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Abstract

Of concern are solutions of the classical wave equation

in three-dimensions. It is shown that if a solution has compact

support then after a finite time the kinetic energy of the wave

is constant and equals the potential energy. The proof employs

the Paley-Wiener theorem of Fourier analysis.
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Equipartition of Energy in Wave Motion

1. Introduction.

In a recent paper [1] Jerome Goldstein gives an elegant

analysis of abstract wave equations. The central result of his

paper is an equipartition theorem stating that the difference of

the kinetic energy and the potential energy vanishes as the time

approaches infinity. Goldstein points out that the genesis of

this equipartition property is simply the Riemann-Lebesgue lem-

ma of Fourier analysis.

This observation of Goldstein suggests that other theorems

of Fourier analysis should be connected with wave motion problems.

To this end the present note develops a connection with the

Paley-Wiener theorem. This theorem characterizes Fourier trans-

forms of functions having compact support. Thus attention is

here confined to a wave having compact support. Then it is

shown to be a consequence of the Paley-Wiener theorem that after

a finite amount of time has elapsed the kinetic energy is con-

stant and equals the potential energy. This proof applies to

waves in space of odd dimension.

After being informed of this result>Goldstein was able to

show that the kinetic energy also becomes constant for certain

abstract wave equations. His results are given in an accompany-

ing paper [2].



2. The Paley-Wiener Theory.

The following is a well known property of the Fourier transform

Paley-Wiener Theorem. A function F(z) .is -a Fourier

transform of the type

i Tc izt
(z) = (2ir)~2 J elz^f(t)dt , c >

-c

where f (t) iŝ  ojE class L2(-c,c) ij[ and only if F(z) iŝ  of

class L^(-00 ,co ) and is an entire function of exponential

type c. That is

|F(z) I = Oeizl (c+€) for .all e > 0.

The following consequence of the Paley-Wiener theorem is

needed.

Corollary. Let H(z) b£ ail entire function of exponential

type c and let H be^ absolutely integrable on the real axis.

Then the Fourier transform of H i£ zero at points outside the

interval [-c,c].
HZ

Proof. The function K(z) = J H(z)dz is clearly an entire func-

tion of exponential type c. Moreover on the real axis

pOO

-00

pOO

(x)| < J (H(x)|dx

Then by a suitable application of the Phragmen-Lindelof theorem

it follows that if z = x+iy

|K(z) I < AeCly'
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for a constant A. The Cauchy integral formula applied to a

circle of unit radius and centered on the x-axis gives

IK' (X) I < Ae c.

Thus H(x) = K'(X) is uniformly bounded. Consequently if

H(x) is of class L, (-OD,OD) it also is of class L 2(-OD,OO)

Then the proof is completed by first using the Paley-Wiener

theorem and then using the L 2 Fourier inversion theorem.



3. The classical wave equation.

Of concern is the wave equation

(1) a2u ( 52u ,

dx by <5z.

The kinetic energy K of a solution u is defined to be

(2) K(t) = J J J ut
2dxdydz = ||u tl|

2-oo -oo -oo

where u. = Bu/St. The potential energy P is defined to be

roo poo roo 2 2 2

(3) P(t) = J J j (u % u / + u/)dxdydz.
-OO -CD -00 Y

Theorem; Let u(x^y^z^t) be_ â  solution of the wave equation and

be of compact support in space. Then the kinetic energy is

constant and is equal to the potential energy for t >_ b where

b satisfies

(4) u(x,y,z,0) = ufc(x,y,z,0) = 0 for x 2+ y 2+ z 2 > b 2 .

Proof; The Fourier transform of the function u is denoted by

U and is defined as

-3/2 °°
(5) U(§,i7,C,t) = (2TT) H I e i ( § x + 7 ? y + C z )u(x,y,z 5t)dxdydz.

-00

For short this will be denoted as U = Tu. We assume, of course,

that u has continuous derivatives of the second order. Then

taking the Fourier transform of this wave eguation we find that
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(6) (?2+ r\2+ C2)u (?,rj,C,t) =

This step is readily justified by the smoothness and the compact

support assumed. Solving (6) gives

(7) U(S,T?,C,t) = F, (S,T?,C)cospt + F (M,C)sin£t
x * p

2 2 2 1 / 2

where p = (§ + V+ C ) • Here F = Tf where

(8) f, (x,y,z) = u(x,y,z,O) , f_(x,y,z) = u (x,y,z,O) .

Since U = Tu. the Parseval theorem gives

O ) lbtl!
2 = !lv.tll

2.

Thus the kinetic energy can be expressed in the form

(10) K = ||pF, sinpt - F0cospt||
2.

Carrying out the square operation and making use of the identity

2sinpt cospt = sin2pt gives

( i i ) 2K = I I P F J 2 + | | F 2 I I 2 +

oo

J J J [ ( P |F]_I - I F
2 I ) c o s . 2 p t ~ P ( F ! F

2
 + F i F

2 ) s i n 2 / D t ] d 5 d r ? d C .
-00

It is now to be shown the integral terms in (11) vanish for t >_ b

introduce spherical coordinates so

(12) § = psin0cos<P , 7) = psinGsincp , C = PcosG 3



(13)

Here r 2 = x2+ y2+ z 2 and cos(p,r) = (§x+r?y+Cz) /pr .

Since f has compact support we may assume r < b. Thus if

9 and <P are fixed (13) converges for all values of p regarded

as a complex variable. Moreover it is seen that F is an entire

function of p of exponential type b. In other words

(14) |F| < Aeb'pl where

(15) A = (27r)"3/2JJj |f (x,y,z) |dxdydz.

Also note (12) and (13) yield the identity

(16) F(-p,©,<P) 5 F(p,7T-e,<P+Tr) .

One of the integrals in (11) is
oo

(17) I 2 ( t ) = JJJ cos(2pt) |F2|
2d§drjdC.

-oo

It follows by the hypotheses that this integral is absolutely

convergent.

Define the function G as

(18) G2(p,<P,9) = F2(p,e,<P)F2*(p,G,<P) .

•)(•

Since both F2 and P are entire functions of p it follows

that G is an entire function and

(19) |G9(p,<P,©)| < A 2e 2
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Now express the integral (17) as an iterated integral in spher-

ical coordinates . Thus

pOOpO

(20) I2^ t^ = Jo where

(21) H2(P) = P2\Q d^JQG2 (p,<P,9) sinGdG.

It follows that EL is an entire function of p and by (19)

(22) |H2(P)| <

Thus H 2 is an entire function of exponential type 2b

From (16) and (18) it follows that

(23) G2(-p,9,<P) = G2(p,7r-e

Hence

~ f»27

(24) H2<-p) = P Jo

Let Q' = 7T-0 and (j)7 = 4+7r ^n this integral and it is seen

that H2(-p) = H2(p) so H 2 is an even function of p.

The function F 2 is of class L 2 in space so G2 is of

class 1^. Consequently the function H 2 is of class L, on

the real axis. But EL- is of exponential type 2b so according

to the corollary of the Paley-Wiener theorem the Fourier trans-

form of EL vanishes outside the interval [-2b,2b]. Since

H2(P) is an even function the Fourier transform may be written

as a cosine transform as in (20) .



This shows that I2(
t) = ° f o r t > b- B¥ continuity

1 2 (b) = 0 also.

The integral

CD

(25) I 1 ( t ) = JJJ p2|F1|2cos(2pt)d5dTJdC
-oo

2
is analyzed by the same argument. The extra factor p does

change the parity or the exponential type so I, (t) = O for

t >̂  b also.

The integral

oo

(26) I3(t) = JJJ p(F1^F2+F1F2")sin(2pt)d?dr?dC
-oo

is analyzed by a similar argument. It may be written in iter-

ated form as

pOO

(27) I3(t) = Jo sin(2pt)H3(p)dp.

Here H^ (p) is of odd parity because of the factor p in (26)

Thus the Fourier transform of EL (p) over the whole real axis

can be expressed in the form (27) and the Paley-Wiener theorem

gives I3 (t) = 0 for t >_ b. Thus it has been shown that if

t >_ b then (11) becomes

2(28) 2K = I I P F J 2 + I IF 2

Consequently the kinetic energy is constant.
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The total energy E is defined to be

(29) E = K + P

Green1s theorem is seen to give

(30) 2ii~ = I (ututt + V u-vVd v = Jut(u
tt -

Thus the total energy is constant for all time. Parseval!s

theorem applied to (2), (3)9 and (29) at time t = 0 gives

( s i ) E = I I O F J 2 + I I F 2 I I 2 .

Comparing (28) and (31) gives K = E/2. Thus K = P and the

proof of Theorem 1 is complete.

The same proof is seen to be valid for one-dimensional

waves but not for two dimensional waves.

Theorem 2. The statement of Theorem 1 iŝ  false for two-dimension-

al wave motion.

Proof. Then the corresponding function EL (p) has odd parity.

Thus 1^ is not the Fourier transform of an entire function

unless I 2 vanishes identically. Similar statements apply to

I and 1^. Thus by the Paley-Wiener theorem the kinetic en-

ergy can be constant for t >_ b only if it is constant for

all t. But this is not true in general.
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