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Abstract

The steady flow of electrical current through a network

of conductors has served as a suggestive model for a variety

of mathematical theories. This paper describes electrical

models related to the following theories: series-parallel

graphs, parallel addition of matrices, lattice theory, gen-

eralized inverses, Grassmann algebra, Wang algebra, matroids,

extremal length, Rayleighfe reciprocal relation and the width-

length inequality.
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NETWORK MODELS

The history of science shows that the development of

mathematics has been accelerated by the use of models. Thus

geometric diagrams have served as models for algebraic relations.

Gambling has served as a model for probability theory. Gravi-

tation has served as a model for harmonic functions. Such

models have accelerated mathematical development for three

main reasons: (i) Attention is focused on significant pro-

blems, (ii) Models aid the intuition in perceiving complex

relations. (iii} New concepts are suggested.

Since the days of Ohm and Kirchhoff, the study of electri-

cal networks has stimulated developments in practically every

branch of mathematics. For example network models have con-

tributed to topology, nonlinear differential equations, function

theory, boolean algebra and information theory.

Networks are still an abundant source of mathematical

problems. This paper describes several such problems which have

interested me. These problems are varied but will all involve

the steady flow of electrical current through a network of

resistors obeying Ohm's law. This is the classical Kirchhoff

network and of main concern here will be the joint resistance

of such a network.



1. The four color problem.

One of the first network models which attracted my interest

was an electrical correspondence of

map coloration. This can be illustrated

by the simple map shown in Fig. 1 con-

sisting of a triangular region

surrounded by four quadrilateral

regions. This map is colored by

four "colors" I, II, III and IV.

This coloration has been chosen so that

the color IV does not appear on the

boundary regions.

\

A map coloration
Figure 1

If a region has the color number X let a cyclic current

of X amperes flow clockwise around the boundary of the

region. Thus IV amperes flows around the boundary of the

triangle. Now superimpose all of these cyclic flows. The

strength of the resultant flow in the boundary edges is given

in arabic numerals and the direction is indicated by arrows.

Thus one edge of the triangle separates regions colored IV

and I so the strength of the current through this edge is

IV - I = 3 amperes. Clearly then the edge currents have

strengths 1, 2, or 3. Moreover, the total current flow satis-



fies Kirchhoffs current conservation law. This comes about

because the total current flow is a superposition of cyclic

flows.

Now consider an arbitrary map colored in four colors

I, II, III and IV such that IV does not appear on the

boundary. Then by the same procedure given in the above example,

it is seen that there is a conservative flow in the edges such

that the current strength in each edge is 1, 2, or 3 amperes.

Conversely, suppose that there is a conservative flow

through the edges of a map such that the current strength in

each edge is 1, 2, or 3 amperes. Now it is an elementary theorem

of network theory that any conservative flow can be achieved

by a superposition of cyclic currents flowing clockwise around

the edges of the regions. Then the boundary regions have

cyclic values +1, +2, +3 because the cyclic current must be

equal to the boundary edge current. Next, observe that

neighboring region must have cyclic currents differing by an

integer. Thus by moving from region to region it is seen that

all cyclic currents are integer valued.

Next reduce the cyclic currents mod 4. Then we obtain a

coloration of the map in colors I, II, III and IV. Since the

edge currents are not congruent to zero mod 4 it follows
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that adjacent regions have different color. Moreover, the

boundary regions are not colored IV. This proves the follow-

ing theorem.

A planar map can be colored in four colors if and only if

there is a. conservative flow through the edge network such that

the current through an edge has strength 1, 2 or 3 amperes.

To extend these ideas to networks which are not planar,

I made the following conjecture. Consider a network such that

every branch (edge) is on some circuit. Then there is a con-

servative flow such that the current through a branch has

strength 1, 2, 3 or 4 amperes. Similar ideas were independently

developed by W. T. Tutte.



2. Series-parallel networks.

Shown in Fig. 2 is a simple

circuit containing a battery of

voltage E and a resistor of

resistance R ohms. Then the

current I flowing in the circuit

is determined by the relation

f = R > 0.
A simple circuit

Figure 2
This is Ohm's law.

Shown in Fig. 3 are two resistors connected in series.

One resistor has resistance A \ »•

ohms and the other has resistance

B ohms. Then the joint resistance

R between terminals 1 and 2 is given

by the formula 7

(2) R = A + B. Reistors in series
Figure 3

On the other hand, the two resistors could be connected in

parallel as shown in Fig. 4. Conductance is the reciprocal of



of resistance and conductances add in

the parallel connection so

R"1 - A"1

Solving for R gives $

(3) R = AB
A + B

and this is the formula for

the joint resistance R

of two resistors in parallel.

To have a convenient short notation for the joint resistance

of resistors connected in parallel let

Resistors in parallel
Figure 4

(4) B = AB
A + B

Then A : B may be regarded as a new operation termed

parallel addition [17]. Parallel addition is defined for any

non-negative numbers. The network model shows that parallel

addition is commutative and associative. Moreover, multi-

plication is distributive over this operation.

Consider now an algebriac expression in the operations

(+) and (:) operating on positive numbers A, B, C, etc.

An example is
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(5) R = A + B : (C + D : E) .

To give a network interpretation of such a polynomial read

A + B as "A series B" and A : B as "A parallel B "

then it is clear that the I o •— I
expression (5) is the joint resistance /\ <

of the network shown in Figure 5.

Networks obtained from such

polynomials are termed series- > ~t <. £

parallel connections. j

Not every network is a

series-parallel connection. In
A series-parallel connection

particular it can be checked Figure 5

that the Wheatstone bridge connection of Fig. 6 is not a

series-parallel connection.

In fact it follows from an '* I

A £
analysis given in reference \
[12] that a network is a series-

parallel connection if and only t> ̂> -K ./"

if there is no embedded network

having the Wheatstone bridge

configuration. Another simple The Wheatstone bridge connection
Figure 6

characterization of series-

parallel connection has been given by Riordan and Shannon [23].

According to a principle stated by Rayleigh [22] the

current flow through a network may be described as taking the



paths of least resistance. Alfred Lehman [18] used Rayleigh's

principle to derive an interesting inequality termed the

series-parallel inequality. He

considered a network such as shown

in Fig. 7. Then the joint i Q

resistance when the switch S J>
A > C

is open is

oo
= (A + B) : (C + D) . S

D
On the other hand, when the switch

S is closed the joint resistance is

Ro = A : c + B : D• Lehman's connection

Figure 7

But the current takes the paths of least resistance and there

is less constraint with the switch closed so

(6) A : C + B : D < (A + B) : (C + D) .

This is the series-parallel inequality and in ordinary algebra

it is expressed as

A C BD (A + B) (C + D)
A + C B + D— A + B + C + D'
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It is worth noting that Lehman's connection corresponds

to replacing the resistor E in the Wheatstone bridge convec-

tion with a switch. Let R^ denote the joint resistance of

Wheatstone's bridge. Then the following is a generalization

of Lehman's inequality

This also is a consequence of Rayleigh's principle. The inequality

on the right side of (7) is obtained by putting the resistor

E in series with the switch. The inequality on the left is

obtained by putting the resistor E in parallel with the

switch.
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3. The parallel addition of matrices.

The various relationships just described become more

interesting and suggestive when the scalar formulation of

Ohm's law is replaced by a vector

formulation. For example, Fig. 8

depicts a resistor box with two

pairs of terminals. The first pair

is in circuit 1, denoted by a solid

line, and the second pair is in circuit

2, denoted by a dashed line. Then

the currents and voltages in these

circuits satisfy equations of the

form

A resistor box
Figure 8

(8a)

El "

E2 "

R12I2

R22I2

In vector form, these equations can be written as

(8b) E = RI.

If the box just contains interconnected resistors, then it

results that R is a symmetric matrix. Moreover, by the

conservation of energy it follows that R is positive semi-
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definite. Therefore, in what follows, an arbitrary symmetric

positive semidefinite matrix R shall be termed a resistance

matrix. For an appropriate generalization where R is not

symmetric, see [13].

Resistance boxes may be added

in series as is shown on the left

side of Fig. 9. If A and B are

the resistance matrices of the two

boxes, then the joint resistance

matrix R is given by

(9) R = A + B.

In other words series connection of

resistance boxes corresponds to

addition of their matrices. (This

assumes that the current I- in
Series addition of

resistor boxes

Figure 9

the first circuit of box A is

the same as the current in the first

circuit of box B. This can be achieved by use of isolation

transformers.) The right side of Fig.9 gives an abbreviated

symbolism for the series addition of resistor boxes.
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Note that any current vector I can be the input to a

resistor box. However, not every voltage vector E can be

an output if R is a singular matrix. In any case, the

following well-known theorem relates the range spaces of semi-

definite matrices.

(10) Range(A + B) = Range A + Range B.

It is equally possible to connect the resistor boxes

in parallel as shown on the

left side of Fig. 10. The

right side gives the symbolic

diagram. First, suppose

A and B are non-singular

then

R"1 = A"1 +

where R is the joint

resistance matrix of the

parallel connection. Solving

for R gives

(11) R = A (A + B) " 1B.

o

A

Parallel connection of
resistor boxes

Figure 10

ill

, i
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Again it is convenient to have a short notation for the operation

on the right side of (11) so let

(12) A : B = A(A + B) """"B

define parallel addition of matrices A and B. Various pro-

perties of this new operation w e r e developed in a joint paper

with William N. Anderson [2]. Some of these properties will

now be described.

First, note that relation (10) shows that

Range (A + B) => Range B for semidefinite matrices. Hence

(A + B ) ~ B is then well defined. This shows that the opera-

tion A : B is defined for any pair of positive semidefinite

matrices.

By virtue of the network model, we expect that the parallel

sum is both commutative and associative. A direct proof of

commutativity follows from the following manipulations:

A : B = (A + B - B) (A + B) "1B - B - B (A + B) " 1B.

B : A = B(A +B)"1(A + B - B) = B - B (A + B ) " ^ .

This proves that

(13) A : B = B(A + B) "1A,

It is obvious from relation (12) that Range (A : B) <=

Range A. Likewise, relation (13) shows that Range (A : B) <=

WJKT UBMW
ELLW UKlVLftSITY
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Range B. Further analysis gives that actually

(14) Range(A : B) = Range A D Range B.

Relations (10) and (14) reveal a remarkable duality between

series addition and parallel addition of matrices.

To give an application of the above duality principle

the networks shown in Figure 11 are now analyzed.

Matrices with the same range

Figure 11
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Clearly the joint resistance matrix of the first network is

R± = (A + B) : (B + C) : (C + A) .

If a, )3 and y are the range spaces of A, B, and C

respectively it follows from (10) and (14) that

Range R± = (a + /3) n (j3 + y) n (y + a) .

On the other hand the joint resistance matrix of the second

network is

R2 = A : (B + C) + B : (A + C) .

Therefore the range of this matrix is

Range R2 = a n (j8 + y) +'J}(1 (y + a) .

The subspaces of a vector space form a modular lattice. There

are various identities which hold on a modular lattice. In

particular

(15) (a + fi) n ()3 + y) n (y + a) = a fl (j8 + y) + 0 n (a + y)

as is shown by Birkhoff [3]. This proves

(16) Range R, = Range R_.
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The reader will see that there are various analogous procedures

for constructing networks with the same range.

The parallel sum operation is found to satisfy various

inequalities. Thus the norm, trace, and determinant satisfy

the following inequalities:

(17) ||A : B|| < ||A|| : ||B|L

(18) tr(A : B) < ( tr A) : ( t r B) ,

(19) det (A : B) < (det A) : (det B) .

Here the notation (:) on the right side of these inequaliites

denotes the scalar parallel operation. These inequalities give

further manifestations of the duality between series and parallel

addition.

The network connections used by Lehman to obtain the

series-parallel inequality can be extended to resistor boxes.

It is then found that

(20) A : C + B : D < (A + B) : (C + D)

for positive semi-definite matrices A, B, C and D. Here

A < B means that B - A is positive semidefinite.



16

The scalar inequality (7) refers to the Wheatstone bridge

and is a generalization of the series-parallel inequality.

Presumably (7) can be extended to matrices; however, this is

an open question.

Another type of connection of resistor boxes is termed

u
In the hybrid connection

the hybrid connection.

some circuits are put in series

and some circuits are put

in parallel. Such a

connection is shown in

Fig. lib. By use of the

hybrid connection an elegant

solution of the network synthesis

problem was found [25].

* r \

I
I

til

£

Hybrid connection of
resistor boxes

Figure lib

The joint resistance matrix R of the hybrid connection

may be termed hybrid addition of matrices A and B. Some

recent studies by George Trapp and the writer have revealed

several properties of hybrid addition. In particular, the

series-parallel inequality (20) is valid if A : B now denotes

hybrid addition of A and B.
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4. The Bott-Duffin duality analysis.

It has long been known that many theorems about electrical

networks have companion, theorems obtained by interchanging

current and voltage variables and replacing resistance by

conductance. A theory of this electrical duality was devel-

oped in collaboration with Raoul Bott

[4]. To explain this approach it

suffices to consider a simple directed

network such as shown in Fig. 12. This

network has six branches and so

let I. ,I_,. . .,Ifi be the currents

flowing in the directed branches.

Then Kirchhoff's current law states
A directed network

Figure 12

that the total current entering a node vanishes. For example

at the node where branches (1,2,3) meet

(21) I1 - I 2 - I 3 = 0 etc.

Let V,,V_,...,V6 be voltage drops across the branches.

Kirchhoff's voltage low states that the voltage drops around

any circuit vanishes. For example branches (1,2,4) form a

circuit so

(22) + V 2 + V 4 = 0 etc.
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It was observed by Herman Weyl [24] that the two laws of

Kirchhoffcause current and voltage to be orthogonal i.e.

6
(23) L I.V. = 0.

^j-1 3 3

This holds for any current flow I satisfying Kirchhoff's

first law and any voltage V satisfying Kirchhoff's second

law. For an application of (23) see [8].

Weyl's theorem (23) was the inspiration for our general

duality analysis. But we changed (23) from a theorem to a

postulate. Thus consider a six-dimensional Euclidean space E,

Let K be the subspace of E corresponding to vectors

V = (V-^Vj, . . .,V6) which satisfy Kirchhoff <s voltage law.

Then let P be the perpendicular projection operator from E

2into K. Thus P is a symmetric matrix such that P = P.

Let P1 = 1 - P then P1 is also a perpendicular projection

matrix and PP1 = 0 . Moreover P1 projects E into K' the

orthogonal complementary subspace of K. By Weyl's theorem

it follows that K1 is the space corresponding to vectors

satisfying Kirchhoff's current law.

To relate the perpendicular projection matrix P to

electrical properites let G be a diagonal matrix whose

diagonal elements g-tjCfo'• • * J9fi a r e positive numbers giving
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the conductances of the six branches. Then the discriminant

D is defined as

(24a) D = det(GP + P') .

Thus D is a multilinear form in gT*..-*g6

(24b) D =* g1g2g3 +•••+ g 2
g4 g5 #

Each term of D is a product of branches which form a tree

of the network.

transfer matrix T is defined as

(25) T = P(GP + P') ~1.

This matrix has the following physical significance. Suppose

that a current source of strength I is inserted in branch

6. Then the voltage across branch 2 is V» = T ,1. In fact

all electrical properties of the network are given by the

transfer matrix T.

Electrical duality comes about by defining G1 to be a

diagonal matrix whose diagonal elements 9\ SVJJ • • • ><3}L a r e

the resistances of the branches. Then the dual discriminant

is defined as

(26a) D< = det(G'P' + P) T
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Thus D1 has the form

(26b) D« = g ^ g ^ +...+ g f g ^ -

Each term of D! is a product of branches whose complement

is a tree. The dual transfer matrix is

(27) T' = P' (G'P1 + P) "1.

This matrix has the following physical signficance. Suppose

that a battery of voltage E is inserted in branch 6 then

the current in branch 2 is I~ = T',D.

We term the correspondence between primed and unprimed

symbols electrical duality. Moreover, there are various

relations between the primal and dual symbols. For example

(28) G'T< + TG = 1.

A beautiful algebraic structure develops from the

above concepts. Moreover, two far reaching generalizations

are feasible: (i) P can be chosen to be an arbitrary perpendi-

cular projection matrix. (ii) G can be taken to be an arbitrary

matrix. In this generalization T is termed the constrained

inverse of G. The constrained inverse exists if and only

if the discriminant D / 0. These generalizations also have

elctrical and mechanical interpretations.
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5. How to use Wang algebra.

K. T. Wang managed an electrical power plant and in

his spare time he sought simple rules for solving the net-

work equations. These rules appear to have a connection with

the Bott-Duffin analysis. To make this connection Bott and I

restated his rules as three postulates for an algebra:

(i)

(ii)

(iii)

xy = yx,

x + x = 0.

xx = 0.

Here x and y are arbitrary elements of the algebra [5,10].

To see how to apply the Wang algebra consider the network

shown in Fig. 13. Let the branch

conductances a,b,c,d and e be

regarded as independent genera-

tors of the Wang algebra. A star

element of the algebra is defined

to be the sum of branches meeting L

at a node. Thus the star element

at node 3 is (a + b + c). To find

the discriminant, the rule is to

carry out the Wang product of all

stars except one. Then omitting the star at node 2 gives
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D = a (a + b + c) (d + e + c) = (ab + ac) (d + e + c) .

Thus the discriminant of the network is

(29) D = abd + abe + acd + ace + ab.c.

It can be readily checked that the terms of (29) give all the

trees of the network of Fig. 13.

To find the joint resistance R between nodes 1 and 2

the rule is to write R as a fraction. The denominator of

the fraction is the discriminant D and the numerator N is

the product of all stars except those at 1 and 2. Thus

p E _ ad + ae + bd + be + cd + ce + ac + be

There are also simple rules for calculating the transfer

matrices T and T'.

The network shown in Fig. 13 is a series-parallel connection]

in fact, it is the same connection as is shown in Fig. 5. Thus

the joint resistance R could also be calculated by the series-

parallel formula (5). However, the Wang rules apply even if

the network is not of series parallel type.

A proof of the Wang rules was made by first observing

that the Wang algebra is the Grassmann algebra when the



23

coefficient field is the integers mod 2. However, the Grassmann

algebra gave a more general system of calculation and which

could be directly related to the Bott-Duffin analysis.

For example, let the symbols a, b, c and d now be

regarded as independent vectors of a real vector space E..

Then the vectors (a + d) , (a + b + c), (d + c - a) form a basis

of a subspace S but they are not stars (or circuits) of any

network. The Grassman algebra consists of the vectors of E.

together with outer products formed by the law xy = -yx for

any two vectors x and y. Then the outer product IT asso-

ciated with S is

7T = (a + d) (a + b + c) (d + c - a)

= abd + acd + abc + dac + dbc - dba - dca

= 2abd + 3acd + abc + dbc.

Then according to the Bott-Duffin rule the coefficients of the

discriminant are the square of the coefficients of the outer

product, thus

D = 4abd + 9acd + abc + dbc.

Now a, b, c and d denote real numbers.
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6. What is a regular matroid?

There are ideal electrical networks which do not obey

Kirchhoffs law. For example,

Fig. 14 shows a double triangle

network linked with a magnetic

ring of zero magnetic resistance.

Then by Ampere's law, no electric

current may link the ring. This

imposes a constraint in addition

to Kirchhoff's current law.

Nevertheless, the Bott-Duffin

analysis applies without change.

More remarkable is the fact that

A linked network
Figure 14

the Wang algebra also works. For example, the dual discriminant

is given by the Wang product D1 = o$y where a, j8 and y

are the three square circuits indicated in Fig. 14.

This raises the following question. What characterizes

subspaces such that the discriminant can be calculated by Wang's

short cut method? Let us term such subspaces quasi-Kirchhoffian.

Then an answer to the question is given by the following state-

ment [5,10].
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Theorem: Let S be_ an m-dimensional subspace of n-dimensional

real vector space E . Let C be the set of those vectors

of S whose components are +1, -1 or 0. Then S is

quasi-Kirchhoffian if and only if C ijs ari m-dimensional

vector space under addition mod 2.

For example, if S is the subspace defined by Kirchhoff's

current law then C is the set of flows of unit strength. In

other words a vector of C is composed of one or more non-

overlapping circuits.

If S is quasi-Kirchhoffian then C may be thought of

as being composed of non-overlapping quasi-circuits. A matroid

is a set of vectors which behave like circuits under addition

mod 2. Thus C is a matroid. In fact the above theorem gives

a necessary and sufficient characterization of regular matroids.

For a postulational treatment of matroids reference is made

to the elegant development given by Minty [20].
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7 . Squaring the square.

Is it possible to divide a square into squares no two of

which are equal? This puzzle resisted attack for years but

fell before a massive assault by Brooks, Smith, Stone and Tutte.

Making use of an electric network model these authors developed

an example in which a square was divided into 26 smaller squares

[6]. The minimum number is not known.

The network they employed may be described as a lumped

network equivalent to a distributed network. To understand this

correspondence consider a situation when a rectangle is divided

into smaller rectangles such as shown in Fig. 15. Suppose

that the rectangle is constructed

out of a thin conducting plate

such that a unit square has a

resistance of one ohm between

opposite sides. Since resis-

tance is proportional to length

and inversely proportional to

width it follows that a square

of any size has resistance of

one ohm. Thus if E is the

1 1
* t

1 X^ i
1 ^ ^ 1

1 t
) 1
. i
. i
1 i
| |

A

i

D

T v
C 1

c ;

!

height of the rectangle and I

its width, then the resistance

from top to bottom is R = E/l.

A rectangular network

Figure 15
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The streamlines of current flow in the rectangle are

vertical lines. Thus, the flow will not be changed if cuts

are made along the vertical dashed lines separating the

rectangles marked B, C, D, E. The equipotentials are hori-

zontal lines. Thus the flow would not be changed if perfectly

conducting bus bars are placed along the solid lines forming

upper and lower sides of the rectangles. By virtue of these

observations the plate may be regarded as a lumped network

having lumped resistors of value A, B, C, D and E ohms.

These resistances are determined by the dimensions. Thus if

I is the width and E is the height of the rectangle marked

C then C =

Clearly the lumped network is the same as the series

parallel connection shown in Fig. 5. Thus the resistance of

the plate is

(31) R = A + B : (C + D : E)

because the cuts and bus bars do not change resistance. This

example of a rectangular network suggests the following con-

jecture. Every division of _a rectangle into rectangles has

an equivalent series-parallel connection and every series-

parallel connection has an equivalent division of ja rectangle

into rectangles.
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8. Rayleiqh's reciprocal relation.

Again consider a conducting plate having resistance of

1 ohm between opposite sides of a unit square. In Fig. 16

is shown a curvilinear

quadrilateral plate with sides

1, 2, 3 and 4. The sides 3

and 4 are insulated but sides 1

and 2 are connected to perfectly

conducting bus bars (denoted by

heavy lines). Let R,„ be the

joint resistance between sides 1

and 2. Next let sides 1 and 2

be insulated and let bus bars be

connected to sides 3 and 4. If

R_. is the joint resistance in

in this dual situation then

(32) R12R34 "

A curvilinear quadrilateral
Figure 16

This is Rayleigh's reciprocal relation [21].

To prove (32) draw the equipotential lines and the stream-

lines. Since the potential u(x,y) is harmonic the streamlines

are the equipotential lines of the conjugate harmonic function
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v(x,y)• It follows from the Cauchy-Riemann equations that

the two sets of equi-

potentials are orthogonal

and divide the region into

curvilinear squares such as is

shown in Fig. 17. This breaks

the flow up into channels.

One of these channels is

denoted by cross hatching

in Fig. 17. This channel

is a series of 7 squares so

the total resistance is 7

Conjugate functions
Figure 17

ohms. It is seen that there are 4 channels in parallel so

this gives R,? = 7/4 ohms. Now consider the conjugate

problem then Fig. 17 again applies, but the equipotentials

and streamlines interchange roles. Thus a channel from

side 3 to side 4 is a series of 4 squares and so the channel

resistance is 4 ohms. There are 7 channels so the total

resistance is R^4 = 4/7 ohms. This is the proof of (32)

given by Rayleigh.

A surprising consequence of the Rayleigh relation arises

when the quadrilateral region has bilateral symmetry as in



30

Fig. 18. By symmetry

H e n c e kY

Rayleigh's reciprocal

R12 = R34*

Self dual conductor
Figure 18

1

relation R,- = 1 ohm.

These considerations

raise the question of a

lumped network analog of

Rayleigh's reciprocal

relation [9,11]. To

answer this question

consider Fig. 19. A planar

network is shown in solid

lines with two distinguished

nodes, 1 and 2. Another

planar network is shown in ^

dashed lines, and it has

two distinguished nodes,

3 and 4. These networks are

termed dual because of the

following properties: (i)

Crossing branches give a one-to-one correspondence between

the networks. (ii) A region of one of the network contains

one and only one of the nodes of the other network. (iii) The

V „'

Dual networks
Figure 19
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distinguished nodes are on the boundary and are not in a

region. (iv) If branches cross the resistances r and r*

are required to satisfy

(33) rr* = 1.

Under these hypotheses it follows that the reciprocal relation

(32) holds for the joint resistance of the two networks.

A proof of (32) can be given by noting that Kirchhoff's

current law for the primal network defines the same constraint

as Kirchhoff's voltage law for the dual network. It follows

immediately from the Bott-Duffin analysis that the resistance

of the primal network is equal to the conductance of the

dual network.
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9. Upper bound and lower bound networks.

The potential u(x,y) of a conducting plate satisfies

Laplace's equation

*2 >.2

dx2 dy2

To solve potential problems on a computer Laplace's equation

is approximated by the difference equation

(34) u(x y) = h) + u(x,y - h)

Physically this corresponds to replacing the conducting plate

by a wire screen having square meshes of side h. Then

equation (34) states that the potential at a node is the

mean of the potentials at the four neighboring nodes. This

is clearly a consequence of the laws of Ohm and Kirchhoff.

It is important to know the nature of the error in

replacing the plate by

the wire screen. As an

approach to this problem

consider the rectangular

plate shown in Fig. 20.

The plate is 4 cms. high

and 3 cms:, wide so the

1 1
_ 1 „

1

1
- 1 —

I

1

1

1

1
- H —

• —

t

i
. j — .

i

i

-r-
i

_ ! _ _

i

Plate and screen
Figure 20
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resistance between the top edge and bottom edge is 4/3 ohms.

This suggests that the screen wire should have a resistance of

one ohm per centimeter. First suppose that the screen is placed

as shown by the dashed lines. Then the horizontal wires

carry no current but the current flows through three verti-

cal wires, each having a resistance of 4. The total

resistance is 4/3 ohms so there is no error in using the

dashed network. Next consider the network indicated by

solid lines. Now there are 4 vertical wires and this poses

a problem. However, if it is supposed that the wires on the

boundary have resistance of 2 ohms per cm. then the correct

joint resistance of 4/3 ohms is again obtained.

Next consider an

arbitrary region made up

of squares. Such a plate

is shown in Fig. 21. Let

R be the joint resistance

from edge 1 to edge 2 when

the other edges are insula-

ted. Two screen networks

are shown in Fig. 21. The

1

J.I'-.
.-1 -

1
1
1

— I""—

-I-

- ' -

«_ i_

-

I.. _

1

4

i

1
T

- f -

- t ~
1

- { • -

1 !

resistance of the square

sides are to be 1 ohm
An L shaped plate

Figure 21
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inside and 2 ohms on the boundary. We term the solid lines

the upper network. Let R be the joint resistance of

the upper network between edges 1 and 2. We term the

dashed lines the lower network. Let R be the joint

resistance of the lower network. Then the following inequal-

ity maintains

(35) U R < RL.

Thus the upper network furnishes an upper bound to the

conductance and the lower network furnishes a lower bound to

conductance [9] .

The proof of (35) is obtained as a special case of a

more general theorem

in which a polygonal

region is triangulated in

an arbitrary rashion.

Thus consider the poly-

gonal plate shown in

Fig. 22. The triangulation

of this polygon is denoted

by solid lines. The solid

lines are termed the upper

network. An interior line p

of this network is given resistance

A polygonal plate
Figure 22
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r " cot a + cot p

where a and j3 are the angles opposite the line p as

shown in Fig. 22. If p is a boundary line then the term cot a

would be omitted in this formula.

Let u(x,y) be the potential function for the plate

problem. Let w(x,y) be a function which is linear in each

triangle but which is continuous over the plate region.

Then by Dirichlet's principle

/-,/-\ ff/C-u. 2 ,<ku 2 , , , rr.dw.2 , ,bw. 2 , ,<36) JJ 1-5$ + (^7> <* dY ̂  JJ W + (^ dx dy

provided u•= w on both boundary segment 1 and boundary

segment 2. Then by making certain transformations, this

inequality is found to be equivalent to

(37) 1/R12

where R,„ is the joint resistance of the plate and where

R. _ is the joint resistance of the upper network. Thus

the upper network furnishes an upper bound to conductance.

To obtain a lower bound for conductance we may use

Rayleigh's reciprocal relation R,? = 1/R_-. Here 3 and 4

denote boundary segments complementary to segments 1 and 2,

But by formula (37) it follows that 1/R34 < VR34 • Thus
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(38) R"2 < R 1 2 < 3 4

gives upper and lower bounds to R,?.

The lower network is defined to be the dual of the

upper network. The lower network is shown by dashed lines in

Fig. 22. The resistance of a dashed branch is the reci-

procal of the resistance of a branch it crosses. It follows

that the joint resistance R,2 of the lower network satis-

fies the reciprocal relation R. „ = 1/R_.. Substituting this

in (38) gives

(39) R 1 2 ^ R 1 2 ^ R 1 2 -

This is the desired bounding relation. For further generali-

zations see [14] and [16].

If a region is covered by a square lattice then it can

be triangulated by inserting one diagonal in each square. It

then results that (39) gives the bounding relation (3 5)

stated for square lattices.
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10. The extremal length of a network.

Ahlfors and Beurling have introduced the concept of

extrente 1 length of a curvilinear quadrilateral [1] . The

relation of this geometric concept to complex function

theory has been developed at extreme length in the literature

so we shall only give the

definition. Consider the

curvilinear quadrilateral

shown in Fig. 23. Then

the extremal length is denoted

by EL and is defined as

(J w dx) 2

(40) EL = sup inf
w P w2dx dy

A region G
Figure 23

Here P is any path from side

1 to side 2 and w(x,y) is any

continuous non-negative function defined over the region G.

To give an electrical interpretation of extremal length

we imagine the quadrilateral G is a conducting plate of

unit resistivity. Let R be the joint resistance between

sides 1 and 2. Then E = IR where E is the battery voltage

and I is the current flow. The power input is El =
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2 2= E /R = I R. On the other hand if w(x,y) is the strength
2

of the current density, the power dissipated in heat is w

per square centimeter. Thus by the conservation of energy

(41) E2/R = dy.

If P is a streamline from 1 to 2

(42) = J w ds.
P

Combining (41) and (42) gives

w ds)

(43)
dy

Consider a network
I

It is then possible to show that this choice of w and P

is optimal. Thus the extremal length is simply the joint

resistance.

The concept of extremal length can be extended to

networks in the following way [11].

G with two distinguished

nodes 1 and 2. • A path P

connecting node 1 and 2 is

designated in Fig. 24 by

arrows. Let r. denote

the resistance of branch j.

Then the extremal length is

defined to be



(S r w.)
P J J
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2

(45) EL = max min
w P

Hence w. is an arbitrary non-negative function defined

on the branches. If w. is actually the strength of the

current in branch j then I^r.w. is the power dissipated

in heat. If the path P follows the direction of current

flow from 1 to 2 then Lr.w. = E, the battery voltage. Thus

by the conservation of energy, the joint resistance satisfies

(46) R =

G 3 D

Again it can be shown that this choice of P and w is

optimal. Hence the extremal length of a network is equal

to the joint resistance.

The network shown in Fig. 24 is planar, however, the

definition holds for general networks. Moreover, the formula-

tion of the network concept of extremal length suggests a

related concept termed extremal width. The extremal width

is denoted by EW and is defined as

(S w.) 2

(47) EW = max min —2—\r .
w Q SGr_.wD



40

Here Q denotes a cut and is defined as a set of branches

which separate node 1 from node 2. A cut is indicated in

Fig. 24. If w. is actually the current strength in branch
2

j then min ILw. = I the total current. Also £Lr.w. =
Q ] G 3 3

2
I R hence

(48)
Lr .w?
G 3 3

This is actually the optimal solution. Thus the following

identity holds

(49) (EL) (EW) = 1.

It is worth noting that the definition of joint resistance

by means of extremal length makes no explicit appeal to

either of Kirchhoff's laws.

If in relation (49) the maximization operations are

omitted, then an inequality results. Writing v. for r.w.

gives the network inequality

(50) £ v.w. >_ (min £v.)(min £ w . ) .

This is termed the width-length inequality [11]. It holds

for arbitrary w. >̂  0 and v. >. 0. Here v. is arbitrary

because r. is arbitrary. A special case of (50) had pre-

viously been found by Shannon and a generalization to matroids
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has been given by Lehman [19].

The fact that the width-length inequality holds for

arbitrary networks suggests that an analogous relation holds

for conducting bodies. Thus consider a topological image G

of the cylinder. For example Figure 2 3 can serve to illus-

trate this situation but G is now considered to be a solid

body rather than a plate. Let the top surface of the

11 cylinder" be denoted by 1 and let the bottom surface be

denoted by 2. Thus P denotes a path in G from 1 to 2.

Likewise Q represents a surface cutting the body in two

parts such that 1 and 2 are not in the same part. Then the

following width-length inequality was conjectured in [11] ,

(51) ffl VW dx dy dz > (inf I Vds) (inf [f WdA)
G P P Q Q

where V >̂  0 and W >_ 0 are arbitrary continuous functions.

Recently this inequality has been proved by W. R. Derrick [7],

In this paper we have brought to light analogies between

lumped and distributed networks. In particular relations

(50) and (51) give a nice illustration of an analogy between

discrete and continuous systems. Another interesting analogy

is given in reference [15] which treats a problem of optimum

design from both the discrete and continuous point of view.



42

Reference

1. L. V. Ahlfors and L. Sario, Riemann Surfaces, pp. 214-228,

Princeton Univ. Press, 1960.

2. William N. Anderson and R. J. Duffin, 'Series and parallel

addition of matricesJ Jour, of Math. Anal, and Appl. 26 (1969)

3. G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloquium

Publ., XXV, 1966.

4. R. Bott and R. J. Duffin, 'On the algebra of networks',

Trans. Amer. Math. Soc. 74 (1953) pp. 99-109.

5. R. Bott and R. J. Duffin, 'On the Wang algebra of networks',

Bull. Amer. Math. Soc. 57 (1951) p. 136.

6. R. L. Brooks, C. A. B. Smith, A. H. Stone and W. T. Tutte,

'The dissection of rectangles into squares', Duke Math.

Jour. 7 (1940) pp. 312-340.

7. W. R. Derrick, 'A weighted volume-diameter inequality

for N-cubes', Jour, of Math, and Mech. (to appear).

8. R. J. Duffin, 'Impossible behavior of nonlinear networks',

Jour. Appl. Phys. 26 (1955) pp. 603-605.

9. R. J. Duffin, 'Distributed and lumped networks', Jour,

of Math, and Mech. 8 (1959) pp. 793-826.



43

10. R. J. Duffin, 'An analysis of the Wang algebra of net-

works', Trans. Amer. Math. Soc. 93 (1959), pp. 114-131.

11. R. J. Duffin, 'The extremal length of a network', Jour,

of Math. Anal, and Appl. 5 (1962), pp. 200-215.

12. R. J. Duffin, 'Topology of series-parallel networks',

Jour. Math. Anal, and Appl. 10 (1965) pp. 303-318.

13. R. J. Duffin, 'Estimating Dirichlet's integral and

electrical resistance for systems which are not self

adjoint', Archive for Rat. Mech. and Anal. 30 (1968) pp.

90-101.

14. R. J. Duffin, 'Potential theory on a rhomic lattice',

Jour, of Combinatorial Theory 5 (1968) pp. 258-272.

15. R. J. Duffin, 'Optimum heat transfer and network program-

ming', Jour, of Math, and Mech. 17 (1968) p. 785.

16. R. J. Duffin and T. A. Porsching, 'Bounds for the con-

ductance of a leaky plate via network models', Proc. Symp.

on Generalized Networks, Polytechnic Institute of Brooklyn,

1966.

17. K. E. Erickson, 'A new operation for analyzing series-

parallel networks', IEEE Trans. Circuit Theory CT-6 (1959)

pp. 124-126.



44

18. A.Lehman, 'Problem 60-5-A resistor network inequality1,

SIAM Rev. 4 (1962) pp. 150-155.

19. A. Lehman, 'The width-length inequality', SIAM Jour.

(to appear)

20. G. Minty, 'On the axiomatic foundations for the theories

of directed linear graphs, electrical networks and net-

work programming', Jour. Math, and Mech. 15 (1966) pp.

485-520.

21. Rayleigh, 'On the approximate solution of certain pro-

blems relating to the potential', Proc. Lond. Math. Soc.

7 (1876) pp. 70-75; Scientific Papers, Vol. 1, No. 39.

22. Rayleigh, The theory of sound, Vol. 2,^^305-308, Second

Edition, Macmillan, London (1896).

23. J. Riordan and C. E. Shannon, 'The number of two terminal

series-parallel networks', Jour. Math, and Phys. 21 (1942)

pp. 83-89.

24. H. Weyl, 'Reparticion de couriente en una red conductora',

Revista Matematica Hispano-Americana 5 (1923) pp. 153-164.

25. R. J. Duffin, D. Hazony and N. Morrison, 'Network synthesis

through hybrid matrices', SIAM Jour. 14 (1966), pp. 413-

490.


