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Additive Functionals on Spaces with Non-absolutely-continuous Norm

by

V. J. Mizel and K. Sundaresan

Let (Tj£, /Lt) be a complete finite positive measure space,

and let (X,|| • ||) be a seminormed vector space of real valued

measurable functions defined on T. We suppose that (a) The space

(X, || * ||) obtained by identifying functions of X which are

equal a.e. is a Banach space. (b) If x e X and E is a measurable

set then x I_ e X where I is the characteristic function of E,

(c) If x e X and y is a real valued measurable function satis-

fying |y| (t) < |x| (t) a.e. then y e X, (d) X00 (jz) c X.

The problem of characterizing nonlinear functionals F on X

which admit integral representations of the form F (x) = «T (p (x(t) , t) dj|(t)

where <p is a Caratheodory function has been discussed in

Drewnowski and Orlicz [1] and Mizel [3] . In [3] the case X = £P(jLt) ,

1 <_ p < CD , is discussed while in [1] X is assumed to be of absolutely

continuous norm. The purpose of the present note is to extend these

results to the case when X is not necessarily of absolutely con-

tinuous norm.

We recall a few definitions and notations before presenting the

main results of the paper.

In the sequel the set of all measurable real-valued functions

on the complete finite positive measure space (T,£,/x) is denoted

by to, «C (jx) c to is the subspace of essentially bounded functions,

and X d to denotes a fixed subspace satisfying (a) , (b) , (c) and (d)

above. We denote the real line by R. A functional F: X - R is



said to be additive (orthogonally additive) if F (x + y) = F (x) + F(y)

whenever x,y are of disjoint support i.e. ji[ 11 x(t) y (t) / o) = 0 .

A function <p: R x T -> R is a Caratheodpry function if for each

y e R, <p[y,m) is a measurable function, and for t a.e., <p(*,t) is

a continuous function on R. If x is a real valued function then

<P o x(t) = <p(x(t),t) If x is a constant function taking the value

h* <p o x will be denoted by <p, .

We proceed to the representation theorem of the paper. We pre-

sent separately the necessary and sufficient conditions guaranteeing

the representation. We recall a lemma given in [3] (see also

Krasnoselskii [2)) .

Lemma 1. If cp is a Caratheodory function and r\ is a positive

real number then there exists a measurable set S^ such that (1)

fi(T-S~) < r) and (2) p(*,t) is uniformly continuous on each bounded

interval J c R̂  uniformly for t e S^.

Theorem 1. Let F be a real valued function on X such that (i)

F is additive, (ii) F is uniformly continuous on every ball in

(P (M) J> II * | | ) JI (iii) F is continuous with respect to domi-

nated a.e. convergence, i.e. whenever {x }, x,y e X satisfy

x n - x a.e. and l*n(t)| <. |y(t)| a.e. for all n, then F (xn) - F (x)

Then there exists a Caratheodory function cp on R x T such

that for all x e X

(*) F(x) = J_ <p o x dfjL.



Proof. Since the restriction of F to £°° (fJi) satisfies the

hypotheses in theorem 1 of [3], it follows that there exists a

Caratheod ory function <p such that for all x e £ (jLl) the

representation (*) is valid. Let now x e X. It follows from

conditions (ii) and (iii) that the set function F (xl^) on £

is absolutely continuous with respect to p. Thus it has a

Radon-Nikodym derivative g e £ (jx) , unique up to a null set^

such that (a) F (xl ) = J g djx, for AeL. We proceed to verify

that g = <p* o x a • e. Let for each real number c >. o,

A = {t| |x(t) | <: C). Given a fixed sequence of real numbers

{77 } converging to 0 let us denote the corresponding measurable

sets S whose existence is assured by lemma 1, by Sm. It is
'm

easily verified that the sequences of measurable sets (An)
 a n d

[S ) both converge to T as n. m -» oo . Let B = Sm fl A .^ m ' m^ n ni n

We proceed to show that g = <p o x a.e. on B . Since
m, n

|x(t)| £ n on B there exists a sequence fyv} of simple

functions such that yv - x uniformly on B and ly-l < Ixl.
K u m, n ' K ' — ' •

By lemma 1, it follows that <p o y v - (p o x uniformly on B
KI m y n

Hence if E is any measurable subset of B it follows that
nij n

Further since y k l £ -» x I £ a.e. and (y | -< |x| it follows from

property (b) of X and condition (iii) that F (y, I j ^ F (x I_)
r p k E E

for each E e E. Thus J__ g du = Ĵ cp o x du for all E c B
^ E ^ m^ n

Hence g = <p o x a.e. on B t Since T - U B is a null set.
iUj n m ^ n m ^ n '

This completes the proof of the theorem.
We proceed next to the converse of Theorem 1.



Theorem 2. If cp is a Caratheodory function on R x T such that

cp{o, t) = o for t a • e • and <p, o x e <£ (]U) for each x e X,

then the functional F (x) = J <p o x d fl satisfies conditions

(i), (ii) and (iii) of Theorem 1.

Before proceeding to the proof we note that by the converse

assertion in Theorem 1 of [3] F certainly satisfies conditions

(i) and (ii) above. We verify that F also satisfies the condition

(iii) after establishing the following lemmas.

Lemma 2» If <p is a Caratheodory function and x e £ (M) then

the (almost everywhere finite) function a defined below is
x

measurable.

ax(i) = sup { |<Ph(|) | | |h| < |x(5) | }

Further for each e > o there is a function y e JJ00 (M) such that

(1) |y| < |x| and (2) | | (<p o y) (?) | - a (§) | < e a.e.
x n

Proof. First let x be a simple function of the form S c m I A .
m=l m

Let a' (§) = sup \cp (?) L h rational. Clearly a' isp
| < x(g)

a measurable function since on each of the sets A it is the
m

supremum of a countable family of measurable functions. Moreover

since <p (•, %) is continuous for g. a.e.. it is verified that

ax = a
T
x a.e. Thus ax is also measurable. Now each x e £

is the pointwise limit of a sequence of simple functions

{xn} satisfying |xn|f|x| a.e. Therefore « xt
 a

x
 a'e* a n d t h e

n
measurability result holds for such x as well. Notice that by
a similar argument the functions a — defined by

x



o£ (I) = sup l<P h (§ ) | . , 0~(S) = sup
x o < h < | x ( | ) | n x |x(S) | < h

are both measurable.

Now let {7} } be a sequence of positive reals such that

n - 0 and let the corresponding sets {S } whose existence is as-
m

sured by lemma 1 be denoted by {S }. For each T)m there exists by

lemma 1 a 6m such that \<p(h, §)-<p(h<,§) | < e for all § e Sm

whenever |h-h'| < 6m and |h|, |h'| < || x || . Let

A + = {§| a (?) = sup l<p(h, 5)|) = C 51 at C 5> = ct (I) } • By the
x o < h < |x(?) |

results above A is a measurable set. Now define sets E—. as

follows.

L ll l ̂  < = ̂ e S

E m l = [I € S m ~ A
+| | |<p(-<5m,S)l-ax (%)\ < e) ~ E m o , and more generally

+ +

*£. = {? e sm n iC
m? m " i.< 3 - .

Emj " {§ € Sm ~ A I Vl-l* ̂ J-^tS) ~± < j^^mi
 Emi '

Clearly each set E—. is measurable and if ye = L (j 6 1 ^ + -j6ml_ )
m3 m 1 < j Emj Emj

then \\p o ym (Sij-o^d) | < e for a . e . § e. S . Now l e t
mm

y = 2 y I« ^ . From the construction of the fy 1 i t is
m> 1 m W l • m

v e r i f i e d t h a t |y | <̂  j x | and s a t i s f i e s | (cpoy [ - a |<e except on t h e

n u l l s e t T ~ U S^ . By c o n s t r u c t i o n each yG i s a k6 m -va lued
m L m

function such that cp o ye approximates a within e on S .
m



Lemma 3. If x e £°° (jLt) then there exists a function yx e &

such that (1) |y | <L |x| a.e. and (2) \<p o y |= a a.e..

Proof. Let [e } be a sequence of positive real numbers such that

(1) e -* o. Then the functions yGn (following the notation in

lemma 2) are all dominated by x and by construction converge

pointwise on each set S . In fact, denoting US = S, one has

(*-*) lim y n(§) =\minimum c >_ o s. t. |<p (ĉ  §)| = a (§) § e S n A
K

n -» GD /
/ maximum c < o s.t. \<p (c, §) | = a^i 5) § e S ~ A

Let Yx(5) = lim y€n(§) for § e 8 and = 0 otherwise. Clearly
n -> oo

y is measurable and |y J £ |x| since | yGn | £ |x| for all n >_ 1.
x x "~~* j

From (**) it follows that |<p o y "]= 0dx a.e.

Lemma 4. For each x e X there exists a function y e X such that

(1) |yx| < Ixl a-e- and (2) \<p o y x |= U^ a.e.

Proof. Define recursively a sequence of pairwise disjoint measurable

sets {E } as follows.

E L = {S| |x(g) | < 1}, E 2 = {C! |X(5) I < 2} ~ Ex

and in general

n-1
E = {S| |x(5) | £ n} ~ U E.. It follows from the preceding lemma
n j=l D

that for each integer n > 1 there is a function y in £ (̂)
— n

such t h a t \(p o y (§)[ = a (?) f o r a l l § e E and y (5) = o• n i x n n

o t h e r w i s e . L e t y v = S y I_ . Then on each s e t E Iy I < | x |
x n Hi n xn

and |<p o y |= a . Since /i (T — U E ) = 0 it follows that |y I < |x|x x n x

a.e#j, so that yx € X^ and \<p o y^| = ax a.e.



We complete the proof of Theorem 2 by proving the following

corollary to lemma 4.

Corollary, If <p is a Caratheodary function and if for each

x G X, <p o x € £ (jji) then the functional F ( x ) = J < p o x d / i) = J < p o

has the property (iii) of Theorem 1.

Proof. Let z e X and [x } be a sequence in X such that

|x I < Izl. Then by the construction of y it follows that Icpox l< Icpoy I• n z n — z1

and <poye £ (fi) * If further the sequence {x } converges toz n

some function x a.e. where x G X then by the continuity of

<p(*, 5) it follows that <pox -><pox a.e. Since |(p o x | < |(P o y I

we have by the dominated convergence theorem

F (xn) - F (x) .

In conclusion we mention that Theorems 1 and 2 can be extended

to the case when (T, S, fi) is cr-finite measure space. As this

generalization is straightforward and the proof is very similar to

that of Theorem 2 in [3] once the results for the finite case are

obtained, we content ourselves by stating the theorem without proof.

In the next theorem (T, L, /x) is a complete a-finite measure space.

Theorem 3. Let (X, ||•||) be as in the introduction except that

X satisfies instead of condition (c) the following condition

(c») f G cC00 (jz) , E G £ s.t. /i(E) < oo implies f I E G X.

Suppose the function F: X -• R satisfies conditions (i) and (iii) of

theorem 1 as well as the condition,

(ii«) F is uniformly continuous on each set of the form (X fl Y, | |
(3D

where Y is a bounded subset of <£°° (u) supported by a

set of finite measure.
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Then there exists a Caratheodory function <p, satisfying <p o x e £

for each x e X, for which the following representation holds

(*) F(x) = JT o o x= JT o

Conversely, each Caratheodory function <P which satisfies

<p o x e £ (u) f o r e^ch x e X, and (2) <£(©,,§) = 0 a.e., determines

by means of (*) a function F which satisfies (i), (iii) and (ii!).
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