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Correction to Section 9t The analysis and conclusions given
in Section 9 for rate* independent Materials are in error and
should be replaced by the following discussion, (the under-
lined sentence on pao.e 1.2 should accordingly fee deleted.)

If v is rate-independent, then f-(f) is given by

where v is rate-independent. The expression for t(f) obtained

for simple shear will be of this form if and only if there exists

functions y , ~& and v such that

where K » y(t t o). The expression for >? (f) then becomes

- I Ct-yid^XlCtr A2) - 2A2)

* I te-toX^K2)**!*2)) 1 tr A2 .

The stress at time t is obtained by integrating this expression.

One obtainss



2)

ir(f> - [<x.*2x2) K • j n 2

0

I-*2
- 6 0 fit(«i «•

§ J
K2

- I J C ~

Here, vQ is the Cauchy stxeas at tine t •» tQ %Aich neoessarily

is a hydrostatic pressure. Note that the functions *v , 1/ and 3 »

which determine the flow rule also determine the dependence of

the stresses upon the total amount of shear. The shear stress T, 2

is given by

r
and the normal mtrBam differences
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1.1

1. Introduction.

The purpose of this paper is to indicate how certain features

of the classical theories of elastic-plastic materials arise

naturally in recent theories of materials with elastic range.

The recent theories take the point of view that knowledge of

the stress, work, or free energy as a functional of deformation

(and possibly temperature) history should determine specific

characteristics of elastic-plastic materials. For example,

PIPKIN and RIVLIN [1] show that a condition on a derivative of

the work functional determines whether or not the work done in

closed cycles of deformation is positive, and this condition on

the work functional is shown to imply convexity of the yield

surface in a theory with infinitesimal deformations. In [2],

I have shown that a derivative of the free energy functional

measures the dissipation arising from inelastic deformations,

and this derivative reduces to the plastic power when deformations

are small.

In the present paper I show how two derivatives of the stress

function^ namely, the global and local history gradients, deter-

mine,, respectively, the permanent stretching tensor and, when

!f elastic deformations11 are small, a decomposition of the total

stretching tensor into permanent and recoverable parts. The

permanent stretching tensor is given as a multiple of the global

history gradient, and this relation is a general form of the

II flow rulesM given in classical theories. For the case of
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small f! elastic deformations,n the global history gradient is

replaced by the local history gradient in the expression for the

permanent stretching tensor. Moreover, in this case I derive the

classical decomposition of the total stretching tensor (fl strain-

ratesf! relative to the present configuration) into a term linear

in the stress rates and a second term which is the permanent

stretching tensor. In the case of arbitrary elastic deformations,

the flow rules take their simplest form when the permanent stretching

entails no volume change. The case where volume changes associated

with permanent deformation are included is treated without undue

complications. It should be noted that, since rate effects may

influence the stress during fr loading" , i.e., when permanent

stretching occurs, the theory given here has been constructed so

as to include such influences.

An example of the use of the general form for the flow rule

is given in Section 9 where I discuss a simple shearing motion of

an isotropic material with elastic range. For the case of small

elastic deformations, I show that normal stress effects can

occur if and only if the material is rate-dependent. The case

of arbitrary elastic deformations can be treated using the results

in Section 7, but this case leads to a more involved analysis

which I have chosen not to include here.

The flow rule for the permanent stretching tensor can be

used to obtain results about the behavior of the permanent stretching

tensor under superposed rotations and changes of reference con-

figuration. In fact, if the stress-functional has certain
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transformation properties under such influences, then the

permanent stretching tensor will have the same transformation

properties. I give another result of this type which implies

that ci permanent deformation history transforms as an ordinary

deformation history (under superposed rotations) jlf. and only if

the lf elastic responsen 9 i.e. the response relative to the per-

manent confiauration« is an isotropic function. Thus, the physical

prejudice that permanent deformations are possible deformations

of the material is intimately connected with the nature of the

response of the material measured relative to a permanent configura-

tion.
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2. Histories, Functionals.

Let R denote the set of all real numbers, V a three-

dimensional inner product space, t>_ the set of all (second

order) tensors on V, and JL the elements of l^ with positive

determinant. If £: R -• jt and if Jb € R, the function

4 : [0,») -• £. defined by

^ = $(t-s), s € [O,oo)

is called the history of £ up to time t. Henceforth, I use

the term history to denote any function f: [0, <») -* L. • The values

£_(§) of such a function have a physical interpretation as values

of the deformation gradient (with respect to a fixed reference

configuration) for a material point in a motion of some body,

I consider only those histories which are continuous and

piecewise continuously differentiable. A superposed dot above

a history denotes differentiation with respect to js, and it

follows that

If f is a history and if a e [0,»), the a-section of _f is

the history f_ defined by

s e

A history c[ is said to be a contijiuajbion of a history f_ if

there exists cr € [0,») such that 3. = f.. In addition, if

a. e £. and if c[(0) = a., then £ is said to be a continuation

of f to a.
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A functional T is a mapping from the collection of all

histories into some finite dimensional vector space W. In this

paper, the vector space W will be the space -t introduced

above. In this case the value 7r(f) represents the Cauchy

stress corresponding to the history jf. If S is some non-

empty collection of histories, rr is said to be path-independent

on S if TT(C[) = 7r(h) whenever c[(0) = h(0) and 3 and h are

elements of S.
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3. Elastic Range and Related Concepts

Let E denote a subset of £ . If f is any history the

symbol C(f«E) denotes all continuations g of f such that
— • ^j —

for: some <j>0 a = L* and C[(JS) € E for every s. € [0,o) .

It may happen that a functional ir is such that given any history

f_, there is a set E(j[) c £ such that ir is path-independent on

C(f,E(f)).. PIPKIN and RIVLIN [1] and OWEN [2] have used such functionals

to discuss the mechanics and thermodynamics of a class of materials

which includes^elastic-plastic materials. The purpose of this

section is to present a precise definition of the term elastic

range using the ideas presented in the papers [1], [2].

Let ir be a functional and j£ a given history.

Definition. A non-empty set Eat JLS said to be an elastic

region off ir corresponding to f jLf the following conditions

are satisfied;

El. E jus, em open, connected set?

E2. For some cr e (0,«>), the set ff(s)|s € (0, or)} .is

ja subset of E;

E3. w is path~independent on C(f^E)7

E4. Let T* (•, f) : E -* I be defined by

7r^(a,f) = Tr{q), a e E

where g îs any continuation of f jto a such that

g € C(f,E). With 7T*(#,f) so defined, then

a) 7T*(-,f) e C1(E)

and b) the limit



D7r(f) = lim
(O)

exists and satisfies

7r*(a,f) - 7r(f) = DTr(f) (a-f(O))

+ o la-f (O) I

for a G E.

3.2

FIGURE 1

Figure 1 shows two elastic regions of ir corresponding

to jf. It cannot be expected that the union of two such regions

will be an elastic region corresponding to jf. In order to be

able to consider a distinguished elastic region, an additional

assumption is needed: there exists an elastic region E(f)

of T corresponding to f which contains all other elastic

regions of IT corresponding to f. E(_f) is called the elastic

range of ir corresponding to jr.
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The requirement that E(f) be open and connected is made

for the sake of mathematical clarity and does not severly restrict

the class of sets to be considered. The condition E2 is essential

in what follows; specifically, it insures that certain operators

on the functional T are well defined. This condition specifies

that recently encountered points f.(.s) be accessible from the

present one, £(0), through continuations of f which remain

in E(f). (In classical plasticity, this condition would imply

that, during loading, a reversal in the direction of the strain-

rate would cause the material to unload. If the yield surface

is smooth and does not shrink during loading, then this condition

is satisfied in the classical theories.) Condition E3 is simply

the condition of path-independence mentioned above. E4 is a

smoothness assumption on 7r, restricted to the set C(j£, E(j£)). The

functions D7r(f.) and V7r* (.§:,£) are linear functions from l_

into -t. If 1(0) € E(j[), then V7r*(f(0),f) = D7r(f). The

function Drr(f) is called the elastic gradient of w at j£

(c.f. [2]). It is worth noting that E4b implies that lim ir* (a.,j£) =

Tr(f) . It is convenient to define ir* (f.(O),jf) to be equal to

ir{f) . If f.(0) is not in E(_f), this definition gives a

continuous extension of w*(*sf) to E(Jf) U (1(0)}.

It is easy to show that if j: is a rest history, i.e.,

for some a. e J, , j: is equal to the history a. defined by

a (s) = a, s e [0,»),

then £(0) G E(f̂ ) . (This result follows from property E2) .
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4. The Local and Global History Gradients

Given a functional ir it is possible to define functionals

6?r and TT! using the fact that IT has an elastic range E(j[)

corresponding to each history j£. The functional ir1 was intro-

duced by PIPKIN and RIVLIN [1] and the functional 6TT was first

discussed by this author in [2]. Here, I shall given definitions

for the two functionals under consideration as well as two useful

properties of these functionals.

Let j[ be a given history and let a € [0,») be such that

(f(s) |s G (O,cr )} c E(f).

Definition. The local history gradient 67r(f) of t at f is

defined by

67T(f) = - 7T*(f(<7),f

whenever the limit exists.

Henceforth I assume that 67r(_f) exists for every history f_.

Of course, bir{£_) is an element of J,.

FIGURE 2
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Figure 2 illustrates the computation of 6ir(f_) in terms

of a one-dimensional stress-strain curve. If the material is

rate-independent, then -67r(_f) represents the slope of the

curve RQ minus the slope of the curve OPQ at Q (provided

|f(0)| = 1). This example and the definition above indicate that

6ir measures changes in stress due to shorty closed cycles of

deformation gradient. Such a cycle would begin with f(cr), pro-

ceed to j:(0) through the points _f(_s) 9 _s e (0,o), and then

either retrace this path in the opposite direction, or proceed

to f(cr) through any path entirely within E(f). Such a cycle

and the corresponding stress response are illustrated in Figure 3.

FIGURE 3
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Let j: be a given history and let a1 € (0,«>) and

a. e £ + be such that a. e E(^ ) for every a € [0, o^] o

Definition. The global history gradient 7Tf(a,f) of T at

a and f Ĵ s defined by

irf(a,f) = li
a

whenever the limit exists.

Henceforth, I assume that ir'(<*,£) exists whenever

satisfy the conditions stated above.

Figure 4 illustrates the computation of T1 (a.*j

of a one-dimensional stress-strain curve.

and

in terms

fir»(g,f)

FIGURE 4
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Here, <7/r'(a,f) measures the approximate effect of the path

ff(s)| s e [o,o>} on the value ^(a,f) - ̂ ( a , ^ ) . I n a m o r e

general situation, the significance of T.(fl,f) ^ 3 given i n p i g u r e

5.

ir*(f(o),f)

FIGURE 5

If £(0) € E(.f) and if the sets E(f ) coincide for a

in some interval [03a], a > 0̂  then it follows that

6?r(f) = 7TT(a,f) = 0

for every a e E(f) . In fact, for some a e [0, cr] ̂

6ir(f) = li

= lim %

,f) - ir*(£ (a) .f^)}

,f~) - 7r*(f((x),f~)}

= o.
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A similar argument shows that under the above hypotheses, the

global history gradient vanishes•

A second result, which will be useful in Section 8, is

the following: JLf f jLs any history, then

def .
= lim i{ )

a

exists and is given by

TT(f) = -D7T(f)f(O) + 67T(f).

(See [2] for a proof of this result.) Hence, the local history

gradient and the elastic gradient determine ir9 the rate of

change of TT.
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5. Permanent Deformations

The notion of ff permanent deformation" rests on the assump-

tion that small deformations measured relative to a distinguished

point in the elastic range of a given history produce a response

which is independent of the given history. In other word£/,there

is no difference between the Jf states" of the material in the

distinguished configurations corresponding to any two histories.

This assumption now will be incorporated in the preseit theory.

Assumption: There is â  neighborhood N jof the identity tensor

and a function irz N -* I such that, given any history f, there

exists ci history p f satisfying

Pi* Pf(or) is an element of E(f ) for every a € [0^»)^

P2. lim inf d(p.c(cr) ̂ 9E(f )) > 0,
a*o f ~ a

P3. 7T̂  (bp4r(o
i), f ) = 7r (b) for every b e N such that

bp-(<r) e E(f ).

Here^ d(p(a)^9E(^f )) is the (closest) distance between
~4 ~ a

£f(a) and the boundary of E(j| ). £ f is called a permanent

deformation history corresponding to _f.

The stress for a continuation of f within E(f ) to P<-(or) is

independent of cr a^d is given by ir (1), where 1 denotes

the identity tensor. The variable b appearing in P3 plays the

role of the ff elastic part" of the deformation gradient. An

assumption similar to P3 appears in the paper of LEE and LIU [3].

The present assumption is weaker in that the neighborhood
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N£f(cr) = f-a, = l9Rf(cr)\k € N), of £f(a) need not include f(a) .

Hence, the stress T(f. ) is not necessarily given by T (f.(cr)jgLf:(cr) ~
1)

If E(f ) c then

This case will be discussed in Section 8.

Let us agree to write E(cr) and £(a) for E(.f ) and

£jXor) when f̂ and £ a r e fixed in a particular discussion. The

symbols L(a) a^d D (cr) denote the tensors

= P(CT)P(<T)

and

D D ( ( T ) = J ( Ln ( a )

The tensor -D (a) is called the permanent stretching tensor

at time a. In Section 7, a relation between the permanent stretching

tensor and the global history gradient will be derived.
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6. Restrictions Imposed by Frame-Indifference and by Material

Symmetry.

If ir is frame-indifferent or satisfies invariance properties

which correspond to material symmetries, then elastic ranges and

the local and global history gradients have similar properties.

Since, in Section 7, the global history gradients are shewn to

determine the permanent stretching tensor, the properties deduced

in this section for the global history gradient will determine

invariance properties of the permanent stretching tensor.

It will be convenient to assume that ir satisfies a weak

principle of frame indifference of the form:

7r(QQf) = Q Q 7r(f)Qo
T

for every if and for every orthogonal tensor Q . Here, Q f

is the history

(Qof)(s) = QQf(s), s € [0,«).

Use of this principle instead of the stronger form ([4],p.60)

circumvents some technical difficulties associated with the possible

lack of smoothness of the boundaries of elastic ranges* The

weaker form is strong enough to obtain useful restrictions on

quantities derived from the stress functional.

I 1. For every orthogonal Q ,

E(Q f) = Q^ E(f).

Proof o It suffices to show that Q E(f) c E(Q f) . In fact,

if this inequality holds for every Q and j£, then
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E(Q f ) = Q_QO
TE(Q f )

CQ E(Q TQ f) = Q E(f)
mm O ~ O O O rsj

so that Q E(f) = E(Q f) . In order to verify the inequality

Q E(f) c E(Q f), it suffices to verify that Q E(f) is an
O /^ — — r*J O O r~> —

elastic region for Q f. El is satisfied by Q E(f), and E2
o o ^

follows since, if f.(s) e E(f) for s near zero, then (Q f) (s) =
/̂  o—

Q f (s) e (2 E(f) for s near zero. In order to show that T
is path-independent on C(Q f,(5 E(f))* note that if a, qf

O O f\J

are in C(QQfJQo E(f.)) with ^(0) = 3.1 (0) = a, then QQ
Ta.

Qo
Ta' are in the set C(l,E(f.)) with Qo

Tc[(0) = Qo
Taf (0) = Qo

Ta_.

Hence, using frame-indifference one obtains

= Q o ir (QO
T£L)QO

T

since TT is path-independent on C(.f,E(.f)). Therefore, E3 is

satisfied by Q^ E(f). Moreover, one finds that for a e Q E(f)o ~ — — o „

7r*(a,Qof) = ir*(QoQo
Ta, QQf)

s o t h a t T*(9
sQf) i s C on Q E(j£). Moreover,

V 7r*(a,QQf)b = Q o [ V T r * ( Q o
T a T T

s o t h a t Dr*(Q f ) e x i s t s and
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7r*(a,QQf) - 7r(Qof) =

- 7 r ( f ) ] Q o
T

= Qo[D7T(f)(Qo
T[a-Qof(0)])]Qo

T

+ o|Qo
T[a-QQf(0)] |

= D7T(Qof)[a-(Qof)(0)I +

+ o|a - (QQf) (0) | .

These considerations show that E4 is satisfied, which, together

with the previous arguments, imply that Q E(_f) is an elastic

region for Q f. Therefore, Q E(f) c E(Q f) since the elastic
O O r^ r^J O

range E(Q f) is a maximal elastic region.
/>- O

I 2. For everv orthoqonal Q , the history gradients satisfy
^ ^ — _ . o

67T(Qof) = QQ 67r(f)Q o
T

7 r ' ( a , Q o f ) = Q o 7 r ' ( Q o
T a T

P r o o f . One h a s :

67r(Qof) = l i ra ^{7r*(Q o f ( C T ) ,Q o f ) - TT* (QQf ( a ) ,QQfff

= l i m ̂  QAir*(f(a),f) - ? r * ( f ( a ) , f )}Q T

a CT ° o- o

= Q
o

and

7r'(a,Qof) = lim ^{7r*(a,Qof) - v

= Q o 7
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I 3. If p. is a permanent deformation history for f,

then Q p^ is a permanent deformation history for Q f for

every orthogonal Q JJf and only if

for every orthogonal Q

Note. I 3 asserts that permanent deformation histories transform

in the same way as ordinary histories if and only if ir is an

isotropic function.

Proofo One must show that Pi, P2 and P3 are satisfied by

(with respect to the history Q f) . First, since Q E(f )
o O/̂  or

E(Q f ) = E((Q f) ), and since £^(a) e E(f ), it follows
***> o (j /%/ o or — J ^ <v̂  (j

that (Q_P-) (a) e E(Q f ). Moreover,O^TT /w o—or

E((Q

so that Pi and P2 are satisfied. Next, suppose that b e N and

is in the set E f Q ^ ). It follows that

= QoTT*(Qo
TbQopf(ff),f )Q C

T

a o
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Note that Q TbQrt € N and (3 TbQJ5.fi a) is in the set E(cr)
O O ^* O O U %̂/

Hence, P3 will be satisfied for every orthogonal Q if and only

if

irQ(b) =

i.e. TQ must be in isotropic function. Thus, the proof of 1.3

is complete

1 4 . JEf for every orthogonal Q and some permanent deformation

history p f one has that QQpf JLS â  permanent deformation

history for Q f, then

= T o ( b )

for all orthogonal () if and only if
o ——— _

for all othogonal Q .

o

Proof. The result follows immediately from I 3.

S I . If for some unimodular tensor H e / one has
r*J r%J — — — — — — " ' — — — — — — u «——« . ,„,

7T(fH) = 7T(f)

for every f, then

6TT(fH) = 67T(f)

7Tf (aH,fH) = irf (a,f)

for every f.
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Proof. These results are immediate consequences of the symmetry

property of ir and the definitions of the history gradients.

If the stress functional satisfies the strong form of the

principle of frame indifference, strongerrresults analogous to 11-14

can be obtained despite the technical difficulty mentioned at

the beginning of this section. This difficulty arises because

superposition of non-constant rigid rotation histories may cause

E2 to be violated. In turn, the existence of the history gradients

at histories modified by the rotations cannot be obtained from

the existence at the original histories using the arguments

given in the proof of I 2. Nevertheless, the history gradients

can be defined on the troublesome modified histories through the

principle of material frame indifference, and this definition can

be shown to be consistent with the values obtained on modified

histories which are not pathological, i.e. for which 52 is valid.

In Section 9, the strong form of frame indifference is used to

obtain a representation for the local history gradient for simple

shearing motions, and it is hoped that these few remarks will

justify this procedure to the reader. Elsewhere, the results

I 1 -I 4, as stated and proved in this section for the weaker

form of frame-indifference, suffice in the development that follows*
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7. Flow Rules.

In this section it will be shown that the permanent stretching

tensor is determined explicitly by the stress functional through

the global history gradient and the function ir . The simple form

of the relation arises from the assumption that ir is an isotropic

function. In the last section, it was shown that this assumption

of isotropy is equivalent to the assumption that permanent deforma-

tion histories transform in the same way as deformation histories

under superposed constant rigid motions.

The following result will be needed in-deriving the relation

for the permanent stretching tensor: If ir is isotropic and
o —

satisfies either of the identities in 1 4 , then there exist

A ,A,,AO € R such that
V7To(l)u = AQtr u 1 + 2(A1+2A2)6

for every u e 1. Here u denotes the symmetric part of u

and tr JLS the trace operation. Note that when A2 = 0,

this relation has the same form as the classical constitutive

equation for infinitesimal elastic materials, with A and A-

corresponding to Lamefs constants. The form for vir (1) is

derived by explicit calculation using representations for isotropic

functions (see [4], p. 142, equation (47.20)).

The main result of this section will now be stated and proved:

Let f be ̂ a history and p f ja permanent deformation history corres-

ponding to f. If ir is isotropic and satisfies either of the

identities in I 4, and if A. + 2AO ^ 0, then



2(A1+2A2)
1 _

7.2

(p(0) ,f)

If the permanent stretching is isochoric, ioe. tr D (0) = 0^
p

then

D p ( 0 ) - 2(AX+2A2) •

Both of these relations will be referred to as flow rules, in

keeping with the terminology used in theories of plasticity. The

condition that the permanent stretching be isochoric is generally

used in the classical theories.

The identity in the theorem will be proved by using the

definition of 7rr (£(0) ,£). This procedure necessitates a veri-

fication that 7r*(p(0),f ) is defined for sufficiently small

values of a* It suffices to show that j£(0) € E(cr) for small

a. This statement follows from the continuity of £ a n d conditions

Pi and P2. In fact, suppose there exists a sequence [a }

with limit zero such that £(0) / E(a ) for every n. This

condition implies that some boundary point a. of E(<j ) lies
n /•*/ n

on the (closed) .'

quently, one has

on the (closed) line segment joining £(0) and £(a )• Conse-

d(p(<yn), 3E(an)) £ d(p(crn),an) =

= d(p((rn),p(O)) - d(p(0),an)

£ d(p(crn),p(O))

where d measures the distance between points in j,

= tr[(a1-a2)



Note that the continuity of D m

y ot £ guarantees that D / n u / A-1
ln 2 for o sufficiently small The „ * ' U

formulas for „ (1) " 1O" "lles * » " « r from the

t (iMtSSITY
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8. A Decomposition for the Stretching Tensor.

In this section attention is restricted to the case where

Np(cr) Iff E(<x) for every a e [0j«>). This condition implies that

for every a*

ir*(a,f ) = TT (ap(a)"1)
cr o

for every a, e E(a). In this case the local history gradient

reduces to

6rr(f) = lim-ifir*(f(<r),f) - ir*(f(<r),f

= lim ^{TT (f(a)p(O)-1) - iro(f(cr)p(a)"
1)}

= -lim -{V7ro(f (a)p(o) -
1) f (a) [p(a) "

= V7ro(f(0)p(0)"
1)'.[f(0)p(0)"1Lp(0)]

The elastic gradient Tnr{£) takes the simple form

Dir(f)u = V ^ C ^ 1

for every u e &. The formulae for 6T and DTT along with the

expression for ir given at the end of Section 4 combine to give

T(f) = -V7ro(e)[L(0)e- eL (0)]

where

L(0) = fiO)f(O)'1

and

e =
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If the magnitude of e.-l is small compared with unity, the

expression for 7r(f) takes the approximate form

7T(f) = -7TTo(l)[L(0)-Lp(0)].

The expression for Viro(l)ii given in section 7 yields,, with

D(0) = |[L(O)+L(O)T],

7T(f) = -AQtr(D(O)-D (0))l = 2(A1+2A2) (D(0)-Dp(0) ) .

For isochoric plastic stretching one finds that

f(f) = «AQ tr D(O)1 - 2(A1+2A2)(D(O)~Dp(O))

from which it follows that

tr T(£) = ~[3AQ + 2(A1+2A2)]tr D(0).

One then obtains the decomposition for the deviatoric stretching

tensor:

where, for any tensor u,

If A2 = 0 it follows that

tr u

g p
which is the classical decompos ition for the deviatoric stretching

tensor (c.f. [5]). (This relation is not frame-indifferent, due to

the presence of the term in ir. This situation arises because of

the approximation f(O)p(O)~~ = 1. It is interesting to note that
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this relation is frame-indifferent in the weak sense defined

in Section 6.)

The calculation given above suggests the following remark:

the present theory is a. genera 1 ization of the classical theories

of elastic-plastic materials, and it reduces to the classical

theories when the " elastic deformationfT (f.(0)£(0)~ - 1) is

small. Actually the present theory allows for rate-dependent

behavior, so that a further restriction on the response functional

T would be needed to obtain classical formulae which depend

upon the rate-independence of the material.

Note that in the case of small elastic deformations, the

local and global history gradients agree, i.e.

67T(f) = 7T'(p(O),f) = V7To(l)Lp(0).

Hence, Jji this approximation if one assumes further that the

permanent stretching is isochoric, then the permanent stretching

is determined by the local history gradient and the function T .
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9. Simple Shear for an Isotropic Material with Elastic Range.

Let us consider a material with elastic range which is

isotropic with respect to a homogeneous configuration K3 i.e.

7T(fQo) = 7T(f)

for every orthogonal tensor Q . It follows from Sl^ Section 6,

that the history gradients 7rf and 6TT satisfy similar identities,

Moreover., the flow rules derived in Section 7 give the result:

the permanent stretchings (at s = 0) for the histories f and

fQ are the same for every orthogonal Q .

If the elastic deformations are small^ the last remark in

Section 7 gives (when the permanent stretching is isochoric),

Vo) - -m
Suppose now that the material undergoes a simple shearing

motion with respect to x, i.e. the description of the motion

relative to x has the form

I (X,t) = X + F(t)(X-X K t ^ t

= x , t < tQ.

Here^ X and X are points in x and

where ^%\y^j2.}%2^ *"s a n o r t h o n o r m a l basis of V and y is

any real number. Let us fix t € R and define

(F(t-s), 0 £ s ̂  t - t
(s) =^ °

I 1 , t - t < S < » .
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From the isotropy and frame indifference of 6rr it can be

shown {[4],p. 78) that

6rr(f) = ir1(A1,A2,B(t),t-tQ)

where

B(t) = F(t)F(t)T

and 7T, is an isotropic function. A 1 and A 2 are the first two

Rivlin-Eriksen tensors which, along with B(t), are given by

A1 = -2D(0) = 7^%1®

B(t) = 1 + (t-tQ)A1 + (t-to)
2[A^-|A

2] '
 fc ̂  V

Since B(t) is a function of t - t , A., and A« it follows that
O X. Z^e

&ir(£) = 7T2(A1,A2,t-to)

where TT2 is an isotropic function. Arguments used in deriving

the form of the stress in steady viscometric flows (e.g.[6]) yield

the representation for ir̂ :

T T ( A A t t ) = T? A j

- j0[l(tr A2) - 2A^]

where 7)3 V and 0 are scalar-valued functions of y and t - t .

The last term was chosen so as to guarantee that T2 and,, hence^

67r(f) and D (0) are trace free. The decomposition of Section 8,
P
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takes the form

TT(f) = f

- -|0[l(tr A^)-2A^] + -|(^+0)l(tr A ) .

If TT is a rate-independent functional,'then 7r(f) must be

of the form:

7r(f) = yir(£)

where TT is rate-independent. Since A..,A2,y and 0 are even

functions of y3 7r(f) takes the last form if and only if^ together,

the terms involving these quantities vanish, and 77 is a function

2 2
of y (t-t ) . Thus, if 17* is rate-independent one obtains

7r(f) = [(A1+2A2) + r?(y
2(t-to)

2)]A1.

Whether or not the material is rate-independent, the

expression for 77* can be integrated to give the value v(f) in

terms of the functions shown above and the value of stress at time

t . (From the isotropy and the special form of X 9 the stress
O f*JK

at time t reduces to a hydrostatic pressure.) One concludes

that

1. Normal stress effects can occur if and only if the material

is rate-dependent.

and 2O For a rate-independent material, the stresses are determined

by A,,A2 and by a single function 77 of the total shear.
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