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ON THE CATEGORIES OF TOPOLOGICAL ALGEBRA

Oswald Wyler*

In an earlier report [3] we presented a general theory of the categories
encountered in general topology and topological algebra, We pointed out that
fhese categories are fibred categories with fibres in the category of complete
ordered sets, We considered general properties of such categories, in particular
the lifting of functors and of adjoint functor pairs, andvsome specifically topo-
logically properties such as point sepsration axioms,

In the present report, we use the language and the techniques of [3] to
obtain a generel construction of the categories eficountered in topological algebra,
In fact, we solve a more general problem, Given an operational category A over
a category C and a fibred category g? over C , we obtain a new category Af

which is fibred over A and operational over _(f' . Ar

is also characterized,A
up to equivalence, by & universal property of pullback type. Specializing to

C = Ens , the category of sets, and to a category A of algebras, we obtain
from the category __I:‘:rx__g'5 of topological spaces, or of limit spaces, or of uniform
spaces, & category ;;}_r of topological é.léebraa y» or of limit algebras, or of uni-

form algebras,
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The fact that A"

is fibred over A has an important consequence: all
categorical limits and colimits, such as products and coproducts, snd projective
-and injective limits, which exist in A can be lifted immediately from A to Ar .
This is of course well-known, but a general proof is only possible from a general
construction such as the one given here, Thus special liftings of categorical
limits and colimits to ocategories of algebras with topological structure are "dis-
covered” again and again, and sometimes even published.

Another important consequence is this. If free algebras exist in A , {i.e,
if the forgetful functor U : A—» C has a left adjoint functlor P:C—>A,
then F can be lifted to a functor D :'¢°—5 A7, 1left adjoint to the lifted
forgetful functor Y Ar -_—> _(_:_s . Special cases of this, e.g. that of topologi=~
cal groups, seem to be well-known, but the author has been unable to produce a
printed reference. The general theorem seems to be' new, -

The construction of _A_r depends not only on fhe categories A , C, and _C_r ,
but also on the lifting of .thé domain and range functors of the operations of A
from C to _c_’ . Thus we obtain ainbng our examples not only the usual topologi-
cal or limit algebras with "Jointly continuous™ operationg, but also topological

or 1limit algebras with "separately continuous™ operations.

0. Preliminarig_s;. We shall use the notations, definitions and results

of (3], except for some trivial changes such as C° for C° , and “left adjoint"
for "coadjc;iﬁt" « If a funetor (D : Q_B 4 _Ii-t of fibred categories is fibred

over a functor F : C —> B, then we say also that O lifts F .. Sucha funo-.
tor ¢ 18 of the form D (C,x) = (F C,f?c x) for objects, with order preserving

maps ?C :8C—>tFC, one for ‘each object C of € . These maps have been




studied in [3; sec. 5]; we ehall call them the fibre morphisms of CZ). If the

fibre morphisms of ¢ satisfy @, f* = (Fr£)» @y for every morphism f : A —>B

of C , then we say that they preserve inverse images,

Consider now two functors Qﬁ : _.9._8 —> gt and SD: ;A._B ——-)_B_t of fibred cate~
gories, fibred over functors F : A —>B and G : A—>B, with fibre mor-
phisms ?A and yJA respectively., Let J F—>C be a natural transformation,
If ph, (F A, P x) —> (G 4, ‘/“A x) in _l;t for every object (A,x) of AS ,

t

then these niorphisms clearly define a natural transformation )I : ¢ - ‘/) with
_4_8 and B ,

the property that P FZ = ,u.»P for the projection functors of

We say in this case that fu is fibred over g+ or that MC Lifts mo, Clearly,

there can be at most one matural transformation F : ¢-> (£’ which 1ifts & given

natural transformation },L : P—> G, and this natural transformation /CE exists
. . 8

if and only if ?A x £ /oh* ‘/Z x for every object (A,x) of A" ., We need the

following useful converse of this,

Proposition 0.l. With the notations of the preceding paragraph, every nai-

ural transformation F : P— y) is ‘fibred over a natural transformation M

‘F.—?G.

Proof. We put 'UA =,i'Z(A, wA) : (,DwA —> WiwA for an object A of _4_ .
Then the morphisms Pyt F A—>GA of B define a natural transformation st
=PLW: F—>G . For every object (A,x) of f._t » we have 1, : (A,x) —>

(4,00,) in A8

, and thus lA,E(A,x) =p 1 @ (A,x) — LP(A,Q)A) by nature

ality of fx . But then F(A,x) =pA » and [T lifts AL 0.




1. Operational categories. Operational categories were defined in [2], but

we give here a new definition which differs from that of [2] in several respects.
.Every category of algebras is an operational category in this sense, over the
category Ens of sets. Another operational category over Ens is the category
of compact Hausdorff spaces. Categories of modules, or more generally categories
of groups with operators, can be considered as operational categories over the
category of abelian vgroups and the category of groups. Operational categories
over a fibred cafegoz:y _Qs will occur in sec. 2.

From now on, let C be a given base category. We define a category over C
as a pair (A,U) consisting of a categox& A &and a functor U : A —>C .
By the usual abuse of language, we shall call A a category over C , the funce
tor U being understood. Example: a concrete category is a category over Ens ,
the category of sets, with a faithful "forgetful" functor U .

If A is a rategory over ( , then we define an operation on A over c
as a triple (D,].b,R) consisting of functors D and R from C to C, the

domain functor and range functor of the operation, and a natural transformation

/.4,: DU—>RU, For C =Ens , this specializes the concept of [2], where the
/‘"A tDUA—>RUA were relations instead of mappings and naturality of M
was relaxed. For this case, our present operations are, in the language of [2],
single-valued and everywhere defined. A definition of operations generalizing
'both the present definition and that of [2] could be obtained by replacing Ens
not by a category C as in this report, but by a bicategory S in the sense of

Bénabou [l]. However, we do not wish to pursue this here,

Example 1.1, Iet C = Ens , the category of sets, and let R = Id Ens ,




If DX=X" and Df=f :X —>Y' foraset X and amapping £ : X —> Y,
then an operation (D,f4,R) on a category A over Ens is an n-ary operation
on A in the usual sense., It associates with every object A of A, with
underlying set U A, a mapping py : (UA)* —>U A, and every morphism f :

L —>B of A, withunderlying mapping U f , satisfies s, (U £)® = (v £) Ay .

Here, n may be & natural number or a transfinite ordinal number.

Example 1.2. Let again C =Fns end R=1IdEns . Foraset X, let
D X be the set of all ultrafilters on X , and for a mapping f : X—>Y and
UED X, let (D £)LL be the ultrafilter on Y generated by the sets f(A) ,
AelU. 1 A is the category of compact Hausdorff spaces, then convergence of

ultrafilters defines an operation (D, lim, R) on A over Enms .

[+

Example 1.3. let M= (0%, u', B'), ., be a family of operations on A

over C ., If C has I-products, then let DA TTD:l A for &n object A

of C, and sz“Dif tDA~—>DB for a morphism f : A—>B . This
defines a product functor D = TT'D:L +» We define the product functor R = ]'TR:L
in the same way, and we put fA, = (TT;(,L:;')A = ﬂ'/wi : DU A4—;—>R UA. This
defines a product operation (D, /u,R) on A over C . Thus we may often replace

e family M of operations by a single product operation (D,/,L,R) .

Definition 1.4, Let A be a category on C, and let M = (Di, ,«,3,121)

iel
be a family of operations on A over C'. We say that A is M—omrational

over C 1if the following two conditions are satisfied.
1.4.1. Every object A of A 1is completely determined by the object U A

of C and the operationS/«Li :0'vA—>R UL, 1E£T.




1.4.2, For objects A, B of A and amorphism g : UA —>UB of C
such that /,L; (1)i g) = (R:L g) /&i‘. for a1l i & I, there always is exactly
one morphism f : A—>3B of A such that g=U¢f .

It follows immediately that the functor U : A —>»C is faithful for an
operational category A over C .

If C has I-products, and if all projections F;X : DX —>Di X, for
objects X of C , are epimorphisms of C , then one sees easily that A is
operational for e family M= (D%, ’ui,Ri) o1 OF overations if and only if A
is operational for the single product operation (D, /u,,R) of 1.3. Thus we shall
reastrict ourselves in what follows mostly to categories with a single operation,
Our results and proofs can easily be extended to categories with a family of
operations; only the notations are somewhat more messy.

Except for the fact that our definition of an operation is more restrictive
than that of [2], our definition of an operational category is more general than
that of [2], For C =Ens , the only situation considered in [2], we do not
require that domain functors and range functors preserve set inclusions as we did

in [2], and we impose no condition regarding subobjects in A .

2. Operational fibred categories. We combine in this section a fibred cate-

gory C° over C, as defined in [3], with an operational category A over c,
as defined above, to obtain a "pullback" category _A__r » Tibred over A and opere
ational over 9_" » Wwith an operation which lifts the operation of A .

More exactly, we require the following date.

2.1.1. _g_s is a fibred category over C .,

2.1.2. A 1is a category over C , with "forgetful" functor U : A —> c,




and with an operation (D, ,4_,R) over C .

2.1.35. Functors A and P from ¢° to C° are given, fibred over D
and R respectively, with fibre morphisms d;( and PX .

2.1.4, The structure morphisms FX of P presexrve infima and inverse
images (see [3], sec. 2, and sec., O above).

The last requirement, while essential for our theory, is not as troublesome
es it may seem, For a single operation, P is usually either the identity func-
tor 1Id _Qs or a constant functor. In both cases, 2.1.4 is satisfied. If we re-
place a family (D%, /ki, r) jeq » With lifted functors At ana PR , by the
product operation (D,PL,R) s, then we remnlace the functors Ai and Pi by the
product functors L = [T, Al ana P =T Pi which 1ift D and R . If every

functor P* satisfies 2.1.4, then the functor P = TTP* also satisfies 2.1.4.

Notations 2.2. For an object A of A, we denote by r A the set of

. s
81l x€ s UA such that g1, : (DU A,d‘UA x)—>(RU A Py ) in 7,
* .
i.e. A;)A x Q/JA PUA x in s DUA ., ¥We endow r A with the order rela-
tion inherited from s U A, and we denote by UA t T A—>s UA the inclusion
mapping, For f : A—>B in A, we define rf : rB—>r A by putting

UA(rf)=(sUf)?)B. Weput sUL=(UFf)*, butnot rf =f*,

Proposition 2.3, For an object A of A, r A is a complete lattice, -

closed under infima in s U A, _F_d,I_‘ f:A—>B in A eand Y€ r B, the

element (U f)*y of sUA isin rA, sond thus (r f) y is well defined.

Proof. For a femily (xi) gey Of elements of rA, we have

JUA (=) < N (dy, ) < N Bt Po =) = M* P (=)




using 2.1.4 and the fact that MA* preserves infima, Similarly,
»* * * »*
JUA(Uf) y £ (buig) Jmay LU purpLy
= * = *
Pt RUD*poy = s> ppy UE*y

for f:A—> B in A and yérB{]

Theorem 2.4. The data of 2.1 and 2.2 define a fibred category f over A

and a fibred functor Y : ér-; p_s over U: A.—>C, with fibre morphisms

?)A which preserve infima and inverse images.

Proof. The first part of the proof of 2.3 shows that r A is a complete
lattice for every object A of A, and that 'UA trA—» 8 UA preserves
infima. By the second part of the proof, rf : r B—> r A 1is well defined
for £:A~—~>B in A by U, (r£) =(0 f)*uB . The maps r f of the cate-
gary Cord of complete ordered sets clearly preserve infima and define a contra=
variant functor r : A* —> Cord . Thus the fibred category AT is well defined,

3
— -

The maps ’U:; preserve inverse images by the definition of the maps r f , and

thus they are the fibre morphisms of a functor Y : Ar —_ _(_)_B which lifts the

functor U : A —>C |

Theorem 2.5. The operation (D,st,R) of A over C cen be 1ifted to.an

operation (/-\.F.p) of A S!!.?l‘.u_(f » Yhere AL 1lifts pe IL A is oper-
-ational over C by (D,p4,R) , then A" is operational over C° by the lifted
operation (A,F,P) .

Proof. Ve have 1 AU A, x)—> P(U4, x) in €° for every object

(A,x) of A” by the construction of AT , and thus ML can be lifted to a




natural tranafomation/a, : AY —> PV, so that the operation (4,i,P) on
_.5._1. over _C__ls is defined. An object (A,x) of _4_r is determined by Y (A,x)

= (U A,x) and IE(A,x) =/‘1 if A 4is determined by U A and /'LA . If g
Y(A,x) = Y(B,x) in C® satisfies (Pg)/(T(A’X) - /‘I(B’y)(A g) , then

(r g)/uA =/4.B (Dg) 3n C. Thus g=Uf for a unique f : A—~3>B in A
if A 4is operational, But then (rf) y=(Uf)*y=gy, and x<(rf) y.
This shows that g =Y f for f : (A,x) —>(B,y) in ﬁi_r iff g=Uf for f:
A—>B in A, so that A" satisfies 1.4.2 if A does|

Finally, we characterize _é_r by a universal property.

Theorem 2.6. Let _B_t be & fibred category, and let F : B-——> A and .

Bt-—-—> be functors, with ‘;V fibred over UF ., Then W= )’ for a functor

Q- B —> A% wuhich lifts P if end only if AF:DUF—>RUF canbe
lifted to a natural transformation T : AV — P Y. If the functor ﬁ exists,

then it is unique.

Proof. Let "/j have fibre morphisms %'B ttB—>s8UPFPB. If ¢ exists,

with fibre morphisms @, , then A D : A¥Y—2 PY 1lifts pF:DUF—>RUF,
. %t .
and ?B y = UFB?B‘y =%3 y for an object (B,y) of B ., Thus the data deter-
mine the fibre morphisms ;DB » and hence ¢ » uniquely. Conversely, if Vo F
can be lifted, then pr . : A(UF B, g, y) —> P (UF B3, y) for every object
t

(B,y) of B'. Thus}UB meps t B into rF B, and yy =29 for a map

?B:tB———->rFB. For £ ¢+ B'~—>»B in B and y&t B, it follows that
Par T Y = Y, Ty é__(UFf)*%y = (UFf)*UFB 5 ¥

Upp (r f);vBy = (r f);oBy .
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Thus the maps ?B are the fibre morphisms of a functor @ : _gt — _Af which

lifts F , and clearly Y¢) = ‘;V for this functor[]

3. Complements and examples., We use again the notations of sec., 2.

if and only if the disgram PA : I—> A bas L as its limit or colimit in A .

Proof. This is [3; 3.4] and its dual, applied to our special case[]

Theorem 3.2. If the functor U : A —>C has a left adjoint functor P :

C —>A , with front sdjunction [B:14¢ —>UF, then the functor Y': A"

—5C® bas a left adjoint functor D : ¢° —» A" which lifts F, witha

front adjunction B : 14 ¢° —> Y@ wnich litts A3,
Proof. This follows immediately from [3; 5.3] and its proof|]

E.Eé‘_i_ii!l_ﬁ—-éé- If C =FEns , the category of sets, then the range functor
R =1d Ens of an n-ary operation is of course lifted to P = Id E_g_gs which
satisfies 2,1.4. The domain functor D of such an operation, with D X = b
for a set X , can be lifted to a functor & on Ens® , by letting A (X,x)
be the set D X = X° with the product structure in s X° induced by x&8 X,
If we apply this to a category A of algebras, then _JLr is the corresponding
category of algebras with "jointly continuous" operations, with continuous algebra
homomorphisms as morphisms, If _E__rl_s;_s is the category of topological spaces, or

of 1limit spaces, or of uniform spaces, then Ar is a category of topological

algebras, or of limit algebras, or of uniform algebras respectively.
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Example 3.4. We consider again a fibred category Enss over sets. Let

S y - L 3
(xi’xi)iEI be a family of objects of Ens , and let 7T; : TTxi —> X, be

the projection mapping. A mapping f 3 Xi_; Tl_xi is called an injection of

Xi into the set product if JCi f=1id X, , and 7!::’ f 1is e constant mapping for
all j #41 in I . The finest structure x& s (TT Xi) for which all injection
mappings f : (Xi,xi)""? (foi. x) are continmuous, for every 1 &1, is cal-

led the structure of separate continuity of the product 7'7'xi . Morphisms f :

(rr Xi, x) —> (Y,y) of E_ng_s , for this-structure x , are "separately con- -
tinnous" -in each "variable" f‘é 'xi -
From the domain functor D of an n-ary operation, we obtain a functor A‘
s . / n
on Ens  which 1ifts D by letting A(X,x) be the set DX =X with the
structure of separate continuity, constructed from the structures xi =x of

X, =X, for 0£i<n . If we apply this to a category A of algebras, then

AT is a category of algebras with "separately continuous" operations, again with

continuous algebra homomorphisms as morphisms,

EE?EE-'_LE___?._;Z' A special case of 3.3 occurs if Ey_g_s is the category of
equivalence relations (see [3; 4.5]) and A a category of algebras. Then r A,
. for an algebra A in A, 1is the complete lattice of congruence relations on A ,
and f is the category of algebras in A with congruence relations.

In 3.3 and 3.4, n can be a natural number or & transfinite ordinal number.
If n 4s finite and g_ng_s the category of equivalence relations, then the funce
tors O of 3.3 and A of 3.4 are the same. If n is transfinite, and Ens"

again the category of equivalence relation, then these functors are not the same,
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