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1. Introduction.

We consider one-dimensional motions X(x,t) = x + u(x,t)

of a continuum for which the stress cr is related to the strain

u and the strain rate u . through the consitutive equation,

u (x,t)

cr(x,t) = J X E(5)d§ + Au (x,t).
o x c

The equation of motion is,

E (u ) u + Au . = Pu. . .v x' xx xtx tt

The function E is the equilibrium Young's modulus, A the vis-

cosity and p the (constant) density of points x in the

reference configuration.

In [1] and [2] the authors discussed various properties of

solutions of the initial-boundary value problem:

(E) E(ux)uxx + Au x t x = pu t t, (x,t)e(O,l)x(O,oo),

(I) u(x,O) = <P(x) and ut(x,O) = 0 (x) xe[O,l],

(B) u(O,t) = u(l,t) = 0 t > 0.

In particular, it was shown that (E)-(B) has a unique smooth

solution which decays to zero as t tends to +oo, uniformly

in x.* What was not obtained was an estimate for the rate

of decay. It is this topic which is pursued here.

In [1] and [2] we used energy integrals together with

estimates for solutions of the linear heat equation. Here we

*It was also shown that all derivatives through second order tend
to zero uniformly in x.
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replace the usual energy integrals by ones which are exponentially

weighted, an idea which was used by R. J. Duffin [3] for ordinary

differential equations. We then make use of the fact that the

Green's function for the linear operator,

L =

with (I) and (B), decays exponentially. Our conclusion is that

any solution of the nonlinear problem decays exponentially.

2. Statement of Results.

We assume that the function E : (-00,00) —-»(O,OD) is twice

continuously dif ferentiable. The data <p and 0 are in
2

C [0,1] and satisfy the compatibility conditions,

<P(0) = <P(l) =0(0) = 0(1) = 0.

In addition, E(<p )<P + A0 v is to vanish at x = 0 and 1.

We set 2
(2.1) J(<P,0) = E ( max |<P ( i )(x)| + max

i=0 xe [0,1] xe[0,l]

For any function U€<J ([0,1] x [0,T]) we set

N A

(2.2) IHUllU(t) = 2 L max
i=0 k=0 x € [0 , l ]

I t was shown in [1] that problem (E)- (B) has a unique solution

such that j||u|l^(t) tends to zero as t tends to inf ini ty, in

addition,
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where M, is a smooth function such that M, (£)—*" 0 as £ —» 0"t

We shall see that solutions of the linear equation Lv = 0

with (I) and (B) satisfy the relation,

v = Of"1*) .

where,

(2.3) H = min Re
A n

Note that M will always be less than or equal to E(O)A and will

equal E(O)/X whenever

(2.4) 4E(O)P < A2TT2.

In order to state our new result, we need some additional

notation. For functions f(x) or f (x,t) let

(2 .5) | f | ( | f | ( t ) ) = max | f ( x ) | ( max | f ( x , t ) | ) ,
x e [ O , l ] x e [ O , l ]

and

(2.6) Ilfll2(||fll2(t)) = J f2(x)dx (J f 2 (x , t )dx) .

o o

Theorem 1. Let M be as ia (2.3). Then there is a constant k,

depending on J anfl satisfying 0 '< k < M, and a, smooth function

£ —* M2 (£), which tends ±o_ zero as_ £ —> 0 , such that any solution

u satisfies:

(2.7) Mullet) + |uxx|(t) •+ Huxtll(t) < M2(J)e"
kt.

The constant k approaches M as. J approaches zero. In

addition u satisfies.



, 8 ) ?*" _2kT
(2.8) J e^ '{ | |u t t i r(T) + Huxtxlr(T)}dT < M2(J) .

o

3. Energy Integrals.

Before starting our proof, we record a lemma to which we

shall appeal throughout the remainder of this paper.

2Lemma 1. Let v(x,t) b§_ C iji x and t and satisfy v(O,t) =

v(l,t) = 0 for t > 0. Then.

(3.1) llvll(t) < |v|(t) < ||vJ|(t) < | v l ( t ) < llv ll(t) < |v l ( t ) ,

where | • | and || "II are defined in (2.5) and (2.6) respectively.

Our first step is to obtain two weighted energy integrals

replacing formulas (4.2) and (4.4) of [1].

Lemma 2. Let u be a solution of problem (E), (I),(B) and let

k be_ any positive number. Then the following identities must

hold for all t > 0.

(3.2) e2kt[p||u tli
2(t) + 2 J fi(ux) (x,t)dx] + 2A J e ^ H u J 2 (r) dr

o o

= k J e2kT[p||utll
2(T) + 2 J e(ux) (x,T)dx]dr + A1 ,

where
1 77 £

(3.3) A1 = f>U\\2 + 2 J S(<Px)(x)dx, and 6(7?) = j j E (y) dy d | ;
o o o

(3.4) Ae2k t | |u J | 2 ( t ) + 2 J e 2 k T f (E (u ) - kA) u2 (x,r)
xx <JO J Q x xx

= 2pe2ktj uxxu t(x,t)dx - 4pk j e2kTJ uxxu t (x,

o o
dx dr

xx

dx d r

2pfe2k1-||uxtll
2(r)dr



where

(3 .5 ) A = *\\<p II2 - 2p J <P J > d x .
XX •" XX

Equations (3.2) and (3.4) are obtained by multiplying (E)

2kt 2ktby e u. and e u respectively, integrating over (O,l)x(O,t)

and using the fact that the boundary conditions imply that

ut(O,t) = ut(l,t) = 0 . (compare [1]).

We use one result from [1]. This is that any solution

satisfies the inequality,

|ux|(t) < M1(J).

This implies that there exist positive constants E_ and E such

that,

(3.6) E < E(u ) < E.

It follows from (3.6) and the definition of fl that,

( 3 . 7 ) E_||u J | 2 ( t ) < 2 j S ( U ) ( x , t ) d x < E | | u v l | 2 ( t ) .
x o

A key quantity in our calculations is the weighted norm

F(t) defined by,

(3.8) T(t)2 = e2kt[||u tj|
2(t) + ||uxl|2(t)], k > 0.

We observe first that (3.7), when substituted into (3.2), yields

the two inequalities,

(3.9) r ( t ) 2 < B 1 [ A 3 + k j r
2 ( T ) d r ] ,



(3.10) J e2kT||u tU
2(T)dT < B1[A3 + k J

o
where

n in B = "taxtJ-'P'E)
^ ' 1 min(2A,p,E) '

and A~ = max(A, , | A j) .

Our next step is to obtain relations between the quantity

, defined by,

(3.12) O(t) = ekt||uxxil (t) ,

and T(t) . The results are as follows. For any k < E/A we

have,

(3.13) 0(t) < B2[(A3 + k J ̂ (TjdT)1/2 + k( J .C?(T)aT)1/2],

ft 9 B ft
(3.14) J Jf(T)dT < *—5- [A + k J ]

o (E-kA) o

where B ? and B« are constants depending only on E_,E,A, and p

In the next section, we derive bounds for the integral of

r in terms of the integral of Qi • These bounds when com-

bined with (3.13) and (3.14) will enable us to show that, for

some positive k < /J, both T and Ci are bounded.

Consider (3.13) first. Equations (3.4), (3.6) and (3.11),

together with Schwarz's inequality, yield the preliminary estimate,

(3.15) 02(t) + (E - kA)J CP

<B3[e2kt | |u tl|(t)| |uxxll(t) -
t t °

• (J &{T)dT)1/2 + j e2kT||uxtl|
2(T)dr + A3] ,

o o
where



o _ max(1.4p)
B3 ~ min(2,A) '

If we now restrict k to be less than E/A and make use of

(3.9), (3.10) and (3.1) with v = ut, we see that,

(3.17) 0*(t) < B4[N1(t)O(t) + N
2(t) + kN (t) (J 02 (T) dr)1/2] .

o
Here

B4 = max ( B ^ B ^ )

and N, (t) is defined by,

= A 3 + k J
o

Equation (3.13) now follows easily from (3.12) with

B2 - B4 + f f*l'
To obtain (3.14) we insert the results of (3.13) into

(3.15), and make use of (3.9), (3.10) and (3.1) with v = ufc,

to obtain the inequality,

(3.18) (E - kA)J ̂ (TjdT < B5N,(t)k(J
o o

+ B5N1(t)
2,

where
B 5 = max(B4 + 1, B2B4 + 1) .

This yields the inequality (3.14) with some B_, depending only

on E_,E,p and A.
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4. Additional Estimates and Completion of the Proof of Theorem 1.

In order to proceed, we shall need estimates for the linear

inhomogeneous, initial-boundary value problem:

(E) L E(O)uxx + Au x t x - pu t t = f, (x,t)e(0,l)x(0,oo) ,

(I) u(x,O) = <p(x) and ut(x,O) = 0 (x) , xe[o,l],

(B) u(O,t) = u(l,t) = 0 , t > 0.

The observation that (E) may be rewritten as (E) with

(4.1) f = (E(0) - E(ux))uxx,

the estimates for the linear problem, and inequality (3.14) will

ultimately provide, for some k, 0 < k < ju, the key inequality:

(4.2) J r ^ r j d r < M(A_), t > o.
o - 3 -

M, I^tT), and A3 are defined in (2,3), (3.8), and (3.11)

respectively, and 4—»• M(£) is a smooth function which tends to zero

as 4 tends to zero.

It is easily verified that the solution of the linear problem

(E)_ - (B) is given by:

(4, .2)

Where

(4 . .3)

u(x,t) = J (
o

• f
o

G* ' (x,£.

J c
O

, t )
oo

= L
n=l

t)<p

M
(e ;

•(«)d€ +

t-T)f(€ ;

+t ,
fi •

+ e

A
o

( 2 ) (x ,4 ,

C dr

) sin n?rx



/ i t fJL

(4.4) G ( 2 ) (x,£,t) = S (£ ~ e

(4.5) Hn - ^ ^ L - , 1 + j l . = J i ^ 1, and
n

(4.6) M- W J '
4E (0) p

The formulas (4.3) and (4.4) are valid provided -~ -s A J* l

for all n >̂  1. If this condition fails for some n, say N,

then the Nth terms in G ̂  and G' are replaced by

7 1 ? P
_AN v t AN f t

2 ~ 2

2e sin NTTX sin NTT£ and 2te sin NTTX sin NTT£ r e spec t ive ly ,

The resulting analysis of the problem is then appropriately

modified and no difficulties arise. In light of this statement,

we shall assume throughout that
(A i\ 4E (0) p . . 1

(4.7) 2 2 2 ̂  ' —
A n F

Our main result for the linear problem is the following

theorem.

Theorem 2. There exists a. constant D, depending on E (0) ,

P and \, and independent of k, such that

(4.8) J r^TjdT < ° 1^(0) + ^ j J <
o (/i - k) o

for a l l 0 < k < M . Again,

^ ( t ) * e 2 k t ( l l u t l | 2 ( t ) + Hu,"-
and

0 < M s min An^7r 1 -
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Proof' We shall prove the theorem for the u term; the

calculation for u. is similar. We first observe that u

may be written as the sum of three terms F,, F~, and F,; i.e.

ux(x,t) = F1(x,t) + F2(x,t) + F3(x,t)

where

P 1(x,t)=J Gx
X) (x,€,t)<p(€)d£,

o

F (x,t) = J G<2) (x,€,t)0(€)d4, and

P3(x,t) = J J G^(x,€,t - T)f(4,r)d€ dr.
o o

Since | | F X + F2 + F3H2(t) < 2(||F1H2(t) + | |F2l |2(t) + | | F 3 l | 2 ( t ) ) ,

i t suff ices to look a t each term separa te ly . For F, we have

2 n nlFlH2(t) = J { 2 (e n + e n )mr cos nirx <p ) 2dx
o n=l n

2 22
n TT «pn

where

- r 1
n •

o

is the nth Fourier coefficient of <p. The inequality

and the identity

then yield the estimate

x l | 2 S n W
x n=l n
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It now follows that

The estimate for F2 is similar. The result is

l|F2H
2(t) <

and

o
e I | F2N ( T ) d T - 2(M-k) >

2 2
C H max —•• n T _ o = max —

' n n

The constant C is finite because of the assumption (4.7).

The P^ term requires slightly more care. For any T > 0

we have

,1 oo r r " n ^ " " ) ^«T- t»>
= j { S (J S ^_§ fn(i?)dn)mr cos mrxj^dx

o n l o (fi+ M") n
o n^l o (f M

J
n-1 o M+ - M-

2 n2 2

f 2 i f

< C ^ 2
n=l "o

where C i s as above and

fn(T?) = J sinnirC f (€ , i? )d$ .
o

2kTMultiplying the last inequality by e and integrating the

result over (0,t) we obtain,



Jte2kT||F3ll2(r)dr

1 2

,1^ fT\ AT

< C L 2 J J J e 2 k T e X e ' fw (Tjn) f,
n=l o o o

Since

J J J e 2 k T e X e 2 | f n ( t? x ) I l^»?2) ' d T ? l d r ? 2 d T

0 0 0

e Xe 2 j e fe |fn W - ^ | f n « - ^ |dt,
o max(T,,T )

< [J e" " T ; L e" " 2AT1dT2\ J e 2 k r ? | f n (T?) 12dn
-t , ,„ | 2

2kr? 1 2
o o

t

(A*-k) o

and since

f a2k"||f | |2(n)d^ 2 1 J t .2 k 1 | |«h |2(I |)*l.
o n=l o

we obtain the inequality:

I e^KT F,|r(T) < ^-o J eZKT'\\f\r(ri)dr). q . e .d .
o 3 ~ (M-k)2 o

We now complete the proof of Theorem 1. We take f as in

(4.1) and make use of (4.8) to obtain:

pt „ r t
( 4 . 9 ) J r 2 ( r ) d r < D_ k 1 ^ ( 0 ) + D^E " E ( 2 ? ? J ^ ( T ) d T , 0 < k

where again

"° - e^dlujl2^) + ||uJ2(T)),

= e2 k T | |u |
XX

«UNT LIBMRf
CAJUE61E-MELL0N
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and E is the upper bound for E(-). If we substitute the

above result into (3.14) and observe that T^ (0) < A3 (see (3.11)),

we obtain the inequality:

ft y n D(E - E(O))B2 ,
J
o

( 4* 1 0 )

_ k ) 2 ( E *
—

D(E - E(0))B9A_.LA.
(M - k) (E - kA) o

-t
I
o

for all 0 < k < min(/i,E/A). Inequality (4.2) now

follows for any 0 < k <min(/i,E/A) such that

D(E - E(0))B9A
(4.11) 5 ^ L k < l .

(M - k) (E - kA)

That k may be chosen arbi t rar i ly close to M as A-, —> 0 is

clear from the form of (4.11).

The remainder of Theorem 1 now follows from the arguments

employed in { 1 ] and [ 2 ] , from equations (3.2) and (3.4),

and from the new ident i t ies :

(4.12) 29 f e2kT | |u t tl|
2(T)dT + Ae2 k t | |ux tl |

2 (t)

= 2 J e 2 k r j E(u x)u x xu t t(x,r)dx dr

+ 2kA J e2kr | |u A\2(T)dT + A||0 II2, and
o x t x

A
(4.13)

pTE(ux(x,r?))dT?

rt B(u (x,T)) J \
[J pUr(XjT) £ _ e° dT]

A
A



-J
E(ux(x,T]))dr?

 1 4

Equation (4.12) is obtained by multiplying (E) by u , integrating

the result over (O,l)x(O,t) and making use of the fact that the

boundary conditions (B) imply that utt(O,t) = u t(l,t) = 0.

To obtain (4.13) we regard (E) as an ordinary

differential equation for u and solve the initial valueM xx

problem (E) together with the initial condition u (x,0) = <P (x\
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