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the transition operator Ufn^n ) (defined by [1;(4.1)]) is

compact for at least one pair n
n*

nn o f integers, n-̂ > n ;> 0.

This assumption is verified, for instance, in applications

to certain differential equations with delays in finite-

dimensional spaces; this application will be discussed else-

where .

The possibility of exploiting the compactness assump-

tion to obtain further information on important covariant

sequences was first suggested by C. V. Coffman, and the

author is indebted to him for further useful discussions

during the preparation of this paper.

We shall use the definitions and results of [1J freely.
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2. Subcomplete manifolds in a. Banach space.

If X is a Banach space, a linear manifold Y c X is

subcomplete (in X) if Y = $ Z for some Banach space Z

and some bounded linear mapping $:Z -• X. If N is the

kernel of $., then $ = ^fl , where Q : Z -+ Z/N is the

canonical epimorphism and >J>: Z/N -> X is bounded and injec-

tive; since Z/N is a Banach space and $ Z = ^(Z/N), replace-

ment of $ by Vf shows that there is no loss in the defini-

tion of a subcomplete linear manifold if $ is required to

be injective. A subspace (closed linear manifold) of X is

of course subcomplete in X. We do not propose to pursue the

study of subcomplete manifolds here beyond the contents of

the following lemma.

2.1. Lemma. Let X,Z be Banach spaces, $ : Z — X ci

bounded linear mapping, and Y j* subcomplete linear manifold

in X. Then;

(a) : *~ (Y) îs subcomplete in Z;

(b) : if X = $ Z + Y, then Y _is closed in X if and

only if <$T (Y) _is closed in Z;

(c) : jLf X = $ Z + Y and * is compact,, then Y _is

closed and has finite co-dimension in X.
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Proof. 1. In the proof, every linear manifold in a

normed space will be assumed to carry the induced norm. By

assumption, Y = <$>fZf, where Zf is a Banach space and

$! : Z1 -• X is bounded, linear, and injective. Let W = Z©Z*

be the outer direct sum of Z,Z! , with the maximum norm,

i.e., £(W) = S(Z) © L(Z*) ; this is a Banach space. Let

IT : W -• Z, IJf : W -• Z1 be the canonical projections, and

set F = $11 + ^JT1 : W - X .

Let Z" be the kernel of F, a subspace of W, hence

a Banach space, and let J : Zlf -• W be the inclusion map.

We claim that ^"""(Y) = JTJQZ" ; since HJ Q: Z" - Z is

bounded and linear, this will prove (a). Indeed, given zeZ,

we have ze$~ (Y) , i.e., <JteeY = $!ZT, if and only if there

exists z!eZ! with $z = - $!z!, i.e., with F(z©zf) = 0,

i.e., with z©zfeZ" ; this happens if and only if zeJTZ11 =]TJ Z",

and our claim is established.

We note that FJ = 0, and therefore

= (F -

I f zlf€Zff and I U Q Z " = 0, we have TTzt! = 0 and, by ( 2 . 1 ) ,

^ J T z " = ^ I T ' J Q Z 1 1 = 0 ; s ince * j i s i n j e c t i v e , TI'z" = 0;

thus zfl = o, and we conclude t h a t JTJ i s i n j e c t i v e . We

may w r i t e *1 = J1 ^ and JQ = J11*11, where J ! : Y - X and
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j« : $" 1(Y) -• Z are inclusion maps and >P1 : Z1 - Y,

>j« • 2" -* flT (Y) are bounded and bijective. From (2.1)

we have, in particular,

(2.2) <U" = - Vn^Q*"1: *

2. From now on, we assume that

(2.3) X = 4 Z + Y = «Z + * !Z f = FW .

Since F: W -• X is surjective, the Open-Mapping Theorem

implies that F L(W) is a 0 - neighborhood in X; i.e.,

there exists k > 0 such that

(2.4) kE(X) c FE(W) c $n£(W) + *fJIfE(W) =

The "only if" part of the statement of (b) is trivial.

To prove the MifM part, assume that $~ (Y) = ItJOZ
H is a

subspace of Z, hence a Banach space. By the Open-Mapping

Theorem, the linear mapping ty*~ : & (Y) -• Z" is bounded.

Let ueY, u ^ 0,- be given. By (2.4) there exist ZGL(Z) ,

zfeE(Z!) such that ku = j|u|| (4z + $ !z !). Since u, *! z! eY

and ||u|| ̂ 0, we have ze<f (Y) , and (2.2) implies ku =

= l|u||*! (-JI1 JcJ*
r"""1z + z 1 ) ; applying SEr'*"1 and taking norms,

we find ||*!~ 1u|| ̂  k"1(||̂ """1||+ l)||u||. Thus * ^ 1 is bounded,

^ : z1 - Y is an isomorphism, Y is a Banach space; hence Y

is a subspace of X, and (b) is proved.



[6]

3. Assume now, in addition to (2.3), that <$ is compact,

so that <E>£(Z) is precompact, hence totally bounded in X:

there exists a finite set M c x such that

(2.5) «E(Z) c M + |kE(X) c M + ~

where k is as in (2.4). Denote by W the finite-dimen-

sional subspace spanned by M.

Let z eE(Z) be given. By (2.5) there exist sequences

(zn) in L(Z) , (z^) in E(Z! ) , and (yn) in M, such that

(2.6) fen = y n + i $ Z n + l + 7*' zn

From (2.6) we get

n n

(2.7) <£zQ = £ 2"
j
Y j + 2""

n""1*zn+1 + V J 2"
j""1z\ n = 0,1,

j=0 j=0

Now M is bounded in the subspace W, Z1 is a Banach space,

and $,$! are continuous. Therefore the limit of each term

of (2.7) exists in X as n - ao , and #z e W + ^'Z1 = W + Y.

But zQei;(Z) was arbitrary, so that, by linearity, fecw + Y;

and by (2.3),

(2.8) X = W + Y ;

thus Y has finite co-dimension in X.
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Finally, if J : W -• X is the inclusion map, the assump-
w

tions of (b) are satisfied with Z, 0 replaced by W, J :

w

indeed, (2.3) is replaced by (2.8), and J~ (Y) = WflY is

finite dimensional and trivially closed in W. It follows

by (b) that Y is a subspace of X. This completes the

proof of (c).

Remark. Parts (b) and (c) of Lemma 2.1 are related

to the properties of "dihedra" as defined and studied in

[2;pp. 4, 10-13J. (2.4) implies that a dihedron formed by

subcomplete manifolds is "gaping11; and (b) is a generaliza-

tion for such dihedra of the fact that the manifolds forming

a gaping dihedron are closed if and only if their intersection

is closed [2*11. J].
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3. Subcomplete covariant sequences.

We consider equations (I), (II) with a given

We recall that a sequence Y of linear manifolds in X is a

covariant sequence (for A) if it satisfies [1;(5.1)], i.e.,

Y(n-l) =

whence, equivalently,

(3.1) Y(n0) = (U(n,no))~
1(Y(n)) n ^ n Q ^ 0

A covariant sequence is closed if its terms are subspaces.

We shall similarly say that a covariant sequence is subcom-

plete if its terms are subcomplete in X. It is sometimes

useful to restrict verification to a subset without further

assumptions:

3.1. Lemma. A covariant sequence Y îs closed [subcom-

plete] .if Y (n) Ĵ s closed fsubcomplete 1 for each n jLn an

infinite set.

Proof. If Y(n) is closed [subcomplete] and n - n ,

then Y(nQ) is closed [subcomplete] by (3.1) [and Lemma 2.1,

(a) with Z = X, 0 = U(n,n Q)].

In [l;Lemma 5.2] a number of equivalent conditions

for closed covariant sequences were given,, and such a sequence

that satisfied them was called a regular covariant sequence.

A Remark to that lemma points out that in their purely algebraic

forms these conditions remain equivalent for covariant sequences
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that are not necessarily closed: we have, in particular,

the following equivalence.

3.2. Lemma. If Y is a covariant sequence and meW

the following statements are equivalent:

(a): for every ueX, (II) with £ = ^ C m u has a.

solution that lies eventually in Y;

(b) : U(m,O)X + Y (m) = X;

(c) : U(n,n )X + Y(n) = X JLf O ^ n Q ^ n ^ m .

A covariant sequence satisfying these equivalent con-

ditions for all meco,̂ -. shall be termed algebraically

regular; thus a covariant sequence is regular when it is

both closed and algebraically regular.

3.3. Lemma. A covariant sequence Y jls, algebraically

regular if and only if condition (a) or (b) .of Lemma J3.2,

holds for each m jLri aji infinite subset of a) .

Proof, Lemma 3.2 (cf. [l;Lemma 5.3]).

The fundamental application of Lemma 2.1 is the follow-

ing pair of closedness criteria for subcomplete algebraically

regular covariant sequences.

3.4. Lemma. Assume that the subcomplete covariant

sequence Y JLS algebraically regular. Then:

(a) : Y jLŝ  closed, hence regular, if and only if Y(m)

is closed in X for some me to;
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(b) : if U(nn,n,J is compact for some n^n
1 O — — — — _ _ Q

nl ^ nO ^ ° 3 t h e n Y -i£ closed, hence regular, and its

terms have constant finite co-dimension in X .

Proof, Proof of (a): It will be enough to show that,

for every fixed mecOr-i -i , Y(m) is closed if and only if Y(0)

is closed. But this follows from Lemma 2.1 with Z,$,Y

replaced by X, U(m,0), Y(m), respectively: by assumption,

Y(m) is subcomplete in X; by the assumption and Lemma 3.2,

(b), U(m,0)X + Y(m) = X; and by (3.1), (U(m,0) )~1 (Y (m)) = Y(0) .

Proof of (b) : We apply Lemma 2.1, (c) with Z,*,Y re-

placed by X, U(n.,n ), Yfn^), and use the assumptions,

Lemma 3.2, (c) , and (3.1) as in the first part of the proof;

we conclude that Y(n1) is closed and has finite co-dimension,

By Part (a), Y is closed, hence regular. The terms of Y

then have constant finite co-dimension in X by [l;Lemma 5-4J,



[11]

4. Subcomplete (b,d)- sequences.
1 1 1 1 1 1

 • **** r^f " ^

We refer to the concepts discussed in [l;Sections 6,81•

If a Banach sequence space ^°fK
 i s given [ljSection 3J,

we hc.ve the corresponding sequence X - defined by XQd(m)

= {x(m): x is a d~ solution of (I,,)}- X Q d is a covariant

sequence [l;Lemma 6.2] and it is subcomplete [l;Lemma 6.3J.

This allows an immediate application of Lemma 3.4 (see

Theorem 4.3).

Let (b,d) be an £- pair of Banach sequence spaces.

We recall that a covariant sequence Y is a (b,d)-sequence

for A if Y c x . and if there exists a number K ^ 0

such that for every fek^b (X) and every p > 1 there is

a solution x of (II) that lies eventually in Y (hence

is a d-solution) and satisfies |x|~i ~

have the following application of Lemma 3.4.

4.1. Theorem. Let Y be a subcomplete (b^d)-sequence

for an £-pair (b.d) such that supp (b) is an infinite set

(in particular, for a_ .^-pair or a tT* pair (b^d)) . Then;

(a) : Y ..is closed, hence regular, if and only if Y(m)

is closed in X for some me oo ;

(b) : if U(n. ,n,J is compact for some n^n

ni ^ n^ ^ 0 -, then Y is closed, hence regular, and

its terms have constant finite co-dimension in X.
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Proof. For every ueX and every m / 0 in supp (b)

we have f = X!MT U € ko£ril ̂ ' and by a s s u m P t i o n there

exists a solution of (II) with this f that lies eventually

in Y. By Lemmas 3.2, 3.3, Y is algebraically regular (this

is the algebraic form of [l;Lemma 8.6]). The conclusion follows

from Lemma 3.4.

This theorem applies in particular to x
o d^ which is a

(b,d)-sequence provided some such sequence exists at all

[l;Lemma 8.4]; but we can give a somewhat more instructive

form to the result about X d, by making it independent of

the choice of b.

4.2. Lemma. For given debiL the following statements

are equivalent;

(a) : the covariant sequence X - jLs algebraically

regular;

fl]
(b) : for every mGOOr-.-. there exists ja number K ~ 0

such that for every p > 1 and every ueX there exists ja

d- solution x jof (II) with f = ^ ^ u such that

(c) : there exists ji space ^ b / K such that (b,d) is

admissible;
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(d): there exists a space beb/ such that supp (b)

is an infinite set and such that (b,d) jLs admissible.

Proof. (a) implies (b) : Let metOr-.-i be fixed and

let b eb/ be the space fcpes: <p(n) = 0, n ^ m}, with

|<p|, = |<p(m) | : b is congruent to R and its elements

are of the form <p = ^m<p(m) . We claim that (b ,d) is

admissible for A. Indeed, feb ril(X) if and only if

f = X^ll11' ueX> and lflb = WUWa since xod is

cally regular, (II) has, for this f, a solution x that

lies eventually in X -, hence is a d-solution. Statement

(b) then follows from [l;Theorem 8.1]. (Alternatively,

Lemma 3.2, (b) and the implication (2.3) => (2.4) in the

proof of Lemma 2.1 could have been used.)

(b) implies (c) : Set K Q = 1 and let K , mecoriT, be

as in (b) . Define the space beb/ as the set
OD OD

{(pest ^ Kn|<p(n) |<OD } with |cp|b = £ Kn|<p(n) | ; it is obvious

n=0 ~ n=0

that b is in Â -, and that it is congruent to I , hence

complete; so it is indeed in by? . It is further clear that

k b is dense in b, i.e., kb = b (b is lean). To show

that (b,d) = (kb,d) is admissible it is sufficient to show,

by [1;Theorem 8.8], that X Q d is a (b,d)- sequence for A.

HUNT LIBRARY
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Let p > 1 and

s

= > V-..f(n), s = s(f); by (b) there exists, for m = 1, ...,s,

n=l

a d-solution x m of (II) with )C[i] f ^ instead of f, such
s

that lx I, - D K f|f(m)||. Thus x = ) x is a d-solution
• m'd ^ m" M Lx m ~

of (II) with the given f, so that x is eventually in X d 3
s s 2

and |x| d ^ ^ |x m| d ^ p ^ Kj|f(m)|| = p|f|b . Thus X Q d is

m=l m=l

indeed a (b,d)- sequence.

(c) implies (d): Trivial^ since beb/ signifies
r>-> / K

beb/ and supp (b) =60.

(d) implies (a): (d) implies, by [l;Theorem 8,8],

that X^, is a (b,d)-sequence. (a) then follows as in
(JO. r*J r*s

the proof of Theorem 4.1.

4.3. Theorem. For given deb/ , assume that any one of

the equivalent statements of Lemma ±.2^ holds. Then;

(a) : X d jLs closed, hence regular, if and only j j

X^j (m) is closed in X for some meco;
Oa _ _ _ _ _ _ _

(b) : if U(n ,n ) is compact for some n ,nTea) ,

n-. ^ n ^ O, then X - _is closed, hence regular and its

terms have constant finite CCHdimension in X.
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Proof, As noted above, X^, is a subcomplete covariant

sequence [l;Lemmas 6.2,6.3]• If it is algebraically regular

(Lemma 4.2, (a)), the conclusion follows by Lemma 3.4.
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