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1.

Introduct ion

The foundations of the science of thermostatics were laid by

J. Willard Gibbs" in his article, "A Method of Graphical Representation

Hl873, llj vid. The Scientific Papers, Vol. 1, pp. 33-54.

of the Thermodynamic Properties of Substances by Means of Surfaces,"

published in 1873. In that essay Gibbs proposed and studied a criterion

jfjf-
for the stability of a simple fluid surrounded by a medium held at

_—

In thermostatics, a "simple" fluid is one of uniform chemical composition,

free from capillarity effects and related phenomena associated with phase

boundaries. In his long memoir [1875, l], "On the Equilibrium of

Heterogeneous Systems," (here referred to as EHS) Gibbs discussed at

length chemical reactions and the effects of heterogeneous composition.

fixed temperature and pressure. Assuming that the specific internal

energy e of a fluid in thermodynamic equilibrium is given by a function

e of the specific entropy T] and specific volume X) of the fluid, Gibbs

gave an heuristic argument to the effect that a uniform phase with specific

entropy r)° and specific volume v° is stable in an environment at temperature
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9° and pressure p°^if for a l l pairs Ol,u), with either r\ 4 x\° or v> ± u ° /

e"(T),u) - 0°ii + p°u > e(t)°,v°) - 6°T\° + p°u°. (G)

^Vid. The Scientific Papers, Vol. 1, pp. 39-43. If (G)

holds with > replaced by > and reduces to an equality for some pair

0l,l3) not equal to (ri0,*)0), then there are two or more stable uniform

phases possible at temperature 0° and pressure p°, and one is led to

the theory of "coexistent phases", a subject explored at length by Gibbs,

but not emphasized in the present essay. In the terminology to be

developed here, (G), as written, i.e. with the sign of strict inequality

for all (T^U) ^ (f\°,vo), is equivalent to the assertion that (1) 0° and

p° are chosen so that 9° = d F(T)°,t>°) and p° = -d. i"(T},o), and (2) (T)°,O°)

is a point of super convexity for the function e".

Criteria of this type occur also in Gibbs' great memoir EHS [1875, ll and

are there related to his concept of the "stability of an isolated system".

Here, continuing and extending an investigation started with

James M. Greenberg,^ I discuss the dynamical significance of Gibbs1

Tnr,Coleman & Greenberg [1967, ll.

criteria for stability. I seek an answer to the following question:

If a uniform equilibrium state of a fluid body is stable

according to the definitions of classical thermostatics,

and if the body is, in some precise sense, in a "fixed
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environment", is it then true that every thermodynamic

process in the body which passes near to the equilibrium

state at one time must remain near to that state at all

future times?

Before turning to this question, I attempt, in Chapter 1, a

rigorous development of a part of classical thermostatics and show that,

within the formal framework proposed by Gibbs in EHS, the inequality (G)

is a sufficient condition for one type of stability and a necessary

condition for another. Several of the theorems and proofs of Chapter 1

are taken, with minor modifications, from an unpublished essay which

Walter Noll and I wrote together in 1958; this is the case, in particular,

with Theorems 1.1 - 1.4. The other theorems of that chapter, namely

1.5 - 1.7, appear to be new in this context; they arose in an attempt to

render mathematical the discussion following the expression (133) in

EHS.

_

^Vid. The Scientific Papers, Vol. 1, pp. 100-103.

In Chapter 2, I discuss thermodynamic processes and review the .

##
definition of a "regular fluid". Greenberg and I introduced this class

^Vid. [1967, 1].

of fluids as a convenient, but broad generalization of the concept of a

simple fluid with fading memory. The class of regular fluids includes
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not only fluids with long-range memory^ but also the perfect fluids and

linearly viscous fluids of classical hydrodynamics. Also in Chapter 2,

I try to give a precise mathematical meaning to the physical concept of

a body immersed in an environment at fixed temperature and pressure;

Theorem 2.1 asserts that a certain "canonical free energy" is monotone

decreasing with time in every process possible in such a body.

The main results of this study are the theorems of Chapter 3.

These theorems give a dynamical significance to the stability criterion

(G) from thermostatics and supply an answer to the question raised above.

Assuming that the equilibrium response function e for a regular fluid

body-28 is convex for large argument, i.e. that the points in the domain

D of e which are not points of convexity for e are interior to a compact

subset of D, I show that if (G) holds for a given pair (TI°,V>°), then the

uniform equilibrium state at (TJ0,!}0) is dynamically stable in the

following sense: If a process C of J6 compatible with immersion of 26

in an environment at temperature 0° and pressure p° is such that the

fields over 73 describing the spatial distribution of internal energy,

kinetic energy, specific volume, and entropy are close, in £., to the

corresponding uniform equilibrium fields at some time t, then in the

process C these fields remain close, in £,, to the equilibrium fields

at all times after t. This is the content of Theorem 3.2. This theorem

and the closely related Theorem 3.1 follow, by easy arguments, from

Remark 3.3, which, in turn, rests heavily on Lemma A.2, proved in the

Appendix.
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The present Theorems 3.1 and 3.2 generalize and extend in two

important respects the stability theorems which Greenberg and I gave in

[1967, ll. First, in the earlier work we proved stability only against

the class of processes compatible with isolation of the fluid body, and

that class is smaller than the class of processes compatible with immersion

in an environment at fixed temperature and pressure. Second, to prove

- -

This may not be obvious until the concept of "immersion" is rendered

mathematical. See the discussion following Definition 2.1.

theorems about dynamical stability, Greenberg and I assumed in [1967, l],

that every uniform equilibrium state of the fluid body is thermostatically

stable, i.e. that e is strictly convex throughout its domain; here I

assume only that (G) holds for the given (T}°,V>°) under consideration and

that e is convex for large argument. In other words, instead of assuming

that every uniform equilibrium state is thermostatically stable, the

present theory takes into account the physical observation that for most

substances there exists in D a precompact set S of pairs (T],"0) for which

the corresponding uniform phases are unstable or only metastable.

I urge the reader to glance now at the Appendix, for the

terminology developed there is employed in Chapter I771' as well as in

—

""From Theorem 1.3 onward.

Chapter 3.
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1. Thermostatics

The theory called the thermostatics of simple fluids rests on

the assumption that,when a fluid is at equilibrium,the specific internal

energy e (per unit mass), the temperature 9, and the pressure p at each

point X of the fluid are determined if the specific entropy TJ and the

specific volume o are specified at X:

e = e"Ol,u), 9 = ?(TJ,O), p = p(T),o). (1.1)

The functions e, 9, and p, which map (0,°°) X (0,») into (0,°°)* are called the

Physical experience suggests that TJ and e are bounded below in the

sense that for each material there exist numbers b and c such that

r\ > b and € > c always. My choice of zero for both of these bounds is

arbitrary and has nothing to do with the "third law of thermodynamics";

the theorems to be proved here are independent of the choice of b and c.

equilibrium response functions for the fluid under consideration. The

_

The superposed bar serves to distinguish these functions from their

values,

function e is assumed to be continuously differentiable, and the partial
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derivatives, d e and d e, of e determine 9 and p through the relations

, , , ,U) = -^€(TJ,U). (1.2)

It is assumed that, for each o,

o. (1.3)
T]->oo

In thermostatics, a fluid body is a set C> endowed with a positive, finite,

non-atomic measure /*TLS, called the mass measure of the body. The material

points X are the elements of ~33 . Attention is here confined to materially

homogeneous bodies, i.e. bodies for which the response functions T| do not

vary with X. A static state {T),15} of o is a pair of positive •wt-'-measurable

functions T] and U over &O for which the following three integrals are finite:

~ ^ r def 1 def P-
H =^£ / Ti(X)d^»t^ V =S£ / u(X)d/»t/, and E = / e (T)(X),x>(X))d/r̂ y. (1.4)J

These integrals are called the total entropy, the total volume, and the

total internal energy of 29 for the state {'H,'o}. Two static states {TJ,V>}

and {TJI,'D1} are said to be equivalent if there exists a measure-preserving

transformation f of 7& onto 23 such that V (X) = T](f(X)) and u1 (X) = u(f(X))

for all X in T&. [By a measure-preserving transformation f of ^ is

meant a one-to-one mapping of ~%6 onto itself such that the image of each

-measurable subset >o of ~& is •»»*'-measurable and x»o*-(f (*/)) =
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A static state of ~$ not equivalent to [f],^} is said to be distinct

from {T},V>}.

In the present context, Gibbs1 concept of stable equilibrium

#
of an isolated system" may be rendered mathematical as follows.

"U875, ll; vid. The Scientific Papers, Vol. 1, pp. 55-353, especially

pp. 56-62.

Definition 1.1. A static state {TJ,U} of a fluid body £3 is Gibbs stable

under isolation if every static state (i)',*)1} of ~&> which is distinct

from {T),^>} and for which

(1.5)

J J

obeys the inequality

H' = f^(X)d^n^ < f^ODdsyrv ̂  H. (1.6)

Thus a static state is said to be Gibbs stable under isolation

if every distinct static state with the same total internal energy and



9.

JL
the same total volume has a smaller total entropy. In EHS, Gibbs gave

_

"Vid. preceding footnote; also, [1959, l], pp. 125, 126.

arguments to show that a necessary and sufficient condition for a state

[T\,U} to be Gibbs stable under isolation is that it give a strict minimum

to the internal energy when compared with all distinct states having the

same total internal energy and volume; his arguments are rendered

mathematical in the proof of the following theorem:

Theorem 1.1. A static state {T],V>} of a fluid body 70) is Gibbs stable

under isolation if and only if every static state of /p which is distinct

from {T^U} and obeys the equations

H,
(1.7)

ud^ M v,

also obeys the inequality

E' = / e'd/m; > / ed/»n/ === E, (1.8)

where

e'(X) - 7 ( T J 1 ( X ) , U ' ( X ) ) and e (X) = i"<T)(X),\>(X)).
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Proof. To show that the stated condition is necessary for Gibbs stability

^Cf. Coleman & Noll [1959, l], Proof of Theorem 11, pp. 119, 120.

under isolation, let ii),v) and {TJ',131) be two distinct states for which

(1.7) holds but (1.8) fails, i.e. H1 = H, V = V, but E1 < E. One can

then prove that (TI,V) is not Gibbs stable; i.e. one can construct a

state {T)*,-0*}, distinct from {T),u},with E = E, V = V, and H > H. To

do this, put, for each X in IB ,

U*(X) = u'(X) and 6 (X) = e ' (X) + ^~z— with M = /m>(0) = / d/t^>.

It follows that V* = V = V and E* = E r + E - E ' = E, and because

E' < E, one also has e (X) > e'(X). Since 9 = d e is assumed to be

always strictly positive, the function e(»,u'(X)) is invertible in its

first variable. By (1.3),

and therefore e (X) is in the domain of the inverse of €(•,'0 (X)) whenever

e'(X) is. Hence, there exists a unique function 1 on ^ such that

e*(X) = i"(Tj ^

for all X, and because S e is positive and e (X) > e'(X), one has TJ (X) > T ( X ) ,

which implies H > H1, where H' = H. Thus, there is produced a state {T) ,U }
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with V = V, E = E, and H > H. Moreover, {t\ ,V } is distinct from

{T1,V>}: If E' = E, then [f],^} = ("H'>̂ ' 3j, and {TJ'^'O'} was assumed distinct

from {TJ,O). If E' < E, then e*(X) > e'(X), which yields TJ*(X) > T(X)

* *

and hence H > H1, but since H' = H, this means that 1) differs from r\

by more than a measure preserving transformation.

To show that the condition of the theorem is sufficient for

Gibbs stability under isolation, let {'H,'o} be a static state which is

not stable. There then exists a state (V^t)1}, distinct from {T},U},

which obeys (1.5) but not (1.6); i.e. E' = E, V = V, but H' > H. One

must show that {T],U) does not obey the condition of the theorem; that

is, one must produce a state [f] ,v> }, distinct from (il,u}, for which

H = H, V = V, but E < E. This is easy; one need merely put, for

each X in •#? ,

u*(X) = U'(X), and T]*(X) = XTJ1 (X) with X = H/H'. (1.9)

* *It follows that V* = V = V and H* = XH' = H. Since H' > H > 0, one has

0 < X < 1, and, by the positivity of d e,

c*(x) = 7(T)*(X),I>*0O) = i"(M'(x),i5'(x)) < i"(Ti»(x),wf(x)) = e

*
It follows that E < E', and since E' = E, one has E1 < E. Thus (1.9)

"& "& it

defines the required state {V,v>'} with H = H, V = V, but E < E.

*$c is
Furthermore, [T] ,U } is distinct from {T},U}: If H' = H, then X = 1 and
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{T} ,V ) = {TI'^U'} which is, by assumption, distinct from {TJ,U}. If

H1 > H, then T) (X) < T)1 (X)^ which yields e*(X) < e' (X) and hence E* < E - E1;

i.e.

/=

Clearly, this last relation contradicts the existence of a measure

preserving transformation f of IB onto ~& such that i\ (X) = T)(f (X)) and

U*(X) = X>(£(X))j q.e.d.

It is evident from Theorem 1.1 that a necessary condition for

the Gibbs stability of a given static state {il,u} is that the functional

6e = ffb eOi(X),i3(X))6Ti(X) + d i"( ]

vanish for al l real-valued, /4^t/-measurable functions 6TI and 6u

obeying the conditions

/ 6il(X)d/»̂  = I dvWdsyns = 0.
J

Using the method of Lagrange multipliers, one easily deduces that 6e = 0

for all such functions 6T} and 5x> if and only if d e (TI(X),O(X)) and

S e (T](X),'O(X)) are constants, independent of X. Thus, in view of

it
(1.2), the following theorem holds.

^Cf. Gibbs [1875, ll, eqs. (19) and (20).
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Theorem 1.2. If a static state {T},'0} of ^3 is Gibbs stable under isolation,

then the temperature and pressure in the state {il,̂ } are constant over TO,

i.e. there exist numbers 0° and p° such that

9 0i(X),o(X)) = 9° and p(T)(X),u(X)) = p°, (1.10)

for almost all X in *©.

It is obvious that the condition (1.10), although necessary, is

not sufficient for Gibbs stability.

A static state {T],'D} of ^ is called uniform if its components

T| and D are constant over *d8 ; i.e. if there are numbers f\° and D° such

that

= x>°} (1.11)

for all X in ~j@ . [One can refer to the function pair {T],U} obeying

(1.11) as the uniform static state at_ (T}%U°), and denote it by {TI°,O°}. ]

Every uniform static state obviously meets the condition (1.10); the

following theorem gives a less trivial necessary condition on a uniform

static state for it to be Gibbs stable.

HUNT
CARNEGIE-MELLON UNIVERSITf
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Theorem 1.3. Let (TT,U°) be a point in the domain of e, and let n be

an integer greater than 1. If the homogeneous static state at (T}0,^0

is Gibbs stable under isolation, then for any 3n positive numbers

QT, ...,u , r\ , ...,T) y x> , ...,o obeying

n n n

there holds the inequality

n

ofeoi^o1-). (1.13)

Proof. Choose 3n posi t ive numbers u , . . . , Q T , T) , . . . , T] } X) , ...,V>

obeying (1.12). Because the mass measure /tw'on 7& is posi t ive , f i n i t e ,

and non-atomic, 2? has n d is jo int ^7^-measurable subsets /P , . . . , f i .with

/ n \
synst/P) = Ma., and hence AW\T&- U fi ) = 0̂  (1-14)

V i-i /
where M = s*n.(.~&) > 0. Clearly, the static state {TJ'^O'} defined by

TI'(X) = T]X and V (X) = U 1 for Xe fi, (1.15)

is d i s t inc t from {TI°,U°} and obeys the relat ions

n

= M \ a1!! = MTI° =

k
n

C/T]1 = MU° =
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Therefore, since {'n%00} is stable under isolation, Theorem 1.1 yields

The right side of this inequality is just Me(T}°,v>°); on using (1.14) and

(1.15) to evaluate the left side, it is found that

which obviously implies (1.13)j q.e.d.

In view of the definitions given in the Appendix [see the

sentence containing (A.2) and (A.3)1, the theorem just proven has the

following corollary.

Corollary to Theorem 1.3. Let (T)°,U°) be a point in the domain of e.

If the uniform static state at (rj°̂ "0°) is Gibbs stable under isolation,

then (T)°,o°) is a point of strict convexity for e.

The concept of super convexity discussed in the Appendix [see

(A.9)] renders elementary the formulation of a sufficient condition for

Gibbs stability of a uniform state under isolation.
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Theorem 1.4. If (T]%O°) is a point of super convexity for e, then the

uniform static state at (T]O,V>°) is Gibbs stable under isolation.

Proof. Let {T)',O') be a static state of ^.distinct from the uniform

"Cf. Gibbs, The Scientific Papers, Vol. 1, pp. 100-101. The argument

employed here occurs frequently in the theory of statical concepts of

stability; vid., e.g., Coleman & Noll [1959, lJ, p. 127.

state {TI°,U°}, but with

- j
J

By (A.9), the assumption that

implies thatj for each X in 45

(1.16)

is a point of super convexity for e

-u°)a^(ii0,^). (1.17)

Furthermore, since {TI1,^1} is distinct from {T] 0,^ 0}, (1.17) is a strict

inequality on some subset /* of ^ with *n,(jtP) > 0. On integrating

(1.17) over <ii6 , one obtains, upon use of (1.16),

and this inequality, in view of Theorem 1.1, shows that {T)°,0°} is Gibbs

stable under isolation; q.e.d.
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Definition 1.2. A uniform static state {T1°,U°} of *& is said to be at,

the frontier of stability if

(1) {TI°,U°} is Gibbs stable under isolation, and

(2) (TI%V>°) is the limit of a sequence of points (T) , U X ) in

(0,oo) x (0,oo) such that none of the uniform static states

{T] , O ) of KJ is Gibbs stable under isolation.

Definition 1.3. A uniform static state is here said to be thermostatically

stable in the strong sense if it is Gibbs stable under isolation and is not

at the frontier of stability.

The following remark is an immediate consequence of the

definitions just given.

Remark 1.2. The uniform static state at (T]°,\5°) is thermostatically

stable in the strong sense.if and only if the domain of e contains a

neighborhood 0 of (TI°,U°) such that the uniform state {T},U} at each

point (T],̂ ) in 0 is Gibbs stable under isolation.
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Theorem 1.5. If the uniform static state at (T]°,V>°) is thermostatically

stable in the strong sense, then (T]°,U°) is a point of super convexity

for €.

Proof. By the present hypothesis and Remark 1.2, in the domain of e

there is a neighborhood 0 of (T}°,U°) such that the uniform static state

at each point in 0 is Gibbs stable under isolation. It follows from the

Corollary to Theorem 1.3 that each point in 0 is a point of strict

convexity for e. Thus, (rj0,V)°) is interior to the set of strict convexity

for €, and, by Remark A.3, (ilo,Uo) is a point of super convexity for e; q.e.d.

Since the gradient of Ve is the ordered pair (d e, d e), it

follows from (1.2) that

Ve = (0,-p) (1.18)

and, by (A.9), the theorem just proven has the following corollary.

££ SlSSESS ]••$• *^ t*ie uniform static state at (f]0,^0) is

thermostatically stable in the strong sense, then for each pair (U,t\) in

the domain of e with either r\ 4 T\° or "0 4 u°

e(T),o) > ^ T ^ i y ) + (r\-f\o)e° - 0>o°)p°, (1.19)

where

9° = 0(T1°,U°), p° = p(T)°,O°). (1.20)



19.

It is evident that this corollary can be reformulated as

follows.

Remark 1.3. Let 0° > 0 and p° > 0 be given and let 0 be the function on

(0,°°) X (0,°°) defined by

— def —
0(T],U) = e(T},U) "~ 0°^ + p°V>. (1.21)

If there is a point (il0,^0) in the domain of e such that the uniform

static state at (TJ%U O) has temperature 0° and pressure p° and is

thermostatically stable in the strong sense, then 0 attains a strict,

global minimum at (T)°,D°), i.e. for all T\ > 0 and r> > 0,

(TJ,U) 4 W,u°) — > 0(Tb^) >0(T1°^'OO). (1.22)

It is evident that if, for a given 0° > 0 and p° > 0, there

exists a point (T}°,O°) obeying (1.22) then it is unique. Thus we have

Remark 1.4. At a given temperature and pressure.there can be at most one

uniform static state of 7B that is thermostatically stable in the strong

sense.
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This last result is refined considerably in Theorem 1.7 below.

The proof of that theorem employs a condition which, in addition to (1.10),

must be fulfilled by every static state that is Gibbs stable under

isolation, whether uniform or not. This new necessary condition for

stability is given in Theorem 1.6. Since the proof of Theorem 1.6 would

be long if set down in full detail, and since Theorem 1.6 is employed

only in the demonstration of Theorem 1.7, a theorem which is not applied

in subsequent chapters, I give here only a brief outline of the proof of

Theorem 1.6.

Theorem 1.6. Let {il,̂ } be a static state of £3. If {T^U} is Gibbs

stable under isolation, then for almost all X in 73, (ri(X),u(X)) is a

point of convexity for e.

Sketch of_ the Proof."7 Let )& be the set of points X in ^ for which

(T](X),u(X)) is not a point of convexity for e. The theorem is proved by

showing that if •*«/(*/) > 0, then {T^U} is not Gibbs stable under

isolation. Now, when #tt,(x$) > 0, there exists a pair (i) ,t> ) which is

the image (T](Y),U(Y)) of a point Y in )& and is such that, for each 6 > 0j

<2c) > 0, where <2, = (x | Xe*f, | ̂ (X)-!!1! < 6, and ^ ( X ) - ^ |<
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_

One can show that if a static state of a simple fluid is Gibbs stable

under isolation, then the state is a combination of, at most, three

uniform phases; i.e. if {T),1>} is Gibbs stable under isolation, then,
n

for some n < 3, lo has n subsets ~P., with .^w/(^-#U ~#-*.) = 0, such

that the restriction of {T],^} to each ^ . is a constant function. The

attentive reader will notice that if I had proved this familiar conse-

quence of the "phase rule" before taking up Theorem 1.6, then the proof

I outline for Theorem 1.6 could be simplified drastically. In fact,

Theorem 1.6 can be strengthened to read as follows: If_ (TI,U} is a

static state of_ ~^3 that ij3 Gibbs stable under isolation, then for almost

all X in <§, (TJ(X),U(X)) ±S_ a. point of_ strict convexity for e.
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Since (T) }X> ) is not a point of convexity for e, there exist a number 0C}

2 2 3 3 —
with 0 < a < I, and points (TJ ,X> ), (r\ ,x> ) in the domain of e, such that

2 3
+ po

2
oco +

l - a,

and

Furthermore, by the continuity of e, there exist a number 6 > 0 and points

4 4 5 5 —
(H fV )> (1 ̂  ) in the domain of e, such that

= ao5

and

for all X in Q... Let ^ and ^ be two subsets of CL with

ab - /»'

and let the static state b e defined as follows:

n'(X)

<io(X) for XelB ~ d^,

)' (X) = J u4 for Xe^p1,

tTD5 f o r X e ^ * 2 .
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It is easily verified that

P . /
/ Ti d/nv = / 1

while

Hence, in view of Theorem 1.1, the state {r\,v} is not Gibbs stable under

isolation; q.e.d.

Theorem 1.7. If {TI°,U°} is a uniform static state of 70 that is

thermostatically stable in the strong sense, then there is no static

state of 7& that (1) is Gibbs stable under isolation, (2) has the same

temperature and pressure as {T}°,U°}, and (3) is distinct from {T] 0,^ 0}.

In other words, if {r|o,'Do} is a uniform static state that is

thermostatically stable in the strong sense, and if {T},^} is a static

state of & distinct from {T]O,V>O} with

= 901°,0°), p(ii(X),o(X)) = FCn 0 , ^ ) , (1-23)

for almost a l l X in 28, then {il,u} cannot be Gibbs stable under i so la t ion . I
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Proof. Since {TJO,U°} is thermostatically stable in the strong sense, it

follows from Theorem 1.5 that (T}0,!}0) is a point of super convexity for

e. In view of (1.18), the equations (1.23) can be written

and hence Remark A.5 here asserts that if X is such that (1.23) holds and

4 01°, u°), (1.24)

then (TI(X),O(X)) is not a point of convexity for e. If {T],U} is distinct

from {TI%V>°}, then (1.24) holds for each X in some set >& czlE> with

svrvi/S) > 0, and if, further, (1.23) holds for almost all X in ^ 8 , then

there is a subset s&' of yS with /ms(/&') = /yns(j&) > ®> such that, for

each X in £', (T](X),U(X)) is not a point of convexity for e. But,

Theorem 1.6 states that if it is not true that (TI(X),13(X)) is a point of

convexity for e at almost every X in *fi3, then {T],\D} cannot be stable under

isolation^ q.e.d.

In view of Theorem 1.2, the theorem just proven has the following

Coro^lar^. If the uniform static state of IB at (TI0,^0) is thermostatically

stable in the strong sense, then no static state {fl,io} of ~jQ, which is distinct

from {T)°,U°} but has (T)(X),u(X)) = 01°,u°) for all X in some set «f c ^

with /rri'(ff) > 0, can be Gibbs stable under isolation.
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Or, in words closer to those used by Gibbs: If the uniform

state of 2J at 01°,U0) is stable under isolation and is not at the frontier

of stability, then there is no non-uniform state of 75 that is stable

under isolation and has a uniform phase at ('Ho,'0o).

Proof. If {TJ,U} is as described, it is distinct from the uniform state

{T|°^ "0°)_, but obeys (1.23) for all X in a set tf with **,(£?) > 0. Hence,

by Theorem 1.2, if {T],U} is Gibbs stable under isolation, {TI°,U°} obeys

(1.23) for almost all X in 70 . But since (I)0,!}0} is thermostatically

stable in the strong sense, Theorem 1.7 asserts that if {TI,^} is distinct

from {T}O,O°} and obeys (1.23), then {T},O} cannot be Gibbs stable under

isolation; q.e.d.

Another, and more obvious, corollary to Theorem 1.7, is

Remark 1.4.
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2. Thermodynamic Processes and Regular Fluids

Let us now turn from the theory of static states to the general

theory of processes, i.e. from thermostatics to thermodynamics. In a

dynamical theory^ a body 76 has more structure than in the statical theory

of Chapter 1: ~(S> is now not only endowed with a mass-measure, but is

also a smooth manifold. Smooth injective mappings of & into a

three-dimensional Euclidean space are called configurations of ~23, and

each motion X of 23 is a one-parameter family of configurations• the

parameter, is of course, the time, and is denoted by t. Furthermore, in

thermodynamics, pairs of fields of given type, such as two specific entropy

fields T] and T|', cannot always be considered equivalent if they differ by

only a mass preserving transformation of l£) .

A thermodynamic process C of a body ^ i s a collection of

functions of X and t compatible with the laws of balance of momentum and

energy. At the level of generality sought here, each thermodynamic process

consists of six functions: (1) the motion X, with x = X,(X, t) called the

position at time t of the material point X; (2) the specific internal

energy e; (3) the specific entropy TJ; (4) the temperature 9, which is

assumed to be positive; (5) the heat flux vector q; and (6) the symmetric
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#Cauchy stress tensor T. When these six fields suffice to describe a

M — — —
"In this essay attention is confined to situations in which all acting

mechanical forces are contact forces,and all heat flow into a region is

by direct flux through the region's bounding surface. In particular,

it is assumed that gravitational body forces are absent and that there

is no heat transfer by radiation.

thermodynamic process, the laws of balance of momentum and balance of

energy take the forms

jTlnda, (2.1)

/"(x Tn - q.n)da. (2.2)

These integral relations are assumed to hold at all times t, -°° < t < °°,

MM
and in all parts Ir of "So; here n is the exterior unit normal vector

^ A part ft of ^ is a subset of the closure of 23 with certain properties

of regularity which I need not list here; cf. Noll [1958, 2]. Of course,

~& itself belongs to the set of parts of <£3.

to the surface b(P of P in the configuration at time t, da is the element

1IIof surface area in this configuration, x = (x-x) is the magnitude of

i, and the superposed dot denotes the material time derivative.
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Many types of processes are imaginable. The theorems to be

proved in Chapter 3 concern processes possible in fluid bodies which

from some time, say t = 0, onward are either isolated or immersed in an

environment held at a fixed temperature and pressure.

Definition 2.1. Let 0° > 0 and p° > 0 be assigned. If a process C of

a body TD is such that, at each time t > 0

(9-e°)q.n > 0 for all Xe b'B (2.3)

and

/ x-Tnda = -Vp° with V = VdsnJ, (2.4)

then C is said to be compatible with immersion o_f 1$ in an environment

at temperature 8° and pressure p°, from time zero onward.

The condition (2.3) asserts that if the material point X on I

the surface of 26 has a temperature i^ > than 9°, then heat does

not flow | L n t o I & at X. This condition is met, trivially, in the

extreme cases in which (1) d6 is thermally isolated, (q*n = 0 ) , and '

(2) the surface of ^6 is held at the constant temperature 0°. If To

^Cf. Koiter [1967, k\.
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is in an environment which is held at the constant and uniform temperature

0°, then (2.3) is expected to be a consequence of the second law of

thermodynamics, under reasonable constitutive assumptions for the transfer

of heat across the surface of jS . For example, if one assumes that for
JL

each point on the surface of ~flB,

q-n = k(8-e°) ,

fit.

Employing thermal boundary conditions of this type, Serrin [1959, 2] has

proved uniqueness theorems for the flow of classical viscous fluids with

heat conduction. f~

then the second law requires that k be not negative, and (2.3) is obeyed.

The condition (2.4) asserts that Vp° is a potential for the '

total work done by the contact forces acting on To. This condition is

met, for example, when £J is mechanically isolated, i.e. when V = 0 and

x»Tn = 0 on the surface of <$; a special case of a process compatible with ;

mechanical isolation is one in which 1& fills a rigid container to which it j

adheres, so that the velocity x is zero at the bounding surface of ^> . i

Processes which are not compatible with isolation but yet obey (2.4),

occur in a body confined in a piston chamber, provided that the force F

exerted by the piston on ~J3 is positive and constant in time; then

p° = F/A, with A the cross-sectional area of the piston [see Fig. l.ll. v/
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Pig. 1. A piston chamber of length & and cross-sectional

area A = V/i. Here / x-Tnda = -Fi = -p°V.
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The Clausius-Duhem inequality asserts that, at each instant of

time and for each part P of <£J ,

d P P 3.

Given two positive numbers 9°, p° and a process C of "2$, one

can define, at each time t, a number $(t) by

Pf 1 2 \
$(t) = / (e(X, t) - e°Tj(X,t) + p0jo(X,t) + ^ x (X, t)]cUm/. (2.6)

I call 0(t) the canonical free-energy of ^ , at̂  time t, Under an

environment at temperature 9° and pressure p°.

Theorem 2.1. It is a direct consequence of the balance law (2.2) and

M.

^Theorems related to 2.1 are given by Ericksen [1966, 2\, Koiter [1967, 4l,

and Coleman & Dill [1968, l\.

the Clausius-Duhem inequality (2.5), that if C is a process of ~$

compatible with immersion of 2? in an environment at temperature 9° and

pressure p° (from time zero onward), and if <t> is the canonical free-energy

of IB under such an environment, then in the process C

for each t > 0.
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Proof. When (2.4) holds, (2.2) yields

r
(2.7)

Since 9 and 9° are positive, (2.3) implies

^•jfq.nda > £ \ q-nda,

and hence, by (2.5),

Substitution of (2.7) into (2.8) yields

9° ~ [^d/nu > -/q-nda. (2.8)C4 " &~~

jj /Ye + \ x2 + P°u - 9°TiJd/m^ < 0;

q.e.d.

Let a motion of ~tu be given, and let x be the position in space

of the material point X at time t, which may be interpreted as the present

time. Suppose that at time T < t the same material point X occupied the

position |. For the dependence of | on x, t, and T, one can write

i
The function C defined by

C^(s) = F(s)TF(s), with F(s) = VxXt(x,t-s), 0 < s < °°, (2.9)
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JL
may be called the past history" (up to time t) of_ the relative strain at

#,Cf. Coleman [1964, 2], §9/ p. 251.

X; this function maps (0,°o) into the set of symmetric positive definite

tensors. The value C (s) of C is the right Cauchy-Green tensor at X at

time t-s, computed using the configuration at time t as reference.

^ C f . Noll [1958, 2l.

The past history (up to t) of, the specific entropy at X is the positive

function TI on (0,°°) given by

Tit(s) = T}(X,t-s), 0 < s < ». (2.10)

A material is characterized by constitutive assumptions which

restrict the class of the processes that can occur in a body comprised

of the material. For example, a simple fluid is defined by four functions

e, t, X, and q, called constitutive functionals; a thermodynamic process

is said to be admissible in such a fluid if at each point X and each time

t the values of e, 9, T, and q at X,t are given by the equations

e =

(2.11)
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where the numbers T\f x>} and the vector V 9 are present values, i.e.,
IV

values at X, t, while the functions C - and T] are the past histories

defined in (2.9) and (2.10)/

JL

"The concept of a simple fluid was introduced by Noll [1958, 2] in a

context in which thermodynamic variables do not occur. The full set of

equations (2.11) was presented and studied in my essay [1964, l] (vid.,

particularly, pp. 31 & 43).

In our paper of 1963, Walter Noll and I developed a procedure

for finding the limitations which the second law of thermodynamics places

on constitutive assumptions. The theory proposed there renders mathematical

the often vaguely stated second law by interpreting it to be the assertion

that for every admissible process in a_ body comprised of a_ given material,

the Glausius-Duhem inequality must hold at all times and in all parts of

##the body. Clearly, under such an interpretation, the second law must

__

In that paper [1963, l] account was taken of long-range influences,

such as body forces and heat supply by radiation, which are here

assumed absent.

imply restrictions on constitutive functionals, such as e, t, %, and q

in (2.11). In my essay of 1964, I found these restrictions for t, t, X,
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and q, under the hypothesis that these functionals obey the principle of

fading memory". There is no need to list here all the results obtained

//
"This is a postulate of smoothness introduced in [i960, l] and [1961, 1],

and developed from a set of elementary axioms in [1966, l]. Generaliza-

tions of the theory of fading memory, with applications to thermodynamics,

are explored in [1967, 3], [1968, 3-5], and [1970, ll.

in that study, but I should like to state those which contribute to an

understanding of the generality of the concept of a "regular fluid".to

be defined later in this chapter.

Let 1 and 1̂  be the constant functions on (0,«>) equal,

respectively, to the number 1 and the unit tensor 1.:

l+(s) = 1, l+(s) = 1 , 0 < s < oo.

If a region containing the point X has remained in its present configuration

at all times t < t, or has been subjected to only rigid motion, then

C = 1 at X; if the specific entropy at X has remained constant at its

present value r\ for all T < t, then TJ = T}1 at X; therefore, I call the

function e,defined by

eO),») = eOi,^ TI1 +,1 +), (2.12)

the equilibrium response function for the internal energy (or, to be
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briefer, the equilibrium energy function) for the simple fluid under

consideration. Among the consequences of the second law is the following

JL
inequality, which the functional e obeys throughout its domain:

j c ^ ) < e(t),i3). (2.13)

^[1964, 1], Remark 22, p. 35.

In words: For a simple fluid with fading memory, of all past histories,

that corresponding to perpetual rest at the present configuration and

entropy gives the smallest value to the internal energy.

The equilibrium response functions for the temperature, stress,

and heat flux are defined by equations analogous to (2.12):

») = t<T),*>; T ^ l 1 " ) ,

3) — S(n,v>j Tjl+,i+); (2.14)

9) q ( T l ^ V 9 T I 1 + 1 + )

It is easily shown that the principle of material frame-indifference

[1958, 2]; he there used the term "objectivity" instead of

"frame-indifference".
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u
implies that the functions T and q have the forms

"Pi, P =
(2.15)

rVid., e.g., [1964, 4], Proposition 7, pp. 96, 97, and [1963, l], p. 177.

It is a consequence of the second law that the functional e must determine

the functionals X and t through a formula called the generalized stress

relation. I need not review here the several definitions required to

^[1964, 1], Theorem 6, p. 33.

formulate this relation for arbitrary past histories C ~ and r\ - , but I

should like to remind the reader that for a_ simple fluid with fading

memory it is a_ consequence of (2.13) and the generalized stress relation that the

_ _ _ jffjf-
equilibrium response functions e, 0, and p must obey (1.2)."""

[1964, l], Remark 23, p. 35.

The concept of a "uniform static state"jWhich plays a central

role in classical thermostatics. can be given a meaning in thermodynamics

through the following definition.
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Definition 2.2. A uniform static state of a body *D is an admissible

process of 23 in which

il(X,t) = const., u(X,t) = const., and x(X, t) = 0,

for all X in 2? and all t in (-°°,°°).

The apparatus required to specify the class of materials called

M j

"regular fluids has now been assembled.

#,Gf. Coleman & Greenberg [1967, l].

Definition 2.3. A body 4D is comprised of a regular fluid if there exists

a differentiable function e mapping (0,°°) X (0,«>) into (0,°o) such that

(i) for each pair (T}0,^0) of positive numbers^ there is a

#
unique uniform static state of o with T] = r\° and X) = u0;77"

—

Unique here means the following: If X, e, TJ, 9, q, and T are the six

functions of X and t describing an admissible process of 23 with

T](X, t) = TJ°, U(X, t) = TD°, and 3 X(X, t) = 0, then e, t\, 9, q, and T are

completely determined once TJ° and x>° are given, and X is determined to

within a constant unimodular transformation, i.e. to within a

transformation of the form X(X,t) -»UX(X,t)+ c.with c a vector and U a

tensor obeying |det u| = 1.
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in this state (regarded as a process), for all X and t,

def -

def 77

e(X,t)

- 0° ' ,u°), with 6 = d e,

T(X,t) = -p°l, with p° 2S£ P(Ti°,b°), p = -bve,

qff,o = o;

(2.16)

(ii) in every admissible thermodynamic process of

e(X,t) > e(Ti(X,t),i3(X,t))

for all X and t.

(2.17)

The function 6 in (2.16) and (2.17) is called the equilibrium energy

function for the regular fluid.

Remark 2.1. Every simple fluid with fading memory is a regular fluid.
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Proof. Let a simple fluid with fading memory be given, let ~$ be a body

comprised of this fluid, and define e, 0, T, and q by (2.12) and (2.14).

Then, (2.15) holds, and, according to the italicized observation made

above about the generalized stress relation, 9 = d e and p = -de. Let

T)° > 0 and x>° > 0 be given, let X(X, t) be such that both x(X, t) = 0 and

V>(X,t) = 13°, and put e(X,t) = e(T]o,oo), T)(X,t) = T)% 9(X,t) = 9(TI%U°),

q = 0, and T(X,t) = -p(T1°,V°)l. The six (constant) functions X, e, TJ,

0, q, and T so constructed obviously obey the balance laws (2.1) and

(2.2) and hence form a the rmodynamic process of ~£D ; furthermore, by

(2.12), (2.14), and (2.15), this process obeys (2.11) and hence is

admissible. Moreover, the present construction completely determines

e> I* ®> °b an<* % a s functions of X and t, and determines X to within a

constant unimodular transformation; i.e. the admissible thermodynamic

process (X Cj^^q^T) constructed here is the only one with r\ = T]°,

u = x>°, and x = 0. Therefore, there exists a unique uniform static

state of "7& with TJ = T\° and U = u°, and this state obeys (2.16). In

view of (2.13), it is obvious that (2.17) holds for every admissible

thermodynamic process of ~$J . Thus, for an arbitrarily given simple

fluid with fading memory, the function e of (2.12) obeys items (i) and

(ii) of the Definition 2.3; q.e.d.
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Since each perfect (i.e. "elastic") fluid is a special case of

a simple fluid with fading memory, every perfect fluid is a regular fluid.

It is not difficult to show that the class of regular fluids also includes

all linearly viscous fluids (with or without heat conduction). For these

4L ' '

The consequences of the second law for the constitutive equations of

these and related materials are discussed in [1963, ll and

[1964, 3l.

classical materials, (2.17) reduces to an equation. The theory of

materials with internal state variables yields additional examples of

"Vid., e.g., Coleman & Gurtin [1967, l\, Bowen [1968, ll.

regular fluids. Thus, the theory of regular fluids may be considered a

broad generalization of the theory of simple fluids with fading memory.

Since, by assumption, for a regular fluid the uniform static

state mentioned in item (i) of Definition 2.3 exists for each pair (T)°,'DO)

in (0,«°) X (0,oo) and is uniquely determined by (ir|°,'0o), one may refer to

this state as the uniform static state at (T}°,U°) and denote it by

{T}°,U°}, just as is done in thermos tatics. One may, furthermore, here

continue to refer to every pair {T],U} of positive /ms-measurable functions

over ~& which renders finite the three integrals in (1.4) as a static

state of ~& , albeit it is not true that every static state so obtained
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occurs in a thermodynamic process in which the functions X, T], e, 0, q,

and T are constant in time. Of course, "Gibbs stability under isolation"

_

For this reason, some physicists prefer to refer to certain static

states as "virtual states".

and "thermostatic stability in the strong sense" become then formal

concepts whose dynamical significance must be demonstrated. Such

demonstrations are given in the following chapter, where it is shown

that if ^ is a regular fluid body with e convex for large argument, then

each uniform static state {T]°,'0O) of <© that is thermostatically stable

in the strong sense, according to Definition 1.3, is, when interpreted

as a process, also dynamically stable against a class of admissible

processes compatible with immersion of ^B in an environment at the

temperature 0° = 9(T}°,U°) and the pressure p° = P ( T T , U ° ) .
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3. Dynamical Stability

Employing the important inequality (2.17) and Theorem 1.5 in

the form of Remark 1.3, one can derive a lower bound for the canonical

free energy $ of a regular fluid body 00 under an environment at

temperature 0° and pressure p°, provided there is a uniform static state

{i%u°} of ~S that (1) is thermostatically stable in the strong sense,

according to Definition 1.3*and (2) gives to ^ the temperature 9° and

the pressure p°. Indeed, the lower bound for 4> is just <5°, the

canonical free energy of t̂ he fluid in the state {f]o,uo}, regarded as a

process. This is the main content of Remark 3.2 below, which is an

immediate consequence of the following observation.

Remark 3.1. Let r\°, 13°, e°, 9°, and p° be the values of TJ, U, e, 9, and

p in a uniform static state {T]°,U°) of a regular fluid body fcJ, and let

T)(X, t), o(X, t), and e (X, t) be the values assumed by r\f "0, and e at some

given time t and material point X in an arbitrary admissible thermodynamic

process C of To • Put

0o def e O _ QO^O + pOTjO ( 3 J L )

and
e(X,t) - 9°Ti(X,t) + p°U(X,t). (3.2)

If the state {T)O,UO} is thermostatically stable in the strong sense, then

0° < £(X,t),

and the sign of inequality holds here whenever TI(X, t) 4 T0, U(X, t) 4 v°,

or e(X,t) 4 €°.
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Proof. Let 0 be the function defined in equation (1.21) of Remark 1.3,

i.e.

u) = e"Oi,o) - e°r\ + p°x>, (3.3)

with e the equilibrium energy function for 27. Then

and since, by (2.17),

e"(Ti(X,t),T5(X,t)) < e(X,t),

it follows that

0(Tl(X,t),i3(X,t)) < 5(X,t), (3.4)

with equality holding only when e (X, t) = e (r\(X, t),u(X, t)) . Hence the

conclusion (1.22) of Remark 1.3 here implies

and 0(Ti%r>o) = 0(ri(X,t),i3(X, t)) only when T)(X,t) = i)° and u(X,t) = u0;

q.e.d.
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A direct corollary of this remark is

Remark 3.2. Let ~& be a regular fluid body, let {TJ°,U°} be a uniform

static state of ~S that is thermostatically stable in the strong sense,

and let e", 9°} and p° be the specific internal energy, the temperature,

and the pressure of 2? in the state {T]0,V)0}, i.e.

,U°), p° = P(TJ°,T3°). (3.5)

Put

M def /"\a
$ = / 0"d/ttf = M0 (3.6)

where

0° « e° - 0°T]0 + p°O°.

If_e(X,t), il(X,t), V)(X,t), and x(X,t) are values assumed by e, i), v>, and

x in an arbitrary admissible process C of "& , and i_f

0(X,t) = e(X,t) - eoT](X,t) + p°T3(X,t) + j x2(X,t), (3.7)

then

0(X,t) > 0° (3.8)

for all X in & and all t, and consequently, at each time t, for the

process C,

<D°, (3.9)
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where

cf(t) 2S£ r<t>QL,t)d*tU. (3.10)

Moreover, equality holds in (3.9) only if

e(X, t) = e°, T](X, t) = T)°, and u(X, t) = u°, a.e. in $5 .

Of course, 0(t) is the canonical free-energy of 4& at time t under an

environment at temperature 0° and pressure p°,- [see (2.6)]. The number

0° is the canonical free energy of IB, under the same environment, in

the uniform static state {T]O,'0O}, regarded as a process of CJ .

—

Since (3.5) holds here, it would be in accord with common usage to call

0° "the Gibbs free energy of j& in the static state {TI°, -0°}", or "the

equilibrium Gibbs free energy of 7S at 9°,p°".

If there are four numbers a, b, c, and d, obeying 0 < a < b < %

0 < c < d <•<*>, such that every point in (0,°o) X (0,°o) — (a,b)x (c,d) is a

_ _ JL
point of convexity for e, then e is said to be convex for large argument.

—

It is easily verified that for a function with domain (0,°°) X (0,°°) this

definition agrees with the Definition A.I.
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When e is convex for large argument, Remark 3.2 can be

strengthened as follows.

Remark 3.3. For each regular fluid body ~£> whose equilibrium energy

function e is convex for large argument, there exists a function &((n}r\°,v>°

such that:

(i) 6((n,T)°,v>°) > 0 for a> > 0, T)° > 0, and u° > 0;

(ii) i|_ the uniform static state of 7B at (T)°,U°) is

thermostatically stable in the strong sense, if_ e°,

0°, and p° are given by (3.5), and if_ C is an

admissible process of ^S with

<D(t) -<t° < 6(co,ii0,u0),

where $(t) and 0° are defined as in Remark 3.2, then

in the process C, at time t,

° / |T](X,

j rx
2(X,t)d*«^ < 0), and Me (X,

0 ° / |Tl(X,t)-TlO|d/*7^ < GO, p ° / |U(X, t)--O°|d/»»^ < Oi,

(3.11)

, t)-e° | &/mS < cb.
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Proof. Suppose that the uniform static state at (T]O,V>O) is thermostatically

stable in the strong sense, let CD > 0 be assigned, let e°, 0°, and p° be

given by (3.5), and let O(t) and 0° be as in Remark 3.2. Then

(3.12)

with 0(X,t) defined in (3.7), 0° in (3.1), and £(X,t) in (3.2). By

Remark 3.1,

5(X,t) "0° > 0,

and therefore (3.12) yields

" . 2 ,.,
(3.13)

. 2

Furthermore, since x is never negative, (3.12) yields also

*(t) - *° > r[5(X,t)-0°ld^^,

and, by (3.4), this implies

<&(t) - «° > M0(T),u)-0o]d/»«y, (3.14)

where I have written TJ for 11(X, t) and u for U(X, t), and 0 is as in (3.3).

Let

yj_ = (Ti-ilo)e% y2 = (U-W°)P°, y = (y1,y2), (3.15)

f(y) — * ( F + TJ°' P^ + U°) ~r = "
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In terms of the function f, (3.14) becomes

- $° > jf(y)d/m/. (3.17)

By (3.1) and (3.3),

f(y)
y2

and because e is defined and differentiable on (0,<») x (0,°°), f is

defined and differentiable for all y in the set

D = (-Tl°e°,oo) x (-U°p0,oo).

Of course, since 0(T)°,u°) = 0°, (3.16) yields

f(0) = 0,

and it follows from Remark 1.3 that f is positive definite on D in the

sense of the Definition A.2. As it is here assumed that e is convex for

large argument, it is clear from (3.18) that f is too; [see the

Definition A.ll. Thus, f meets the hypothesis of Lemma A.2, and there

exists an l > 0 such that

r
< i = > i

or, by (3.17), (3.15), and (A.12),

?. O.19)
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It follows from the conclusion (3.8) of Remark 3.2 that (3.12).. can be

written

$(t) - $° = / |0-0o|d/w^, (3.20)

where 0 stands for 0(X,t). In view of (3.1) and (3.7),

€ — e° = 0 — 0° + O]-TIO)0O ~ (v-u°)p° x ,

and therefore, by the triangle inequality, (3.20), and (3.13),

| 0 - 0 ° | d / W / + 9 ° / |Tl-Tl°|d/^t/ + p

r o o r o.

It is a direct consequence of (3.13), (3.19), and (3.21) that if one puts

•-, CD/4)

| e - e | < W < / \ct>-<t>\d/**u + 9 [ | T J - T | | d,*i/ + p°
& J J&

)

then 6 is positive, and all four of the inequalities in (3.11) hold

whenever ^(t) — 0° is less than 6. Of course the 6 so obtained depends

on not only a> but also 1}° and x>°, i.e. 6 = 5((X},T\°,x>°). The argument just

given rests on the assumption that {T]0,!}0}, the uniform static state at

(T\°,'°o), is thermostatically stable in the strong sense; if { T ^ O 0 } is

not stable in this manner, then let 6(CD, 11°,u°) have any convenient posi-

tive value, such as 1 or ai. Thus one obtains a function 6(cu,T]o,i3o) with the

properties (i) and (ii); q.e.d.
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The main results of this-study, Theorems 3.1 and 3.2 below,

are easy consequences of the remark just proven and Theorem 2.1.

In both Theorem 3.1 and Theorem 3.2,a regular fluid body is

supposed assigned in advance, and, for each pair (9°,p°) o_f positive

numbers, £(9°,pc) denotes the class of admissible the rmo dynam i c processes

of 73 that are compatible with immersion of_ 7& in. an environment at

#
temperature 0° and pressure p° from time t = 0 onward.

. Definition 2.1.

Theorem 3.1. Let 0°, p°, and €° be the values of the temperature, the

pressure, and the specific internal energy in a uniform static state

{TJO,U°} of a regular fluid body ^ for which the equilibrium energy

function is convex for large argument. If {T]°,UO} is thermostatically

stable in the strong sense, then given any CD > 0, there exists a

6 = 6(aD,T]°,'0o) > 0 such that each process in E(9°,p°) which, at any one

time t > 0, satisfies

*(t) - *° < 6, (3.22)

with <t>(t) and 0° defined as in Remark 3.2, must also satisfy

l r.:
(3.23)

r.

9° I T](X, T)-T) \O./YHJ < CD, and p

for all T > t.
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Proof. Let 6 = 6 (a), TI °, v>° ) be as in Remark 3.3. Of course, by item (i)

of that remark, 6 is then always positive. Now, according to Theorem 2.1,

for T > 0, $ ( T ) does not increase with T in any process C belonging to

S(0°,p°). Hence if C in £(0°,p°) obeys (3.22) at some time t > 0, then

for the process C,

$ ( T ) - <t>° < 6, ' (3.24)

at each time T > t. But, by item (ii) of Remark 3.3, if (3.24) holds at

time T, then (3.23) also holds at time T; q.e.d.

Theorem 3.2. Let 3 be a regular fluid body with an equilibrium energy

function e that is convex for large argument. If 2? has, at a given

temperature 9° and a given pressure p°, a uniform static state {T]°,U°}

that is thermostatically stable in the strong sense, then this uniform

static state is unique and is dynamically stable in the following sense.

Given any as > 0, there exists X = X(oi, 0°,p°) > 0 such that if a process

C in £(9°,p°) has

(3.25)

9° I |TJ(X, t)-T}°|d/»t> < X, and p°/ | U(X, t)-u° | &/»u < X,

at any one time t > 0, then C must obey (3.23) for all T > t.
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Proof. Let {TI°,V>°} be a uniform static state of ~%, with the given

temperature 0° and pressure p°, that is thermostatically stable in the

strong sense, and let C be in E(0°,po). It follows immediately from

Remark 1.4 that {T)°,T3°} is unique. Furthermore, it is clear from

Remark 3.2 [see also (3.20)] that at each time t, in the process C,

f
where, by (3.1) and (3.7),

0(X,t) - 0° = i- x2(X,t) + e(X,t) - e° - [TJ(X, t)-T]°]eo + [u(X, t)-u°]p

Hence the triangle inequality yields

$° < / | x2(X,t)d^^+ Me(X,t)-eo|d/m^+ e°Mil(X,t)-no|d/^+ p°/

^ J ^ J J

and, if one puts

X = X(CD,0°,p°) = i

with 5(cu,T),uo) as in Theorem 3.1, then X is not only positive but is

also such that (3.25) implies (3.22). But, Theorem 3.1 asserts that if

C satisfies (3.22) with t > 0, then C must obey (3.23) for all T > t;

q.e.d.
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Appendix: On the theory of functions with points of convexity

I here attempt to lay out in a systematic manner some results

from analysis that play a vital role in thermostatics and thermodynamics.

Few of the arguments employed here are new; nearly all of them occur in the

theory of convex functions, although, in a certain sense, the present

subject can be regarded as a generalization of that classical theory.

The emphasis is laid on relations which, if they were to hold globally,

would characterize a convex or strictly convex function, but which

occur here only as properties of a function and single point in its

domain.

Let R be the set of real numbers, let R , with n > 1, be the

JL
space of n-tuples of elements of R, and let D be a convex open subset

Jf~ ' ~~~
A subset S of a vector space is called convex if whenever x and y are

in S and a obeys 0 < a < 1, the vector Ox + (l-a)y is in S.

of R . Although the present discussion employs only the assumption that

n ##
the given set D is convex and open in R , in applications to thermodynamics

Xg - -

""From Remark A.6 onward, I further assume that the vector 0 = (0,...,0)

is in D; this, however, is done only to permit use of the convenient

normalization f(0) = 0, for real-valued functions on D.
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D is usually a set of type

i > " b i ) = (-b1,~)x --.X (-bn,co) (A.I)xi

where the b. are given non-negative numbers. Let f be a differentiable

function mapping D into R. A point z in D is called a point of_ convexity

for f if

f(z) < af(x) + Pf(y)j (A. 2)

whenever x and y in D are such that

z = ax + Py, a + p = I, a > 0, P > 0. (A. 3)

If

f(z) < af(x) + Pf(y) (A.4)
~ ~ ~ J

whenever (A.3) holds, then £ is called a point of strict convexity for f.

Remark A.I. A point z in D is a point of convexity for f if and only if for

each x in D«

f(x) > f(z) + (x-z)-Vf(z), (A. 5)

with Vf (:z) the gradient of f at £.
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Proof. Suppose first that (A.5) holds, and let x and y obey (A.3). For

a > 0 and P > 0, (A.5) yields,

af(x) > af (z) + a(x-z)-vf (z), \
\ (A.6)

Pf(y) > Pf(z) + P(y-z).VE(z). J

Adding these relations one obtains

CCf(x) + pf(y) > (OfP)f(z) + (C6c+py-(a+p)z).Vf(z). (A. 7)

It follows from (A.3) that (A.7) reduces to (A.2), and hence £ is a

point of convexity for f.

Starting now with the assumption that £ is a point of convexity,

let h be an arbitrary vector with £+h in D, and for each f3 in (0,1)^ put

x = z~Ph, y = £+ ah, a = 1 - P.

Clearly, x and y so defined obey (A.3) and hence (A.2), which may be

written

f(x) - f(z) > f(x) - [af(x)+Pf(y)l = [f(x)-f(y)]p.

Thus,
f(z-ph) - f(z)

p > f(z-ph) - f(z+ (l-P)h). (A.8)

By the definition of Vf (z),

f(z-Ph) - f(z)
= -Vf(z).h,
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and since (A.8) holds for all p in (0,1),

-Vf(z)-h > f(z) - f(z+h).

By the arbitrariness in the choice of h, this last relation is the same

as (A.5); q.e.d.

I say that a point z in D is a point of super convexity for f

if, for each x in D ,

x 4 z = > f(x) > f(z) + (x-z)-Vf(z). (A.9)

Remark A.2. Each point of super convexity for f is also a point of

strict convexity for f.

Proof. Let z be a point of super convexity for f. If x and y obey (A.3)^

then x 4 £ and y ^ z, and, by (A.9), the relations (A.6) hold with the

sign of inequality. Hence the sign of inequality holds also in (A.7),

which then reduces to (A.4); q.e.d.
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The accompanying figure shows part of the graph of a smooth

function f mapping (-b,°°) into R with z = 0 a point of strict convexity.

For this function

f(a) = f(0) + (a-O)Vf(O),

i.e. z = 0 is not a point of super convexity for f. Thus it is not in

general true that a given point of strict convexity is a point of super

convexity. It is, however, well known that if every point in the domain

D of f is a point of strict convexity, i.e. if f is a strictly convex

function, then every point in D is a point of super convexity. A slightly

more general result of this type is given in Remark A.3.

Let Z be the set of all points in D which are points of strict

convexity for f. A point z is said to be interior to the set of strict

convexity for f, if £ is in the interior of Z, i.e. if there is a

neighborhood 0 of z in D such that each x in 0 (including z) is in Z.

Remark A.3. If z is interior to the set of strict convexity for f, then

£ is a point of super convexity for f.
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Fig. 2
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Proof. Since z is interior to the set of strict convexity for f, for some

neighborhood 0 of £ each x in 0 is appoint of strict convexity for f. Now,

suppose £ is not a point of super convexity for f. Then, D contains a

point y, other than :z, for which

f(y) < f(z) + (y-z).vf(z).

But, since £ is a point of convexity, Remark A.I yields

f(y) > f(z) + (y-z)-Vf(z),

and therefore

f(y) = f(z) + (y-z)'Vf(z). (A.10)

Let a, with 0 < CC < 1, be such that the point

x = ay + Pz, P = 1 - a

is in 0, and hence is a point of strict convexity. Of course, since z is
a point of convexity

f(x) > f(z) + (x-z).Vf(z).

On multiplying (A.10) by a and subtracting the result from this last

relation, one obtains

f(x) -af(y) > (l-a)f(z) + [x-(ay + (l-a)z)3-Vf(z) = 6f(z) + O-Vf(z);

i.e. f (x) > af(y) + |3f(z),
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which contradicts the fact that x is a point of strict convexity. Hence,

the supposition that £ is not a point of super convexity leads to a

contradiction; q.e.d.

The following remark gives another condition on a point of

convexity sufficient to assure that it be a point of super convexity.

This condition, although it is not directly employed in the present

essay, is worth mentioning because it has a familiar geometrical

interpretation.

Remark A.4. Let z in D be a point of convexity for f. If D contains no

point y of convexity for f such that Vf (y) = Vf (z) and y 4 z, then z is

a point of super convexity for f.

In other words, if a point £ of convexity for f is not a point

of super convexity, then there must exist another point of convexity at

which f has the same gradient as at £. Actually, the argument given

below proves the following slightly stronger proposition: If £ is a

point of convexity for f, then the hyperplane i tangent to f at £ never

crosses f; if it touches f at another point y, then i is tangent to f

at y, and y is a point of convexity; of course, if & does not touch f at

any point other than £, then £ is a point of super convexity.
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Proof. Since £ is a point of convexity, (A.5) holds for all x in D.

Thus, the present remark will be proved if it is shown that each point

y in D for which (A. 10) holds is such that Vf (jr) = Vf (z) and is also a

point of convexity for f. Let y be a point in D obeying (A.10), and let

h be an arbitrary vector in R . Because D is an open set, there is a

6 > 0 such that, for each CD in (0,6), the vector y + ojh. is in D, and (A.5)

yields

f(y+a)h) > f(z) + (y+ODh - z)-Vf (z),

which, by (A.10), can be written

f (y+o>h) — f (jr)

— ~ fe-Vf(z) > 0.

Since this last relation holds for all cx> in (0,6), it implies

[Vf(y) - Vf(z)]-h > 0,

and, since h was chosen arbitrarily, one can conclude that Vf(y) = Vf(:z).

Because (A.5) holds for all x in D, it now follows from (A.10) that

f(x) > f(z) + (x-z)-Vf(z) = f(y) + (x-y)-Vf(z) = f(y) + (x-y)-Vf(y)

for all x in D, and thus, in view of Remark A.I, y is a point of convexity

for f; q.e.d.



62.

Remark A.4 has the following converse.

Remark A.5. If £ is a point of convexity for f, if y is a point of

super convexity for f, and if Vf (y) = Vf (z), then y = z.
& rsJ r*j ^

Proo£. Suppose y 4 z,. Since z is a point of convexity, Remark A.I

yields

f(y) > f(z) + (y-z)-Vf(z),

and since y is a point of super convexity

f(z) > f(y) + (z-y)-Vf(y).

Addition of these relations yields

0 > (y-z).[Vf(z) - Vf(y)l,

which is impossible, because Vf (z) — Vf (y) = 0. Hence y = z; q.e.d.

Henceforth, let us assume that the point 0 = (0,...,0) is in

D. When D has the form (A.I), this assumption will be met if b. > 0 for

i = l,...,n. For Remarks A.6 and A.7, and Lemmata A.I and A.2 below, it

is not necessary to assume that f is differentiable on D.
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Remark A.6. Suppose f(0) = Ojand let z in R be given. If for some

l_i > 0 the vector (iz is a point of convexity for f, then for each v > [i

with vz in D,

f(vz) f(nz)

— > — . (A. 11)
v - JI

#
Proof. If v = u, (A. 11) is trivially true; hence one can assume v > |a.

The argument used here is well known; cf. Eggleston [1958, l], p. 47.

Since JIZ is a point of convexity for f,

f(|iz) < af(x) + (1-O0f(y),

whenever x and y are in D, and

IJ.̂  = ax + (l-a)y, 0 < a < l.

Hence, if

then

f(liz) < ^ f(vz) +

which, because f(0) = 0, reduces to (A.11); q.e.d.
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The proof just given obviously can be tightened to yield

Remark A. 7. Suppose f(0) = 0. If iix, with LL > 0, x ^ 0, is a point of

strict convexity for f, then^ for each v > p. with vx in D,

f(vx) f(nx)

V U

Definition A.I. A function f mapping D into R is convex for large

argument if there exists an open set S in Rn, with closure S, such that

(1) S is a compact subset of D,

(2) every point in D — S is a point of convexity for f.

Definition A.2. If f(x) > £3for all x in D with x 4 0, then f is said

to be positive definite on D.

In the statements of Lemmata A.I and A.2 below, a norm || • || on

R is employed. Although the choice of norm is immaterial to the proofs

given, it is worth mentioning that in applications || • || is the function

defined by

llyll - \ y x \ + | y 2 l + ••• + l y j * <A-

where, of course, y = (y..,...,y ) and |y.| is the absolute value of y
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Lemma A.I. Let f be a continuous function mapping D into R with f(0) = 0.

If f is convex for large argument and positive definite on D, then for

each d > 0 there exists an A = A(d) > 0 such that

^ > A (A. 13)
T llvll
J. j I A I

where

| d = [x | xe D and ||x||>d}. (A.14)

Proof. By assumption, D is an open subset of R and 0 is in D. Let S

be the precompact open set in the Definition A.I. Clearly, there exists

an open set M such that 0 is in M, S is a subset of M, and the closure

M of M is a compact subset of D. Let d > 0 be given. Since 0 is not in

T, jand f is positive definite, we have

> 0, (A. 15)

IIXll

for each x in T, , and s ince T, f]K i s compact, i f we put

when T , fl M = 0,

B(d)

T n M ¥ 0 ,

then

B(d) > 0. (A.16)
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Of course, D = M U(D-M), and therefore T, is contained in (T.I1M) U (D-M),

which implies that

f(x) ( f(z'

l d Hsll I 2U
(A.17)

To estimate the second term in parenthesis above, let F be the frontier

of M, i.e. F = M-M. Since 0 is not in F, (A. 15) holds for each x in F,

and since F is compact, if one puts

/OS
7 = x^t/ , (A. 18)

F ||x||

one has

7 > 0. (A.19)

Furthermore, because F is a subset of D which does not intersect S, each

point in F is a point of convexity for f. Now, suppose £ is in D-M.

Then £ 4 0, and; for some \x. in (0,1)^ the vector u.iz is in F, and by (A. 18),

f(M£)
> 7 . (A. 20)

i i ^ l l

Since p.z, i s a point of convexity for f, Remark A.6 yields

i.e.

f(z) f(|az) f(nz)
m
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and, by (A.20),

f(z)
> 7.

Thus

< /f(z)

D-fa > 7. (A.21)

= = z

It follows from (A.16), (A.19), (A.21), and (A.17) that A(d), defined by

is positive and obeys (A.13); q.e.d.

Lemma A.I is employed to prove

Lemma A.2. Let » be a set endowed with a finite, positive measure

and let f be a continuous function mapping D into R with f(0) = 0 . If f

is convex for large argument and positive definite on D, then for each

e > 0 there exists a 6 > 0 such that every /yn>-measurable function g
n

mapping iS into D with

/fogd/w < bj (A. 22)

"f°g denotes the function mapping 7& into R defined by f°g(X) = f(g(X)),

obeys
P.. ..

< e. (A.23)
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Proof. Let e > 0 be given, and then put, for each /»n/-measurable function

A
The proof given here employs an argument used by Coleman and Greenberg

in a l e s s genera l con tex t : v i d . [1967, l l , Proof of Remark 4 . 2 .

g t ak ing To i n t o D,

J = [X | Xe# and I |g00| |<^} ,

J = T3- J = [x I Xe# and ||g(X)|| > ̂ j ,

with M = /m,(25). Clearly,

r\\g\\d*»> = j^1+^2y ( A # 2 4 )

where

< = h\

and by the definition of /> ,

tiY < | • (A. 25)

Now, since f°g does not vanish anywhere on 0 , one can write

By Lemma A.1 and the assumptions made here about f,

Xe S
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where

A ( ! M ) > °* (A'26)

Hence

/> i r

and, in view of (A.24) and (A.25),

- + - 1

Al( —
\2M/

It is evident from (A.26) and this last relation that if one puts

h def e
6

then 6 is positive when e is, and (A.23) holds when (A.22) holds; q.e.d.
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