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1. Introduction,

In a number of recent papers ([1],[2],[3]) Coleman and Mizel

have investigated evolution equations of a type arising in

continuum mechanics. The form of these equations can be described

as follows. One has an underlying Banach space ft of functions

<p,0,... mapping [O,oo) into a finite dimensional space & and

a continuous map f from JJ into 6. One is given an element

<£€&. Then it is required to find a function x mapping (-oo,T),

T > 0, into 6 such that:

(i) x is differentiable on (0,T),

(ii) the functions x defined by x (T) = g(t - r) ,

T€[0,co), are in B for each te[O,T],

and such that x satisfies the equations,

x(t) - f (xfc) te(O,T) (1.1) ,

x(t) = <P(-t) t€(-oo,0] (1.2) .

Coleman and Mizel studied the stability of processes of the

above type. Suppose that f is zero for the zero function.

Then the zero solution of (1.1) and (1.2) is called stable if

for every € > 0 there exists a 6 > 0 such that for IMIg < 6

every solution of (1.1) and (1.2) has ||x̂(t)|jg < e and a solution

exists for arbitrary T. If, in addition, there is a 6 > 0

such that every solution of (1.1) and (1.2) with IML < 6 exists

for all t and obeys lim ||x(t) |L = 0, then the zero solution
t -*co ~ \

is called asymptotically stable.
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The paper [3] discusses the connection between stability

and the ideas of [1] and [2] . The latter two works explore

possible structures for the space B and the restrictions which

thermodynamics places on the mapping f̂•

The purpose of this paper is to indicate some situations in

which the stability is actually exponential, that is in which

solutions of (1.1) and (1.2) decay exponentially in time. The

major goal is to show that conditions for exponential stability

can be related to the nature of & and f, as described in [1]

and [2].

The basic tool in [3] was an analog of Lyapunov functions for

(1.1). In contrast, our approach is via perturbation theory and

thus a central role is played by the linearized version of (1.1).

For the spaces IB under consideration here, the linearized

equation has the form,

x(t) = Ax(t) + j B(r)x(t - T)dT + g(t) (1.3),
o

where A and 13 are linear transformations. Actually, we

confine ourselves to single equations of the type arising in a

discussion of the extension of filaments (see [3], section 6).

In this case, 6 is just R and equations (1.1) and (1.3) become*,

y(t) = -f (yfc) (1.4),

'y(t) = -L(yfc) + g(t) (1.5),

where,

*The minus signs are introduced to make the notation of section
three correspond to that of [3].
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L(yC) = G(O)y(t) + X G'(T)y(t - r) dT (1.6).

o

Equations (1.4) and (1.5) could be put into the form (1.1)

or (1.3) by introducing y = (y,y) and taking 6 = R . It turns

out to be unnecessary to do this, but a little care must be exer-

cised in the prescription of initial conditions. If we did

reduce to a system and then used (1.2) we would have to prescribe

y(t) = (()1(.t) and y(t) =(|)2(-t) for t€(-ao,O]. Actually, it

suffices to prescribe y only at t = 0, as was observed in [3] .

Thus our initial conditions for (1.4) or (1.5) will have the form,

y(t) = (|>(-t) te(-co,0] <|>eB

y(o) - yo
 (1-7)*-

Precise statements of our results require some discussion

of the space B and are given in section 2. However, we can

summarize them here. First, we require that B should be a

history space (of L^ type) in the sense of [1]. Then we require

that L, as defined in (1.6), be continuous on B. This intro-

duces certain restrictions on G. We then impose conditions on

L in order that it be compatible with thermodynamics in the

sense of [2].

We impose a final restriction. This is rather technical to

state but it implies that the influence function of B is an

obliviator of all orders (see section 2). (This condition is

introduced in [1] as a part of the study of retardation and its

*0ne could also study solutions which are discontinuous at t = 0.
That is, one could require that y(t) = (|)(-t) on (-00 ,0) and
y(0+) = yo. This would make only a minor change in equation (5.2)
of Section 5.
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appearance in stability theory we find interesting but difficult

to understand.)

With B and G subject to all the restrictions above we

call L, as defined by (1.6), exponentially stable.

We can now outline our results. These are closely analogous

to results for ordinary differential equations. Consider first

the homogeneous equation corresponding to (1.5), that is g = 0.

Then there will exist what might be called a natural decay rate.

This is a number fi > 0 such that every solution y of the homo

geneous equation must satisfy the relation,

y(t) = 0(e"^fc) as t ~$ co (1.8),

independently of what the initial function (j) may be.

For the nonhomogeneous equation (1.5) there exists a kind of

dichotomy. If g(t) = 0(e~"P ) with j3* > j3 then the solution

still obeys (1.8). If g(t) = 0(e~^!t) with j3t < j3 then (ordin

arily) the solution y will satisfy y(t) = 0(e~p ) * .

For the nonlinear equation, we prove the following. Suppose

that f in (1.4) vanishes at the zero function 0 . Suppose

further that f is differentiable at 0^ and that its differ-

ential (which will have the form (1.5)) is exponentially stable.

Then given any e > 0 there exists a 6 such that if

M B + |yol <
 6 C1-*)*

*The case in which g(t) = 0(e~^ ) can also be treated but
requires more detailed assumptions about g and we omit the
discussion (see [6]).



then any solution of (1.4) and (1.7) satisfies

|y(t) | = 0(e"(/3"€)t) as t-*co

where 0 is the natural decay rate corresponding to the differ-

ential of f at 0 .

It turns out that our methods for linear equations are also

applicable to the equation of one-dimensional, linear visco-

elasticity. In this case, one seeks a function u of x and t

which satisfies the equation*,

utt(x,t) =L(u^(x,-)) +g(x,t). (1.10)

This equation is to hold on 0 < x < L and boundary conditions

of the form,

u(0,t) =a(t), u(L,t) = b(t) (1.11)

are imposed. Conditions (1.7) are replaced by,

u(x,t) = <p(x,-t) on (-oo,O], ut(x,0) = u°(x) (1.12)

The results for the above problem are of the same type as

for (1.5) . Again there exists a natural decay rate jS for the

homogeneous problem (not the same rate, however, as for (1.5)).

This rate is still independent of <p and u°. Solutions of

the nonhomogeneous problem will decay at the same rate if a,b,

and g are all 0(e"^ ? t), £' > j8, but will be 0(e~^?t) if a,b,

or g is 0(e'p ), j3» < j8. Thus the results resemble those

of [6] for parabolic equations.

*Here we are assuming that L is as in (1.6) . This corresponds
to homogeneous.viscoelasticity. In the nonhomogeneous case G
can depend on x and this case could also be treated as we
indicate in section 5.
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It is to be noted that equation (1.10) is outside the scope

of [3] since S is infinite dimensional and L contains an

unbounded operator. We have no results on the very interesting

problem of the nonlinear version of (1.10).

It appears that if one relaxes the obliviator condition we

impose on B, then it is possible to find linear equations for

which one has asymptotic stability which is not exponential.

Thus, there appears to be an essential difference in this respect

between our equations and ordinary differential equations. We

hope to return to this question in the near future.

The author wishes to thank Professor V. J. Mizel for a number

of interesting discussions concerning this manuscript.

2. Preliminaries and Statement of Results.

Our basic space will be one of past histories in the sense

of [1] . The space B will consist of measurable functions

defined on [O,co). We require that | / (0) | < oo for each ^CeB.

Moreover, there is to be a p >. 1 and a non-negative function k

on (O,OD) such that for each % e^ we have

oo /
r f k |* | P ) 1 / p < oo.

o
We s e t

- l%(o) I + IMIr (2.D,
and then B becomes a Banach space. The function k is called

the influence function of the space.
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The work of [1] gives quite precise results concerning the

restrictions placed on k by various physical considerations.

We refer to [1] for details but we state that these considerations

lead to the following assumptions concerning k:

keL1(O,cr>) (A.I) ,

ae" s < k(s) < c a.e. on (0,oo) (A.2) ,

for some positive constants a,b,c

sk(s) -> 0 essentially as s -» oo (A. 3) .

There are two further possible restrictions on k which are

considered in [1]. These concern the quantity N(a) defined by,

N(a)P = ess sup k ( s
k t 8 ?

) .
se (O,CJD ) * '

The condition,

l im ( sup N(a)) = co< CD ( 2 . 2 ) ,
y -* CD <re[y,oo)

is shown to be equivalent to what is called the relaxation

property. The stronger condition,

lim N(a) = 0 (A.4) ,
a -* CD

is shown to imply that k is an obliviator of all orders, a

condition which is important in retardation theory.

Once again we make no effort to expand on these notions

other than to state that they have physical implications. We

shall however impose on k the conditions (A.I)-(A.4) and then

we can infer from [1] the following result (see theorem 10, p. 121

and its proof) :
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Leflima 2 .1. JIj[ k satisfies conditions (A. 1) - (A.4) then we must

have,
N(cr) < e~ya for some y> 0 (2.3)

and,

k(cr) < Me" p y a for some M > 0 (2.4) .

We consider next functionals defined on B# These are maps

f: B-*R. f is continuous if % n->X in B implies f ^ ) — * f (%) •

It is easy to see that all linear functionals over B must have

the form,
f(« = AV(O) + / K(T)*<T)dT (2.5),

o
where A is a constant and,

K = k 1 / ^ where KeLq, p"1 + q"1 = 1 (2.6) .

A funct ional f on B i s d i f f e r e n t i a b l e at Ji i f

f ( jL + a) = f(x) + A(7C|a) + o(||a||) ( 2 . 7 ) ,

where A(}t| •) is a linear functional over B.

We are now ready to discuss evolution equations over B.

The ones we consider have the form

y(t) = -ffy1) (2.8),

and are to be interpreted as follows. f is assumed to be a

continuous functional on B. A solution of (2.8) on

(-oo,T] with initial history (<p,y ). is a function y defined on

(-0D ,T] and satisfying the conditions:



(i) If yt(r) = y(t - T ) , then yte» for te[O,T],

(ii) y(t) = <p(-t) t < 0, <peB, y(0) = Um y ( t ) = y ,
2 t*0 °

( i i i ) yeC (0,T),

(iv) y satisfies (2.8) on (0,T) .

Equations of the form,

u t t(x,t) = f(uxx(x, •)) (2.9),

with initial histories

u(x,t) = p(x,-t) on t < 0

ut(x,0) = u°(x) ( 2 ' 1 O ) '

can also be studied with obvious modifications of (i)-(iv).

Suppose that the functional f in (2.8) is differentiable

at 0 and vanishes for y (T) = 0. Then, by (2.5) and (2.7) ,

equation (2.8) can be written in the form,

2° t
y(t) = -A y(0) - J K(T)y(t - T) + F(yC) (2.11),

o
where

It follows immediately from (2.6) and (A.I) that KeL (O,oo).

Let us assume further that K is continuous in [0,oo). Then

the function,
T

G(T) = A + J K(£)d£
o

is differentiable on [0,oo) , G(oo) exists, and (2.11) can be

written,

Y(t) = -Ljy^ + Ffy*1) (2.12),

where L has the form (1.6) .



10

We are now ready to give a precise statement of our results.

We impose one further condition for technical convenience:

From now on, it is to be understood that our basic space IB

has an influence function k which satisfies conditions (A.l)-

(A.4). in addition, L will always denote a linear functional

on B. it will then have the form (1.6). We call such a linear

functional exponentially stable if it satisfies the additional conditions;

G! uniformly continuous on (O,oo) and G* eC* [09co) (B.I)

G(oo) > 0 (B.2) ,

G'f(T) > 0 for all T (B.3).

Condition (Bl) is imposed for technical convenience while (B.2) and

(B.3) connect our work with thermodynamics, as we show in the next

section. We make the following observations. Since GT = KeL^OjOo)

and is uniformly continuous, we deduce that G! tends to zero as T

tends to infinity. Then (B.3) yields the inequality,

G'(T) < 0 on [0,oo) (2.13).

We propose to establish the following results:

Theorem (1). Let L b£ exponentially stable. Then there

exists a, number /J > 0 such that the following statements hold;

(i) If: g(t) =0(6""^) as, t ~* 00 with /i > j8 then.,

for any <peB and y , there exists a unique solution of (1.5)
' ———— Q — — — — — — — — — — — — — — — — — —

and (1.7) and this solution satisfies y(t) = 0(e~p ).

(ii) Ij? g(t) = o-te"^) .as t -^ co with fi < jS then, for

any <pd& and y , there exists a unique solution of (1.5) and (1.7)
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and this solution satisfies y(t) = 0(e"^ ) for any jLt» < /i.

Theorem (2). The results of theorem (1) hold for equations (1.10),

(1.11) and (1.12) provided that a and b satisfy the same

restrictions as g.

Theorem (3) . Let f be differentiable and f (0*) be. zero, so that
— — — — — — — — — — — — — — - — — — — _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ j — — — — — — —

(1.4) can be written in the form (2.12). Suppose that L is

exponentially stable. Then there exists ja 6 > 0 such that jf_ (1.9)

holds, then any solution of (1.4) and (1.7) ori (-oo,T) can be extended

to (-oo,oo) and tends to zero exponentially as t tends t£ infinity.

Remarks; (1) The techniques used for the linear equations

involve the Laplace transform and are similar to those in [6].

In analogy to the terminology used in that paper we could summarize

the results of theorems (1) and (2) by saying that the solution

»follows» g (or g,a and b) if /i > jS. in this connection, we

remark that one need not require g, a or b to decay exponentially.

They can decay algebraically or even tend to infinity and then

the solutions will exhibit the same behavior (see [6]). What is

important is that one can never hope to achieve a decay rate

faster than e~p no matter how rapidly g, a and b decrease.

(2) It might be suspected that the rate of decay j8 in theorems

(1) and (2) is the same as the number y of lemma (2.1). This

is not so and in fact, as we show later by an example, j8 can be

arbitrarily small.
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3. Stability and Thermodynamics.

The goal of this section is to provide some motivation for

conditions (B.2) and (B.3) and to establish some implications of

those conditions. We begin by reviewing some ideas from [2] and

[3].

A free energy functional for the equation,

y(t) = M y S (3.1),

(L as in (1.6)) is a functional p of the following type, p

should be differentiable and we write,

Ap(£|a) = DpOOa(o) + 6p(jC|a) (3.2),

where 6p(^|a) is a linear functional on the space ft • This

space consists of restrictions to (O,oo) of functions of ft>

with the norm ||a|| of section (2) . It is required that

My*) = Dpfy*1) (3.3),

and that,

f^Y*) < 0 (3.4),

for all regular histories. A regular history is one such that

y (T) is differentiable for all r and such that y°(r) has

compact support.

If such a free energy functional exists we say that the

functional L is compatible with thermodynamics. The reason

for this terminology is that it is shown in [2] that if (3.1)

derives from a thermodynamic process, obeying the second law, then
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its free energy must be a functional satisfying (3.3) and (3.4).

One says that the zero solution of (3.1) is stable if given

any e > 0 there exists a 6 > O such that if y is a solution

of (3.1), with initial history (<P,yQ) such that (\<p\\ + |yQ|) < 6,

then y exists for all t and satisfies |y(t)| < e for all t.

If, in addition, there is a 6 such that each solution of (3.1)^

with initial history (<P,YQ) such that (\\<p\\ + |yQ|) < &} satisfies

lim |y(t)| = 0 one says that the zero solution is asymptotically
t —J> co
stable. The results of [3], when specialized to (3.1), yield

the following result.

Theorem (4) . Let L be. compatible with thermodynamics. Let

P ]2§. its free energy functional and define p ori R by;

p°(x) = p(x*) , x* (T) = x for all r. Tg p° has a strict local

minimum at 0 then the zero solution of (3.1) JLS stable.

In order to insure asymptotic stability, we must impose a

stronger condition on p, one that is not a consequence of thermo-

dynamic considerations. p is called a strictly dissipative

functional if whenever y is a solution of (3.1) the quantity

£(t) = \ y(t)2 + pfy^

satisfies

with equality only if y is a constant. If y is a regular history

then (3.3) and (3.4) show that (see [3], p. 261)

+L(yt)y(t).

HUNT LIBRARY
GAiUEGiE-MEUGN UKIVEaSlTY
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Thus, for a strongly dissipative functional, strict inequality

should hold in (3.4) for regular histories unless the history is

identically zero.

We can connect these ideas with our conditions in section 2

provided that we impose a stronger condition on the function

K = G? appearing in the linear functional L. This condition is,

p > 2 and K = k 2 / / pK, KGLq, q"1 + 2 p ~ 1 =1 (A.5) .

Note that (A.5.) implies (2.6) . We emphasize that the assumption

(A.5) is in no way necessary for the validity of theorems 1, 2

or 3. It is used here only in the construction of free energy

functionals.

Theorem (5). Under conditions (A.I)-(A.5) and (B.1)-(B.3),

L jis compatible with thermodynamics. Furthermore, for regular

histories strict inequality holds in (3.4) unless y = 0.

Proof; We assert that p, defined by the equation,

= \ G(0)*(0)2 + %(0) f G' (T)%(T)dT
O (3 5)

3'(T)7t2(T)dT

is a free energy functional and that p° has a strict local

minimum at 0.

We let p denote the first two terms on the right side of
2

(3.5) and p denote the last term. Since G1 = K we see

immediately from (2.6) that p is differentiable and that,
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dr^P
1(^|a) = (G(O)X(O) + f G< (T)7t(T))dr)cx(o) +/(o) JG'(T)O((T)

o o
oo

= L(;t)a(o) + ? (o) | G'(T)a(T)dr (3.6).
o

2

The functional p is more complicated and it is here that

we need condition (A.5). Let q be defined as in (A.5). Then

we have, by Holder»s inequality and(2.13),

(3.7)

2
Hence p is defined on B. We have, moreover,

P (X + <*) = p (X) + 2 1 K)ta + f KoT (3.8)
o o

By (3.7) we see that

o

Finally, we assert that the second integral on the right side of

(3.8) is a bounded linear functional of a. As we have seen before

this fact will be established if we show that K k~ '^eLr^.

Once again we apply Holder's inequality and obtain (note that

- P - 1 > 1J since p > 2) ,

< (

where — + -̂  = 1 or qs = q.
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2
We have thus shown that p is a differentiable functional

on B. We have in fact,

4>2(^|«) = - |°K(T)/(T)a(T)dT (3.9).

If we decompose &p into two parts as in (3.2) we find from

(3.6) and (3.9) ,

= L(JO (3.10),
oo

O = - J"K(T)(X(T) -^(O))a(r)dT (3.11).
o

Equation (3.10) shows that p satisfies (3.2). If y is a regular

history then we have from (3.11),

Spty^y*) = - J K(T) (y(t - T) - y(t))y(t - r) AT

' op , ~ (3.12) .
= 2 f G'(T)-dr(y(

t - T) - y(t)) dT
o

An integration by parts in (3.12) yields (recall that Gf (oo) =

K(co) = 0) ,

fsfCrXytt - r) - y(t))2dr.
o

By (B.3) this is less than or equal to zero and equal to zero

only if yt(T) = y(t) that is y = 0.

Finally, we note that

, 0 9 oo 2 oo
p°(x) = ± G(O)X^ + K J G» (T)dT - ̂ - f G' (T)dT

= ~ G(oo)x

o o
2

and this shows that p° (x) has a strict minimum at x = 0. This

completes the proof of theorem (5).
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The concept of dissipativity for linear evolution equations

in one which arises often in network theory. In particular it

was considered at some length, for functional differential equations,

by Konig and Meixner [5]. One of the principal results of [5]

is that dissipativity gives rise to conditions on the Laplace

transform of G and we want to develop this idea here.

Consider again conditions (3.3) and (3.4). By the chain rule

(see [3]) and (3.3) we have, for a regular history y,

•££ p(y ) - L(y )y(t) = Dp(y )y(t) + apfy^y ) - L(y )y

= Spty^Y*) < 0 (3.13) .

If we integrate (3.13) from -co to T we find,

T
p(yT) - f L(yt)y(t)dt < 0 (3.14).

-CD

Now let %t(T) = jL(O) for all T. Then by (3.5) and (2.13) we

have

G' (T) (TC(O)JC(T) -X(0)2) - T I G'(T) (X(T)2 -X(0)2)
o

1 °° 0
- - J fG'(T) [̂ (0) - ^(T)]2 > 0.o

It follows that

P(YT) > P((yT)+) = \ G(O)y(T)2 + \ y(T)2 j"G'(T)dT
O

= \ G(oo)y(T)2 > 0

by (B.I). Substituting this inequality into (3.14) we obtain the

following result.
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Lemma 3.1. For all regular histories y we have

T +
S L(y )y(t)dt > 0 (3.1
-oo

The formula (3.15) is the Konig and Meixner definition of

dissipativity. They establish the following as a consequence

of (3.15)*.

Lemma 3.2. Let L be of, the form (1.5) and suppose that the

Laplace transform Q, .of G,

Q(S) =
o

exists in Re s > 0. Then (3.15) holds only if

Re Q(s) > 0 in Re s > 0 (3.16)

Let us investigate the Laplace transform of our function G.

By (2.6) and (2.4) we have,

K < Me~r7;K, KeLq (3.17)

and

G(T) = G(0) + jK(Od4 = G(oo) + H(T),
o

where

H(T) = - J K(4)d4.
T

From (3.17) one deduces readily that for any y1 < y we have,

| H ( T ) | < M ,e~ r f T for some constant M .

Thus, we have the following result.
•*In the terminology of [5] L in our case is a transformation of
order CD on C and is of slow growth.
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Lemma 3.3. The Laplace transform Q jof G jLss. analytic in

Re s > -y except for ja simple pole of residue G (OD ) (̂  0)

at s = ()• That is

Q(s) = ^ ^ " + M ( B ) ,

where M(s) JLS analytic in Re s > -y.

We shall have need of a sharpened form of lemma 3.2 and we

prove this now.

Lemma 3.4. The transform Q gf_ G satisfies the condition

Re Q(s) > 0 in Re s > 0 (3.18)

(Note that Lemma (3.2) follows from lemma (3.4), the maximum

principle and the fact that Q-> 0 in Re s > 0.)

Proof: By (3.16) we need consider only the case Re s = 0 .

Further since G(oo)/s is imaginary on Re s = 0 we need con-

sider only &. We have, for rj > 0,

oo
Re M(irj) = j cos 7]T(G(T) - G(ao))dT

o

1 °°= J sin TJT G' (T)dr.

Now we write,

oo
J sin r\r G» (T)dT = E ( J sin r\r G» (T) dr +

k 0

oo TT/TJ
E J

k=0 o

(2k+2)/Tr/77
s i n T7TG1 (T) 6.T)

I/77
oo TT/TJ 9 V O V

= E J sin r?r(G' (T + ^f) - G- (r + ^ f + ^)) dr
k=0 o ' 'Iv
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and this quantity is less than zero by (B.3). Hence

Re tt(irj) > O for 77 > 0 (3.18)

But W is real for real s hence (̂-iTj) = #(i7j) so that (3.18)

holds also for 77 < 0. For rj = 0 we have

- G(oo))dr > 0,
o

since G! is negative.

The inequality (3.18) is the key to stability of linear

equations as will be seen in subsequent sections.

The final result in this section is a lemma which will be

of use in the study of homogeneous linear equations. It also

indicates the role played by the »obliviator» inequality (A.4).

In order to motivate this result let us rewrite equation (1.5)

in the form,

y ( t ) = -L(y ) = W(yu) + G(t) ( 3 . 1 9 ) ,

where
t

L(y r ) = G(O)y(t) + J G ' ( t - T ) y ( r ) d r
o

. 0 0 00

W(y ) = I G' (T)y(t - T)dr = f G'(t + T)y(-T)dT.
t o

If y s a t i s f i e s the i n i t i a l condition (1.7) then the quantity

W(y ) is known, namely,

t °° °°
W(y ) = J G» (t + r)<p(r)dT = S K(t + r)<p(T)dr (3.2o) .

o o
Thus (3.19) assumes the form
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y = LtyS + *(t) t > o

where $(t) is a known function. This is an equation to which

Laplace transform techniques can clearly be applied but it is

important to know the behavior of <£> for large t and our result

gives some information about the term W(y ).

Lemma 3.5. There exists SL constant Q, independent of tp9 such that

W(yt) < Ql|<p|lre"yt.

proof: We have by (3.20) and (2.6) ,

*1) | < X k(t + T)1/p|K(t + Tk(t + T) 1 / p|(t T)||P() |dr
o

= J (k(t^T)
r))1/Pk(T)1/P|<p(T)|lK(t + T)|dT.

But by (2.3) we have

+ T). 1/p -y t
k(T) } - e

Hence we have

* yt ff k(r)1/P|<p(T) | |K(t + r) |dr

f|K(t + r) l̂ )

4. Laplace Transforms.

In this section, we wish to collect some results concerning

Laplace transforms. These are specializations of the results

used in [6] and they are obtained from the book of Doetsch [4].

Let s = £ + i7j be complex. We write9
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£ (f) = f e~stf(t)dt, A£(F) = (2TT) e
4t: J e1?7t:F(4 + it?)dTJ.

S O -OD

It is known that under suitable conditions these two operators

are inverses of each other. We shall need the following result.

This is essentially theorem 29 page 266 of [4] and is a conse-

quence of the Riemann-Lebesgue lemma.

Lemma 4.1. Suppose F(s) JLS analytic in Re s >_ a and continuous

in Re s >_ a and that

F (s) = — + o H5y) as | s | -> GO , uniformly .in Re s >_ a (4.19) ,

where c is a constant. Then A>(F) is independent of 4 in

4 >. a and defines a. function f (t) such that,

(i) £*(f) = F in Re s >̂  a,

(ii) f(t) = 0(eat) as t-> GO .

Let us investigate the Laplace transform of G a little

more closely. Since

T
G(r) = G(0) + J K(£)d£,

o
we have

Q(s) = £ (G) = ̂ - + -^-— (4.2) .
o o o

By (2.6) and (2.4) observe that «£ (K) is analytic in Re s > -y
s

^ by (B.I), K is differentiable at 0. One can then derive,

from theorem 8 page 197 of [4], the following result.
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Lemma 4.2. £S(K) satisfies the relation

£g(K) =
l l ^ - + 0 ( - 4 r ) as |s|-»oo (4.3),

s
uniformly in Re s > -/I.

We can now state and prove the fundamental result which

guarantees exponential stability for the linear equations. We

give the result in a form which is applicable both to (1.5) and

(1.10) and also to the equation arising in non-homogeneous

viscoelasticity.

Theorem 6. Let {j8 } b<3 ji sequence of positive numbers with

)8 >. P > 0 for all n • Then there exists ja j8 > 0* such all

solutions of the equations,

s = -j8nQ(s) (4.4),

satisfy the inequality.

Re s < -0 (4.5) .

Proof; We write s = £ + if? and <£ (K) = A + iB. Then, by

(4.2), (4.4) is equivalent to the two equations,

-P G(0)4 B
—? 2 " ~H 2
r + r r + v

/3nG(0)7? B (Bi - rjh)

r
*j3 must of course be less than y in order that the theorem
even be meaningful.
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(Note that G(0) > 0 since G' < 0 and G(oo) > O) .

We observe first that (4.4) can have no solutions s,

with Re s =0 for any n, since Re Q(s) > 0 when Re s = O.

A second observation is that there cannot exist a sequence,

ST = £, + i*?w °f solutions of (4.4) such that £, —* 0 while the
X K K K

rjv
!s remain bounded. For the condition Re Q > 0 on Re s = 0

implies that for any M there exists an e > O and an a > O

such that Re 5(s) > a in Re s > -e, |lxn s| <, M.

Thus the only way in which the conclusion of the theorem

could be violated would be to have a sequence s, = £, + irj, of

solutions of (4.4), for n = n^, such that £ k-*0 while 17^—^0

We show that this cannot occur either.

Suppose such a sequence existed and consider (4.7). From

(4.3) we deduce that M ^ w ^ ) a n d B ̂ k ^k^ t e n d to z e r o as k

tends to infinity. Hence we derive from (4.7) the result that

Also from (4.3)^ we see that

-K(O)T?

Thus (4.6) yields,
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nk K(O)il K(O)TJ
) (G(0) *v + "2 *T + "2 h + 0( 2

Hence if we pass to the limit in this equation and use (4.8) we

obtain,

But this cannot be since K(0) = G!(0) < 0. This contradiction

completes the proof of theorem 6.

Let us consider a particular example. Suppose that the

influence function of the space R is k(a) = e *' . Then

K(a) = Be~U(J for v > 2y will satisfy (A.5) . Then we have

G(T) = A + B Je da = A- Be
o

where A = A* + B/V and B = B/v. This will satisfy (B. 2) and

(B.3) if A > 0 and B < 0. We have then

Let us consider (4.4) for a single j3 = 1, the situation which

will arise in the next section when we study (1.5) . Equation

(4.4) becomes then,

s3 + us + (A - B) s + AV = 0 (4.9)

Since B is negative, it is iiot too difficult to verify that

all solutions of this equation have negative real parts (as is

guaranteed by our theorem).
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Note that if A = G(oo) were zero, then (4.9) would have

s = 0 as a solution. This will show that we need strict inequality

in (B.2) . For A = 0 the roots are s.. = 0 and

- ' + 4B
S2,3 " 2

s9 and s^ have negative real parts and the three roots are

distinct. Now for A sufficiently small the roots of (4.9)

are continuous functions si(A) and they remain distinct. More-

over s1(A), that root such that s,(0) = 0, will remain as the

one with largest real part. Thus, by choosing A sufficiently

small, we can make (4.9) have a root with real part arbitrarily

close to zero. As we shall see in the next section, this means

that we can thus have linear equations with arbitrarily small

natural decay rates.

5. Stability for Linear Problems.

We write equation (1.5) in the form (3.1) that is,

y(t) = -L(yfc) - W(yfc) + g(t) t> 0 (5.1)

Let us formally take the Laplace transform of (5.1). If we let

y(s) , w and g denote respectively the transforms of y, W

and g we have then,

s2y(s) - s<p(O) - yQ(0) = ^s(L(y
t)) - w(s) + g(s) (5.2)

Now

* (L(yfc)) = G(0)?(s) + (sQ(s) - G(O))J(s) = sQ(s)y(s),

and hence (5.2) becomes,
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(s + Q(s))y(s) = (-w(s) + g(s) + s<p(O) + yQ)/s (5.3)

Now by lemma 3.5 we know that w is analytic in Re s > -y,

We know also that s + Q(s) is analytic in Re s > -y and by

theorem 6 we can find a j3 < y, such that s + Q (s) is without

zeroes in Re s >_ -0. Hence the function,

R(s) = (s2 + sQ(s))"1

is analytic in Re s >̂  -j8 except possibly at s = 0. But by

lemma (3.3), it follows that,

Q(s) - —L2ELL is regular near s = 0,
s

A

hence R(s) is regular at s = 0.

We can now prove theorem (1) . Suppose first that g satis-

fies (i) of theorem (1), that is g = Of e " ^ ) , fx > j8. Then

g is analytic in Re s >̂  -j8 hence the function y(s), defined by

y*(s) = R(s)[-w(s) + g(s) + s<p(O) + yo] (5.4),

is also analytic there. From (4.2) and (4.3) we find,

R(s) = (s2 + G(0) + ^ - + 0 ( 4 ) - 1
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Since w and g tend to zero as s tends to infinity it follows

that

y = -3(1 - G 2 ) (-̂ (s) + ?(s) + s<p(O) + y ) + 0(-^) (5.5).
s s s

It follows from lemma (4.1) that the function

y(t) = 7^(y) (5.6)

is independent of £ in ^ >_ -0* satisfies <£ (y) = y and also
s

the condition,

y(t) = 0(e~^ ) as t —* oo .

We propose to show that y, as defined by (5.6), is a solution of

(5.1) and that y(0) = <p(0) , y(0) = y . The estimate (5.5)

enables us to show that y can be differentiated twice with

respect to t. We have for 4 > -£,

27ri t

Substitution of the estimate (5.5) into this formula leads to

a number of terms which can be evaluated explicitly plus a term

for which two differentiations with respect to t is justified.

For example, the first term is

. 4+ioo . , . t r .

2fri t- "• *- * *
5-1OO S O O

The remainder term,

can clearly be differentiated twice.
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Once we know that y is twice differentiable, it is a tedious but

straightforward calculation to show that it satisfies (5.1) as

well as y(0) = <p(0) , y(0) = yQ. We omit the details.

If g satisfies condition (ii) of theorem (1) , that is

g(t) = 0(e"~^ ) with ju < j8 then the proof proceeds in the same

way except that now one can infer only that y is analytic in

Re s >_ jU1 for any jit1 < fi. Hence lemma (4.1) yields the estimate

y(t) = 0(e""M!t) for any jU! < M-

It remains only to establish the uniqueness of the solutions.

Let y.. and y2 be two solutions of (1.5) and (1.7). Then

Y = Y-i - Yo vanishes in t £ 0 and satisfies,

y(t) = -L(yfc) .

Multiply by y(t) and integrate from -oo to T. This gives

by lemma (3.1),

T
\ Y(T)2 = - f My^yftjdt < 0.
2 - oo

Hence y(T) = 0 and, since y(0) = 0, it follows that y(t) = 0.

We want to study the solution (5.5) a little more closely.

We can apply lemma (4.1) to R(s) and deduce that there exists
A

a function R(T) such that R is its transform and that,

|R(T) | < R Q e ^
T (5.7).

Moreover, as in lemma (4.2),

R(s) = ^ - + 0(4
s sZ

2
On the other hand we say that R = 0(s ) as s oo
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and hence R(0) = 0. Since sR(s) is also analytic in Re s > -/3

it follows that R1 exists and satisfies an estimate of the same

form as (5.7) .

By the convolution theorem, we can write the solution (5.5),

(5.4) in the form,

y(t) = - J R(t - T) [W(yT) + g(T)]dT + <p(O)Ri (t) + yQR(t) (5.8) .
o

From lemma (3.5) and the estimate (5.7) we have,

t T t
| f R(t - T)W(y ) | < RoQ||<p|lr f e

o o

Thus, we have from (5.8) the estimate,

|y(t) | <. ce~^ (ll<p|| + |y |) + R e fe |g(T) I^T (5.9).

o

The proof of theorem 2 is very similar to that of theorem 1;

the only complication arises in the calculation of the transform.

Hence, we give just an outline of the proof. We rewrite equation

(1.10) in the form

u t t = L ( u x x ( x > # ) ) + W ( u x x ( x > # ) ) + g (5.10),
where

t ° ° - c o
W(u ( x , • ) ) = r G t ( t + r ) u ( x , - r ) d T = f G ' ( t + T)<p ( x , T ) d r .

w?v^v J\Jl\. A A

If we formally take transforms we have, as in (5.2),

su - Q(s)'u v = (w + g + s<p(x,0) + u
O(x))/s (5.11) .

XX ' ' f

The transform of conditions (1.11) will be,

u(0,s) = a(s) u(L,s) =b(s) (5.12),
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where a and b denote the transforms of a and b.

Equations (5.11) and (5.12) constitute a standard two-

point boundary value problem. It will have a solution so long

as s/Q (s) is not equal to an eigenvalue of —5** with zero
dx

2
boundary conditions, that is to one of the numbers -n , n = 1,2,,

But by theorem 6 we know that for some j3 > 0

s + n2 Q(s) ? 0

for Re s >_ -j3.

If the right side of (5.1l) and the functions li and 1D are

regular in Re s >_ -£ then it can be shown that the solution of

(5.11) and (5.12) is also regular there. If instead, the right

side and "a and % are regular in Re s >, -jLt, jLt < 0 then the

solution is regular in Re s >^ -jti. Thus one has the same two

cases as in theorem (1) (see [6] for very similar calculations).

We remark that the case of inhomogeneous viscoelasticity can

be treated in a very similar way. The only change is that now Q

depends on x as well as s. Hence (5.11) and (5.12) becomes a

more general Sturm-Liouville problem. The values of s to be

d2 -1
avoided are now the eigen-values of —~- relative to ( Q(x,s))~ ,

dx^
Once again these form a sequence {/3 } of negative numbers tending

to minus infinity so that theorem 6 is still applicable.

6. Stability for Nonlinear Problems.

In this section we give a proof of theorem 3. Here we are

considering the equation (2.12) that is,
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y(t) = -My11) + F(yfc) (6.1),

where L is exponentially stable and F (y ) = o(||y II). We still

have the initial conditions,

y(t) = <p(-t) in t < 0 y(0) = yQ (6.2).

Suppose we have a solution of (6.1) and (6.2) in some interval

(0,T) . Then, if we denote the quantity ||<p|| + y by r, we have

by (5.9),

| y ( t ) | < cre"^ t + R e " ^ f e^T |F(yT) |dT. (6 .3) .
° o

We know t h a t g i v e n any e > 0 we c a n f i n d a 6 ( e ) > 0 s u c h t h a t ,

! * ( / ) ! < dvH for ||y t | | < 6(6) (6.4).

Thus so long as Hy1!! < 6(e) we have, by (6.3) ,

|y(t) | < c r e " ^ + R ^ e " ^ jV T | |y T | |d r . (6.5).
o

Next, we observe that

ll^l (f y ( t - r) |Pk(r)dr)
o

{ ( f \tp(r - t
t

t 1 y

+ ( J | y ( r ) | p k ( t - r ) d r ) i / p } . ( 6 . 6 ) .
o

The second term on the right can be estimated using (2.3) and

we can estimate k(t - T) in the third term by (2.4). These two

estimates yield,

llŷ l < |y(t) | + c|Mlre-
yt + c..e-

yt( f |y(T) j P e P ^ d T ) ^ (6.7).
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Let v be a positive number such that v < /J and v < y - fi

and set

A(t) = |y(t)|e^-^S B(t) = H y ^ e ^ * .

Then (6.5) can be written as.

A(t) <

By Holder!s inequality we have

J B(T)eUTdr
o

f
o

e ^ jB(T)Pdr
o

Hence (6.8) yields,

A(t) P < c2[r
pe

From (6.7) we obtain,

B(t) < A(t) +

or

B(t)P< c3[A(t)P+

ep J B(r)pdr

We substitute (6.10) into (6.9) and obtain,

A(t)P < c^rPe-P^ + eP J A(r)Pdr
o

+ €p J e-P^^
+^ T( J P

JA(T)
o

(6.8).

(6.9)

(6.11)
o o

If we interchange the order of integration in the last term we

find that it has the form,
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M< e-6* f A(M)PdM

Thus ( 6 . 1 1 ) b e c o m e s ,

o JU o

A(t)P < e^frPe-P^ + ep||cp||p + ep \ A(r)pdT] . (6.12).

We set

r = c , ( r p + €P||<p||P), € = cfte
P. (6.13).

o r D

Then if we apply Gronwall»s inequality to (6.12) we have,

A ( t ) p < r + e r C e€(t-s)ds< T(l + ee€t).o
Thus

|y(t) | = A ( t ) e - ( M t < T(l + eeet)e-^~v)t. (6.14).

If we choose e < 1 and € < j8 - v it follows from (6.14)

that

| y ( t ) | < 2 r ( 6 . 1 5 ) ,

and t h e n from ( 6 . 7 ) we o b t a i n

II Y^l < (2 + C ' ) T + c ' ||<p||r < ( 2 + c » ' ) r + c « r , ( 6 . 1 6 ) .

Note a l s o t h a t T < 2 c ^ r .
— o

Now we are ready to choose the 6 of theorem 3. We choose

6 so that 6 < 6(e) and
(2 + c* 1)2c66 + c'6 < 6(e) ,

where 6 ( e ) i s a s i n ( 6 . 4 ) . Then i f ||<p|| + | y Q | < r we have^by

( 6 . 1 6 ) ,

WyH < 6(e) . (6.17)
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We have (6.17) initially since 6 < 6(€) and we have

shown that (6.17) continues to hold so long as the solution

exists. It follows that F on the right side of (6.1) remains

bounded. But differentiation of (5.8) leads to an estimate like

(5.9) for y(t). Then the boundedness of F implies that of y.

Standard arguments (see [3]) show that we can continue the solu-

tion of (6.1) so long as y(t),y(t) and ||y II remain bounded;

hence we can continue for all time. Equation (6.14) yields the

exponential decay and the proof is complete.

Notice that, since v is arbitrary, we have proved that

the rate of decay of the nonlinear equation is arbitrarily close

to the natural decay rate of the linearized equation.
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