. |In particular it
was considered at sone length, for functional differential equations,
by Konig and Mei xner [5]. One of the principal results of [5]
Is that dissipativity gives rise to conditions on the Lapl ace
transformof G and we want to develop this idea here.

Consi der again conditions (3.3) and (3.4). By the chain rule

(see [3]) and (3.3) we have, for a régul ar history vy,
Fp(yH) - LOOHUH) = p(yH V() + apfyryH - LyHy"
= Spty~Y*) <0 (3.13) .

If we integrate (3.13) from-co to T we find,

T
p(y") - _gD L(y)y(t)dt <0 (3.14).

Nowlet %(T) =jL(O for all T. Then by (3.5 and (2.13) we

have

P - 20N = § G (D (TMQIAD -X(0)) - 1 G(T (X7 -X(0)?)
0 (o]

1 °° 0
-3 [G(M MO - ~(DI*>o0.

It foll ows that
P(Y) 2 P((yD") =\ GOy(T)?+\ y(T)? Zc')'G(T)dT
=\ Qoo)y(T)?2 0
by (B.1). Substituting this inequality into (3.14) we obtain the

following result.
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Lemma 3.1. For all requl ar histories vy 3_/\__@ have

T
s L(yt))./(t)dt >0 (3.1°)
| - 00
The formula (3.15) is the Konig and Mei xner definition of
di ssipativity. They establish the follow ng as a consequence
of (3.15)*.
Lemmm 3.2. let L he of, the form (1.5) .and suppose that the

laplace transform Q .« G
QAs) =

e %G (r)dr,

O tnyg

exists in Re s > 0. Then (3.15) -holds onrby
Re Qs) >0 in R s>0 (3.16) .
Let us investigate the Laplace transformof our function G
By (2.6) and (2.4) we have,
K< Me~""K, Kel® (3.17),
and
T
dT) =d0) + jK(OGd4 = oo) +H(T),
0] _

wher e

From (3.17) one deduces readily that for any y' <y we have,
|H(T)| ® W,e~""T for some constant MY'.

Thus, we have the followng result.

**In the termnology of [5 L 1n our case Is a transfornmation of
order CD on Coo and 1s of slow grow h.




19

Lemma 3.3. The Laplace transform G of G is analytic in

Re s > -y except for a simple pole of residue G(m) (# 0)

t s = 0. That is

G(s) = H2) 4 u(s),
where ¥H(s) is analytic in Re s > -7,

We shall have need of a sharpened form of lemma 3.2 and we

prove this now.

L.erma 3.4. The transform G f G satisfies the condition

Re G(s) > 0 in Re s > O (3.18).
(Note that Lemma (3.2) follows from lemma (3.4), the maximum

principle and the fact that G-» 0 in Re s > 0.)

Proof: By (3.16) we need consider only the case Re s = O.
Further since G(wm)/s is imaginary on Re s = O we need con-

sider only #. We have, for 17 > O,

(0 o]
Re H(in) = [ cos n7(G(T) - G(®))ar
(o]
1 a
= - = ( sin 97 G' (7)dr.
n O
Now we write,
- oo (2k+1)m/n
§ sin nT g (T)ar = T ( f sin nT G'(7)dT +
o k=0 2% /1
(2k+2) /1 /N
+ [ sin gmei(n)an)
, (2k+1) | /n
© /M 2k 2k
= Z i G! =2y £ UK
A gsm nT(G' (T + n G (T + + p)ar
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and this quantity is less than zero by (B.3). Hence
Rett(irj)> O for 77> 0 "~ (3.18) .
But W is real for real s hence A~(-iTj) = #i7) so that (3.18)
holds also for 77 < 0. For rj =0 we have
aD
H(o) = § (6(1T) - Fo0))dr > O,
0

since G is negative.

The inequality (3.18) is the key to stability of Ilinear

equations as will be seen in subsequent sections.
The final result in this section is a |lemma which will be
of use in the study of honpbgeneous |inear equations. It also

indicates the role played by the »obliviator» inequality (A. 4).
In order to notivate this result let us rewite equation (1.5)

in the form

Y1) = -LyH = weh + 6() (3.19),

where
. t

L(y") = G(O)y(t) + OJG'(t- T)y(r)dr

0

.0 00
W(y ™) I G (T)y(t - T)dr = fG'(t + T)y(-T)dT.
t o]

If y satisfies the initial condition (1.7) then the quantity

W(yt) is known, namely,

t oo ' oo
Wy ) = JG»(t + r)<p(r)dT = S K( + r)<p(T)dr (3.20) .
o] 0

Thus (3.19) assumes the form
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Yy = LtyS + *(t) t>o0
where $(t) is a known function. This is an equation to which
Lapl ace transform techniques can clearly be applied but it is
i mportant to know the behavior of <€ for large t and our result

gi ves sone information about the term V\(yt).

Lemma 3.5. There exists SL constant Q .independent of tpy such that

W(y") < Qll<pll.e"”".
proof: W have by (3.20) and (2.6) ,

(o 8]
|wiy*h) |_< Xkk¢t+ M)YPIKtt + mkp@ |dr

QALY P(T) Y Pl <p(T) | TK(t + T)|dT.

0 wg o

But by (2.3) we have
(kgt +_T). 1p -yt
k(T) L
Hence we have -

*
Wiy | _yc foxnmam 1«0 1o
< o Frlpl® /R FIK(t+r) %) /3 = o7t o.

o o

4. Lapl ace Tr ansforns.

In this section, we wish to collect some results concerning
Lapl ace transfornms. These are specializations of the results
used in [6] and they are obtai ned from the book of Doetsch [4].

Let s = £+ i7 be conplex. W witeg
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fos) ' +00 .
£ () = [ e ®%£(v) at, N (F) = (2r) “Lebt [ eMr (g + in) an.
le) -QaD

It is known that under suitable conditions these two operators
are inverses of each other. We shall need the following result.
This is essentially theorem 2, page 266 of [4] and is a conse-

quence of the Riemann-Lebesgue lemma.

Lemma 4.1. Suppose F(s) is analytic in Re s > a and continuous

in Re s > a and that

F(s) = §-+ O(JE) as |s| - o, uniformly in Re s > a (4.19),
s

where c¢ 1is a constant. Then xg(F)‘iﬁ independent of § in

£ > a and defines a function £(t) such that,

(i) £S(f) =F in Re s > a,

(ii) £(t) = 0(e®%) as t>w.

Let us investigate the Laplace transform of G a little

more closely. Since

;
G(r) =c(0) + [ k(& as,
' O

we have
£ (K)

G(s) = £ (@) = SO, = (4.2).

"By (2.6) and (2.4) observe that SS(K) is analytic in Re s > -y
and, by B.1), K is differentiable at O. One can then derive,

from theorem 8 page 197 of [4], the following result.
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Lemma 4.2. £4(K) satisfies the relation

s ) =8O 4 o) as [s| >0 (4.3),
S

uniformly in Re s> -4.

We can now state and prove the fundamental result which
guarantees exponential stability for the linear equations. We
give the result in a form which is applicable both to (1.5) and
(1.10) and also to the equation arising in non-homogeneous

viscoelasticity.

Theorem 6. Let [Bn} be a sequence of positive numbers with

ﬁn > B> 0 for all n. Then there exists a B > O* such all

solutions of the equations,

s = -B,4(s) (4.4,

satisfy the inequality,

Re s < -B (4.5) .

Proof: We write s = § + in and £S(K) = A + iB. Then, by
(4.2), (4.4) is equivalent to the two equations,

- -B,G(0)§ B (AE + B7) .6
—£2+n2_€2+n2 ©)

B,c(0)n B (BE - mA)
2+ £+ _n2

*B must of course be less than 7Y in order that the theorem
even be meaningful.

Il

n (4.7)
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(Note that 0) >0 since G <0 and Hoo0) > O .

W observe first that (4.4) can have no solutions s,
with Re s =0 for any n, since Re s) > 0 when Re s = 0O
A second observation is that there cannot exist a sequence,

ST = £ + i*”w °f solutions of (4.4) such that £, —=*0 while the
X K K K

rivs remain bounded. For the condition Re Q> 0 on Re s =0

implies that for any M there exists an e > O and an a> O

such that Re 5(s) >a in Res> -e, | s <_,_M
Thus the only way in which the conclusion of the theorem

. K K K
coul d be viol ated woul d be to have a sequence s, = £, + irj, of
D.

solutions of (4.4), for n =n”, such that £x-*0 while 17720
W show that this cannot occur either.

Suppose such a sequence existed and consider (4.7). From
(4.3) we deduce that MAw~n) and Bapapa tendto zero as k

tends to infinity. 'Hence we derive from (4.7) the result that

B

\ nk 1
lim @ —p——a— = —F+ (4.8).
k= oo E]Z{ + ni G(0)

Also from (4.3)" we see that

Algy,m) = 52(3_5{_2_ + 05—y
€ + Ty e * M

B(eksﬂk) = ':';("Q"""T’) -+ o(zﬁl) .
Sk * o Skt

Thus (4.6) vyields,
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- n KO KOy
T‘"’smk)(q(’) HT2 T2 h T

Hence if we pass to the limt in this equation and use (4.8) we

obt ai n,

But this cannot be since K(0) = G(0) < 0. This contradiction
conpl etes the proof of theorem 6.

Let us consider a particular exanple. Suppose that the
i nfluence function of the space R is k(a) = e *' . Then

K( a) =Be~-"? for v > 2y wll satisfy (A5) . Then we have

r
G(T) =A+B Je da = A- Be
0

where A=A& +BV and B=8v. Thiswll satisfy (B 2) and
(B3 if A>0 and B < 0. W have then

N =g ST

Let us consider (4.4) for a single j3n = 1, the situation which
will arise in the next section when we study (1.5) . Equation
(4.4) becones then,

s3 + us?

+ (A- B)s +A/V=0 (4.9).
Since B is negative, it is iiot too difficult to verify that
all solutions of this equation have negative real parts (as is

guar ant eed by our theorem).
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Note that if A = G o00) were zero, then (4.9) would have
s =0 as a solution. This will showthat we need strict i nequal ity
in (B2 . For A=0 the roots are s, =0 and

1
.=V 'J:HV?' +4RB

S2. 3 " 2

Sg and s’: have negative real parts and the three roots are
distinct. Now for A sufficiently small the roots of (4.9)

are continuous functions s;(A) and they remain distinct. More-
over sl_(A), that root such that s,J_(O) =0, will remain as the
one with largest real part. Thus, by choosing A sufficiently
small, we can nake (4.9) have a root with real part arbitrarily
close to zero. As we shall see in the next section, this means

that we can thus have linear equations with arbitrarily small

nat ural decay rates.

5. Stability for Linear Problens.

W wite equation (1.5) in the form (3.1) that is,

y(t) = -Ly"®) - Wy™) +g(t) t>0 (5.1).
Let us formally take the Laplace transformof (5.1). If we let

?(s) , “w and 'b denote respectively the transforns of vy, W

and g we have then,

s(s) - sP(Q - yo0) = A(L(YDH) - Ws) +7u(s) (5.2).
Now
*(L(Y'®) =q0)2(s) + (sQs) - GO)JI(s) =sQs)V(s),

and hence (5.2) becones,
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(s + G(s))F(s) = (-W(s) + G(s) + sp(0) + y )/s  (5.3)

Now by lemma 3.5 we know that v is analytic in Re s > -V,
We know also that s + G(s) is analytic in Re s > -y and by
theorem 6 we can find a B8 < ¥, such that s + G (s) is without
zeroes in Re s > -B. Hence the function,

2 1

R(s) = (s° + sG(s))~

is analytic in Re s > -8 except possibly at s = 0. But by

lemma (3.3), it follows that,

G(oo) .
G(s) - —ig—L is regular near s = O,

hence ﬁ(s) is regular at s = 0.
We can now prove theorem (1). Suppose first that g satis-
fies (i) of theorem (1), that is g = O(e'“t), u > B. Then
g is analytic in Re s > -f hence the function ?(SL defined by
T A A 9~ .
y(s) = R(s) [-w(s) + g(s) + s@(0) + y_] (5.4),

is also analytic there. From (4.2) and (4.3) we find,

ﬁ(s)

(s> + a(o) + XL 4 oLyt
S

S

2
s S
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Since % and § tend to zero as s tends to infinity it follows

t hat

N 0 S S

§ = -5(1 -64—;'(-"() +2(°) + sp(Q +y,) +0(-") (5.5).
S S S
It foIIowi fromlema (4.1) that the function
y(t) = 77(y) (5.6)

is independent of £ in ~ >_-0* satisfies <£ (y) :?/ and al so

S
the condition,

y(t) :0(e~7‘t) as t —* oo.
W propose to showthat vy, as defined by (5.6), is a solution of
(5.1) and that y(0) = <(0) , y(0) :'36 . The estimate (5.5)
enables us to showthat y can be differentiated twice with

respect to t. W have for 4 > -£,

E+ico
y(t) = —271. § e3t8(s) as.
r L -ioo

Substitution of the estimate (5.5) into this formula leads to
a nunber of terms which can be evaluated explicitly plus a term
for which two differentiations with respect to t is justified.

For exanple, the first termis

4+i 00 ) t ot .
L st w(s]
2fri t- f € 2 ds = *f *f W(yt) dgar.
5- 100 S o o
The remai nder term
£+ico
= § *fotdpas
£-ico S

can clearly be differentiated tw ce.
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Once we know that y is twice differentiable, it is a tedious but
straightforward calculation to show that it satisfies (5.1) as
well as y(0) = ¢(0), §(O) = §o' We omit the details.

If g satisfies condition (ii) of theorem (1), that is
g(t) = O(e'“t) with p < B then the proof proceeds in the same
way except that now one can infer only that ? is analytic in
Re s > u' for any u' < 4. Hence lemma (4.1) yields the estimate
y(t) = O(e'”'t) for any p' < WM.

It remains only to establish the uniqueness of the solutions.
Let Yy and Y, be two solutions of (1.5) and (1.7). Then
Y=Y - Yy vanishes in t < O and satisfies,

y(t) = -Ly9).

Multiply by i(t) and integrate from -oo to T. This gives

by lemma (3.1),

T
zym? = - [ LHimwat < o.
-

Hence §(T) = 0 and,since y(0) = 0, it follows that y(t) = O.
We want to study the solution (5.5) a little more closely.
”N
We can apply lemma (4.1) to R(s) and deduce that there exists

N
a function R(T) such that R is its transform and that,

IR(1) | < RePT (5.7).

Moreover, as in lemma (4.2),

R(s) = RO, o,
S

S

On the other hand we say that R = 0(5—2) as s oo
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and hence R(0) = O. Since sR(s) is also analytic in Re s > -B
it follows that R' exists and satisfies an estimate of the same
form as (5.7).
By the convolution theorem, we can write the solution (5.5),

(5.4) in the form,

t
y() = - [ R(t - M [W(y) + g(1]1dT + (OIR' (£) + ¥ R(Y) (5.8).
o

From lemma (3.5) and the estimate (5.7) we have,
£ T € _-B(t-T) _-yT -Bt
| g R(t - W(y )| < rallell, f, e e < e el

Thus, we have from (5.8) the estimate,
t
ly(®) | < cePE(llell + |3 1) + R ePE fePTIg(n) |ar (5.9).
o

The proof of theorem 2 is very similar to that of theorem 1;
the only complication arises in the calculation of the transform.
Hence, we give just an outline of the proof. We rewrite equation

(1.10) in the form

U, = Lus, (x,°)) + W (x,4)) + g (5.10),
where
t (e 0] : (0 0]
W(uxx(x,')) = g G'(t + T)uxx(x,-T)dT = £ G'(t + 1')<pxx(x,'r)d'r.

If we formally take transforms we have, as in (5.2),
sq - QS)GQX = G$'+‘§ + sp(x,0) + uo(x»/s (5.11) .
The transform of conditions (l1.11) will be,

u(o,s) = g(s) u(L, s) ='g(s) (5.12),
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where a and b denote the transfornms of a and b.
Equations (5.11) and (5.12) constitute a standard two-
poi nt boundary value problem It will have a solution so |ong

as s/Q(s) is not equal to an eigenval ue of -—Sf* Yi'th zero
dx )
boundary conditions, that is to one of the nunbers -n, n =12, ,°

But by theorem 6 we know that for some j3 > 0

s +n®>Qs) 2?20

for Re s> -j3

If the right side of (5.11) and the functions |i° and 1b are
regular in Re s > -£ then it can be shown that the solution of
(5.11) and (5.12) is also regular there. |If instead, the right
si de and “% and % are regular in R s >_-jlt, jt < 0 then the
solution is regular in Re s > -jti. Thus one has the same two
cases as in theorem (1) (see [6] for very simlar calcul ations).

W remark that the case of inhonbgeneous viscoelasticity can
be treated in -.a very sinilar way. The only change is that now Q
depends on x as well as s. Hence.(5.11) and (5.12) becones a

nore general SturmlLiouville problem The values of s to be

d2 -1
avoi ded are now the eigen-values of —- relative to ( Q(x,s))~
dxn
Once again these forma sequence {/3n} of negative nunbers tending
to mnus infinity so that theorem6 is still applicable.

6. Stability for Nonlinear Probl ens.

In this section we give a proof of theorem3. Here we are

considering the equation (2.12) that is,
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y(t) = -w) + F(y'™) (6.1),.
where L is exponentially stable and F(y’).' = o(||ytll). Ve still

have the initial conditions,

y(t) = <p(-t) in t <0 y(0) = yo (6.2).
Suppose we have a solution of (6.1) and (6.2) in sone interval
(0,T) . Then, if we denote the quantity ||| +'g by r, we have
by (5.9),
t .
ly(t) | < cre"~"" + R e"~ f erT|F(y") [dT. (6.3).
o
@)
We know that given any e > 0 we can find a 6(e) > 0 such that,
I*(/)! < dvH for |lYY] < 6(6) (6.4).
Thus so long as Hy'!! < 6(e) we have, by (6.3),

ly(t) | < cre"~ + R~e"”~ jVT|y'|ldr. (6.5).
0

Next, we observe that

' aD
N = vt} + (]:) ly(t - r) |Pk(r)dr) /P

< |y | + cr{(tf\tp(r - 1) |Px(r) an) /P

t . 1 .
+ ( J|ly(r)|Pk(t - r)dl’)i);p}._ (6.6).
0}

The second termon the right can be estimated using (2.3) and
we can estimate k(t - T) in the third termby (2.4). These two

estimates yield,

Iy < [y(t) | +c| M e-Y" +c.. Y ( fly(T) jPePrdT) ™ (6.7).
o
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Let v be a positive number such that v </J and v <y - fi
and set
At) =y(t)|er-"Sg(t) =Hy e"*.
Then (6.5) can be witten as.
t
A(t) < cre™® + R ce™® J B(T)e"dr (6.8).

0
By Hol der's inequality we have

( f’ B(T) eVTdT)P < ey
0]

t
e JB(T)Pdr,
0

Hence (6.8) vyields,

- t
A(t)P<corPe % & P J B(r)Pdr 3 (6.9)
o]
From (6.7) we obtain,

t .
B(t) <A(t) « erllpl e” VP 4 oo (V-BEE( ga(T) PRY-BH) T4y /D

o
or
B(t)P< co[ A(t) P+ [lgf|P e P{¥-AH)e
+ e P(y-8+vit fh(T)PeP(V-B+V)TdT ] (6.10)
O
W substitute (6.10) into (6.9) and obtain,
t
At)P < chrPe-Pr + P J Ar)Pdr + e ePllol®
| 0
t ' T
+ €F J o- PANTAT( ] A(uPePY-B) Eqy ar (6.11)
0] 6]

- If we interchange the order of integration in the last termwe

find that it has the form




34

t t t
P [ auPeP(Y-BHV) K Se—p(v-BW) Taryap < °5€P { awPap.
o) 24 o

Thus (6.11) becomes,

t
AP < o [rPe™PE 4 Pllol® + P a(n)Par). (6.12).
(o)
We set
I = cg(rP + PllolP), T = c P, (6.13),

Then if we apply Gronwall's inequality to (6.12) we have,

: t
AP <+ e § e€{t-8) g5 < T(1 + eeYy.
) |
Thus

lv(e) | = a()e” Bt ¢ 11+ e B-MIE, (6.14),

If we choose €< 1 and €< B - v it follows from (6.14)

that»
ly(e) | g 2T (6.15) ,

and then from (6.7) we obtain
lyell < (2 + c')T + ctlloll, < (2 + er)T+ crr. (6.16).

Note also that I'< 2c.r.
Now we are ready to choose the & of theorem 3. We choose

5§ so that &6 < 6(¢) and
(2 + c")2c66 + c'd < 6(e),

where &(c) is as in (6.4). Then if || + |§o| < r we have,by
(6.16) ,

ly®ll < s(e). (6.17)
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W have (6.17) initially since 6 < 6(€) and we have
shown that (6.17) continues to hold so long as the solution
exists. It follows that F on the right side of (6.1) remains
bounded. But differentiation of (5.8) leads to an estimate |ike
(5.9) for V(t). Then the boundedness of F inplies that of .
St andard argunents (see [3]) show that we can continue the sol u-
tion of (6.1) so long as y(t),y(t) and ||y %1 remain bounded;
hence we can continue for all time. Equation (6.14) yields the
exponenti al decay and the proof is conplete.

Notice that, since v is arbitrary, we have proved that
the rate of decay of the nonlinear equation is arbitrarily close

to the natural decay rate of the linearized equation.
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