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Additive Functionals on Spaces with Non-absolutely-continuous Norm

by

V. J. Mizel and K. Sundaresan

Let (T,Z, M) be a complete finite positive measure space,
and let (X,|| * ||) be a seminormed vector space of real valued

measurable functions defined on T. We suppose that (a) The space

(X, |] * ||) obtained by identifying functions of X which are
equal a.e., is a Banach space. (b) If x ¢ X and E is a measurable
set then x IE € X where IE is the characteristic function of E,

(c) If x ¢ X and y is a real valued measurable function satis-
fying |y|(t) < |x|(t) a.e. then y e X, (4) £P (p) < x.

The problem of characterizing nonlinear functionals F on X
which admit integral representations of the form F(x) =9, o (x(t),t)dpu(t)

where ¢ 1is a Caratheodory function has been discussed in

Drewnowski and Orlicz [1l] and Mizel [3]. In [3] the case X = £p(y),
l < p< ®, is discussed while in [l1] X is assumed to be of absolutely
continuous norm. The purpose of the present note is to extend these
results to the case when X 1is not necessarily of absolutely con-
tinuous norm.

We recall a few definitions and notations before presenting the
main results of the paper.

In the sequel the set of all measurable real-valued functions
on the complete finite positive measure space (T,Z,m) 1is denoted
by N, 300(#) c M 1is the subspace of essentially bounded functions,
and X c M denotes a fixed subspace satisfying (a), (b), (c) and (4)

above. We denote the real line by R. A functional F: X - R is




said to be additive (orthogonally additive) if F(x + y) = F(x) + F(y)
whenever x,y are of disjoint support i.e. u{t|x(t)y(t) # o} = O.

A function ¢: R x T - R is a Caratheodory function if for each

Yy ¢ R, ¢o(yY,*) 1s a measurable function, and for t a.e., o(,t) is
a continuous function on R. If x is a real valued function then
¢ o x(t) = o(x(t),t). If x is a constant function taking the value
h, ¢ o x will be denoted by wh.

We proceed to the representation theorem of the paper. We pre-
sent separately the necessary and sufficient conditions guaranteeing
the representation. We recall a lemma given in [3] (see also
Krasnoselskii [2)).

Lemma 1. If ¢ 1is a Caratheodory function and 7 is a positive

real number then there exists a measurable set S such that (1)

n
u(T-Sn) <7mn and (2) ¢o(-,t) is uniformly continuous on each bounded

interval J € R, uniformly for t ¢ Sﬂ'

Theorem 1. Let F be a real valued function on X such that (i)

F is additive, (ii) F is uniformly continuous on every ball in
@

W, |- ]

nated a.e. convergence, i.e, whenever {xn}, X,y € X satisfy

oo)’ (iii) F is continuous with respect to domi-

x, - X a.e, and |xn(t)| < |y(t)| a.e. for all n, then F(xn) - F(x).
Then there exists a Caratheodory function ¢ on R x T such

that for all x ¢ X

;
(%) F(x) = JT © o x du.




Proof. Since the restriction of F to £°°(p) satisfies the
hypotheses in theorem 1 of [3], it follows that there exists a
Caratheodory function ¢ such that for all x e £* (4) the
representation (%) is valid, Let now X ¢ X. It follows from
conditions (ii) and (iii) that the set function F(xIA) on Z
is absolutely continuous with respect to py. Thus it has a
Radon-Nikodym derivative g € £1(p), unique up to a null set,
such that (a) F(XIA) = IAg du, for AcZ. We proceed to verify
that g =¢ o x a « e. Let for each real number cC > O,

A, = {t| |x(t)]| € ¢c)}. Given a fixed sequence of real numbers
{nm} converging to O 1let us denote the corresponding measurable
sets S whose existence is assured by lemma 1, by Sm’ It is

m
easily verified that the sequences of measurable sets {An} and

{Sm} both converge to T as n, m - . Let Bm, n - Sh n A
We proceed to show that g = ¢ o x a.e. on %n Lo Since
i
|X(t)l <n on Em n there exists a sequence {yk] of simple
]

functions such that Y ~ X uniformly on Bn. n and JYk' < =]

s

By lemma 1, it follows that ¢ o Yy - OxX uniformly on Bm n
5

Hence if E 1is any measurable subset of B n it follows that
k]

lim jE © o Yy d u.= IE © ox dpu.

Further since y, Ip - x I, a.e. and |y, | < |x| it follows from

E
property (b) of X and condition (iii) that F v Ig) - F (x Ip)
for each E € Z. Thus fE gdu =Jpoxdu for all EC B
s
He = . . i - i
nce g =¢ o x a.e, on Bm, ne Since T myn Bm’ n is a null set,

$his completes the proof of the theorem.

We proceed next to the converse of Theorem 1.




Theorem 2. If ¢ is a Caratheodory function on R x T such that
¢o{o, t) = o for ta-+-e -+ and @ o0 X € £1(u) for each x ¢ X,
then the functional F(x) = JT © oxdpu satisfies conditions
(i), (ii) and (iii) of Theorem 1.

Before proceeding to the proof we note that by the converse
assertion in Theorem 1 of [3] F certainly satisfies conditions
(i) and (ii) above. We verify that F also satisfies the condition
(iii) after establishing the following lemmas.
Lemma 2, If ¢ is a Caratheodory function and x ¢ £ (W) then
the (almost everywhere finite) function o defined below is

measurable,

a (8) = sup {|o ()] [[n] < |x(8)]]

Further for each ¢ > o there is a function y ¢ £© (g) such that

(D yl < 1x] and (2| [@oy) (8- (8] <e a.e.
n .
Proof, First let x be a simple function of the form Z c, Ia -

Let oy (%) lwh(g)I, h rational. Clearly o', 1is

= su

b < x(9|
a measurable function since on each of the sets AL it is the
supremum of a countable family éf measurable functions. Moreover
since ¢(+, €) is continuous for £ a.e. it is verified that
o =a  a.e. Thus a  is also measurable. Now each X ¢ Sa)(p)
is the pointwise limit of a sequence of simple functions
{2} satisfying |Xn!T[X| a.e. Therefore o 4@, a.e. and the
measurability result holds for such x as well? Notice that by

a similar argument the functions aki defined by




(g) = ¢, (B)|., o (§) = sup (&)
x §€h5|mgﬂh | * -lx(§>|5h<cl>¢h |

are both measurable.
Now let {nm} be a sequence of positive reals such that
Mo O and let the corresponding sets {Sn } whose existence is as-
m

sured by lemma 1 be denoted by [Sm]. For each M there exists by

lemma 1 a &% such that lo(h, )¢ (h',E)| < € for all & ¢ Sm

whenever |h-h'| < 6™ and |h|, |h'] < || x ||+ Let
At = (g] o (9 = sup lom, o) = (5la (8 = of (). By the

o< hg [x(8)]

results above A+ is a measurable set. Now define sets Ei. as

J

follows,

EX = (ges |l (8] <e), B, =(8es_nat|e™e-a (8] < )E
mo m X > Tml m ? X ' mo
- + m

Epq = (€ € S, ~ A ]||¢(—6 ,§ﬂ—ax (el < e} ~ Eo ? and more generally
+ + . m N +. - -

By = (8 € 5y N 2710 Ge7, 0o (O] < €] ~ U 1 s U B)

- _ ~ + .10 ~— -+ -

Eng = (8 € sy ~a7||le(-30 ;9-0 (8)] < e} ~U  (E; UE_.).

i< j-1
Clearly each set EL. is measurable and if yE =% (3 6™ + -jémI )
m3 m : E . E /.
1 <3 mj mJ
€
then ﬂp oy (§»-o&(§)| < € fo; a.e. € ¢ Snm. Now let
yE =12 yﬁ Is _g . From the construction of the {y; } it is
m>1 m “m-1 S
verified that |y®| < |x| and satisfies ||poy®| -a |<e except on the

null set T ~ H Sn . By construction each y; is a ks™-valued

m

function such that ¢ o yg approximates o within € on S

M




Lemma 3. If x ¢ SOO(y) then there exists a function Yy € £a)(p)
such that (1) |yx] < [%¥] a.e. and (2) [ o y |= o a.e..

Proof. Let {en} be a sequence of positive real numbers such that
(1) €, ~ ©- Then the functions y°n (following the notation in
lemma 2) are all dominated by x and by construction converge

pointwise on each set S_ . 1In fact, denoting USn= S, one has

M

(%) lim y*n(g) =\minimum c > o s.t.l|o(c,8)| = a&(§) Ees N A"

n—" @ +
¢(c,8) =0 Ecs~a

maximum ¢ < o s.t.

Let yx(g) = lim yen(g) for § ¢ 8 and = 0O otherwise. Clearly
n - a

y, 1is measurable and |y_| < |x| since |y*n| < |x| for all n> 1.

From (¥*) it follows that [p o y 1= «,  a.e.
Lemma 4, For each x € X there exists a function Yy € X such that

(1) |yxl < |x| a.e. and (2) ¢ o yxlz o, a.e.

Proof. Define recursively a sequence of pairwise disjoint measurable

sets {En} as follows.

By = (8] [x(8)] <1}, By = (&][x(8)]| = 2} ~

and in general

n-1
E = (8] |x(8)] < n} ~U Ej' It follows from the preceding lemma
J=1

that for each integer n > 1 there is a function Y, in £% (p)
such that Io o yn(§)l= o () for all & ¢ En and yn(§) =0

otherwise. Let y = Zy_ IEn. Then on each set E_ |y | < | x|
and [0 oy |= e . Since u(T ~UE) =0 it follows that |y, | < |x]

a.e., so that y, ¢ X, and [poy | =0 a.e.




We complete the proof of Theorem 2 by proving the following
corollary to lemma 4.
Corollary. If ¢ is a Caratheodary function and if for each
X eX, ¢ oXx¢€ £1(p) then the functional F(x) = f © oxdpu
has the property (iii) of Theorem 1.

Proof. Let z ¢ X and (x ]} be a sequence in X such that

|=x | < |z]. Then by the construction of vy, it follows that Iwoxnlgjwoyz|

~and ¢oyze Sl(u). If further the sequence {xn} converges to

some function x a.e, where x ¢ X then by the continuity of

o(-, E) it follows that ¢ o X, - ¢ ox a.e. Since |p o xnl < | o yzl

we have by the dominated convergence theorem

| F(xn) - F(x).

In conclusion we mention that Theorems 1 and 2 can be extended
to the case when (T, X, pu) is o-finite measure space, As this
generalization is straightforward and the proof is very similar to
that of Theorem 2 in [3] once the results for the finite case are

obtained, we content ourselves by stating the theorem without proof.-

In the next theorem (T, Z, p) is a complete o-finite measure space.

Theorem 3. Let (X, |

|) be as in the introduction except that

X satisfies instead of condition (¢) the following condition

(c!) £ ¢ Saj(y), Ee¢ Z s.t. U(E) < co implies £ Ip € X.

Suppose the function F: X = R satisfies conditions (i) and (iii) of
theorem 1 as well as the condition,

(ii') F is uniformly continuous on each set of the form (X N v,|]|-

where Y is a bounded subset of £ (u) supported by a

set of finite measure.

'

)




Then there exists a Caratheodory function ¢, satisfying ¢ o x ¢ £l(u)

for each x ¢ X, for which the following representation holds
(*) F(x) = IT © o x du.

Conversely, each Caratheodory function ¢ which satisfies
(1)p o x e £l(u) for each x ¢ X, and (2) ¢(0,8) = 0 a.e., determines

by means of (¥) a function F which satisfies (i), (iii)'and (idiv) .
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