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ON THE CATEGORIES OF TOPOLOGICAL ALGEBRA

Oswald Wyler*

In an earlier report [3] we presented a general theory of the categories

encountered in general topology and topological algebra. We pointed out that

these categories are fibred categories with fibres in the category of complete

ordered sets. We considered general properties of such categories, in particular

the lifting of functors and of adjoint functor pairs, and some specifically topo-

logically properties such as point separation axioms.

In the present report, we use the language and the techniques of [3] to

obtain a general construction of the categories encountered in topological algebra.

In fact, we solve a aore general problem. Given an operational category A over

a category £ and a fibred category £ over £ , we obtain a new category A r

which is fibred over A and operational over £ . A is also characterized,

up to equivalence-, by a universal property of pullback type. Specializing to

£ «s Ens , the category of sets, and to a category J± of algebras, we obtain

from the category Ens of topological spaces, or of limit spaces, or of uniform

r *

spaces, a category A of topological algebras, or of limit algebras, or of uni-

form algebras.

* This research was supported in part by IT.S.F. Grant GP-8773.
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The fact that A is fibred over A has an important consequence: all

categorical limits and colimits, such as products and coproducts, and protective

and injective limits, which exist in A can be lifted immediately from A to Ar .

This is of course well-known, but a general proof is only possible from a general

construction such as the one given here. Thus special liftings of categorical

limits and colimits to categories of algebras with topological structure are "dis-

covered" again and again, and sometimes even published.

Another important consequence is this. If free algebras exist in A , i.e.

if the forgetful functor U : A —>• £ has a left adjoint functor P : £ — > A ,

then P can be lifted to a functor Cp : £ — > A , left adjoint to the lifted

forgetful functor Y : A — ^ £ • Special cases of this, e.g. that of topologi*

cal groups, seem to be well-known, but the author has been unable to produce a

printed reference. The general theorem seems to be new.

The construction of A, depends not only on the categories A , £ , and £ r ,

but also on the lifting of the domain and range functors of the operations of A

from £ to £ . Thus we obtain among our examples not only the usual topologi-

cal or limit algebras with "jointly continuous" operations, but also topological

or limit algebras with "separately continuous" operations.

0. Preliminaries. We shall use the notations, definitions and results

°* C?]» except for some trivial changes such as £ S for £ , and "left adjoint"

for "coadjoint" . If a functor (£> s £ 8 — > B of fibred categories is fibred

over a functor P * £ — ^ B, , then we say also that <p lifts F . Such a func-

tor <fi is of the form <£> (C,x) = (P C,e>c x) for objects, with order preserving

maps a> : s C — > t P C , one for each object C of £ . These maps have been



studied in [3; sec. 5 ] ; we shall call them the fibre morphisms of CJD. If the

fibre morphisms of (£> satisfy <2if* « (p f ) • a> for every morphism f : A

of £ , then we say that they preserve inverse images.

Consider now two functors 0 : A —^JB and */̂ : A_ -—^J3 of fibred cate-

gories, fibred over functors F : A_ —^13 and G : A—2>_B , with fibre mor-

phisms tf> and <P. respectively. Let ju~: F — ^ G be a natural transformation.

If jXk t (F A, a>k x) — > (G A, yjt x) in 13 for every object (A,x) of AS ,

then these morphisms clearly define a natural transformation jCL s W ~^ ^ with

the property that P pi = A X P for the projection functors of A_ and 15 .

We say in this case that £c is fibred overyn. or that fiC lifts yu_. Clearly,

there can be at most one natural transformation u t (£> —> l/S which lifts a given

natural transformation \x : F —^ G , and this natural transformation u exists

if and only if J^ x ̂ .f\* % * for every object (A,x) of AS . We need the

following useful converse of this.

Proposition 0.1. With the notations of the preceding paragraph, every nat-

ural transformation £T: 0—?(/J is 'fibred over a natural transformation AX ;

G .

Proof. We put /u. =/I(A,u^) : (pook —-$> ̂ W A for an object A of A .

Then the morphisms M : F A — ^ G A of 13 define a natural transformation yu.

= PptUi F — > G . For every object (A,x) of A* , we have 1A : (A,x) ->

(A,u>A) in A8 , and thus lAy£(A,x) =/\ \ ' <^U,x) —•? ^(A,cu>A) by natur-

ality of yuT. But then iX(Atx) -f\ » and pC lifts AJL \\ ,



1^ Operational categories. Operational categories were defined in [2], but

we give here a new definition which differs from that of [2J in several respects.

Every category of algebras is an operational category in this sense, over the

category Ens of sets. Another operational category over Ens is the category

of compact Hausdorff spaces. Categories of modules, or more generally categories

of groups with operators, can be considered as operational categories over the

category of abelian groups and the category of groups. Operational categories

s
over a fibred category £ will occur in sec. 2.

From now on, let £ be a given base category. We define a category over £

as a pair (A,u) consisting of a category A_ and a functor U : A — > £ ,

By the usual abuse of language, we shall call A a category over £ , the func-

tor U being understood. Example: a concrete category is a category over Ens ,

the category of sets, with a faithful "forgetful" functor U .

If A is a category over £ , then we define an operation on A_ over £

as a triple (DftA,R) consisting of functors D and R from £ to £ , the

domain functor and range functor of the operation, and a natural transformation

yU,: D U — > R U . For £ = Ens, , this specializes the concept of [2], where the

A, : B U A —;> R U' A were relations instead of mappings and naturality of fi*-,

was relaxed. For this case, our present operations are, in the language of [2],

single-valued and everywhere defined. A definition of operations generalizing

both the present definition and that of [2] could be obtained by replacing Ens

not by a category £ as in this report, but by a bicategory S. in the sense of

Benabou [l]. However, we do not wish to pursue this here.

Example 1.1, Let £ = Ens , the category of sets, and let R = Id Ens 0



If D X = Xn and D f « f* : Xn — > Y31 for a set X and a mapping f : X —> Y ,

then an operation (D,^U,R) on a category k over Ens is an n-ary operation

on A in the usual sense. It associates with every object A of A , with

underlying set U A , a mapping yWj : (U A) —~> U A , and every morphism f :

A — ^ B of A , with underlying mapping U f , satisfies yUg (U f ) n = (U t)/iA. .

Here, n may be a natural number or a transfinite ordinal number.

Example 1.2. Let again £ = Ena and R = Id Ens . For a set X , let

D X be the set of all ultrafilters on X , and for a mapping f : X -—^ Y and

2i£D X , let (D i)tL be the ultrafilter on Y generated by the sets f(A) ,

k£hL. If A is the category of compact Hausdorff spaces, then convergence of

ultrafilters defines an operation (D, lim, R) on A over Ens .

Example 1.5. Let M - (D , fx , R ) 1 ^ . T be a family of operations on A

over £ . If £ has I-products, then let D A = 7 T D A for an object A

of £ , and D f = ~[T D f : D A — ^ D B for a morphism f : A — ^ B . This

defines a product functor D = TT~D . ¥e define the product functor R = |T H

in the same way, and we put fx. = (7Tju ). = ̂ A>U s D U A — > R U A . This

defines a product operation (D,iU,R) on A over £ . Thus we may often replace

a family M of operations by a single product operation

Definition 1.4. Let A be a category on £ , and let M » (D ,/ul ,R )

be a family of operations on A_ over £' • We say that jk is A7-operational

over £ if the following two conditions are satisfied.

1.4.1. Every object A of A is completely determined by the object U A

of £ and the operations yM-* : D1 U A —*• R1 U A , i £ I .



1.4.2. For objects A, B of A and a morphism g : U A — > U B of £

such that yu-g (D1 g) = (R s)f\ for all i ^ I , there always is exactly

one morphism f : A -—> B of A_ such that g = U f .

It follows immediately that the functor IT : A_ — > £ is faithful for an

operational category A_ over £ .

If £ has I-products, and if all projections JT^ : D X — > D X , for

objects X of £ , are epimorphisms of £ , then one sees easily that A is

operational for a family M - (DX,jx'fR )±^j of operations if and only if A

is operational for the single product operation (D, LU,R) of 1.3. Thus we shall

restrict ourselves in what follows mostly to categories with a single operation.

Our results and proofs can easily be extended to categories with a family of

operations; only the notations ate somewhat more messy.

Except for the fact that our definition of an operation is more restrictive

than that of [2], our definition of an operational category is more general than

ijhat of [2]. For £ = Ens , the only situation considered in [2], we do not

require that domain functors and range functors preserve set inclusions as we did

in [2], and we impose no condition regarding subobjects in A ,

2. Operational fibred categories. We combine in this section a fibred cate-

gory £ 8 over £ , as defined in [5], with an operational category A over £ ,

as defined above, to obtain a "pullback" category A_ , fibred over A_ and oper-

ational over £ , with an operation which lifts the operation of A .

More exactly, we require the following date.

2.1.1. £ is a fibred category over £ <>

2.1.2. A is a category over £ , with "forgetful" functor V : A — ^ £ ,



and with an operation (D,^c,R) over £ .

2.1.3. Functors A and V* from £ to £ are given, fibred over D

and R respectively, with fibre morphisms Q and p x .

2.1.4. The structure morphisms p of p* preserve infima and inverse

images (see [3], sec. 2, and sec. 0 above).

The last requirement, while essential for our theory, is not as troublesome

as it may seem. For a single operation, f3 is usually either the identity func-

tor Id £S or a constant functor. In both cases, 2.1.4 is satisfied. If we re-

place a family (D1, yK1, ̂ )±£.j » with lifted functors A1 and P1 , by the

product operation (D,/U»,R) , then we replace the functors ^ and P^ by the

product functors ^ = JT^A,1 and P - ffP which lift D and R . If every

functor P1 satisfies 2.1.4, then the functor P = 77Px also satisfies 2.1.4.

Notations 2.2. For an object A of A , we denote by r A the set of

all x£ s U A such that ^ : (BUA, CT^ X) — > (R U A, O^k x) in £
S ,

i.e. Jl x £(JL* PTJ. x in s D U A . We endow r A with the order rela-

tion inherited froa s U A , and we denote by U. '• r A — > s U A the inclusion

mapping. For f : A — ^ B in A , we define r f s r B — ^ r A by putting

Uk (r f) = (s U f) VB . We put s U f = (U f )* , but not r f = f* .

Proposition 2.3« For an ob.ject A _of A_ , r A is a complete latticef

closed under infima in s U A . For f : A •—^B in A. and yg r B , the

element (u f )* y of s U A is in r A , and thus (r f) y is well defined.

Proof. For a family (x±\^r o f elements of r A , we have
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using 2.1.4 and the fact that fx* preserves infima. Similarly,

SVA (U f)* y < ( D U f ) » / r o y <£ (D U t)*juB*fa y

= ^ / (H n t)*fuB y - ^k*fjJk (U f )* y

for f : A —> B in A and f

Theorem 2.4. The data of 2.1 and 2.2 define a fibred category Ar over A

and a fibred functor Y * A — ? £ over U : A — ^ £ , with fibre morphisas

VK which preserve infima and inverse images.

Proof. The first part of the proof of 2.3 shows that r A is a complete

lattice for every object A of JL , and that 1/ : r A — * s TJ A preserves
A

infima. By the second part of the proof, r f : r B —> r A is well defined

for f : A .—>B in A by x?k (r f) - (u f)*1>B . The maps r f of the cate-

gory Cord of complete ordered sets clearly preserve infima and define a contra-

variant functor r : A* — ^ Cord . Thus the fibred category Ar is well defined.

The maps V preserve inverse images by the definition of the maps r f , and

Y T* S
: A —^. £ which lifts the

functor TJ : A_—-^.£ Q

Theorem 2.5. The operation (D^A^R) of A_ over £ can be lifted to an

operation (AtJZtP) of Ar over CS , where JZ lifts f^. If A is oper-

ational over £ .b£ (D,yu.,R) , then A^ is operational over £ S by the lifted

operation {&fJZ,r) .

Proof. We have yu : A (U A, x)—> P ( u A, x) in £ S for every object

(A,x) of Ar by the construction of Ar , and thus JU. can be lifted to a



natural transformation LA, : AY —>PY, so that the operation (£,/+, P) on

Ar over C8 is defined. An object (A,x) of Ar is determined by Y(A,x)

= (U Afx) and V-/k \ ~/\ i f A i s determined by U A and fL. . If g :

Y(A,x) —> Y(B,x) in £S satisfies (Pe)fckx) = ptB y)(Ag) , then

(R g) At = yU. (D g) in £ . Thus g = D f for a unique f : A — > B in A

if A is operational. But then (r f) y = (U f)* y = g y , and i ^ (r f) y ,

This shows that g = / f for f : (A,x) — > (B,y) in Ar iff g = U f for f :

A — > B in A , so that Ar satisfies 1.4.2 if A doesO

Finally, we characterize A_ by a universal property.

Theorgm_2jS. Let B. be a fibred category, and let P : B —> A and ^ :

B — > 0s be functors, with y^ fibred over U P . Then V^= Y0 for a functor

(pi B*''-̂  Ar which lifts F if and only if ^ F : D U F — » R U F can be

lifted to a natural transformation "P~; A V—» ^ V ^ If the functor ^ ezists.

then it is unique.

Proof. Let V^ have fibre morphisms <^ : t B — > s U F B . If <fi) exists,

with fibre morphisms <p^ , then /Z 0 : <d V^-—^ P )^ lifts ̂ P : D U P — > R U P ,

and jpB y = U p g ^ y = ^ y for an object (B,y) of B . Thus the data deter-

mine the fibre morphisms d>- , and hence (£) , uniquely. Conversely, if JU. P

can be lifted, then jx ̂  : A (U F B, ̂ fi y) -> ^ (u P B , ^ y) for every object

(B,y) of B , Thus y> maps t B into r P B , and \LL. "V-^OL for a nap

/ o ' a Fa To
: t B —2> r P B . For f : B' — > B in B and y ̂ -t B , it follows that

f* y - fB, f* y ^ (U P f )* ̂  y « (U P f )*
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As t T

Thus the maps G>_ are the fibre morphisms of a functor (p : 1$ —>• A which

lifts F , and clearly Y0 = f for this functorf)

3. CompJ.eoents_and_6zamgles. We use again the notations of sec. 2.

Theorem 3.1. A diagram A s I — > A_ has a limit or colimit (L,u) in A_

if and only if the diagram PA : I — ^ A_ has L as its limit or colimit in A .

Proof. This is [3» 3.4] and its dual, applied to our special caseQ

Theorem_3._2. If the functor U : A — > £ has a left ad.joint functor P :

£ — ^ A , with front adjunction £ : Id £ — > U P , then the functor Y : iL

5> C3 has a left ad.ioint functor (b : CS —•> Ar which lifts P , with a

front ad.iunction & : Id £ s — > /</> which lifts /3 .

Proof. This follows immediately from [3; 5.3] and its proof0

Examgle_3.3« If £ - Ens , the category of sets, then the range functor

R = Id Ens of an n-ary operation is of course lifted to P - Id Ens8 which

satisfies 2.1.4. The domain functor D of such an operation, with D X = Xn

for a set X , can be lifted to a functor /$ on Ens3 , by letting A. (X,x)

be the set D X = X with the product structure in s X11 induced by x £ s X .

If we apply this to a category A of algebras, then Ar is the corresponding

category of algebras with "jointly continuous" operations, with continuous algebra

homomorphisms as morphisms. If Ens is the category of topological spaces, or

of limit spaces, or of uniform spaces, then A1* is a category of topological

algebras, or of limit algebras, or of uniform algebras respectively.



11

Example 3.4. We consider again a fibred category Ens over sets. Let

(X ,x ) pT be a family of objects of Ens , and let 7^ : 7* X —&• X be

the projection mapping. A mapping f : X. — > ^ ^ *s c a H e ^ a*1 injection of

X. into the set product if 7C f = id X. , and VC f is a constant mapping for
X 1 • J

all j ĵ i in I . The finest structure x £ s (TT x ) for which all injection

mappings f : ( X , , x ) — ^ (JTX r x) are continuous, for every i £ l , is cal-

led the structure of separate continuity of the product / / X. . Morphisms f :

(7~T X., x) —?> (Y,y) of Ens , for this-structure x , are "separately con- -

tinuous" in each "variable" f^ X. .

Prom the domain functor D of an n-ary operation, we obtain a functor A

on Ens8 which lifts D by letting A(X,x) be the set D X = Xn with the

structure Of separate continuity, constructed from the structures x = x of

X = X , for 0 4. i < n . If we apply this to a category A of algebras, then

Ar is a category of algebras with "separately continuous" operations, again with

continuous algebra homomorphisms as morphisms.

e %5« A special case of 3.3 occurs if Ens is the category of

equivalence relations (see [3; 4.5]) and A_ a category of algebras. Then r A ,

for an algebra A in A_ , is the complete lattice of congruence relations on A ,

and A_ is the category of algebras in A with congruence relations.

In 3.3 and 3.4, n can be a natural number or a transfinite ordinal number.

If n is finite and Ens the category of equivalence relations, then the func-

tors A of 3.3 and A of 3.4 are the same. If n is transfinite, and Ens8

again the category of equivalence relation, then these functors are not the same.
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