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Abstract

Autonomous robot vehicles promise many ultimate civilian, military, and space
applications. Off-road autonomous vehicles must engage the world exactly as
they find it without relying on having it engineered to suit them. For this reason,
off-road autonomous navigation is one of the most difficult automation chal-
lenges. Previous work in the area has been disappointing from the perspective of
the speeds attained, and the inability of systems to travel long distances autono-
mously. Indeed, no system has travelled an autonomous mile or exceeded 3 m/s
speeds. To date, no off-road system has approached the capabilities needed to
address real applications.

This thesis examines and proposes a solution to the problem of high speed auton-
omous navigation of outdoor vehicles. As a systems-level effort, aspects of per-
ception, path planning, position estimation, and to a lesser extent, strategic
planning and motion control are considered. The emphasis of the work has been
to assess the fundamental requirements of the problem, and to validate the conclu-
sions of this assessment through the demonstration of an improved ability to
achieve a real cross-country mission on several vehicle testbeds.

Results indicate that cross-country navigation systems of unprecedented capabil-
ity are possible if they are designed to optimally utilize limited computing
resources. A system of unprecedented performance has been constructed and
extensively tested.

The essential argument of the thesis is one of architecture. An intermediate intelli-
gent predictive control layer is introduced between the typical high-level strategic
or artificial intelligence layer and the typical low-level servo control layer. This
new layer, the tactical layer, incorporates some deliberation, and some environ-
mental mapping as do deliberative AI planners, yet it also emphasizes the real-
time aspects of the problem as do minimalist reactive architectures.

The contribution of the work is a codified systems theory that permits future
design efforts to benefit from the experience and a fieldworthy prototype system
that provides a baseline capability for continued research. Specific results include
an analysis of the complexity of range image perception for autonomous vehicles
and an associated computational image stabilization algorithm which permits
highest vehicle speeds.

The problem of local autonomous mobility has been formulated entirely in an
optimal control context. In this context, the concepts of actuation space and haz-
ard space replace the configuration space that is more typical of AI planners. The
resulting high fidelity models stabilize coordinated control of a high speed vehicle
for both obstacle avoidance and goal seeking purposes.
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PART Irlntroduction

Autonomous vehicles promise many ultimate applications in tasks which are dangerous, difficult,
tedious, or error-prone when performed by humans. Civilian applications include smart
automobiles, automated delivery systems, autonomous farming, and autonomous mining. Military
applications include battlefield reconnaissance, troop resupply, and medical evacuation of injured
personnel. Space applications include planetary exploration, autonomous launch vehicles, and
vehicle inspection robots. Regardless of the application, missions which require motions which
exceed the reach of a typical manipulator can be addressed by the mobile robot.

The problem of autonomous off-road navigation is one of the most difficult terrestrial autonomous
navigation problems. Earlier solutions to the cross-country navigation problem have encountered
performance limitations that were not well understood.

This thesis has studied the nature of typical performance limits, expanded the envelope in a
significant way, and demonstrated the higher capability on a real vehicle. It presents the principles
behind and the development of an integrated autonomous cross-country navigation system
incorporating perception, control, and position estimation called RANGER1. RANGER is a
software technology which provides basic high performance intelligent mobility of an autonomous
vehicle. Using the NAVLAB II testbed at Carnegie Mellon University, it has been developed to
directly address the requirements of a rudimentary off-road mission.

Section 1: Problem Statement

The thesis applies a structured systems analysis and design methodology to the problem. The
problem that is addressed can be stated in two points:

• assess the fundamental requirements of range image based, high-speed, autono-
mous cross-country navigation

• demonstrate an improved ability to achieve a real cross-country mission

This real cross-country mission is a simple piloting mission - to get from A to B as fast as possible
without damaging the vehicle. The strategic planning problem - the problem of generating the
path to follow - is outside the scope of the work. The path to be followed is imparted to the system
as an externally-supplied continuous path or sequence of waypoints.

1. An acronym for Real Time Autonomous Navigator with a Geometric Engine.
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Section 2: Requirements

An attempt has been made to develop an autonomous vehicle control system which achieves:

• the highest possible speed of continuous motion
• on the roughest possible terrain
• for the longest possible excursion

Within the simple navigation context of the work, the following requirements are the highest level
objectives.

2.1 Continuous, High Speed
Speeds which approach the speeds at which humans can drive the same terrain (say, 20 mph) are
targeted. Ideally, the system would adjust its speed based on the terrain roughness - driving faster
when the terrain permits.

2.2 Rough Terrain
Rugged, sparsely-vegetated, mostly dry terrain is the target environment within which the vehicle
must navigate safely. A flat world assumption is not considered valid2 in the target terrain nor is
the typically useful assumption that obstacles can be represented as discrete points in a two-
dimensional space.

2.3 Ackerman Steer Vehicle
While the Ackerman steering configuration is not ideal for planning purposes, most large vehicles
intended for human use employ this configuration, so the restriction to this class of vehicles is not
as limiting as it may appear. In any case, the maneuverability of such vehicles is dramatically
different from other alternatives, particularly at speed, and the thesis will show that efficiency
demands that a special case solution for this class of vehicles be adopted. Momentum and the
nonholonomic constraint limit maneuverability of all high-speed vehicles, so many of the results
of the work apply generally.

2.4 Robustness
The system is intended for relatively long traverses of suitable terrain. While robustness is difficult
to quantify, it is the intention that reliability be sufficient for routine autonomous excursions of tens
of kilometers over suitably chosen terrain.

2. Although this assumption is not valid, it will be used in many places as a useful theoretical approximation.
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Section 3: Previous Work

This section summarizes the capabilities of some of the most significant historical off-road
systems. The list is not exhaustive, nor is it a complete discussion of each system provided.
Unfortunately, little has been published to date on some systems, and available publications do not
address some of the issues investigated here.

3.1 Differences from Important Historical Systems
RANGER differs from all historical precedents in two ways. First, it explicitly evaluates vehicle
safety in terms of timing, speed, resolution, and accuracy in real-time and employs many adaptive
mechanisms which optimize performance. In particular, explicit computation of stopping distance
and required minimum throughput is performed and these considerations and others form the basis
of an elegant adaptive perception mechanism which makes unprecedented vehicle speeds possible.
Second, the system uses relatively high-fidelity feedforward models of system dynamics and
terrain following and is configured as a tightly coupled controller.

3.1.1 Hughes ALV

The Hughes Autonomous Land Vehicle [13] was one of the first off-road mobile robots ever
developed. The system generalized the notion of an obstacle to include any vehicle configuration
that is unsafe. This allowed navigation over terrain of any surface shape. Based on the ERIM
rangefinder and a highly terrainable vehicle, it achieved speeds up to 3.5 km/hr, over distances
exceeding 500 meters, and running times averaging 20 minutes.

The speed of this vehicle was limited by many factors including the complexity of the perception
and planning processing, and the speed of communication with off-board processing. Robustness
was limited by low-fidelity modelling of steering constraints, poor terrainability and
maneuverability of the vehicle on wet muddy soil, inability to detect small but dangerous obstacles
(steel fence spikes), constrained excursion due to line of sight radio communications, local
planning minima and bugs in the high-level planner.

The system discussed here differs from the ALV in its real-time minimalist approach to the
problem. The adaptive perception algorithms are considerably faster than the Connection Machine
implementation of the ALV algorithms. It also discards the costly energy minimization
interpolation scheme of the ALV in favor of a temporal interpolation of the hazard vector signal.
The system also differs in its high-speed design incorporating a differential equation state space
model.

3.1.2 JPL's Robby

The JPL rover [82] was the first system to drive autonomously across outdoor terrain using dense
stereo data, rather than sonar or laser rangefinder data. This system was demonstrated in a 100
meter cross-country demo in September 1990. It has achieved an average speed of 100 meters in 4
hours (7.0 mm/sec) in a start/stop mode. The total elapsed time in this case is not very meaningful,
since it includes downtime while the system was being debugged and numerous stops to evaluate
performance . The vehicle speed was mechanically limited to 4 cm/sec and off-board

3. Larry Matthies, personal communication.
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communication throughput was limited. Cycle times were on the order of 30 sees for planning and
10 sees for perception. Passive stereo was used in the perception system. Later runs were able to
achieve speeds of 4 cm/sec.

The system discussed here differs from Robby in that it attempts both wide excursion and high
speed. It is difficult to assess the degree to which computer evolution alone has made this possible.

3.1.3 JPL's Rocky Series

The Rocky series of Microrovers [78] are small-scale prototypes intended as testbeds for simple
behavior-based control systems. They are intended to produce a flight rover for the MESUR
pathfinder mission of 1996. These robots are tested in the context of operations in the vicinity of a
planetary lander, so large traverse distance or high speed are not being pursued.

The system discussed here differs from the Rocky series in its deliberative approach to autonomy
and its attempt to achieve wide excursions at higher speeds. It borrows the minimalist configuration
principle in an attempt to optimize real-time performance.

3.1.4 CMU's FastNav

The FastNav project concentrated on achieving high vehicle speeds and robust obstacle detection
on fairly benign terrain. The Cyclone single scanline laser rangefinder was used as the basis of the
perception subsystem. It was used to check a global path for discrete obstacles, such as trees, rocks,
and ditches, and stop accordingly. Obstacle detection was based on detecting deviations from a flat
world. Path tracking used a position estimation system based on inertial navigation, dead
reckoning, and the GPS satellite navigation system.

FastNav [74] made use of simple tire/soil interaction and vehicle dynamics models to navigate on
locally flat terrain with sparse obstacles. Path tracking was demonstrated at 30 km/hr and obstacle
detection was demonstrated at 3 m/s.

Some of the reliability problems that were experienced include high sweep rates of the Cyclone
scanner due to vehicle pitching, and poor accuracy of the inertial navigation system. Early
problems with instability of the tracking algorithm were fixed by incorporating a first order model
of the steering dynamics into a feedforward compensator. The longest autonomous run was 1
kilometer .

RANGER borrows heavily from the FastNav project in three ways. First, steering dynamics
feedforward is generalized to a complete state space rough terrain model. Second, the mere fact
that such speeds were possible pointed directly to a problem with the way in which nonadaptive
image processing was a major cause of poor real-time performance. The line scanner has been an
important existence proof that the bare throughput requirement at these speeds was far less severe
than it appears to be. Third, the pure pursuit path tracker is an adaptation of the FastNav tracker for
rough terrain.

RANGER also differs from FastNav in that it is a cross-country system, not a dirt road system. Full
3D models are employed and the considerable difficulties of rough terrain drive many aspects of
the design.

4. Much of this is personal communication with Sanjiv Singh and Jay West. Existing documentation does not
cover the issues mentioned completely.
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3.1.5 CMU UGV Systems

From September 1990 to the present, CMU researchers have developed two preliminary versions
of autonomous cross-country navigators. Both navigators are based on the Highly Mobile Multi-
Wheeled Vehicle (HMMWV). The performance of both prototypes has been promising when
compared with that of previous systems. Both systems are based on the ERIM laser rangefinder.

The first system [10] is similar in concept to the ALV. It generates a complete geometric description
of the terrain in cartesian coordinates by transforming successive range images. It evaluates
candidate vehicle trajectories by simulating the vehicle state forward in time in order to predict
collisions.

This system was the first to model dynamic constraints on vehicle state in path planning. Path
generation was based on an alternative to the spanning arcs approach of the ALV for path
generation which is theoretically superior in cluttered environments.

Reliability problems for this system were associated with the poor fidelity of elevation maps, cycle
time overruns, and path generation and planning algorithm failures. Nevertheless, this system had
achieved its purpose of advancing the state of the art and serving as an experimental testbed.

The most impressive achievement consists of a test run of five kilometers comprised of some thirty
orbits of the same circular path on substantially flat terrain with a total of less than ten obstacle
avoidance maneuvers. Speed has never exceeded 3 meters per second, and only half of this speed
has been achieved while avoiding obstacles.

RANGER borrows heavily from this system because it is basically the next prototype in this series.
It differs from its predecessor in its adaptive perception algorithms, the efficiency of its
admissability module, its universal 3D models, and it favors a controls feedforward approach over
the cluttered environment search-based planner.

More recently, a second group [53] has developed a system called SMARTY which processes
range images to recover regions of constant terrain gradient. This system has achieved runs over
distances of 840 meters, at speeds of 2-3 m/s while avoiding natural obstacles, and it has probably
exceeded these results as of this writing.

RANGER differs from SMARTY in that it can be considered to be more of a deliberative system
on the spectrum of such systems because it remembers both vehicle state and environmental state
from cycle to cycle at a higher level of detail than SMARTY does. RANGER is also theoretically
superior to SMARTY on rough terrain at the cost of the extra processing and slower reaction time
required to navigate in a fully 3D world model.

3.1.6 ALVINN

ALVINN is a road following system based on neural networks [68]. Although it solves a different
problem, ALVINN provides a second precedent for the use of feedforward for the purposes of
imparting stability at high speed.

3.1.7 VITA

The Daimler-Benz group has developed impressive road followers based on a control systems
approach to road following. Although a different problem is solved by these systems, the control
approach has been an important precedent.
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3,2 Summary of Previous Work
Very few precedents exist in the area of autonomous cross-country navigation and no metrics of
performance have yet been introduced to measure progress. For those systems discussed,
comparisons have been made based on subjective assessments of reliability and the most
rudimentary of metrics: speed, excursion, and run time.

The CMU full geometry system executed orbits of a circle, and its speed had never exceeded 3
meters/second, so the autonomous mile remains an unachieved goal among cross-country
navigators. On this basis, a system which merely navigated for a mile at 10 mph (4.5 m/s) would
be unprecedented. The primary reasons for this limitation include lack of robust obstacle avoidance
and limited computational and perceptual throughput.

In general, systems which are targeted toward rough terrain have been slow and unreliable. Those
that have been able to assume specific terrain roughness limitations have enjoyed higher speeds
and reliability at the cost of the scope limitation caused by those assumptions.
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Section 4: Approach

The design will commence with the system requirements and proceed to elaborate, through a top-
down analysis, the form and function of all subsystems required to achieve the mission. The
emphasis of the design will be on achieving the mission, and given the current state of the
technology, this has led to an unprecedented emphasis on designed-in system robustness.

The approach is viewed as a systems approach. The entire problem of basic intelligent mobility in
the target environment is examined. Subsystem interactions are quantified. Problem constraints are
exploited. Assumptions are enforced consistently throughout. The conjecture of the thesis is that
this approach has led to an optimal system from the perspective of utilization of computing
resources.

4.1 Principles
The approach is based on the following principles:

• Achieving high performance in an engineered system is a different matter from achiev-
ing basic functionality. Performance is a quantitative attribute, and it is achieved through
a quantitative optimization process.

• The reliability of an engineered system emerges from the reliability of its components.
Truly reliable systems are designed to be that way. Reliability is achieved by directly
addressing the reliability issue as part of the problem.

• High speed autonomous navigation is a problem with stringent real-time constraints.
Guaranteed performance and reliability against those constraints is achieved through the
techniques of real-time systems analysis and design.

4.2 Perspective
As currently addressed, the local high speed autonomous navigation problem is devoid of difficult
cognitive content. This is because it can be characterized as that of:

• simulating the vehicle state forward in time
• utilizing a near perfect description of the terrain (at some gross resolution)
• evaluating the relative merits of candidate trajectories
• choosing to execute any, or some optimal, safe trajectory

The question of assessing vehicle safety is a matter completely described by simple physical
mechanics. That is, for known terrain geometry, computation of vehicle orientation and obstacle
collision is a relatively simple matter in principle - although inevitable uncertainties complicate the
process somewhat.

This thesis will address the problem of designing an optimum system which meets the
requirements of a mission and simultaneously respects the broad limitations of contemporary
componentry. It is considered both likely and appropriate that results will include an evaluation of
how contemporary components can be improved in the most cost-effective manner. In this sense,
the work is much more theoretical than a quantitative engineering design.
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Section 5: Acknowledgments

This work has benefitted from the assistance of many individuals who should be named here. One
has to write a thesis as if the work was entirely one's own. Yet, none of us work in a vacuum and
the overall contribution arises from the synergy of the team and the free exchange of ideas in an
academic setting. Tony Stentz, Martial Hebert, Barry Brumitt and R. Coulter made significant
creative contributions to this work and they deserve a large measure of credit for the
groundbreaking work which lead to it. Several years ago, Tony's group, then consisting of Tony,
the author, Barry, and 'R' implemented our first joint attack on this problem, and it was the
experience of that endeavour which made this work possible.

Martial personally embodies the experience of CMU in this business of making vehicles go and his
influence on this work has been valuable and deep. Larry Matthies provided a second vehicle upon
which to continue the work at JPL which was an excellent forcing function for the software
engineering of the code. Reid Simmons and Lalit Katragadda brought the code up on the RATLER
vehicle, identified many problems, and made many insightful comments on the design.

5.1 Analysis
Barry Brumitt and the author investigated the impact of steering delays on the planning and path
generation problems, respectively, prior to this work. Based on this earlier work, and the precedent
of FastNav, the idea of generalizing steering dynamics feedforward to a complete state space model
ultimately emerged. Barry did initial work on the extent of the dynamically feasible subset of C
space. The C space planner constructed by Barry Brumitt and Tony Stentz provided the initial
impetus for the use of a feedforward simulator.

The notion of relating pixel size to subtended length on a vertical surface has been around for some
time on the ARPA UGV program. Its origin is unknown to the author. Wherever it came from, it is
the key element which permits an analysis of computational complexity.

R. Coulter first investigated the braking performance of the CMU HMMWV in a quantitative
manner. This led naturally to the question of quantifying steering performance.

Omead Amidi was probably the first person to suggest that a tightly coupled real-time
implementation of the high level perceive-think-act loop would be ultimately necessary at high
speed.

Dong Hun Shin and Sanjiv Singh were the first to recognize the significance of steering delay and
the first to implement a feedforward solution on the FastNav vehicle. Shin implemented the first
pure pursuit path tracker for the HMMWV vehicle to be used in off-road work. Shin identified the
difficulty of the clothoid generation problem with the Fresnel integral. Dean Pomerleau later
provided a second precedent for steering feedforward in the ALVINN system.

Many of the ideas contained here can be considered to be a natural evolution of the ideas of Tony
Stentz which formed the basis of the first full geometry off-road navigator at CMU. This software
system was implemented by Barry Brumitt, R. Coulter, the author, Bill Burky and George Mueller
under the direction of Tony Stentz.
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Tony first pointed out the difficulty of treating negative obstacles and started the development of
adaptive regard by relating lookahead to the vehicle stopping distance. Tony also pointed out the
basis for kinematic requirements on the vertical field of view.

Martial Hebert pointed out the sampling problem, the attitude sensitivity problem, and the
significance of the pixel aspect ratio on throughput. Many conversations with Martial suggested
the need for adaptive perception.

5.2 Perception
None of this work would have been possible without the guidance of Martial Hebert. Martial taught
me terrain mapping, laser rangefinders, and guided the development of adaptive stereo. Many
conversations with Martial led me into the search for a different way of doing range image
perception. Martial Hebert and Bill Ross taught me the basics of correlation-based stereo.

Larry Matthies of the Jet Propulsion Laboratory educated me on the physics of remote sensing and
the mathematics of pattern classification. Collaborations with Todd Litwin at JPL provided an
opportunity to integrate the navigation system with Larry's stereo system.

5*3 Planning/Control
R. Coulter was the first to suggest that an optimal control approach to propulsion was worth
investigating. R. educated me on the need for gravity compensation in propulsion control.

The admissability modules evolved from earlier versions that were designed and constructed by R.
Coulter and Tony Stentz, and later refined by George Mueller. Earlier still, the Hughes ALV
pioneered the field itself with a similar approach.

Larry Matthies and Todd Litwin of the Jet Propulsion Labs provided the opportunity to integrate
the system with a wide field of view stereo ranging system which provided an opportunity to
engineer the system to accept a generalized suite of environmental sensor inputs.

Larry educated me on his stereo algorithm. Todd collaborated with me on the software engineering
of the code. Indirectly, Don Gennery told me the relationship between least squares suspension
models and the minimum potential energy principle. Tarn Nguyen explained the JPL propulsion
controller to me.

5.4 Position Estimation
This work was partially inspired by a task given to me by Martial Hebert in the Introduction to
Mobile Robots course at CMU when I served as the class teaching assistant. Ben Motazed
conceived the basic idea of a general Kalman filter that could be used for position estimation and
to damp relative crosstrack error for autonomous vehicle convoys.

My interest in navigation theory has its roots in a collaborative effort with R. Coulter where we
attempted to uncover such a theory. My own interest in vehicle calibration forced the investigation
of state vector augmentation. All of these elements come together in this filter.
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Section 6: Notational Conventions

Throughout the document the 3 X 3 matrix Ra denotes a rotation matrix which transforms a
displacement from its expression in coordinate system 'a' to its expression in coordinate system
' b \ The 4 X 4 matrix Ta denotes the homogeneous transform which transforms a vector from its
expression in coordinate system 'a' to its expression in coordinate system ' b \ The 4 X 4 matrix Pa

denotes a nonlinear projection operator represented as a homogeneous transform. In such notation,
the vector normalization step is implicit in the transform. The matrix Ha denotes the Jacobian of
the transformation from system 'a' to system ' b \

The entire document will be necessarily loose about the specification of derivatives. If x and y are
scalars, x and y are vectors, and X and Y are matrices, then all of the following derivatives can
be defined:

ay

_a__

av

a partial derivative

a vector partial derivative

a matrix partial derivative

ay
ax

av
ax

a gradient vector

a Jacobian matrix

a Jacobian tensor

Generalization to higher order tensors are obvious.

Bolded nonitalic text indicates keywords that repeat in the document and appear in the index.
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Section 7: Thesis Overview

A document this size cannot be read in a single sitting so this section is provided to attempt to tie
the sections of the document together. The overall structure of the document is an analysis of
requirements of off-road mobility followed by a design of the three major software subsystems of
an autonomous navigator.

7.1 Analysis
In Part II: Analysis the requirements of the problem are analysed from the following perspective.
First, the basic requirement of intelligent mobility is to maintain vehicle safety. Second, the safety
requirement can be expressed in terms of timing, speed, resolution, and accuracy requirements on
sensors, effectors, and computer models and algorithms.

Now the maintenance of vehicle safety requires that all four of these requirements must be met
simultaneously. This implies that all of these requirements interact and are functions of vehicle
speed and reaction time.The last section of the analysis part investigates these interactions and
generates several theoretical results and conclusions. The two most important conclusions are as
follows:

• Intelligent Mobility is a real-time control problem and because nonadaptive perceptual
processing can destroy the ability of the system to react fast enough, adaptive perception
mechanisms are necessary on contemporary serial computers in order to meet the
response time requirements of high speed motion.

• The path planning horizon for hazard avoidance is limited by the capabilities of the sen-
sor as well as the structure of the environment and the fact that the sensor must be
mounted on the moving vehicle. As a result, the system can only predict its own perfor-
mance over a period of time that is not much larger than its own reaction time. This
implies that the system operates almost entirely in the transient regime of operations and
necessitates the use of dynamic models to capture the large differences between what is
commanded of the vehicle and how it responds.

These two conclusions lead into the design of the perception and path planning systems of the
navigator.

7*2 Mobflitv
Part HI: Intelligent Autonomous Mobility is a commentary on the standard hierarchical
architecture of many robotic systems and how the navigator design adapts it to the problem .The
key element of adaptation is the introduction of the tactical control layer which acts as an
intermediary between the geometric strategic layer and the dynamic control layer. A central
reliability concern in high speed mobility is the fact that, because the system operates in the
transient regime, a control scheme cannot cause a massive vehicle to follow any arbitrary
command given to it.

The design places the local hazard avoidance and goal seeking behaviors squarely in the tactical
control layer. This layer exists in order to deal intelligently with the realities of actuator and vehicle
dynamics and it is the basic reason for the enhanced reliability of the system.

An Approach to the High-Speed Cross-Country Autonomous Navigation Problem page 11.



7.3 Perception
Part IV: Perception is the first of three parts structured in to four chapters outlining a central
concept, a design overview, implementation details, and results. In the case of perception, the
concept is that of adaptive perception. Here, the basic idea is that if the environment is self
stationary, then it is not necessary to view the same parts of the environment over and over. Rather,
perception throughput can be reduced to a bare minimum through several mechanisms which
together constitute the adaptive perception algorithm.

It may seem at first glance that adaptive perception is impossible because the problem of selection
of which data to process is a difficult as the original problem. However, if the environment is self-
stationary, it is possible to compute very simply where the data of interest will be in an image
without processing the entire image. This approach to perception is responsible for the enhanced
performance of the system because it eliminates the strong dependence of vehicle speed on
perceptual throughput.

7.4 Planning
Part V: Planning/Control outlines the design of the hazard avoidance and goal seeking behaviors
of the tactical control layer. In addition to tactical control, another important idea in the design is
the concept of adaptive regard which makes it possible to implement the tactical control layer
efficiently.

Tactical control exists first of all in order to account for dynamics, but dynamics have other
implications. First, they must be modelled somehow, so the deisgn introduces a state space model
of an autonomous vehicle which makes the degree to which a vehicle does not follow its commands
explicit in the planning process. Second, dynamics of all kinds actually imply that the planning
problem is relatively easy. The key point here is that the maneuverability of a high speed vehicle
is limited as a matter of physics. To the degree that the number of distinct alternative trajectories
that exist is limited, the complexity of motion planning search is also reduced.

This last point is formalized in terms of a notion called adaptive regard. The design is such that the
system explicitly computes where the vehicle is already committed to go, and where it cannot go,
and it eliminates these regions and the planning alternatives associated with them from
consideration in order to minimize search.

A final important implementation idea is that of forward modelling. The state space model that is
introduced is trivial to solve in the forward direction and at times impossible to solve in the inverse
direction. This distinction has been noted before in the context of path generation for
nonholonomically constrained vehicles and it is even more important when dynamics enter the
picture. The system design exploits the advantages of forward models in order to enhance both
reliability and performance.

7.5 Position Estimation
Part VI: Position Estimation describes the Kalman filter algorithm which forms the basis of a
position estimation subsystem specifically designed for autonomous vehicles. The earlier
perception and planning sections point to a need for high positioning bandwidth in order to remove
the distortions associated with vehicle motion from sensory data. Also, autonomous vehicles
provide a unique ability to observe environmental landmarks in order to improve position
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estimation. For these two reasons, a special Kalman filter was developed for the navigator in order
to both meet the special requirements of the problem and exploit the advantages of the typical
vehicle instrumentation package.

7.6 Conclusions
The major results and conclusions of the work are summarized in Part VII: Summary and
Conclusions. The contributions of the work are summarized in Part VIII: Contributions. Several
appendices follow which provide mathematical background and analytical results which were
deemed too detailed for the body of the document.
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Section 8: How to Read This Thesis

It is a difficult matter to lay out a document of this size to satisfy the needs of those readers who
will wish to skim it as well as those readers who will want the details. For this reason, several levels
of summary have been provided throughout the document. Three levels of reading the document
are intended to be more or less complete at that level.

8.1 Summary Level
To read a summary only, skip immediately to Part VII: Summary and Conclusions and then skip
Part VIE: Contributions.

8.2 Intermediate Level
To read an intermediate level of detail, read the summaries of each part as well as the material
mentioned above.

8.3 Detail Level
The read all but the most detailed sections, read

•Parti
• Part II, Chapter 1: Elements, Chapter 6, Interactions, Chapter 7: Summary
• Part HI, Chapter 1: Concept, Chapter 4: Results, Chapter 5: Summary
• Part IV, Chapter 1: Concept, Chapter 4: Results, Chapter 5: Summary
• Part V, Chapter 1: Concept, Chapter 4: Results, Chapter 5: Summary
• Part VI, Chapter 1: Concept, Chapter 4: Results, Chapter 5: Summary
•PartVn
•PartVm

The material in the appendices is not relevant to the flow of the document, but detailed results are
presented there for readers who will want to see how some results are derived.
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PART II: Analysis

At the speeds required of the next generation of autonomous vehicles, it becomes necessary to
explicitly address the need for the vehicle to react to hazards in real time. As speeds increase,
computing and sensory hardware and software must be re-evaluated to remove the bottlenecks that
were acceptable at the lower speeds encountered in earlier research.

Higher speeds require both looking further ahead and reacting faster. Hence, autonomous
navigation must mature to the point where significantly more computation is performed in less
time, or some new approach must be embraced.

This part examines the general problem of high-speed autonomous navigation from range image
data as it applies to both stereo and lidar sensing systems and develops a rudimentary theory of
high-speed autonomous navigation based on real-time analysis, dimensional analysis and
complexity analysis.

The conclusions of this part are the theoretical justification for the adaptive, real-time controller
design of the RANGER cross country navigator.
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Chapter 1: Elements

In order to intelligently guarantee its own safety, a high-speed vehicle must be able to resolve the
smallest obstacle that can present a hazard, process sensory data at a rate commensurate with its
speed, respond fast enough to avoid obstacles, and maintain a sufficiently accurate model of the
world to enable it to make correct decisions. This section develops these requirements into a simple
set of nondimensional requirements, and a related set of assumptions and design rules. These
dimensions of the problem are analysed in a nondimensional manner and the implications of
satisfying all requirements simultaneously are investigated.

Section 1: Guaranteed Safety Policy

One of the most fundamental requirements of autonomous mobility is the requirement to stay
alive while achieving mission-level goals. The fundamental requirements of fast cross-country
navigation are that of robust, high-speed, navigation over rough terrain. Of these, the robustness
requirement is considered paramount. This section will cast robustness in terms of vehicle safety,
and analyze it along the four dimensions of timing, speed, resolution, and accuracy. These four
requirements are intrinsic to autonomy at any speed on any type of terrain but they are more
difficult to meet at high speed on rough terrain.

1.1 Four Dimensions of Safety
There is some speed beyond which the problem of high-speed autonomy becomes one of
intelligent real time control. In such a problem, a few basic failure modes are typically
encountered:

• the system cannot react fast enough to respond to environmental events
• the system cannot process all of the data presented to it in the time allotted
• the system cannot recognize environmental events when they occur
• the system cannot decide on the proper course of action for a specific event

The first is a question of reaction time (timing), of whether the system is fast enough to react
once it perceives a hazard. The second is a question of throughput (speed), of whether the system
is fast enough to perceive everything needed. These questions are conceptually independent but
become related when they are considered to vary dependency with resolution. These first two
dimensions limit the speed of a system.

It is possible to construct a system with excellent reaction time that cannot supply the throughput
necessary by simply reducing the field of view of a sensor to one, or a few pixels. Such a system
could respond provided it happened to see a hazard. Conversely, it is possible to design a system
with sufficient throughput, but poor reaction time - by processing range data out to the horizon.
Such a system could see, but would be unable to respond. There is a spectrum of how often to see
how much, and there is a single point on this spectrum which optimizes performance against both
requirements.
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The third is a question of acuity1 (resolution), of whether the system has high enough resolution
perceptual equipment to enable it to recognize important aspects of the environment. The fourth is
a question of fidelity (accuracy), of whether the system has sufficiently accurate models to permit
it to make correct decisions. These last two dimensions limit the reliability of a system.

12 Safety

1.2.1 Requirement - Guaranteed Safety

Together, response, throughput, acuity and fidelity requirements must be continuously met in
order to guarantee vehicle safety. This will be called the policy of guaranteed safety. An adaptive
system can directly implement the policy of guaranteed safety by reasoning in real time about the
four dimensions of safety discussed above and by adapting its perception and planning
subsystems to comply directly with the need for safety.

1.2.2 Mitigating Assumption - Safe Terrain Assumption

Although it may be obvious, it is important to mention that many systems can profitably reject the
guaranteed safety requirement in favor of an implicit assumption that the terrain is safe. This is
the safe terrain assumption. Human automobile drivers^routinely make this assumption when
driving on highways, and they do so both out of necessity and with some success. There are often
situations when a driver would be unable to react to a stationary obstacle which suddenly
appeared around a bend in the highway. This key assumption permits high-speed driving.

1. The document is replete with invented expressions used as a brevity device. Consider these expressions to
be an aspect of notation like a mathematical symbol or an acronym.
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1,3 Response
A vehicle must be able to react to an obstacle that it sees before it is reached. Therefore, the
relationship between the distance that the vehicle looks ahead RT , the reaction time T ,, and
i i -v T • i react

the speed V is central.

1.3.1 Requirement - Guaranteed Response

Following real-time systems terminology, the policy of guaranteeing a timely response to
important sensory input events will be called the policy of guaranteed response. The problem of
achieving guaranteed response will be called the response problem.

1.3.2 Nondimensional Requirement - Response Ratio

If it takes T r e a c t seconds to react, then the response ratio is the ratio of the distance travelled
during the reaction time to the distance at which the obstacle is perceived:

To say that a vehicle must avoid obstacles is equivalent to saying that the response ratio must
never exceed unity. If the highest possible practical speed has been achieved, the only way to
improve on this (while maintaining the ratio below 1) is to either decrease the reaction time or
increase the lookahead distance. For a given vehicle with fixed latencies, and a given sensor with
fixed maximum range, there exists some speed that cannot be safely exceeded without risking an
encounter with hazards that were seen too late to avoid them. Adaptive systems can deliberately
increase lookahead or reduce speed on the basis of the response ratio.

There are many related issues. There are practical limits on decreasing the reaction time due to the
physical response of the vehicle - given power limitations on actuators, and the limited speed of
the data processing hardware. There are also practical limits on increasing the lookahead because
the maximum useful range of a sensor is often limited by image occlusions, limited accuracy,
limited resolution, power limitations, or safety considerations, and most of these are extremely
aggravated by shallow pixel incidence angles. Different reaction times apply to different obstacle
avoidance maneuvers. Turning typically requires more time than braking, for instance. It is the
response ratio which is the central concern, not the reaction time itself. A vehicle with half the
speed which also responds half as quickly is equivalent. None of this matters until the sensor
lookahead is considered.

2. The ratio of a velocity-time product to a distance is a central nondimensional variable in this kind of anal-
ysis.
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1.3.3 Design Rules - Response Adapted Lookahead and Speed

Any element of the response ratio can be considered to be absolutely limited by the other two.
The response adapted lookahead rule expresses how the planner lookahead must adapt to the
state of the vehicle (speed, curvature) and its ability to respond (braking, turning) in order to
guarantee that the response ratio remains less than unity. It can be written as:

RT >VT
L - v lreact

Notice that the product VT is a kind of characteristic vehicle distance which encodes the
ability to respond expressed as a distance. An autonomous system must always scan for hazards
beyond this characteristic distance.

The response adapted speed rule expresses how the vehicle speed must adapt to the sensor range
and the ability of the vehicle to respond. It can be written as:

The ratio R L /T is a kind of velocity which encodes the "speed" at which hazards present
themselves to the vehicle. A more in-depth reaction time analysis reveals that various system
latencies, including vehicle dynamics, cause reaction times that can be larger than might be
expected, and therefore, maximum speeds are lower than might be expected.

1.3.4 Algorithmic Solutions - Response Adaptive Lookahead and Speed

The idea of response adaptive lookahead is to always ensure that the vehicle has time to react to
any obstacle it may encounter at the current speed. The idea of response adaptive speed is to
ensure that the vehicle speed always remains below the critical speed determined by the sensor
maximum range. These measures are important because latencies are large and uncontrollable.
Speed cannot be changed instantaneously and it is influenced to a great extent by the slope of the
terrain.

1.3.5 Mitigating Assumptions - Low Latency Assumption, Wide Depth of Field
Assumption

It may be possible under certain circumstances to simply ignore the issue of whether or not the
system can respond quickly enough to avoid hazardous situations without explicitly considering
it. Of course, this amounts to an assumption that response is instantaneous relative to any
particular situation. This is the low latency assumption. An assumption with equivalent
consequences is the assumption that sensor useful range is sufficiently large. This could be called
a wide depth of field assumption. Vehicles which execute start-stop motions and slow speed
vehicles can normally make these assumptions.

1.3.6 Related Subproblems - Latency Problem and Myopia Problem

The most central concern of guaranteed response is often the overall latency of the system. A
latency problem exists when system latencies are too large for any particular goal speed and
sensor maximum range. If the sensor maximum range is too small compared to the latencies and
the speed, then a myopia problem exists.
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1.4 Throughput
There is also a basic requirement that the system acquire geometric information as fast as it is
consumed by driving over it. Therefore, the relationship between the projection of an image on
the ground plane AR, the system cycle time Tc c, and the speed V is also central3.

1.4.1 Requirement - Guaranteed Throughput

The policy of guaranteeing sufficient throughput will be called the policy of guaranteed
throughput. The problem of achieving guaranteed throughput will be called the throughput
problem.

1.4.2 Nondimensional Requirement - Throughput Ratio

The throughput ratio is the ratio of the distance travelled during the cycle time to the projection
of an image on the groundplane:

Figure 2 - Throughput Ratio

To say that a vehicle must not drive over unknown terrain is equivalent to saying that the
throughput ratio must never exceed unity. If the highest possible practical speed has been
achieved, the only way to improve on this (while maintaining the ratio below 1) is to either
decrease the cycle time or increase the image projection. For a given vehicle with fixed sensor and
computational throughput, there exists some speed that cannot be safely exceeded without risking
an encounter with unseen hazards. Adaptive systems can deliberately reduce speed or increase
the sensor field of view on the basis of the throughput ratio.

There are many related issues. There are practical limits on decreasing the cycle time due to the
computer speed and the sensor throughput. There are also practical limits on increasing the image
projection due to pitching of the vehicle and the finite angular field of view of the sensor. Also, the
maximum range is limited by many concerns, and the minimum range is limited by the height of
the sensor and the extension of the vehicle nose in front of it. It is the throughput ratio which is the
central concern, not the throughput itself. A sensor with half the field of view which generates
twice the frame rate is equivalent. None of this matters until the velocity is considered.

3. Notice that response determines the minimum sensor range whereas throughput determines the vertical
field of view. The two together specify a focus of attention which is the real issue at any point in time. This
idea will be central later. Notice also that response determines reaction time whereas throughput determines
cycle time. These two dimensions of real-time analysis are almost always important.
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1.4.3 Design Rules - Throughput Adapted Sweep and Speed

Any element of the throughput ratio can be considered to be absolutely limited by the other two.
The throughput adapted sweep rule expresses how the sensor field of view must be adapted
based on the system cycle time and the vehicle speed. It can be written as:

AR>VT c y c

The product VT is a kind of characteristic vehicle distance, the distance travelled per
cycle, which encodes the basic throughput necessary. The throughput adapted speed rule
expresses how the vehicle speed must be adapted based on the sensor field of view and the system
cycle time. It can be expressed as follows:

The ratio AR/T is a characteristic speed which encodes the throughput necessary in terms of
geometry per second. A more in-depth throughput analysis reveals that the efficiency with which
traditional sensors generate geometry is unnecessarily low and that unprecedented throughput is
possible by simply modifying the sensor geometry and optics without increasing its fundamental
throughput4.

1.4.4 Algorithmic Solutions - Throughput Adaptive Sweep and Speed

The idea of throughput adaptive sweep is to always ensure that the vehicle acquires new
environmental information as fast as it is consumed by driving over it. The idea of throughput
adaptive speed is to ensure that the vehicle speed remains below a critical speed given by the
cycle time and the sensor field of view. These measures are important because they can allow a
system to achieve unprecedented speeds by computing only the minimum amount of information
necessary to ensure safety.

1.4.5 Mitigating Assumption - High Throughput Assumption

It may be possible under certain circumstances to simply ignore the issue of whether or not the
system can measure the environment fast enough. This amounts to an assumption that the
computers are fast enough to process everything in an image without significantly affecting
safety. This is the high throughput assumption.

1.4.6 Related Subproblems - Stabilization Problem, Tunnel Vision Problem

On rough terrain, it is possible that either the shape of the terrain in the image or the shape of the
terrain upon which the vehicle moves will cause rapid motion of the sensor vertical sweep unless
something is done about it. A stabilization problem exists when this motion can cause holes
between images. Further, another aspect of sensor requirements is that they image all reachable
terrain. When the field of view is too narrow to achieve this, a tunnel vision problem exists.

4. This is important for two reasons. Laser rangefinder throughput is limited fundamentally by the ability of
the laser diode to shed generated heat coupled with the need to maintain reasonable signal-to-noise ratios.
Stereo triangulation throughput is limited by the processing speed of the computer used. In both cases, there
is much that can be achieved through judicious design of the sensor and/or processing algorithms.
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1.5 Acuity

There is a basic requirement that the system be able to resolve the smallest obstacle that can
present a hazard to the vehicle at operating velocity. This resolution requirement applies to both
the sensor and the computations performed on the data. Clearly, the larger the vehicle, the larger
the hazard necessary to challenge it, so it is to be expected that the resolution requirement will be
dependent on the vehicle dimensions.

1.5.1 Requirement - Guaranteed Detection

In order to guarantee detection of hazards, some acuity requirement must be maintained at all
times. This will be called the policy of guaranteed detection. The problem of maintaining
adequate acuity will be called the acuity problem.

1.5.2 Nondimensional Requirement - Acuity Ratios

Considering the projection of a single range pixel onto the horizontal and onto a vertical surface,
two very useful expressions can be formed:

Minimum Acuity
dy

d y ~~ T

Figure 3 - Acuity Ratios

Maximum Acuity
d z

Pdz = 7

These are called the acuity ratios. To say that a vehicle must resolve hazards reliably is
equivalent to saying that the acuity ratios do not exceed one-half, as will be shown below.

1.5.3 Design Rules - Acuity Rules

In order to ensure that the vehicle pitch can be computed at all, Nyquist's sampling theorem tells
us that the relevant acuity ratio must not exceed one-half. This can be written as:

This will be called the minimum acuity rule, for below this resolution, a sensor measures
nothing useful at all. Conversely, the resolution of a wheel step hazard will require that a pixel
subtend no more than half of the height of the smallest obstacle. The smallest obstacle which
presents a hazard is on the order of the wheel radius. Choosing to require two pixels on this
surface can be written as:
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This will be called the maximum acuity rule, for pixel sizes smaller than this are excessively
small5. There is some range at which the acuity requirements change relative severity, so in the
most general case, both must be met simultaneously.

1.5.4 Algorithmic Solutions - Acuity Adaptive Scan and Planning

The idea of acuity adaptive scan is to actively modify sensor resolution in order to ensure
adequate acuity over the entire field of view of the sensor. This measure is important because
traditional sensors, such as the ERIM laser rangefinder, admit two orders of magnitude of
variation in the density of pixels on the groundplane.

The idea of acuity adaptive planning is to accept that sensory information is finite in resolution
and to perform planning computations at a consistent resolution. For example, vehicle pitch
evaluated by moving the vehicle over the map cannot change until a distance of one map cell is
moved, so there is no point in wasting computer cycles trying to extract higher resolution
information. This would be equivalent graphically to using many small steps to integrate a
function over an interval for which it is constant.

1.5.5 Mitigating Assumptions - Uniform Scan and Terrain Smoothness

In the most general case, pathological hazards may exist which are impossible to resolve for both
sensor resolution and computational throughput reasons. A nail, for instance, could feasibly exist
on the vehicle trajectory. Therefore it is necessary to assume that pathological cases do not exist.
This will be called the terrain smoothness assumption. It must always be adopted to some
degree, and it is adopted implicitly when a terrain map of any finite resolution is used in planning
computations. This assumption is also important because the projection of a pixel onto the
groundplane depends on the shape of the terrain surface itself6. To assume that pixel resolution is
inherently adequate is to adopt a uniform scan assumption. One way to achieve almost uniform
scan is to mount a sensor directly over the terrain of interest7.

1.5.6 Related Subproblems - Sampling Problem, Motion Distortion Problem

The true relationship between the angular resolution of any particular sensor and the linear
resolution of the measurements it provides is affected primarily by the height at which the sensor
is mounted and the shape of the terrain. In practice, it can vary by orders of magnitude over the
field of view. This will be called the sampling problem.

Acuity has a temporal element as well as the spatial elements mentioned above. It is necessary to
sample vehicle position fast enough to correctly localize range pixels. The distortion of an image
that is caused by motion of the sensor is called the motion distortion problem.

5. Read excessively small as information theory. In practice, it is a good idea to require more than 2 pixels
on the surface, as will be discussed later in terms of an oversampling factor.
6. From radiometry, the projected area of a surface varies with the cosine of the angle of incidence.
7. This, of course, can only be done for limited excursions or with a flying vehicle. Neither option is practi-
cal here, but both have limited domains of usefulness to other problems.
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L6 Fidelity

There is a basic requirement that the system be able to locate the vehicle with respect to hazards in
the environment to within some limit of error8. This accuracy requirement applies to the range
sensor, the position sensor, and the computations performed on the data. Clearly, the smaller the
vehicle and the larger the distance between hazards, the lower this required accuracy is, so it is to
be expected that the accuracy requirement will be dependent on the vehicle dimensions as well as
the density of hazards.

1.6.1 Requirement - Guaranteed Localization

In order to guarantee localization of hazards, some fidelity requirement must be maintained at all
times. This will be called the policy of guaranteed localization. The problem of maintaining
adequate fidelity will be called the fidelity problem.

1.6.2 Nondimensional Requirement - Fidelity Ratios

Considering the groundplane projection of the vehicle and two hazard areas, two very useful
expressions can be formed:

Minimum Fidelity

dx

•
Pdx =

(A-W)

Maximum Fidelity

dx
P

W Figure 4 - Fidelity Ratios

These are called the fidelity ratios. In the figure A is the minimum distance between hazards, W
is the vehicle dimension aligned with the line between the hazards, dx is the maximum allowed
error, and 8 is the terrain map resolution.

1.6.3 Design Rules - Fidelity Rules

In order to ensure that the vehicle does not collide with the hazards, position error of the vehicle
relative to the hazards, must not exceed the maximum, or equivalently the ratio must not exceed
1.

This will be called the minimum fidelity rule, for below this accuracy, collision is guaranteed.
Conversely, there is little point in measuring geometry to superb accuracy when it will be reduced
to the intrinsic map resolution before it is used.

8. This is deliberately stated in relative terms. If both the hazard and the vehicle position are off by exactly
the same error, system viability is not affected. Position estimation requirements for hazard avoidance are
typically relative accuracy requirements.
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This will be called the maximum fidelity rule, for accuracies better than this are excessive.

1.6.4 Algorithmic Solutions - Fidelity Adaptive Planning

When predicting the trajectory of the vehicle forward in time, the idea of fidelity adaptive
planning is to accept that system accuracy is finite and to conservatively avoid obstacles so that
hazards are guaranteed to be avoided despite the levels of uncertainty that exist. This measure is
important because, in dense obstacle environments, the correct response to an overly dense
collection of hazards is to avoid them as a unit instead of trying to drive between them.

1.6.5 Mitigating Assumption - Benign Terrain Assumption, Low Dynamics Assumption

It is clear that a vehicle cannot navigate between two hazards that are closer together than the size
of the vehicle and in practice, it may be necessary to accept suboptimal localization from a poor
sensor. To do so is to fundamentally assume that hazards are sparse in the environment. This will
be called the obstacle sparsity assumption which is a special case of the benign terrain
assumption. A special extreme case of the benign terrain assumption is the flat world
assumption. In situations where dynamics can be neglected, a low dynamics assumption is
being adopted.

1.6.6 Related Subproblems - Sensitivity Problem, Image Registration Problem, Stability
Problem

There is often a high degree of sensitivity of particular parameters to changes in other parameters.
For example, the localization of a range pixel is very sensitive to errors in the range measurement
or in the angular measurement of the position of the ray through the pixel with respect to the
navigation coordinate system. When sensitivity becomes an important consideration, a sensitivity
problem exists. Terrain map9 fidelity is sensitive to many factors.

Also, guaranteed detection implies that an autonomous system is concerned mostly with
predictions of vehicle position relatively far into the future. When nonlinear differential equations
are involved in this prediction, there is the potential for extreme sensitivity to exist. The solution
to the Fresnel equations for the vehicle position several seconds into the future, for example, is
very sensitive to dynamic model miscalibration errors.

There are many other dimensions to the fidelity problem. The image registration problem arises
when the relative accuracy of the entire system geometric model is insufficient to ensure that
redundant measurements of the same geometry agree. Sometimes, situations can arise where there
are not enough sensors to measure all quantities of interest. This problem is an extreme form of
fidelity problem known as the observability problem. At times, poor models of the vehicle may
cause control loop instability. This is called the stability problem.

9. A terrain map is a data structure used for representation of environmental geometry or other properties.
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Section 2: Configuration - Normalized Vehicle

The shapes of most terrestrial vehicles vary little even while their sizes vary a lot. Most are about
twice as long as they are high and about as wide as they are high. This is especially true of vehicles
designed for roads. Simple models of tipover stability dictate that the height should be reduced as
much as possible and, all other things being equal, length and width should be equal.

From the point of view of impact on a perception system, a few vehicle dimensions are most
important. Consider the dimensions indicated in the following figure.

Figure 5 - Normalized Vehicle

Let the largest important dimension of the vehicle, the wheelbase, be called L. Define the
normalized wheelbase to be:

The normalized wheelbase relates each of the two following sets of three variables. Define the
perception ratio, normalized wheel radius, and normalized undercarriage clearance to be:

These variables will play a key role in rules which relate perception system requirements to the
vehicle itself. By borrowing terminology from wing theory, the vehicle shape can be expressed in
terms of aspect ratios. Define the longitudinal aspect ratio, wheel fraction, and undercarriage
tangent to be:

These measure vehicle shape. The first measures how oblong the profile is. The second measures
the overall roundness of the traction system and is one of many factors affecting terrainability. The
third is another measure of terrainability and is a key element in uncovering the basic reason for
occlusions in a perception system. Future results will refer frequently to the normalized vehicle.
Of the seven variables presented, only four are independent.

An Approach to the High-Speed Cross-Country Autonomous Navigation Problem page 26.



Chapter 2: Response

As was shown earlier, the response ratio relates the ability of the vehicle to react, to its speed and
its sensory lookahead. This section analyzes these aspects of vehicle performance for typical
vehicles.

Section 1: Reaction Time

The system reaction time is the time period between the instant that an object appears in the field
of view of the sensor and the instant of time when the vehicle can be considered to have reacted to
it. It is important to be precise about this definition. The system level reaction time is the time from
when an object is perceived until the actuator has finished its job. For example, in the case of
braking, this time includes the time it takes for the vehicle to decelerate or skid to a stop.

1.1 Reaction Time Components
This aspect of performance depends on both software and hardware components. The total system
reaction time includes the time required for all of the following operations:

• sensing the environment T
• perceiving what the sensor data means T
• deciding what to do T l a n

• commanding actuators T
• actuator response T
• allowing the actuators to operate on the vehicle, environment, or both T ,

The second last term may be called actuator dynamics and the last component will be referred to
as vehicle dynamics - for lack of a better term. This can be expressed as follows:

T = T + T 4-T + T + T 4-T
react sens perc plan cont act veh

It will be useful later to distinguish three components of reaction time. These are

the sensing reaction time:

the processing reaction time:

T = T + T + Tsw perc plan cont
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and the dynamics reaction time:

T — T -i- T
dyn "~ act veh

These correspond to the sense-plan-act cycle view of autonomy. It will also be useful to group the
first and last together into a hardware reaction time.

T = T + T = T + T + T
hw sens dyn sens act veh

1.2 Nondimensional Response
The overall system reaction time is now simply:

T = T + T
react hw sw

The only physical dimension represented in this equation is time, so it is not very interesting from
the point of view of dimensional analysis. A dimensional analysis can be accomplished by simple
division. Consider:

which states the intuitively obvious result that it is the relative ratios of the software and hardware
components of the system reaction time which are important. This suggests that if software
efficiency approaches the point where it accounts for only a small fraction of the total system
reaction time, attempted performance improvements should concentrate on hardware and vice
versa.

Define the reactive ratio as follows:

This quantity measures the percentage of reaction time caused by software. Then the total system
reaction time is:

react "" sw P react
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1.3 System Reaction Time
The system reaction time for a real case can be computed by tracing the flow of information
through the basic system processing loops. These can be understood from the following flow
diagram:
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Figure 6 - System Control Loops

Consider that a clock is started the instant that an obstacle appears in the field of view of the sensor.
After the frame buffer latency T ]a t has elapsed, the obstacle appears in a new image in the frame
buffer. Thus the sensing reaction time is the frame buffer latency:

T = T
sens lat

Unless software is synchronized with the sensor, in the worst case, software has just started a new
cycle immediately before the obstacle appears in the frame buffer. For this analysis, let the
perception and planning subsystems cycle at some constant rate thus:

r = T + T
eye perc plan

After T more seconds have elapsed, software starts a new cycle on the latest image. This image
may be the first, second or some other image since the obstacle was first seen, but the image does
contain the obstacle.

When this image is processed in cycle i+1, Tc more seconds will elapse before the planner has
decided to stop and issues the brake command. Hence Tj + 2Tc seconds of time have elapsed
before the system has decided to react by braking the vehicle. This analysis assumes perfect
obstacle detection. Next, the communication link to the control computer incorporates a delay
called T c o n t . After the controller receives the brake command, a delay of T applies before the
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mass of the actuator moves far enough to be considered to have responded to the amplifier drive
current. Finally, a time period of T y e h elapses before the vehicle comes to a complete stop. Thus
the worst case time it takes for the system to react to a situation is given by:

T — T 4- 9T -i- T -t- T -i- T
1 react ~ Mat^ c y c + cont^ act+ veh

The coefficient of 2 arises from lack of synchronization between the sensor and the perception
software. It is a worst case assumption. In reality, the coefficient of the software cycle time can be
considered to vary randomly between 1 and 2 unless the cycle time is precisely constant.

Reaction time may be different for different actuators. In general, the steering and brake actuators
may incorporate different delays. For this reason, two different reaction times are defined. The
braking reaction time is called Tfi, and the turning reaction time is called xT .

JL4 Braking Reaction Time
According to the definition used here, the braking reaction time has elapsed after the brakes are
fully engaged. That is, the time during which the vehicle decelerates is not included in this time.
Therefore, an expression for the braking reaction time is:

where T a c t is the small amount of time required for the brake actuator to move.

1.5 Turning Reaction Time
In the case of turning, the turning reaction time has elapsed after the steering mechanism reaches
the commanded curvature. The time for which the vehicle moves at this curvature is not included.
Without loss of generality, let the steering mechanism move through an angle Aoc and let its
maximum velocity be ocniaY. Then the actuator delay is given by:

which can be as much a 3 seconds under some circumstances.

One of the most important aspects of the latency problem is the large value of the turning reaction
time. For this reason, systems which attempt continuous motion in a dense obstacle field require
excellent turning response characteristics.

1.6 Reaction Distance
In addition to considering the time required to react, the distance required can also be considered.
This distance will turn out to be an important variable in later analysis, so it will be defined here as
follows:

s = T V
react react

This reaction distance gets its precise definition from the associated definition of the reaction time
being considered. If it is important to be precise, the velocity is defined as the average velocity over
the reaction time period.
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Section 2: Maneuverability

In addition to its ability to react, the ability of a vehicle to maneuver to avoid obstacles or otherwise
ensure safety is important. This section investigates the manner in which computational reaction
time and mechanical maneuverability together determine the ability of a vehicle to avoid
obstacles. The actuation space of a vehicle consists of a command vector with elements of
steering, throttle, and brake - all of whose elements are time continuous functions. Exact analysis
of vehicle maneuverability requires solution of the equations of vehicle dynamics while enforcing
the constraint that the vehicle remain in contact with the terrain.

However, in order to simplify the analysis, four special hazard avoidance maneuvers will be
defined. These maneuvers are the panic stop, the turning stop, the impulse turn, and the reverse
turn. These maneuvers will be defined in an ideal sense for a point robot with actuators which
respond instantaneously after a command is received. Actuator dynamics will be considered in a
later section.

2A Braking
Once a command to stop is issued to the vehicle brakes, a certain amount of distance is travelled
in order to exhaust the vehicle kinetic energy through friction between the wheels and the terrain.
This is the braking distance. Simple analysis suggests that this distance is quadratic in vehicle
velocity V. Let the vehicle mass be M, then its kinetic energy is M V 2 / 2 . This energy must be
removed through the work done by the frictional force. If the dynamic coefficient of friction is \i,
and the distance travelled is s, and g is the local acceleration due to gravity, then this work is
|LlMgs. Equating these gives:

An Approach to the High-Speed Cross-Country Autonomous Navigation Problem page 31.



2.2 Empirical Braking
An experiment was conducted10 which verifies this quadratic result. Fitting the data to the model
generates a coefficient of friction from 0.5 to 1.0. The data are presented below:

1 Braking Distance (Empirical)
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Figure 7 - Empirical Braking Distance

Table 1:

Speed

11.2 m/s

8.9 m/s

6.7 m/s

4.5 m/s

Braking Distance

Stopping
Distance

11 meters

6 meters

3 meters

1 meter

10. This graph is courtesy of R. Coulter of CMU based on an experiment conducted in the HMMWV.
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2.3 Panic Stop Maneuver
Consider that the vehicle approaches an obstacle which it cannot avoid. That is, its only alternative
is to stop as quickly as it can. This will be called a panic stop maneuver. The stopping distance
is the distance travelled by the vehicle between the instant an object appears in the sensor field of
view and the instant when the vehicle comes to a complete stop. If the vehicle velocity is constant
and of magnitude V, then the reaction distance is the distance travelled before the brake is
applied, or [Tfi] V. The braking distance is the distance actually travelled while the brake is on.
If the two are added, the following expression is obtained for the distance travelled by the vehicle:

This relationship is plotted below for three values of reaction time using a conservative coefficient
of friction of 0.5. Notice that stopping distance is quadratic in speed with a coefficient of about 0.1.
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2.4 Nondimensional Braking
A rudimentary dimensional analysis is performed by asking at what velocity of the vehicle do the
reaction distance and the braking distance become equal. This happens when the ratio of the two
distances is 1. The dimensions in the equation are distance and time. Hence there are two pi
products. There are many ways to choose these because pi products are not unique. Later results
will benefit from the following choice of variables.

The first is the kinematic braking coefficient:

which is the proportion of the stopping distance that is consumed by simply deciding to brake.

The second is the dynamic braking coefficient:

which is the ratio of the braking distance to the reaction distance.

Rewritten, the stopping distance expression takes the following forms:

These expressions capture everything in Figure 8 in nondimensional form. Since both Pi products
must satisfy this equation, either can be derived from the other. The dynamic braking coefficient
will be considered to be fundamental and referred to simply as the braking coefficient 5. When
the braking coefficient exceeds, say 0.1, it becomes important for a planning system to reason about
the dynamics of braking.

Real Numbers

For the HMMWV at speeds of 5 meters/sec, with a 2 second reaction time, the braking
coefficient is 0.25.
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2.5 Braking Regimes
The braking coefficient identifies two key regimes of operation for autonomous vehicles. After
substituting into the original expression, some algebra gives:

When the braking coefficient is 1.0, braking distance and reaction distance are equal. At this point,
stopping distance enters a regime of quadratic growth with initial velocity. Based on the braking
coefficient, two regimes of operation can be defined. In the kinematic braking regime it is much
less than 1.0. In the dynamic braking regime it is much greater than 1.0.

In the kinematic regime, stopping distance is linear in both initial velocity and reaction time. This
is the reason why the curves in Figure 8 are basically linear even though they are given by a
quadratic equation. In the dynamic regime, stopping distance is quadratic in initial velocity and
independent of reaction time. In order to achieve a given target speed, the path planning horizon
can be reduced significantly if the system reaction time is reduced to a minimum.

Real Numbers

For the HMMWV, with a 2 second reaction time, the braking coefficient is 1 at a velocity of
20 meters/second. Hence, the system will operate in the kinematic regime throughout the
range of speeds considered in this document. Based on this single fact, many of the results
which will follow can now be predicted based on intuition. Further, this explains why Figure
8 is basically linear although it is given by a quadratic equation.
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2.6 Turning

Consider a constant curvature turn. Let the vehicle yaw be given by \|/, the velocity be given by
V, the curvature be given by K , and the radius of curvature be given by p. In a turning maneuver,
the instantaneous vehicle yaw rate is given simply by the chain rule of differentiation:

dwds T7 V
\|/ = - ^ — = KV = -
T ds dt p

If the time spent in the turn is T, the yaw of the vehicle after the turn is given by:

Where sT is the turning distance. When a constant curvature turn is executed, there is a simple
relationship between the yaw of the vehicle and the angle subtended at the start point by the stop
point. This is given below:

y i

X

•

X

y

= p [1 - cosy]

= psiny

The range from the start point to the endpoint is given by:

The angle from the start point to the endpoint is given by:

vy
n I X \ ( 1 -

0 = atan\ - = afcm 5m y \cosy/2) Y

This is a very useful result for determining the angular width of the region which is reachable in a
given time at a given speed. The angular width, subtended at the start point, of the region
reachable by the vehicle in a turn, is the yaw of the turn itself

If the vehicle decides to brake while in a turn, the planning angle is the angle travelled before the
brakes are actuated. The braking angle is the angle travelled while the brakes are actuated before
coining to a stop. The stopping angle is the sum of these two. In a manner analogous to the
coefficient of friction, a coefficient of lateral acceleration can be defined thus:

which is simply the lateral acceleration expressed in g's. The lateral acceleration at all points on a
turning trajectory must be limited for safety reasons.
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2.7 Steering Limits
There exists a maximum steering angle for any vehicle speed which will cause the vehicle to enter
an unsafe state. This will be called the dynamic steering limit p D . The radius of curvature of a
vehicle may also be kinematically limited by the steering mechanism. This is the kinematic
steering limit p K . To determine the dynamic limits, let the maximum safe lateral acceleration be
0.5 g11. Let K be the path curvature, V be the velocity, and p be the radius of curvature. Then, the
velocity and radius of curvature are related by:

v2 V2 V2

VZK = < Vg => p n =
P D Vg

This relationship is plotted below for all vehicle speeds up to 10 m/s using a kinematic steering
limit of 7.5 meters.
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Hence, minimum radius of curvature is quadratic in speed with a coefficient of about 0.2. The
minimum radius of curvature can be expressed by the function:

The discontinuous derivative of this function will show up several times later.

11. This analysis is a gross approximation which is sufficient for the purpose it is used.
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2,8 Turning Stop Maneuver
The turning stop maneuver occurs when the vehicle is executing a constant curvature turn and
detects an obstacle in its path that is avoided by braking. The stopping region is the region of space
in front of the vehicle which includes all possible braking trajectories. Clearly, this region is a
function of the initial velocity and the initial curvature. It can be quantified by considering all initial
curvatures at all speeds, and simulating forward along all trajectories until the vehicle comes to a
stop. The stopping regions for two different speeds are plotted below.
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2.9 Impulse Tiirn Maneuver
Consider the case when the vehicle is executing a linear trajectory and decides to avoid an obstacle
by executing a turn and not by hitting the brakes. This will be called an impulse turn maneuver.
The vehicle will travel a distance given by the velocity and the reaction time before the steering
mechanism is actuated. Then, the sharpest turn is determined by the kinematic and dynamic
steering limits. Idealized turning trajectories for a point robot based upon a lateral acceleration
limit of 0.5 g are plotted below .

Figure 11 - Impulse Turning Trajectories

1 Impulse Turning @ V = 5 m/s, v = jx = 0.5

30
27

2 25
I 22
2 20

5 17

« 15
1 12
8 10
> 7

5
2
Q

" ^

\

\

\

\

/

/
\ f

/

/

xT - 4.0 sec

T T = 3.0 sec

TT = 2.0

T T - 1 . 0

-15 -10 -5 0 5 10 1
X Coordinate in Meters

sec

sec

5

I Impulse Turning @ V = 10 m/s, v = |i = 0.5

60 r
55-
50

w 45-

f 40-
2 35-
•c 30-
§ 25-
=S 20-
8 is-
^ 10-
> 5-

0 •

\ N

\

\

\

\

/

1

1

I

1

/

/

xT = 4.0 sec

TT = 3.0 sec

T T = 2.0 sec

TT = 1.0 sec

- 3 0 - 2 0 - 1 0 0 10 20 3C
X Coordinate in Meters

)

12. This analysis is a gross conservative approximation for several reasons. The dynamics of the steering
mechanism are neglected even though it takes several seconds for a standard steering mechanism to reach full
deflection. For this reason, reaction times applied to steering must be increased relative to braking. Also, the
finite width of the vehicle must be considered. This can be achieved by further increasing the reaction time.
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2,10 Impulse Turning Distance
In the impulse turn maneuver, notice the V-shaped region between the opposite turning trajectories.
The width of this region is the width of the largest obstacle directly in the path of the vehicle that
can be avoided . This width becomes infinite after 90° of turn.

For the impulse turn maneuver, the reaction distance is the time taken for the steering mechanism
to be actuated. The turning distance is the distance along the original trajectory consumed in
turning. The impulse turning distance is the sum of these two.

An impulse turn of particular interest is the 90° impulse turn. This maneuver is required to avoid
a large object without braking. The impulse turning distance is given by:

U j m * ~ "

min

This can be written as:

= TTV + max(pK, —

The impulse turning distance is plotted below:
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13. Remember that a point robot was assumed, so this V-shaped region should be moved back a few meters
to account for this or the turning reaction time should be increased. On the other hand, point obstacles require
substantially less turning than full deflection in order to avoid them which reduces the effective impulse turn-
ing distance. A detailed analysis is too extensive for the purposes of the document. The point is that large
obstacles really do occur regularly, so this condition must drive sensor maximum range. Ideally, the offset of
the vehicle nose from the sensor must be accounted for as well as the effect of vehicle motion on the scanning
pattern.
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2.11 Reverse Ttirn
Consider a situation in which the vehicle is already engaged in a sharp turn in one direction and
decides to reverse curvature, and proceed in the opposite direction. This will be called a reverse
turn. The vehicle will travel along a trajectory given by the velocity, the initial curvature, and the
reaction time before the steering mechanism is actuated. Then, for an idealized trajectory, the
curvature will instantaneously switch. Any dynamics in the steering response are accounted for in
the turning reaction time. Idealized turning trajectories for a point robot, based upon a lateral
acceleration limit of 0.5 g, are plotted below:
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Figure 13 - Reverse Turning Trajectories

It is important to recognize that the vehicle will continue on its original curved trajectory in this
model until the turning reaction time expires. This is why these trajectories deviate so significantly
from the trajectory that would be followed if the reaction time were zero. The noninstantaneous
response of the steering actuator is a major concern in the modelling of Ackerman-steered vehicles
which travel at speeds exceeding even a few meters per second.

2.12 Stability Problem
The previous graph provides a basic reason for the stability problem. First of all, a kinematic model
of steering response is fundamentally wrong when the product of speed and latency is large. This
is one aspect of the fidelity problem. Further, hazard avoidance and goal-seeking behaviors which
used such a model would go unstable as soon as a large turn was commanded. At even moderate
speed, a kinematic model of steering gives rise to a stability problem.
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2.13 Nondimensional Turning
The angle through which the vehicle turns in any constant curvature trajectory is given by:

If the vehicle were to execute a constant velocity turn for a time period of the reaction time at some
radius of curvature, it would turn through an angle given by the arc length over the radius of
curvature. Since it will be useful later, the inverse of this angle will be called the kinematic
turning coefficient or simply the turning coefficient:

This quantity can be defined for any velocity and any radius curve. It is the inverse of the amount
that the vehicle turns over a period of one reaction time. Now a quantity analogous to the dynamic
braking coefficient can be defined. Let the dynamic turning coefficient be given by:

It can be defined for any velocity and any radius curve. For any curve and velocity, this quantity
measures the proximity of the vehicle to its lateral acceleration limit. As such, it is a measure of
safety of a turn.

2.14 Turning Regimes
If the variation in the angular width of the stopping region is plotted against speed, it exhibits a
maximum when the dynamic turning coefficient first reaches 1. Beyond this speed, the vehicle
tends to become less omnidirectional as the dynamics of turning come into play. Hence there are
turning regimes which are analogous to the braking regimes. In the kinematic turning regime, the
dynamic turning coefficient is less than 1 and turns of the minimum kinematic radius are safe. In
the dynamic turning regime, the dynamic turning coefficient is greater than or equal to 1.

In the dynamic regime, the effect of increased speed is to reduce the angular width of the stopping
region. The vehicle approaches kinematic omnidirectionality when the turning coefficient
significantly exceeds unity. It will be shown that, at any speed, the horizontal field of view required
is given by the minimum value of the turning coefficient for any safe trajectory.
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2.15 Turning Stop Maneuver
Suppose a vehicle is required to stop to avoid an obstacle while it is executing a turning trajectory.
The angle that it will turn through before it stops is again given by:

Substituting for the stopping distance in terms of the braking coefficient:

V =
T VT B V [ 1 -

P

1-5] _ [1 +
t

6]

This is a pleasingly simple result.

By analogy to the linear braking trajectory, three angles can be defined. The planning angle is the
angle through which the vehicle turns while deciding to stop. The planning angle for a turning stop
maneuver is the inverse of the turning coefficient.

The braking angle is the angle through which it turns while braking. This is given by the ratio of
the braking coefficient and turning coefficients. The stopping angle is the sum of these two. For
the turning stop trajectory, the ratio of the braking angle to the planning angle is the braking
coefficient just as it was in the linear braking case.

Further, for a turning stop, the braking and turning coefficients are related as given below:

It has been shown that only one braking coefficient is independent. From this result, it is clear that
there is only a single second independent variable - the ratio of stopping distance to radius of
curvature. This is, of course, the stopping angle which was just defined.

For a turning stop trajectory, only the braking and turning coefficients are independent; all others
can be derived from them. When the stopping distance is much greater than the minimum radius
of curvature, the turning coefficient is significantly less than 1. Under these conditions, the vehicle
can be considered to be kinematically omnidirectional at the resolution of the stopping distance.
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2.16 Impulse Tiirn Maneuver
The impulse turning distance was defined as the reaction distance plus the minimum radius for the
tightest possible turn. This is given by:

2.17 Impulse Turning Regimes
This result is a perfect analogy to the stopping distance relationship. When the turning coefficient
is greater than one, the second term dominates and growth is quadratic. More precisely, the nature
of the growth of the impulse turning distance then depends on the dynamic turning coefficient. The
different regimes are illustrated in Figure 12. At sufficient speeds, the quadratic growth of radius
of curvature dominates the linear growth of the reaction distance. This occurs when:

V
= — = > V = xTvg

Real Numbers

On the HMMWV, for a 2 second turning reaction time, this occurs at 10 m/s. For a 4 second
reaction time, it occurs at 20 m/s. Unless reaction times can be reduced below 2 seconds (and
this is not likely) the impulse turning distance can be considered linear in velocity.

Notice that the turning coefficient plays the same role for impulse turning that the braking
coefficient plays for the panic stop. The dynamic turning coefficient plays a similar role for
continuous turning.
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Section 3: Lookahead

The final element of the response ratio is the lookahead distance. The highest level requirement
on perception is to image all of the terrain that the vehicle still has an option of traversing at any
particular point in time. Ideally, a range sensor should provide geometric information beyond the
entire region of terrain that can be reached by the vehicle before coming to a stop.

3.1 Adaptive Regard
From the perspective of turning and its impact on the horizontal field of view, it is clear from
earlier sections that there are situations during turns when the entire left half or right half of the
field of view need not be processed because the vehicle cannot go there. Further, from the
perspective of braking and its impact on the vertical field of view, it is clear that there is some
distance roughly given by the reaction time times the speed within which the vehicle cannot stop.

It is useful to partition the space in front of the vehicle into different zones based upon the different
implications of an obstacle in each zone. Consider the following figure:

Braking Impulse Turning

Figure 14 - Lookahead

Regions are defined for each particular possible trajectory and for each type of avoidance
maneuver. The dead zone is the region within the swath of the planned vehicle trajectory which
the vehicle is committed to travelling. Should an obstacle ever enter this region, a collision is
unavoidable. The detection zone is the region along the trajectory which can still be avoided. Free
zones are areas in neither of the other two. These are regions where the vehicle cannot go because
of its steering and braking limitations.

Since an obstacle in the dead zone cannot be avoided, there is no reason to allocate precious range
pixels there. Rather, obstacles must be detected in the detection zone before they ever reach this
region. As a minimum, a range sensor must allocate range pixels over the region formed by the
union of the detection zones of all possible trajectories for all possible avoidance maneuvers. The
dead zone grows as vehicle speed increases. This is the mechanism which drives the sensor field
of view away from the vehicle with increased velocity.
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In the context of planning, these notions are important and the dead and free zones are a very large
fraction of the total. There is no justification for wasting perceptual and planning cycles in
discovering the geometry of regions in these categories because there is no useful decision that
the planner can make . This notion will be called adaptive regard. The principle of adaptive
regard is to process geometry only in the detection zone. In practice, this means that a system
must adapt in real time to both its speed and its curvature,

3.2 Pointing Rules
In order to detect obstacles beyond the dead zone, a range sensor must supply range pixels in the
region beyond the dead zone, called the detection zone. The width of the detection region used is
called the incremental lookahead distance and the angular width beyond the dead zone is called
the incremental lookahead angle. The planner lookahead required for a turning stop maneuver is
indicated in the following figure:

Figure 15 - Planner Lookahead

The lookahead distance must be chosen such that obstacles can be detected beyond the dead zone
of all possible avoidance maneuvers. There are two considerations involved in choosing this
distance.

• In order to compute a reliable prediction of vehicle pitch, it is necessary for the sensor
field of view to extend for at least one vehicle wheelbase beyond the dead zone.

• Reliable small obstacle detection may require that the sensor field of view be such that
several images fall on an obstacle before it leaves the detection zone. On this basis, the
planner lookahead should exceed the dead zone by several times the product of the
velocity and the sensor frame period.

In this thesis, the vehicle wheelbase will be chosen as the incremental lookahead distance.

14. One could argue that it is useful to hit an obstacle at reduced speed. Thanks to Todd Litwin of JPL for
pointing this out.
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3.3 Adaptive Lookahead
Adaptive regard is a notion defined for path planning purposes. It restricts the region that an
obstacle detector considers to the detection zone for some set of avoidance maneuvers. A direct
implementation of the pointing rules for the purposes of guaranteeing response will be called
adaptive lookahead. Adaptive lookahead is a notion defined for perception purposes. It restricts
the focus of attention of perception to the detection zone. Practically, this mechanism computes the
minimum range or maximum range based on the obstacle avoidance maneuver in question.

3.4 Nondimensional Lookahead
For the purpose of providing information to the path planner, the perception system must look
beyond the dead zone. The amount of lookahead is called the incremental lookahead distance
ARL. Similarly, the maximum sensor horizontal field of view is greater than the stopping angle by
an amount called the incremental lookahead angle A\|/L. Based on these, two convenient
nondimensionals can be defined.

The normalized incremental lookahead distance is the lookahead distance normalized by
reaction distance.

It is related to the throughput ratio defined earlier. The incremental lookahead angle is already
nondimensional. It is the incremental lookahead distance divided by the instantaneous radius of
curvature

Let the ratio of maximum to minimum range be called the range ratio:

A quantity that will be important later is the ratio of the distance travelling while thinking about
stopping to the distance required to stop. This will be called the lookahead ratio because its
inverse measures the number of system cycles that the system is looking ahead:

The lookahead ratio relates throughput and response and will be important later in assessing the
processing requirements of mobility.
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3.5 Nondimensional Pointing Rules
The pointing rules relate the sensor field of view to the vehicle maneuverability at any speed. The
vertical field of view is shown below:

Figure 16 - Vertical Field of View

The pointing rules that will be used to calculate the field of regard for planning purposes can be
expressed as follows:

Rmin ~

Rmax =

"max

SB

s I T + L

sT + L

"min

stopping distance

impulse turning distance + lookahead

stopping angle + lookahead
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Chapter 3: Throughput

As was shown earlier, the throughput ratio relates the ability of the vehicle to process information
at a sufficient rate to its speed and its incremental sensory lookahead. Throughput is a completely
independent matter from response. This section analyzes these aspects of vehicle performance for
typical vehicles.

Section 1; Depth of Field

This section and the following two sections investigate the relationship between the
maneuverability of the vehicle and the sensor field of view. The sensor field of view is considered
to be a solid cone of rectangular cross section which can be described by the horizontal field of
view, vertical field of view, minimum range, and maximum range.
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1.1 Minimum Sensor Range
The minimum range required of a sensor as a function of velocity is given by the closest point of
any detection zone for any trajectory and any avoidance maneuver. Of the four avoidance
maneuvers considered, the turning stop is the one which remains closest to the vehicle start point.
The following figure was generated by tracing the endpoint of all turning stop trajectories, and
computing the minimum range to each endpoint.
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Figure 17 - Minimum Range

The peculiar knee in the higher curves arises from the discontinuous derivative of minimum radius
of curvature with velocity. Notice that at the knee, the minimum is twice the kinematic minimum
radius. By comparing this figure with Figure 8, it is clear that the stopping distance overestimates
the minimum range slightly, but it is a good approximation.

The minimum range is a loose requirement. There is no cost to response incurred by increasing the
minimum range. It can be increased up to the point where throughput is barely guaranteed.
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1,2 Maximum Sensor Range
Turning is preferred over braking for obstacle avoidance, so it is reasonable to let the impulse
turning maneuver drive the specification of maximum range even though this maneuver requires
much more space. The sensor maximum range is given by the sum of the impulse turning distance
and the planner lookahead distance. The maximum range derived from this condition is given in
the figure below15. Again, the discontinuity arises because of the discontinuity in the derivative of
the radius of curvature.
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Figure 18 - Maximum Range

For a single scanline sensor, the line must be placed at or beyond the maximum range computed
above. Such sensors rely on very good obstacle detection.

Real Numbers

The maximum range of the ERIM scanner is 20 meters. Reaction times below 3 seconds for
full deflection turns are probably not realistic. On the basis of this curve, the ERIM sensor
supports no more than 3 m/s speeds while avoiding wide obstacles. This estimate incorporates
no safety margin.

15. This graph is based on a very ambitious lateral acceleration limit and a small lookahead of the wheelbase.
For this reason, a practical maximum range may be far larger than indicated by the graph. No numbers are
available for realistic lateral acceleration limits.
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1,3 Nondimensional Maximum and Minimum Range
According to the pointing rules, the sensor minimum range is given by the stopping distance:

min

Also, the sensor maximum range is given by the impulse turning distance plus the lookahead
distance. This gives:

Dividing gives an expression for the range ratio in terms of the vehicle maneuverability:

1.4 Mvopia Problem
The obstacle resolving power of contemporary stereo and lidar systems is poor at the high ranges
necessary to resolve obstacles at speed and a system must attempt to succeed with a poor idea of
what is out there. The effective maximum range of a contemporary environmental perception
sensor is limited by any of three concerns: first, angular resolution is often poor; second, signal-to-
noise ratios degrade with increased range and with shallow incidence angles; third, occlusion is
aggravated by the inherently shallow incidence of range pixels which arises from long range
measurement.
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Section 2: Horizontal Field of View (HFOV)

The horizontal field of view will be determined by the turning stop maneuver. It can be argued that
the reverse turn is a worst case, but this would drive the field of view to unreasonable size. It is
reasonable to assume that stopping is the only option used when executing a tight turn.

The angle subtended at the vehicle by the dead zone is the maximum angle subtended at the vehicle
by the stopping region for all vehicle speeds, since, in the worst case, the vehicle executes a
continuous turn into new terrain. Recalling the 5 m/s stopping region, the angles can be read from
the graphs of the stopping region for each value of system reaction time. The horizontal field of
view is determined by the planner lookahead which is added to the angle subtended by the dead
zone. The HFOV is derived by adding a lookahead distance of the vehicle wheelbase to the braking
trajectory. In this way, a planner could detect and respond to a roll or pitch obstacle by braking.
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Figure 19 - Horizontal Field of View

The reaction times applicable to the turning stop are braking reaction times. Notice that the
maximum is achieved at the fastest speed for which the smallest radius of curvature arc can be
executed. From the previous graphs, this is 6.0 m/s. Beyond this curvature, the required HFOV
actually decreases because turns of the minimum radius are no longer possible.

A HFOV beyond 180° seems counterintuitive. This is because the analysis assumes that
information from previous images cannot be counted upon to provide information. The validity of
this assumption depends on the frame rate, the scanning pattern, and the vehicle speed. More
importantly, it depends on whether there are any occlusions which the sensor must see around. To
adopt a HFOV smaller than the worst case requirement is to artificially reduce the maneuverability
of the vehicle. This may be acceptable in some cases.
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2.1 Nondimensional Horizontal Field of View
In dimensional analysis, ratios of important lengths often turn out to be important angles. As speeds
increase beyond the maximum speed for which turns of the minimum radius of curvature are safe,
curvature must be decreased to avoid excessive lateral acceleration. Consider the following figure:

H F O V

HFOV =
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This relationship gives the variation of the required HFOV with velocity for any vehicle. This is a
very pleasing result. It states the intuition that both the hardness of the turn and the stopping
distance should determine the result. In the kinematic braking regime, the result is linearly
increasing with velocity. In the dynamic braking regime, it decreases quadratically. So the formula
is consistent with the graphs in Figure 19.

Real Numbers

For the HMMWV, executing a minimum radius of curvature turn, with a reaction time of 2
sees, and 6 meters/sec speed, the formula gives:

HFOV •[
T V"react

1 +

which is, from Figure 19, exactly correct.

The maximum in HFOV is reached
velocity at which the dynamic turning

I

Real Numbers

at 6 m/s for the
coefficient is 1.

V2 6 x 6

'«P ixlOx

HMMWV.

72

7.5 7 5

Clearly, this must be the

The curious growth of HFOV followed by a decrease with velocity is unique to non
omnidirectional vehicles. The minimum radius of curvature is zero for truly omnidirectional
vehicles. They operate solely in the dynamic turning regime and the angular width of the stopping
region is determined solely by the lateral acceleration limit.
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2.2 Tbnnel Vision Problem
Contemporary sensors have horizontal image sizes which are far too small to permit aggressive
obstacle avoidance maneuvers on rough terrain. The analysis suggests that a HFOV of 120° is a
reasonable engineering "guesstimate". Yet, typical stereo field of view is 40° and the best
rangefinder has a HFOV of 80°. Consider the following figure in which the vehicle is executing a
reverse turn. Turning dynamics imply that the entire region that the vehicle can reach is contained
within the set of curves shown. Aggressive maneuvers cause collision simply because a
contemporary system cannot look where it is going. In fact, in the reverse turn indicated below,
there is no overlap at all between the field of view and the region that the vehicle is committed to
travelling.

Where
System is
Going

Where
System is
Looking

Figure 20 - Tunnel Vision Problem

This consideration argues strongly for mechanisms which physically point the narrow field of view
sensor - at least in azimuth. For non-pointable sensors, overall latency severely complicates this
problem. If the vehicle turns with angular velocity \j/ and the horizontal field of view is small, it is
not unusual for the vehicle to have driven completely off of the imaged terrain by the time that the
data is processed. If the overall system reaction time is T r e a c t , then by the time that a command
reaches the hardware, the vehicle has turned through an angle:

For the HMMWV - with a
linear velocity divided
Clearly this problem is

by

A\|/ =

Real

^ react

Numbers

2 sec braking reaction time and an angular velocity of 6 meters/sec
a turn radius of 5

a very severe one.
meters, this angle is roughly 2 radians or 120 °.
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Section 3: Vertical Field of View (VFOV)

The major kinematic system requirement which influences the vertical field of view is the pitch
angle induced in the vehicle body by the most challenging, yet navigable, terrain. Later sections
will develop dynamic requirements on the VFOV. Let the highest achievable pitch angle be 15°.
Then the following figure illustrates the two cases which determine the vertical field of view
required to ensure that the vehicle is able to see up an approaching hill or past a hill that it is
cresting.

Figure 21 - Vertical Field of View

Therefore, the vertical field of view required is four times the maximum pitch of the body. It
would also be useful to extend the lower half of the field of view to allow the vehicle to see behind
occlusions as shown below:

An extreme disadvantage of measuring range pixels above the horizontal is that most of the time
they measure nothing. These pixels come into play only when the vehicle is executing challenging
maneuvers. For this reason, it is advantageous to reduce the angle above the horizon as much as
possible.

Another reason to reduce the VFOV above the horizon is that the left case in Figure 21 can be
detected by a reduction in the highest measured range, so mechanisms to point the field of view or
slow the vehicle are viable alternatives. In the right case, the highest measured range will likewise
decrease, but slowing the vehicle does not deal with the problem, so sensor pointing is the only
solution. Hence, it is better to allocate margin on the lower half of the vertical field of view.
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3.1 Nondimensional Vertical Field of View
It is useful to assume that the height of the sensor is always less than the range measured. This is
the small incidence angle assumption. The vertical field of view can then be expressed as follows:

max

VFOV = e - e . = -
max min Rmin max R

- 1 = h
(AR)

maxv min

Figure 23 - Nondimensional Vertical Field of View

R R
max min

When the sensor height is significantly less than the minimum range (and therefore the stopping
distance), the vertical field of view can be expressed in terms of minimum value of the perception
ratio and the range ratio.

VFOV =

VFOV = 1

h
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(Rmax •
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This relationship gives the variation in required VFOV with speed for any vehicle. Substituting the
pointing rules permits elimination of the range ratio and expressing the result in terms of the
maneuverability coefficients:

VFOV =
Rmin Rmax

= h
i i
+t + RL] J

Therefore, in kinematic regimes, the VFOV decreases linearly with velocity. In dynamic regimes,
it decreases quadratically with velocity. This result will be of extreme importance later.
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Section 4: Sweep Rate

The sweep rate of a sensor is defined in image space as the VFOV generated per unit time. It may
represent the physical motion of the elevation mirror in a rangefinder or the product of the VFOV
and the frame rate for a camera. The sweep rate required of a perception sensor is related to the
velocity of the vehicle under guaranteed throughput. If 0 is the sensor sweep rate, the
requirement on it can be approximated as follows:

k>

s«AR(h/R) & s _ A R ( h / R ) _ A R h

AR

RTcyc RTcyc F

_ VT c y c _ hVT c y c =
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eye

Figure 24 - Sweep Rate

Thus, insisting that the throughput ratio never exceed unity, leads to the equivalent requirement
that the sweep rate always exceed:

which is pleasingly simple. This gives the minimum sweep rate, or equivalently the minimum
vertical field of view for some frame rate which guarantees that there are no holes in the coverage
of the sensor. This is the linear velocity component of the sweep rate rule. Of course, if
maximum range is related back to stopping distance, the sweep rate can be expressed solely in
terms of reaction time, sensor height, and velocity - making it a function only of vehicle
parameters.

Equivalently, on rough terrain, the vehicle may pitch as a result of terrain following loads, and in
the worst case, these motions add to the sweep rate requirement. If 6 m a x is the maximum pitch
rate of the vehicle, then the sweep rate rule becomes simply:

which relates the sensor field of view to both the velocity and the vehicle natural frequency. Thus
rough terrain affects throughput to the degree that vehicle natural frequency may affect the pitch
of the body.
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4.1 Stabilization Problem
Notice that the linear component of the rule benefits from higher speeds whereas the angular
component suffers. For the vertical field of view, the process of decreasing it in order to reduce
throughput requirements will eventually lead to the creation of a stabilization problem. The
following figure indicates that rough terrain can create severe stabilization constraints for a
narrow VFOV sensor. However, it will also be shown later that a wide VFOV can be difficult to
achieve because it aggravates the throughput problem.

Figure 25 - Stabilization Problem
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4.2 Nondimensional Sweep Rate
The imaging density cl is the average number of images that fall on any patch of terrain. It is also
the inverse of the throughput ratio. The expression of the sweep rate rule can be written in terms
of the imaging density as:

^ = A R f i m a g e s = ° I V

eye

Reusing the result for vertical field of view from the pointing rules:

VFOV(R R )
max mm t* »j

images ~ I

This can be written in terms of nondimensionals as:

The sweep rate is therefore given by:

oTVh
9 = VFOV x f. l

images R R .
max min

So, for a fixed angular field of view, the rule says that a constant imaging density is achieved by
modulating the sweep rate by roughly the inverse of the square of the range. For any speed, there
is some minimum sweep rate of the beam. Kinematic arguments were given earlier which constrain
the vertical field of view based on vehicle dimensions, maneuverability, and the terrain. This rule
specifies a dynamic constraint as well.

4.3 Adaptive Sweep
There is no fundamental requirement that an autonomous system have an arbitrarily large vertical
field of view. The line scanner has been an important existence proof of this fact. It is possible to
employ adaptive techniques that either physically point a narrow VFOV sensor or which
computationally stabilize a wide VFOV sensor by processing a small portion of each image. This
idea will be called adaptive sweep.

In an earlier section, adaptive lookahead was proposed as a mechanism for moving the position
of the projection of the vertical field of view on the groundplane in order to guarantee response.
While this mechanism addresses the position of the sweep, adaptive sweep addresses the width of
the sweep. These two aspects of the sweep are related through the velocity.
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Section 5: Occlusion

The field of view analysis conducted so far is based on a flat world assumption and it is not
entirely correct on rough terrain. This section investigates the relationship between vehicle
configuration and the prevalence of terrain self-occlusions. It turns out that merely mounting a
sensor on the roof of a vehicle implies, for typical geometry, that terrain self-occlusions are
inevitable, and that holes cannot be detected until it is too late to react to them.

These are two aspects of the occlusion problem. Any system which does not deal with occlusions
or which attempts to deal with hole obstacles may be designed suboptimally. There is an
additional problem that the sampling problem is itself aggravated by rough terrain. There is no
getting around the fact that an optical sensor cannot see through hills so a rough terrain system
must be designed to live gracefully with this problem.

5A Hill Occlusion
A hill can also be called a positive obstacle. Ideally, a sensor could see behind a navigable hill at
the maximum sensor range. The required sensor height can be derived from this requirement. The
highest terrain gradient which is just small enough to avoid body collision is determined by the
vehicle undercarriage tangent as shown below.

Figure 26 - Hill Occlusion

In order for occlusions of navigable terrain to be completely eliminated, the following condition
must be met:

1 h ] i c |

So, for complete avoidance of occlusion of navigable terrain, the ratio of sensor height to
maximum range must equal or exceed half the undercarriage tangent. This will be called the hill
occlusion rule. In order to satisfy the hill occlusion rule, a sensor must be mounted at a fantastic
height which is not realistically achievable without taking very special measures. The hill
occlusion rule is almost always violated. The perception ratio, h /R , can easily exceed the
undercarriage tangent by a factor of three or four. Hence, occlusions of navigable terrain are
common when the terrain is rough.

Real Numbers

For the HMMWV, the undercarriage tangent is about 1/ 3. For a maximum range of 50 m, this
condition requires a sensor height of 16.6 m.
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5>2 Hole Occlusion
A hole can also be called a negative obstacle. Such obstacles are particularly problematic to an
autonomous vehicle. Consider a hole which is roughly the same diameter as a wheel and which is
as deep as a wheel radius. Such a hole is roughly the smallest size which presents a hazard.

Figure 27 - Hole Occlusion

In order to detect that the hole was deep enough to present a hazard, the vehicle would have to wait
until the hole was close enough to satisfy:

h _ r _ 1
R " 2r " 2

This will be called the hole occlusion rule. While it may seem that properly placed high depression
scanlines are all that is required to detect the hole, this is not the case. Recall from the pointing rules
that obstacles inside the stopping distance cannot be avoided at all. It is often the case that to
allocate range pixels for hole detection is to waste throughput on obstacles that cannot be avoided
anyway. Hole detection requires a separate higher speed obstacle avoidance channel.

Holes generate range shadows at the leading edge when the map resolution is sufficiently high.
Alternatively, a vehicle could adopt a policy of avoiding such shadows specifically when they are
in the path of the wheels.

Real Numbers

On the HMMWV, this rule requires that the minimum range be about 5 meters. From Figure
12, it is clear that, depending on the braking reaction time, this may limit speeds unreasonably.
Later results will show that the cost to throughput is extreme when the lower scanline is
depressed to ranges close to the sensor height.
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5.3 Occlusion Problem and Unknown Hazard Assumption
One of the fundamental problems of rough terrain navigation at any speed is the occlusion
problem and little can be done about it. The occlusion problem can be mitigated somewhat by
noticing that, most of the time, regions which are occluded are occluded by hazards. To accept
occlusion then is to assume that occlusions are hazards - that is, to consider large unknown
regions to be unnavigable by default16. This will be called the unknown hazard assumption.
Guaranteed safety requires that this assumption be made.

A further mechanism for dealing with the problem is to limit the roughness of the terrain that will
be navigated, or at least to design a system to assume some limit. This will be called the benign
terrain assumption.

5.4 Lateral Occlusion
A special case of the occlusion problem arises when a large portion of an already narrow HFOV is
occluded by a large object as shown in the following figure. Oftentimes, the system cannot see a
clear path ahead even though there is one. This problem, the lateral occlusion problem,
aggravates the tunnel vision problem and it is aggravated by increased system cycle time and
steering dynamics.

Figure 28 - Lateral Occlusion Problem

16. This assumption is far more necessary than it may appear. Without it, the system will happily drive straight
off a cliff.
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Section 6: Perceptual Bandwidth

Another aspect of throughput is the raw data rate required of communications electronics and the
computation required for a single image pixel. This section investigates these perceptual
bandwidth requirements.

6.1 Sensor Flux
The sensor flux *¥ represents the solid angle subtended by the field of view generated per unit
time. It can be written as:

= HFOVxVFOVxf i m a g e s

6.2 Sensor Throughput
The number of range pixels generated per unit time by a sensor will be called the sensor
throughput f . , . Existing sensors can be characterized as completely nonadaptive since neither
the field of view nor the angular resolution change with time. For such sensors, the sensor
throughput is given by:

The IFOV is the angular resolution of the sensor. A sensor for which *F is constant is called
constant flux, and one for which the IFOV is constant is called constant scan.

63 Sweep Rate
The product of the vertical field of view and the frame rate is a measure of the angular velocity of
the beam, and is known as the sweep rate:

= vFovxf images

6.4 Processor Load
In a simple case, a range pixel must have its coordinates converted at least three times in order to
place it into world coordinates. The complete transform is developed in the appendices. First, the
ray is converted to a sensor-fixed cartesian system. This operation can be implemented via lookup
tables. Each pixel is looked up and multiplied by the range to get the RHS vector of the transform.
This costs 6 flops.

Next, the first RPY matrix converts from the sensor frame to the body frame. This matrix is usually
fixed so its elements can be computed at initialization time. The matrix multiplication costs 12
flops for a total of 18 so far.
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Finally, the elements of the second RPY matrix depend on the vehicle pose, so they must be
computed in real time. Assume the trig functions are implemented via lookup table and hence cost
1 flop each, to give 6 flops. The matrix terms cost about 14 flops. The multiplication costs 12 flops.
Thus the left matrix multiplication costs an additional 32 flops. The total processing of a range
pixel is therefore 50 flops.

More generally, it is useful to define the processor load o p as the number of flops necessary to
process a single range pixel.

Real Numbers

While the analysis suggests a value of 50 for this, actual data for an entire navigator is ten times
as large. Specifically, the ERIM pulse rate is 16 KHz and navigation consumes 8 Mflops. This
gives a value of 500.

Thus, the relationship between processing load and sensor throughput is:

fcpu ~~ f pixe l s X a P

6,5 Perceptual Software Efficiency
The inverse of the processor load is called the perceptual software efficiency

6.6 Computational Bandwidth
The computational bandwidth is the number of flops required of a processor per unit time. If the
geometric transforms of perception are the only aspect of the system considered, this quantity is
related to the sensor bandwidth by the processor load:

f
cpu

pixels 1

(IFOV) 2

j HFOV xIFOV

(IFOV)
images

2

6.7 Communications Bandwidth
Define the communications load a c as the width of a range pixel in bits. Assuming that beam
angular position information is implied by position in the scan, the bandwidth required is:

comm pixels C
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At 10 bits per pixel, the required bandwidth in MHz is 1/5 the required processing rate in Mflops.
Hence high bandwidth communications between the sensor and the computing engine is also a
fundamental necessity of high-speed range image-based navigation.
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Chapter 4: Acuity

As was shown earlier, the acuity ratios relate the configuration of the vehicle to the resolution
required of the sensor in order to resolve obstacles. This section analyzes these aspects of vehicle
performance for typical vehicles.

Section 1: Range Image Acuity

The ability of a vehicle to resolve obstacles in order to ensure safety is important. This section
investigates the manner in which vehicle configuration and sensor resolution together determine
the ability of a sensor to resolve obstacles. The following analysis is based on the flat world
assumption and is not entirely correct in rough terrain. Nonetheless, it is a useful theoretical
approximation.

1.1 Sampling Theorem
The acuity ratios were stated in the introduction according to a strict application of the sampling
theorem. According to this theorem, proper recovery of a signal from its samples requires a
sampling frequency at least twice that of the highest frequency of the original signal. This is a
theoretical requirement and it must be interpreted carefully. Formally, resolution is the smallest
difference that a system can resolve, and not the smallest thing that a pixel can cover.

Taking a wheel collision hazard as an example, a system with a 6 inch wheel radius requires a 3
inch vertical projection of a pixel. Such a system can only resolve a 3 inch step from a 6 inch step.
Further, a 6 inch step appears as a 3 inch step if the center of the pixel is used in calculations. As
shown in the figure, the size of a step obstacle is underestimated by Ah which is, in turn, a larger
fraction of the true height as the pixel size increases. The resolution dz is related to the height
underestimate Ah by:

Figure 29 - Practical Sampling

A practical sampling theorem requires "n" times the signal frequency for some number n greater
nthan 2. A practical acuity requirement will require an oversampling factor of - . An oversampling

factor of 3 will allow discrimination of a 5 inch step from a 6 inch step, for example. As a
theoretical analysis, the document will continue to use an oversampling factor of 1.
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1.2 Terrain Smoothness Assumption
The smallest feature of interest to a planning algorithm is the smallest feature which can cause the
vehicle to be in an unsafe configuration. Three sizes of hazard can be identified.

From the point of view of tipover, the motion of the vehicle over the terrain amounts to a process
whereby high spatial frequencies present in the terrain are filtered. The vehicle longitudinal and
transverse wheelbase determine the vehicle pitch and roll. Hence, from the point of view of tipover
obstacles, cells a fraction of the size of the vehicle seem sufficiently small.

Another important form of obstacle is one which presents a gradient sufficient to collide with or
trap a tire at operating velocity. Potholes and steps fall into this category. Based on this reasoning,
cells on the order of the size of a wheel radius are needed to ensure that a wheel does not fall in a
hole or drive over a step which would cause damage.

A man-made fixture such as a fence post or a natural feature such as a tree may feasibly exist in the
path of the vehicle. Such features represent the extremes of terrain gradient and present the vehicle
with both wheel collision and front bumper collision hazards. In the worst case, a nail in a board
could feasibly exist in the vehicle's path.

Cell sizes on the order of a nail diameter are, as will be shown, infeasible for both throughput and
sensor resolution reasons. It is therefore necessary to assume that pathological cases do not exist.
A practical system must always assume that there are no man-made or natural hazards that are
smaller than some practical limit. This is the terrain smoothness assumption.

1.3 Impact of Imaging Geometry on Acuity
Nothing could be more natural than to bolt the environmental sensor to the front of the vehicle -
especially when long excursions are intended. For the present purpose, it can be considered a
requirement to use such a sensor geometry. However, one important aspect of this approach to
high-speed autonomy is that the ratio, called the perception ratio17 H:

Figure 30 - Perception Ratio

is always a number much less than 1.0. This number shows up in many places in dimensional
analysis. It can be shown that this geometric limitation of the sensor height is the root of some of
the fundamental technological problems of autonomous navigation.

Real Numbers

For the HMMWV, the sensor height is about 2.7 meters and up to 30 meters of lookahead is
required. Hence, for this vehicle, the perception ratio is 0.1.

17. The ratio of two important lengths is often an important angle in dimensional analysis. Here, the percep-
tion ratio is the angle of incidence of the beam with the terrain.
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1.4 Nomenclature
1 Q

The instantaneous field of view is the angular width of the laser beam or the angular width of a
camera pixel. This is also known as the beam dispersion for laser rangefinders. The angular
coordinates of a pixel are often expressed in terms of horizontal sweep or azimuth \|/, and vertical
sweep or elevation 0. When elevation is measured down from the horizon, it is called depression.
The relationships between the beam width and its projections onto three orthogonal axes are given
below. In the analysis, three orthogonal axes are considered to be oriented along the vehicle body
axes of symmetry:

• x - crossrange, in the groundplane, normal to the direction of travel
• y - downrange, in the groundplane, along the direction of travel
• z - vertical, normal to the groundplane

1.5 Sampling Problem
The differential mapping from image space onto cartesian space is both nonlinear, and a function
of the terrain geometry. The density of pixels on the groundplane can vary by three orders of
magnitude, and it varies with both position and direction. Hence, the shape and density of pixels
in traditional sensors is not optimal.

Significant variation in groundplane resolution can cause undersampling at far ranges and
oversampling close to the vehicle. If resolution is chosen appropriately at the maximum range,
pixel density at the minimum range can be extreme and cause significant waste of computational
bandwidth if all pixels are processed. This is a subproblem of the acuity problem which has been
called the sampling problem.

The traditional solution to the sampling problem is to use interpolation to fill in small unknown
regions. There is a limit to how much interpolation can be performed. Fundamentally, the limit
used is another aspect of the terrain smoothness assumption.

18. Actually, the IFOV is the angle subtended by the receive optics, but this distinction will be ignored here.
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1.6 Differential Imaging Kinematics
Note that the following differential relationships come from projective geometry and not from
differentiating the coordinate transforms. More precise relationships are available from the
Jacobian of the coordinate transformation, but this depends on the precise scanning pattern
chosen. In order to avoid dependence on the scanning pattern, the following approximations are
used which are good enough for the purpose of the discussion here.

Approximations for the transformations from image space to the groundplane are easy to write as
follows:

Crossrange

d\|/(

x =
ds = Rd\|/

dx = ds = Rd\|/

d\|/ = dx /R

Downrange and Vertical

HZD
R =

sinQ

y = RcosQ = h/tanQ

z = h -R««0 = 0

ds = RdG = (-^- IdB

dy

de

ds
sinQ

hd6

in2esin

dy sin29
h

dz =

d0 =

hd6ds _
cosQ cosQsinQ

dz cosQsinQ

Figure 31 - Differential Imaging Kinematics

Consider the following approximations to these when elevation spacing d8 equals azimuth
spacing d\|/ as is almost always the case:

These approximations will be used extensively throughout the document.
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1.7 Pixel Footprint Area and Density Nonuniformitv
Multiplying the above expressions:

Hence, the area of a pixel when projected onto the groundplane is a constant times the cube of
the range. Due to the projection onto the groundplane19, it is increased by the inverse of the
perception ratio over what would be expected based on the area of an expanding wavefront. This
is the variation of pixel size with position.

It is typical to allocate the sensor vertical field of view such that Rm i n ~ 2h. Under this
configuration, the density variation over the entire field of view is given by:

The range ratio is an important variable because it determines the degree to which groundplane
resolution is wasted in the current generation of sensors.

Real Numbers

For the HMMWV using the first ambiguity interval of the ERIM sensor, this density variation
is 50. So if data were of appropriate density at the extremes of the field of view, it would be 50
times too dense near the vehicle.

19. Again from radiometry. The pixel solid angle is constant with range, so an R2 growth would be expected.
However, the projection onto the groundplane by close to 90° provides the extra R.

An Approach to the High-Speed Cross-Country Autonomous Navigation Problem page 71.



1.8 Pixel Footprint Aspect Ratio
Dividing the above expressions:

Hence, the pixel footprint aspect ratio at any range for which R»his given by the perception
ratio. The assumption R » h comes from the approximations to the resolution transforms. These
formulae are extremely good approximations whenever R is larger than 2h. For most vehicles, this
condition is always true . This is the variation of pixel size with direction.

The impact of this is that, since the perception ratio is often close to 1/10, terrain is often
oversampled in the crossrange direction by an order of magnitude with respect to the downrange
direction. Practically, then, only one column in ten is needed to ensure adequate coverage of the
environment if square pixels are used and downrange resolution is adequate. More importantly, a
sensor designed specifically for high-speed autonomy would have significantly nonsquare pixels.
This arises fundamentally because stopping distance exceeds sensor height by a large factor.

Real Numbers

On the HMMWV, at the 5 meter minimum range given by 30° depression, it is 2:1. At 27
meters, this is 10:1, at 50 meters, it is just under 20:1.

20. Perhaps the most important distinction of high-speed autonomy is the fact that sensor height is an order
of magnitude smaller than the vehicle braking distance. This fact has many implications.

An Approach to the High-Speed Cross-Country Autonomous Navigation Problem page 72.



1,9 Minimum Sensor Acuity in Image Space
The nonuniformity of pixel spacing is quite extreme when the perception ratio is close to 0.1 and
the scanline depression angle approaches 30°. Consider now what happens when the spacing
between pixels begins to approach the size of the vehicle itself. At far ranges dy is much larger than
dx. So it is dy which will first approach L.

Real Numbers

This is no mere abstraction. At 50 meters range, for the ERIM sensor, the spot spacing is an
incredible 10 meters or three times the size of the vehicle.

Consider that since computation of the vehicle pitch angle depends on having two different
elevations under the front and rear wheels, the pixel spacing dy must be no larger than one-half the
wheelbase for this to be practical. Beyond the range at which this occurs, sensor data contains no
useful information at all, unless data from several images can be registered accurately enough to
contain useful information.

Equating dy to one-half the wheelbase:

dy - t . Rd8/(|)

Rewriting gives a very elegant expression:

This is a very interesting relationship which says that at some resolution, the sensor measures
nothing useful, or equivalently, the holes in the map are almost large enough to swallow the whole
vehicle. This resolution occurs when the product of the normalized wheelbase and the perception
ratio equals one-half the angular resolution of the sensor. This is another expression of the
minimum sensor acuity rule. Any of the variables can be considered to be absolutely limited by
the others in the expression. The equation relates two key nondimensional variables and connects
the vehicle shape to the required sensor angular resolution.

Two conclusions can be immediately drawn from this relationship. First, the IFOV itself limits the
maximum range and therefore the maximum speed of the vehicle. Second, for any given IFOV,
there exists a vehicle speed beyond which sufficiently accurate map registration becomes essential
to reliable hazard detection.
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1.10 Maximum Sensor Acuity in Image Space
It is possible to formulate a similar rule by considering the much more stringent requirements of
resolving a wheel collision hazard at the maximum range. In order to resolve a wheel collision
hazard, spatial resolution in the vertical direction must be sufficient to land, say, 2 pixels on a
vertical surface at any given range. A collision hazard for a given wheel radius r is a step of the
same order as the wheel radius. Therefore, resolving a collision hazard requires:

which can be rewritten in terms of the approximations to the forward resolution transforms thus:

Rd9 = I

Solving for the pixel angular resolution:

- - m
This is another expression of the maximum sensor acuity rule21. Pixel sizes below this limit are
excessive. Pixel angular resolution must be no larger than one-half the normalized wheel radius in
order to resolve a collision hazard at a given range. This can be rewritten in several ways:

Notice that maximum acuity is related to wheel size and lookahead. Since lookahead increases as
the wheelbase increases, maximum acuity is related to the wheel fraction. On this basis, an all-
wheel vehicle configuration (where the wheels are large compared to the body size) requires the
lowest perceptual resolutions. It is often necessary to violate this rule and adopt assumptions about
the terrain in order to lower throughput requirements to a practical level. Notice that the minimum
rule is quadratic in 1/R, whereas the maximum rule is linear. Both constraints are equal when:

Real Numbers

For the HMMWV, using a wheelbase of 3.3 meters, a sensor height of 2.7 meters, and a wheel
radius of 0.475 meters, this range is 18.8 meters. This implies that minimum acuity is the more
stringent requirement beyond this range.

21. Other acuity rules can be defined by relating any resolution requirement to some vehicle dimension, and
substituting the resolution transforms. For instance, if downrange resolution must be less than a wheel radius,
set dy = r. Then a rule is generated which is similar to the minimum acuity rule, but more stringent.
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1,11 Kinematic Maximum Range and the Myopia Problem
The minimum sensor acuity rule gives a kinematic limit on maximum sensor range which says that
at this range, the holes in the map are too large. This limit is surprisingly close. Solving for R:

Real Numbers

Using the HMMW vehicle wheelbase of 3.3 m, the sensor height of 2.7 m, and the ERIM beam
dispersion of 10 mrads, this gives a remarkable 21.1 meters. The conclusion is that the
information at the extremes of the first ambiguity interval of the ERIM sensor is barely useful
unless some mechanism is available to register subsequent images accurately enough in pitch.

1,12 Maximum Angular Resolution
The minimum sensor acuity rule also gives a limit on sensor angular resolution. For a given
nondimensional specification of the vehicle, the largest feasible sensor angular resolution is given
by:

d9max = M

The minimum acuity rule takes any of these forms:

and it can be rewritten in terms of any of the other nondimensionals describing the vehicle shape.

Notice that all of these results are independent ofhorR itself, and independent of the scanning
pattern of the sensor, except that uniform pixel angular spacing is assumed. All of these results are
intrinsic when h « R. The issue which causes nonuniform sampling is the perception ratio: it has
very little to do with the sensor itself.

1,13 Acuity Problem
For contemporary vehicles, the myopia problem and the acuity problem are linked because poor
angular resolution is the typical limit on the useful range of a sensor. The above analysis is based
on the flat world assumption. On rough terrain, there is no practical way to guarantee adequate
acuity over the field of view because there will always be situations where pixels have glancing
incidence to the terrain.
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1,14 Small Incidence Angle Assumption
When the perception ratio is small, the range measurement from the sensor to the environment is
almost identical to its groundplane projection (because the angle involved is so shallow). Indeed,
the relative error in assuming the two are equal is the square of the perception ratio:

Figure 32 - Small Incidence Angle Assumption

r
This is on the order of 1% for high speeds simply because the range is so large. The assumption of
a small perception ratio will be called the small incidence angle assumption. It will be a critical
assumption required later in order to manage perceptual throughput.
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Section 2: Brief Introduction to Stereo Vision

Stereo vision, or stereoscopy, is a fundamental ranging technique having its roots in biological
vision systems.That humans use two their eyes to deduce range is well known. This section is
provided to introduce terminology and concepts upon which later analysis sections will depend.

2.1 Correspondence Problem
The fundamental issue in the implementation of stereo vision is the computation of the
correspondence between pixels in a pair (or more generally a set) of images of the same scene. This
problem is called the correspondence problem.

1 3 ]

Left Image Right Image

Figure 33 - Correspondence Problem

2.2 Disparity and Epipolar Geometry
The disparity d of a pixel in a stereo pair is the difference in the positions in the image plane of
two pixels that correspond. In the most general case, disparity is a vector-valued function because
the pixel that corresponds to pixel [i,j] in the left image may be located anywhere in the right image.
Thus, if x and y axes are used in each image plane, and 1 and r subscripts denote each image:

However, the epipolar geometry constraint can be used to reduce the vector disparity field to a
scalar field. In principle, the ray through any pixel in one image corresponds to a line in the other
image, and this line can be forced to be aligned with either the rows or columns of the second image
for all pixels in the first.

It is useful to represent disparity as the tangent of an angle by dividing by the focal length. Thus
the normalized disparity is defined as:
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2.3 Area-Based Stereo
Mobile autonomy requires dense geometric models of the environment. For this reason, area-based
stereo algorithms - which attempt to provide a range estimate for every pixel in an image - are the
algorithms of choice. Three basic operations are fundamental to area-based stereo.

2.3.1 Normalization

Let 1 [i, j] and r [i, j] denote the intensity values of the left and right images of a horizontal
baseline pair and let a [i, j] denote either of them when a distinction is unnecessary. Similarly, let
L [i, j] , and R [i, j] denote preprocessed versions of these images and A [i, j] denote either of
them when a distinction is unnecessary. Typically, preprocessing is used to remove local gain and
bias differences between individual cameras.

2
One of two common forms of preprocessing are often used. Let V denote an actual or
approximated22 Laplacian operator:

Similarly, let N denote the statistical normalization operator which scales a random variable onto
normalized deviation from the mean in units of the standard deviation:

Either of these operators can be used to rescale image intensity based on convolution with an
operator of support w by h (which may be unrelated to the correlation support discussed next):
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N denotes the number of pixels in the normalization window. In the latter case, the mean and
standard deviation are computed from the sampling distribution of intensities contained within the
normalization window itself.

22. A typical approximation is the difference of Gaussians (DOG) operator.
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2.3.2 Correlation

Various underlying formulations for computing the degree of match between two candidate pixels
are in common use, but all are based on surrounding each pixel with a window and associating the
properties of the entire window with its central pixel. Some common measures of match over a h
by w window are the sum of squared differences (SSD), the sum of absolute differences (SAD),
the normalized correlation, and the sign correlation. These are given, respectively, below:
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The first pair of operators measure the degree of mismatch, or decorrelation, of candidate image
window pairs, and are typically minimized at a match. The second pair of expressions measure the
degree of match, or correlation, of candidate image window pairs, and are typically maximized at
a match. If memory permits, these expressions can be computed for every possible row, column,
and candidate disparity. The resulting 3 dimensional matrix will be called the correlation tensor.

2.3.3 Disparity Estimation

Note that if row and column indices are fixed, then the resulting line through the correlation tensor
can be regarded as a single-valued function of disparity. This curve is called the correlation curve
of the pixel at [i,j]. The fundamental operation of area-based stereo is to extremize this curve and
then associate the value of disparity at the extremum with the pixel in question. This operation
involves the assumption that two regions that look the same are the same, called here the maximal
visual similarity assumption. Clearly this assumption is invalid where the scene contains
repetitive patterns. This problem is called the repetitive texture problem. However, the
assumption is also invalid in more subtle ways to be investigated shortly.

Note also that disparity estimation and correlation are coupled. The computation of correlation is
dependent on some assumption about the shape in the right image of the region corresponding to
a rectangle in the left. Any assumed shape, including the classical rectangular shape assumption is
tantamount to assuming a local disparity field consistent with that shape.

2.3.4 Disparity / Correlation Coupling

Thus computation of correlation requires knowledge of disparity and the computation of disparity
comes from extremizing correlation. This expresses the notion of disparity / correlation coupling
This is an important idea in general stereo and a particularly important one in the target application.
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2.4 Fundamental Inconsistency of Area-Based Stereo
Typical implementations of area-based stereo rely on several assumptions which are questionable
in natural outdoor scenes. Indeed, the assumptions that are historically made are inconsistent and
this inconsistency causes poor performance in the target application of mobile autonomy.

2.4.1 Uncorrelated Disparity Assumption

The uncorrelated disparity assumption asserts that the range of any pixel in the scene is
independent of the range to any other pixel in the scene. While realistic scenes certainly have
structure, the occluding edges which identify obstacles may occur anywhere without prior
knowledge of the scene, so this assumption is a safe one to adopt.

In implementation terms, this assumption occurs implicitly when the correlation curve is
extremized without any reference to the information in adjacent curves. There is, however, one
important constraint on disparity which must be mentioned for completeness.

The occlusion constraint states that certain disparity gradients are physically impossible. For
example, if pixel i in the left image is matched to pixel k in the right, then pixel i+1 cannot be
matched to any pixel whose index is less than k. If this were the case, then pixel k would not have
been visible in the left image and the original match of i to k would not have been possible.

This constraint is apparently a contradiction, but it can be resolved as follows. While the geometry
of the environment is unconstrained, the geometry of stereo triangulation implies that certain
perfectly legitimate scene characteristics cannot be seen from both images simultaneously and
hence cannot be legitimately generated by stereo vision.

2.4.2 Correlated Disparity Assumption

While disparity estimation typically makes the uncorrelated disparity assumption, correlation
typically assumes precisely the opposite. The opposite assumption is the correlated disparity
assumption. Indeed, if the ranges of adjacent pixels are independent, then there is absolutely no
reason to expect that the properties of a window around a pixel will be dependent on the properties
of the central pixel. That is, if pixel i in the left matches pixel k in the right, then there is no basis
for also assuming that pixel i+1 matches k+1 and hence no justification for summing their
correlations together in a local window.

2.4.3 Inconsistency

Thus, area-based stereo directly violates its own justifying assumptions as it is classically
implemented. This inconsistency23 is intrinsic in almost all current implementations and it likely
arises for efficiency reasons. Another way to express the inconsistency is to say that area-based
stereo assumes that the disparity gradient is zero over the correlation window, for if it were not,
there would be no reason to expect the extremum of the correlation curve to have any meaning.
Having visited the extremes of the disparity correlation assumption, following subsections will
investigate the spectrum of the assumption in terms of a quantity called geometric decorrelation.
The computation of this quantity will first require an investigation of the disparity gradient.

23. Ultimately, this issue is related to the perception ratio which drives so much of the design. The disparity
gradient is nonzero because the typical angle of incidence is the perception ratio - which is certainly not zero.
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Section 3: Range Acuity in Stereo Vision

Stereo vision range data is distinct from laser rangefinder data in that the dominant acuity concern
is often range resolution. This section investigates this issue and a few related ones in the context
of mobile autonomy.

3.1 Range Resolution

The equations of stereo triangulation are given in the appendices as:

where y is the range to a matched feature measured normal to the image plane, b is the baseline
separation of the cameras, f is the focal length, d is the disparity, and 5 is the normalized disparity.

This can be differentiated to give the range resolution of stereo as a function of range:

which shows the well-known quadratic growth of stereo range resolution with range when
disparity resolution is fixed [58]. Disparity can be resolved no better than a single pixel unless
subpixel disparity estimation is performed. Intuitively, the quadratic growth can be seen from the
following figure:

left
camera

right
camera.
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3.2 Need for Subpixel Disparity Estimation
For high-speed vehicles, subpixel disparity estimation is a necessity on contemporary systems.
Indeed, it is barely possible to resolve the pitch of the vehicle from a stereo range image otherwise.
The height resolution resulting from disparity resolution can be computed kinematically by noting
that stereo range resolution is normal to the image plane. A good approximation to the tangent of
the sensor tilt angle is the perception ratio h / R , thus:

The quantity b / h will be called the normalized baseline. It is shown later to be equal to the image
disparity gradient for flat terrain. Note that although range resolution is quadratic in range,
elevation quantization noise is linear in range.

3.2.1 Minimum Acuity

Under minimum acuity, the elevation noise of a processed image must be less than, say, 10% of the
noise required to tip the vehicle. Let 9 m a x be the maximum allowable pitch of the vehicle, and L
be its wheelbase. Then, minimum acuity requires the noise in predicted pitch to satisfy:

"x'-W
In the worst case, the elevations under the front and rear wheels both contribute to the pitch error,
so that:

A6 = ^ ?

and the minimum acuity criterion becomes:

Real Numbers

Using the HMMWV vehicle wheelbase of 3.3 m, the sensor height of 2.7 m, a baseline of 1
meter, maximum pitch of 15°, and a range of 20 meters, this criterion gives 0.0006 rads. The
disparity resolution of a typical 512 X 480 camera of 40° fov is 0.001 rads - which is almost
good enough to satisfy the criterion. This implies that the technique of reducing image
resolution to, say, 128 X 120 in order to improve throughput will not meet the minimum
requirement unless subpixel disparity estimation is performed.
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3.2.2 Maximum Acuity

Under maximum acuity, elevation noise should be less than, say, 10% of the radius of a wheel. Let
r be the wheel radius. Then, maximum acuity requires the noise in predicted elevation to satisfy:

so the maximum acuity criterion becomes:

Using
meter,

the
and

Real Numbers

HMMWV wheel radius 0.475 meters, the sensor height
a range of 20 meters, this criterion gives 0.0008 rads.

of 2.7 m, a baseline of 1

3.2.3 Integral Disparity

The following figure shows the effect of using discrete integral disparity values only for a sensor
of height 2.5 meters, a VFOV of 30°, a sensor tilt of 16.5°, and a baseline of 1 meter. Although the
ground truth terrain is perfectly flat, quantized disparity measurement causes step artifacts that
increase in both amplitude and wavelength as range increases.
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3.3 Subpixel Disparity Estimation
A well-known technique for enhancing the quality of stereo data is to interpolate the curves of
correlation (or alternately, sum of squared differences) versus disparity to attempt to generate
subpixel resolution. This problem can be expressed in its simplest form with minimum degrees of
freedom if a coordinate system is established at the central of three points in (disparity, SSD) space
which span a local minimum. Let x represent disparity, and y represent SSD value. The central SSD
value is subtracted from the other two in order to reduce the variables to the two variables a and b,
both positive. It is straightforward to fit a parabola and compute its minimum. The result is:

Figure 36 - Subpixel Disparity Estimation

where the result is expressed in local coordinates and must be converted back to absolute disparity
before used by adding the true disparity value of the local origin.
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Section 4: Angular Acuity in Stereo Vision

Unfortunately, stereo vision range data is often also poor in angular resolution. The resulting range
image is typically much poorer in angular resolution than the underlying angular resolution of the
cameras used. This section investigates this issue and a few related ones.

4.1 Disparity Gradient
The disparity gradient is the spatial derivative of disparity. Under the epipolar geometry
assumption, the disparity is a scalar field and an associated vector gradient field can be derived
from it:

A simple expression, accurate to first order, is available for the gradient of disparity in an image of
flat terrain. In such an image, the gradient is wholly vertical and therefore it is a scalar. The
disparity gradient is related to the Ay spanned by the correlation window height A9. It is known
from the earlier angular acuity analysis for flat terrain that:

and it was just derived that:

Substituting the first relationship into the second gives:

To first order, y and R are identical so that the disparity gradient is simply equal to the normalized
baseline:

This fact is a good justification for the use of fixed-sized correlation windows in outdoor settings.
Of course, the disparity gradient at any point in an image is a direct function of the range gradient
when it is projected into the image plane. In general, it may vary significantly as the terrain slope
varies, but the above figure is an acceptable average value.
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4.2 Geometric Decorrelation
One of the unavoidable difficulties of correlation-based stereo is the fact that even small fixed
windows around matching points in both images will not overlap perfectly on the ground because
the disparity gradient is normally nonzero. Consider the following figure which indicates the
overlap of small correlation windows for both horizontal and vertical baselines when the disparity
gradient is vertical and of magnitude 1/3. Assuming square pixels, and assuming that the disparity
gradient is uniform over the window, the right image will be shifted by one pixel horizontally for
every three moved vertically. Likewise, the bottom image will squeeze 4 rows into every 3 rows in
the top image.

Left/Top Image

Bottom Image

Right Image

\ \ \ \ \ \ \
\ \ \ \ \ \ \
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Figure 37 - Geometric Decorrelation

This distortion is purely a geometric matter - independent of the image data itself and dependent
solely on the disparity gradient field. Let a local coordinate system (u,v) be attached to the image
plane at the central pixel of the reference image?. Let the disparity gradient be given by:

and assume it is constant over the correlation window. Then the geometric decorrelation C will
err

be defined as the weighted integral of the area of the window where the weight of each differential
region is given by its shift relative to the reference image24. Thus, if $ is the position vector in the
image plane, then:
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2 2

Cerr = \ j ^8 • ^dudv =
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J (8uu + 8vv)dudv =
V
2

5 U2V
u

4

8V 2 U
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4

Notice that the decorrelation depends only on the disparity gradient and the window dimensions.

24. This quantity is identical to the quantity called a , in [65].
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43 Halo Effect
The reduction in angular resolution due to the computation of correlation over the correlation
window will be called the halo effect because it tends to manifest itself as a range halo that
artificially increases the size of objects in the scene.

At least one reason for the halo effect is the use of correlation as a measure of region similarity.
Precisely speaking, the correlation operator that is used in stereo is cross-correlation, not
autocorrelation, because the two intensity fields being correlated are not identical. In continuous
terms, the correlation curve is:

Ideally, a measure of region match would be the number of pixels that match normalized by the
size of the window. This can be expressed in terms of a convolution with a voting operator
h (u, v, d) which is 1 when the pixels match and 0 otherwise.

Jh[l(u,v),r(u-d,v)]dudv

The essential difference between these two approaches is that, in correlation, each pixel has a vote
strength proportional to the square of its intensity. The effect of intensity value on the
computation of disparity will be called intensity crosstalk. Its practical implication is that a single
very bright or very dark pixel in a correlation window can dominate the value of the normalized
correlation and hence, its disparity can be associated with the entire correlation window.

4.3.1 Intensity Crosstalk in Correlation

This effect can be illustrated with detail and rigor using one dimensional binary images. Let the
scene consist of a white sphere at a range from the two cameras which corresponds to a disparity
of (b-a). Further let the sphere span exactly one pixel in either image, and let the background be
completely dark and of disparity 0. This eliminates the issue of geometric decorrelation. Let the
symbol 8 temporarily represent the Dirac delta function, rather than normalized disparity. For this
scene, the two images can be represented by the intensity functions:

. 1 1 1 1 10 o ' i ' 2 '3 a s ' e ' y ' s V i o
i

°0V2V4Vi47b9l10
i

(b-a)]

An Approach to the High-Speed Cross-Country Autonomous Navigation Problem page 87.



Recall that the Dirac delta function is a generalized function whose value is 1 precisely when its
argument is zero and 0 elsewhere. Its basic property is the sampling property:

b

a

i(x -c)f(x) dx = ff(c),a<c<b)
V 0, otherwise J

b

a

3[n-c] f[n] = 1 0, otherwise J

For the two idealized images above, the correlation tensor and the disparity curves can be
computed easily in closed form. Let the correlation window be of width 2w+l. The correlation
tensor is a matrix:

C

C

c

c

c

[i,

[i,

[i,

[i,

[i,

d]

d]

d]

d]

d]

n = w

= ^ L[i + n]R[i + n
n = -w

n = w

= 2 S[i + n-a]R[i
n = -w

n = w

= X 8 [ n - ( a - i ) ] R
n = -w

~ V 0, otherwise

~ V 0, otherwise

- d ]

+ n - d ]

[i + n - d ]

Interpreting the result takes some care. First of all, the condition |a - i| < w requires that 'a' be
reachable by the correlation window from T in order for it to be contained within the correlation
window centered at i. Unless this is true, the correlation tensor vanishes. Secondly, within the
remaining region, the correlation tensor is unity only when: ^^

- d + ( b - a ) = 0=> ( b - a ) = d

If the correlation tensor is rendered as an image where black indicates 1 and white indicates 0, the
result is as shown below. The correlation curves are slices through the tensor for each fixed value
of i. Extremizing each curve generates the disparity estimate for each pixel. The resulting disparity
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image d [i] is computed and rendered. Note that the original object spanned a single pixel whereas
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the corresponding region in the disparity image is as large as the entire correlation window. Indeed,
if the correlation window were arbitrarily large, the disparity of a single pixel could be associated
with the entire image. For this scene and an arbitrarily large correlation window, the angular
resolution of stereo vision is arbitrarily poor. This example illustrates that the use of correlation as
a measure of region similarity is not sound in all cases because of intensity crosstalk.

4.3.2 Mitigation of Crosstalk with Logical Equivalence

As an alternative to correlation, it seems advisable after this example to investigate the value of
logical equivalence as a measure of similarity. This is motivated by the fact that although
background pixels do match, their correlation with each other is zero because their intensity is
zero. There is a fundamental difference between correlation and matching which seems to be the
root of the problem. Let x © y denote the logical equivalence of x and y. This boolean function is
the inverse of exclusive or, which is to say that it is one when x and y are either both 1 or both 0.
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n-d]
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Now both delta functions are 1 only when n = ( a - i ) and d = ( b - a ) simultaneously.

4.3.3 Summary

In summary, the classical process of computing correlation is not always correct because it fails to
account for the disparity gradient. That is, the correlated disparity assumption is wrong in
general. Also, the classical process for computing disparity from correlation is also incorrect
because correlation biases the disparity by an amount dependent on the local intensity function.
The maximal visual similarity assumption is also wrong in general. That these assumptions are
not always correct is generally known but they are typically adopted for reasons of computational
efficiency. However, they also contribute to the relatively poor quality of stereo range images.
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Section 5: Perceptual Uncertainty

In the context of autonomous navigation, where terrain maps are used to represent the
environment, it can be useful to explicitly represent elevation uncertainty and propagate it through
planning computations. This section investigates the motivation behind representing elevation
uncertainty and some simple techniques for decision-making in the presence of uncertainty.

5.1 Motivation
There are at least two motivations for representing uncertainty. First actual perception sensors
typically have nonzero random variations in both range and angular position of pixels. Second, the
environment is actually continuous and an entire distribution of elevation exists within the
footprint of a single range pixel or a single map cell. The following two sections will consider the
value of first order statistical modelling in the detection of discrete obstacles and terrain gradient
obstacles.

5.2 Mechanism
Elementary decision theory provides a simple mechanism for estimating the probability that a
random variable has a value within some interval given its sample statistics. Let x denote a random
variable which will be interpreted as the degree of hazard expected at a particular point in the
environment. Let x m a x denote a threshold value on x beyond which the hazardous condition
represented by x is considered unacceptable. Further let x be distributed normally:

p(x) =N(u,a) =

The representation of a continuous probability distribution in terms of its first order statistics is
equivalent to an assumption that the true distribution is Gaussian. For a Gaussian distribution, it is
known that:

for any positive real number k. This is called the complementary error function. As an example,
when k = 3, the integral is roughly 0.01. Thus, there is a 1% probability that an observation of x
will exceed JI + 3 G .

This can be used as follows. Suppose a hazard estimate is computed from some sample of range
points suitably transformed into a hazard estimate and its variance. Under an assumption that the
hazard estimate is a Gaussian random variable, and under an assumption that the sample statistics
for mean and variance approximate the true population parameters, then the hazard estimate
|i + ka can underestimate the true hazardous condition only 1% of the time when k = 3 .
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53 Obstacle Height
A terrain map representation of the environment involves an implicit assumption that the world can
be represented in 2-1/2 D because each point (x,y) gets a single elevation value. However, it is also
possible to represent the variation of elevation within a cell in terms of its first order statistics.
Consider an obstacle of height h, upon which n range pixels have landed as shown below:

Clearly, if the mean elevation is used to represent the height of the obstacle, it will underestimate
it by 50%. Using a discrete integral, for n odd, the standard deviation of the elevations is:

2
Gh

i -n /2 2 • - 2
1 'V' i .h i h v̂ 1 -2 h

= n ^ V n J = "3 ^ * = ~3
i = -n/2 n i = -n/2 n

r 3li = n/2 2
i h
O I -1 /^

•̂  J i — —n/2 -i^

and thus an estimate of the height of an obstacle given the standard deviation is:

Converting this to absolute coordinates, the maximum elevation of the cell is best approximated as:

where |i, is the mean of the elevation distribution. This simple rule provides a trivial mechanism
for estimating the elevation variation within a cell.
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5.4 Terrain Gradient
Many forms of hazards that present themselves to a vehicle can be interpreted in terms of a gradient
operator over some support length. For example, static stability involves estimation of vehicle
pitch and roll under an assumption of terrain following. In the case of pitch, the appropriate length
is the vehicle wheelbase. In the case of roll, the appropriate length is the vehicle width.

Consider the problem of estimation of the slope angle of the terrain in a particular direction over a
certain distance. The distance L represents the separation of the wheels. Let the slope angle be
represented in terms of its tangent, thus:

0 - ( 2 f ""Zr)

Zr

1
~J—\

A „T ^ L

i

zf

The two elevations can be considered to be a 2-vector whose covariance is:

2
Gf O

Under first order uncertainty propagation techniques, the covariance CQ of the computed pitch
angle is a scalar. It can be computed from the covariance C_ of the elevations as:

where J is, in this case, the gradient vector of pitch with respect to the elevations.

The uncertainty in pitch is therefore simply:

This simple formula permits an assessment of confidence in the existence of an obstacle at any
point. It is based on variations between cells.
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Section 6: Positioning Bandwidth

Another aspect of the acuity requirement is the rate at which the vehicle position is sampled. This
section investigates the interaction between vehicle speed and the bandwidth required of position
estimation. Although the position of the ray through each pixel is known in body coordinates and
can be accounted for, the entire image field of view sweeps over the terrain as the vehicle moves.
It is necessary to localize a range pixel to within the map resolution in order to meet the maximum
fidelity requirement. The smearing of the environmental model which arises from incorrect models
of vehicle motion during the digitization process is called the motion distortion problem. The
following analysis can be conducted for translational motion as well.

6*1 Heading and Positioning Bandwidth
For a turn of radius p, and a velocity of V, the yaw rate of the vehicle is given by:

If the range pixel returns a value of R, then the velocity of the pixel due solely to this vehicle
motion is given by:

At this speed, the pixel moves through a distance equal to the map resolution over a time period of:

Therefore, the vehicle yaw must be sampled at a rate of:

If this positioning bandwidth is not met, the terrain map will smear unacceptably and hazards will
be localized incorrectly due to poor resolution in the computations. In practice, interpolation can
be used to supply this position estimate provided the sampling of the underlying heading signal
satisfies the sampling theorem. This requirement implies that every scanline in a rangefinder
image must use an independent vehicle pose estimate.

Real Numbers

Using the HMMW with a 30 meter lookahead, a velocity of 4.5 m/s, a turn radius of 7.5 meters,
and a map resolution of 1/3 meter, this gives a frequency of 60 Hz.
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6.2 Attitude and Positioning Bandwidth
In the case of attitude, the vehicle pitch will be considered. Let the vehicle pitch as it encounters a
patch of rough terrain. The front wheel will lift by a small amount dz and the pitch of the vehicle
will change by a small amount given by:

The pitch rate is therefore related to the terrain gradient in the forward direction as follows:

= !<*? = l**dy (dz)V

For a terrain gradient of 1, a velocity of 3 m/s and a wheelbase of 3 meters, this figure is 1 rad/sec.
This is unrealistically high because the suspension will attenuate this figure by a large factor. Let
the maximum instantaneous pitch rate be called B m a x . Recall from the acuity analysis earlier that
the differential relationship between the downrange position of a pixel and the elevation angle of
the pixel is as follows:

Therefore, the velocity of the pixel in the downrange direction due solely to this vehicle motion is:

At this speed, the pixel moves through a distance equal to the map resolution over a time period of:

Therefore, the vehicle pitch must be sampled at a rate of:

If this positioning bandwidth is not met, the terrain map will smear unacceptably and hazards will
be localized incorrectly due to poor resolution in the computations. In practice, interpolation can
be used to supply this position estimate provided the sampling of the underlying attitude signal
satisfies the sampling theorem. This requirement often implies that every pixel in a rangefinder
image must use an independent vehicle pose estimate. ^

Real Numbers

Using the HMMW with a 30 meter lookahead, a maximum instantaneous pitch rate of 1/8 rad/
sec, a sensor height of 2.7 meters, and a map resolution of 1/3 meter, this gives a frequency of
150 Hz.
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6.3 Motion Distortion Problem
Although the last analysis made some assumptions about the instantaneous vehicle pitch rate, the
assumption is not too important in practice. In the most general case, the motion distortion
problem has no solution because it also depends on the terrain gradient. As a vehicle crests a hill,
for example, there will come a time when a single pixel will sweep several meters forward in a
small fraction of a second. This can be seen, for example, in Figure 25.

6.4 Need for Simultaneous Digitization in Stereo Vision
In the case of stereo vision, a particularly serious motion distortion problem applies. Due to the
nonlinear mapping from stereo disparity onto range, a very small apparent disparity due to relative
motion of the cameras can cause a huge change in the perceived range to an object. As an example,
let the vehicle turn with a high angular velocity \j/ and let the camera digitization be out of synch
by an amount At. Then, the relative angle introduced between two matching features due solely to
this synch error is:

A\|/ = \j/At

As stated earlier, for a turn of radius p , and a velocity of V, the yaw rate of the vehicle is given by:

\ j / = K V = —
P

This gives an angular disparity error of:

Ay = - A t

For a horizontal baseline system, this can be converted to units of pixels as follows:

A V . colsA\|/ = -At-
p HFOV

Now, require that the disparity error be less than 10% of a pixel by solving for At:

= pHFOVf1
V cols UO

This requirement often implies that cameras must be synchronized in image capture to the
resolution of the MHz data clock.

Real Numbers

Using the HMMW with a 10 m/s second speed, executing a turn of the minimum radius of 7.5
meters, a standard 512 X 512 pixel CCD, and a 0.6 radian field of view gives a desynch
threshold of 200 microseconds.
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If the range pixel returns a value of R, then the velocity of the pixel due solely to this vehicle
motion is given by:

At this speed, the pixel moves through a distance equal to the map resolution over a time period of:

Therefore, the vehicle yaw must be sampled at a rate of:

If this positioning bandwidth is not met, the terrain map will smear unacceptably and hazards will
be localized incorrectly due to poor resolution in the computations
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Section 7: Geometric Efficiency

This section investigates the impact of typical imaging geometry on the efficiency with which a
system can sense its environment at appropriate resolution.

7.1 Imaging Geometry
For typical imaging geometry, the density of range pixels on the groundplane varies significantly
with both position and direction. Consider the following graph of the groundplane positions of
each pixel from a range image for a typical rangefinder. A 10 m. grid is superimposed for
reference purposes and every fifth pixel is shown in azimuth to avoid clutter. The density
variation is more extreme than can be shown on paper. The variation of density with range is
obvious:
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Figure 38 - Typical Scanning Pattern
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The spot pattern is obtained by intersecting the ground plane with each pixel. Spots are shown
below for the same sensor at one-tenth density in elevation and one-seventh density in azimuth:
The variation in aspect ratio, as well as size, is apparent.
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7.2 Scanning Density

In a single range image, the average number of range pixels that fall into a particular map cell is
not necessarily one. A quantity called the scanning density os can be defined which is the average
number of range pixels per map cell over the entire field of view of a single image. The scanning
density depends on the scanning pattern of the sensor as well as its position and orientation on the
vehicle.

Real Numbers

For the ERIM scanner mounted on the HMMWV at 2.7 meters height and 16.5° tilt, using a
map resolution of 1/6 m, the scanning density is 2.0. However, this figure is the average value
so it does not reflect the considerable variation in density over the field of view. Recall from
an earlier section that the maximum variation in density is the cube of the range ratio - or about
50.

The scanning density is purely a geometric matter. It is easy to compute as follows:

p i x e l s (HFOVx V F O V ^ j ,,AnT3A / g 2 ,
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R R

max min
82

TR2 - R 2 . 1 IFOV2
L max minj

2h 82

L max
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V min J
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Figure 40 - Scanning Density Expression
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For a given map resolution and IFOV, the scanning density depends only on the perception ratio
and the range ratio and a new nondimensional ratio of map resolution to minimum range. Let this
new variable be called the normalized map resolution.

The significance of the extra variable is that it is necessary to specify where the field of view is
pointed in order to compute the area that it covers.

The scanning density is plotted below for a sensor height of 2.7 m, a map resolution of 1/6 m, and
various values of the pixel size. The growth with IFOV is quadratic and the growth with decreased
minimum range is also quadratic. Pixel sizes were chosen in the range necessary to identify step
obstacles at the maximum range25. Clearly, for any choice of parameters, there is a minimum range
below which scanning density begins to increase very rapidly and significant computational
bandwidth is wasted.
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25. The situation is far worse if the beam dispersion is chosen to keep the spot size within the map resolution.
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7«3 Imaging Density

It may be necessary to image each map cell more than once for several reasons:

• to ensure robust obstacle detection
• to track moving objects
• to track stationary landmarks for position estimation purposes

A quantity called the imaging density Gj can be defined which is the number of images that
include a map cell in the field of view, averaged over all map cells. This quantity is independent of
the scanning density by definition.

Real Numbers

For the ERIM scanner mounted on the HMMWV at 2.7 meters height and 16.5° tilt, at 5 m/s
speed, the imaging density is about 6. So the vehicle sees an obstacle 6 times before it leaves
the field of view of the sensor completely.

The imaging density depends on vehicle speed as well as the sensor configuration. A simple
expression for it is available by considering linear trajectories of a given velocity. The vertical field
of view of the sensor projects onto the groundplane to give a certain length in the downrange
direction. Over a time period of the sensor frame period T. (the inverse of the frame rate), the
vehicle moves a distance given by its velocity. The governing relationship is given below:

but this is just the inverse of the throughput ratio as would be expected. The imaging density is
plotted below versus speed for a sensor with a 0.4 sec frame period for some values of the vertical
field of view.
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7.4 Geometric Efficiency
The scanning density and imaging density together give the average total number of image pixels
that fall on a patch of terrain over several images. Putting these factors together, a geometric
efficiency r\n can be defined as follows:

In order to demonstrate the importance of the geometric efficiency, it is plotted below for the
HMMWV using the ERIM rangefinder as currently configured. The configuration is maximum
range 20 m, minimum range 4.5 m, beam dispersion 10 mrads, map resolution 1/3 m, sensor height
2.7 m:
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Figure 43 - Geometric Efficiency

Thus, at an operating speed of 3 meters/second26, the geometric efficiency of the ERIM is a mere
2.5%. Equivalently, roughly 98pixels out of 100 are waste, providing no new information.

26. This is the typical operating speed of contemporary off-road vehicles.

An Approach to the High-Speed Cross-Country Autonomous Navigation Problem page 101.



7.5 Adaptive Scan
Two techniques are available to alleviate poor geometric efficiency. Adaptive sweep was proposed
earlier as a mechanism for minimizing the imaging density. Typical geometry implies that the area
density of range pixels becomes more or less constant when this is done because the range ratio is
fairly small. However, the shape of those uniformly distributed pixels is still very elongated. The
mechanism for alleviating this problem, associated with the scanning density, is to elongate the
pixel in the reverse direction in the image. This will be called adaptive scan. For contemporary
sensors, adaptive scan can be implemented by filtering or subsampling the image in the azimuth
direction. Ideally, a sensor would have nonsquare hardware pixels.

7.6 Acuity Nondimensionals
From the point of view of dimensional analysis, it is not so much the height of the sensor as the
ratio of that height to the maximum sensor range that matters. This quantity was defined earlier as
the perception ratio:

The quantity gives quick rules of thumb for computing laser spot aspect ratio and area. Let the ratio
of maximum to minimum range be called the range ratio:

Similarly, the normalized range difference is:

These are obviously related by:

AR = R + l R = A R - 1

Recall that the quantity:

is called the geometric efficiency and it expresses the average number of range pixels in a map cell
when it is consumed by driving over it. The scanning density as is the average density of pixels
per map cell over a single entire image. The imaging density ax is the average number of images
that fall on a patch of terrain.
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Chapter 5: Fidelity

As was shown earlier, the fidelity ratios relate the configuration of the vehicle, the accuracy of its
geometric models, and the density of hazards. This section analyzes these aspects of vehicle
performance for typical vehicles.

Section 1: Modelling Dynamics and Delays

A software system is, of course, a disembodied entity which relies on sensors and effectors to
connect it to, and permit it to influence its environment in robotics applications. In the context of
high-speed motion, the time it takes to pass information into and out of the system becomes a
significant factor. As a moving entity, any delays in time which are not accounted for are
ultimately reflected as errors between both:

• what is sensed and reality, or
• what is commanded and reality

Time delays, also called latencies, may arise in general from several sources and all of these types
of delay occur in a contemporary autonomous system:

• Sensor dwell is the time it really takes for a measurement to be acquired even though it
is often a nominally instantaneous process.

• Communication latency is the time it takes to pass information between system pro-
cesses and processors.

• Processing latency is the time it takes for an algorithm to transform its inputs into its
outputs.

• Plant dynamics latency is the delay that arises in physical systems because they are
governed by differential equations.

While delays affect response directly, they also affect the ability of the system to localize
obstacles correctly. Delays themselves are not so much a problem as are unmodelled delays.
Hence, one of the impacts of high speed on the fidelity requirement is the need for high fidelity
temporal models. This implies several things:

• significant events must be time-stamped
• significant delays must be modelled
• i/o which is not correlated in time must be buffered

This section investigates these matters in the context of high-speed motion.
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1.1 Latency Problem
Unmodelled latencies in both sensors and actuators cause the vehicle to both underestimate the
distance to an obstacle and underestimate the distance required to react. This is indicated in the
following figure:

system thinks
it can turn like
this

system
thinks it is
here

system can
only turn like
this

system is
really here

Figure 44 - Latency Problem

1.2 Minimum Significant Delay
Let a time delay of At occur which is not modelled by the system. If the vehicle travels at a speed
V then the distance travelled is, naturally, VAt. In order to guarantee correct localization of a
range pixel, the maximum fidelity requirement must be met. The impact of any delay on the
fidelity requirement can be expressed in terms of the maximum fidelity ratio thus:

and the minimum significant delay occurs when the ratio is 1, or when:

Real Numbers

At a mere 5 m/s, using a map resolution of 1/3 meter, this gives less than one-tenth of a second
whereas the delays of real systems typically exceed this by a large factor.
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1,3 Dynamic Systems
A matter similar to delay is the time constant of dynamic systems. Sometimes, a control algorithm
actuates a derivative of the variable of interest and there is often a limit on the magnitude of the
derivative that can be commanded. The net effect is a significant delay in the transfer function. In
general, any system which commands a derivative of the controlled variable satisfies a differential
equation at least as complex as:

1 response
^response ^command

This is the equation of a filter - where T is called the time constant. When the time constant is
the dominant component of actuator response time, it is also denoted as T .

Typically, the position and attitude of the vehicle are the variables of interest. For the Ackerman
steer vehicle, the input commands are speed (the derivative of arc length) and curvature (the
derivative of heading w.r.t. arc length) so the Ackerman steering system is fundamentally a filter.

1.4 Response Regimes
It is customary when describing dynamic systems to differentiate the time period when the system
is attempting to track a command input from the time when it achieves the desired output. For a
first order system, the typical response profile for a constant input command and zero initial
conditions is as shown below. It can be shown that under these conditions, the output reaches about
(l-l/e)% or 63% of the desired value after one time constant expires:

Typical First Order Response
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Figure 45 - Response Regimes

The time period when the system output is changing27 is called the transient regime and the time
period when it is not changing is called the steady-state regime.
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Characteristic Times and Low Latency Assumption
The characteristic time of any element is the total delay, whatever its source, which relates the
input to the associated correct, steady-state output. The total characteristic time of all information
processing elements, hardware or software, and all energy transformation elements is the quantity
which matters, so it is not correct to discount delays individually. To assume that delays are
irrelevant is to assume that the characteristic time is zero. This low latency assumption is not
correct for high-speed autonomy above some speed.

1.6 Normalized Time Constant
One of the most important quantities in the characterization of problems of planning and control
is the normalized time constant. This quantity is a direct measure of the importance of dynamic
modelling. It is typical of the planning approach to problems to abstract away the dynamics of the
problem for reasons of efficiency. For example, in planning a path from one city to another, the
time constant of the steering column can hardly be important. However, for obstacle avoidance
purposes, the fact that the steering column will not even reach its commanded position before the
obstacle is reached is a central concern. This spectrum can be formalized roughly with the
normalized time constant:

where T l o o k is the temporal planning horizon or the amount of time the system is looking
ahead in its deliberations.

When the normalized time constant is less than, say 0.1, dynamics are not important but when it
approaches or exceeds unity, dynamics are a central issue. Perhaps the most important
distinguishing characteristic of the problem of autonomous mobility is the fact that the temporal
planning horizon is roughly equal to the reaction time so the system operates almost entirely in
the transient regime.

1.7 Low Dynamics Assumption
The assumption that dynamics can be neglected in any particular part of a system will be called
the low dynamics assumption. This assumption is related to the low latency assumption but it is
more general since latency is but one kind of dynamic behavior that may be important to the
overall behavior of a system.

27. Here, not changing does not mean constant because a sinusoidal output of constant amplitude and fre-
quency is considered steady state.
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1.8 Transience in Turning
When a vehicle executes a reverse turn, the actuator response can be divided into a transient
portion and a steady-state portion as shown in the following figure. During the transient portion
the steering mechanism is moving to its commanded position at a constant rate. This portion of
the curve in the groundplane is a clothoid. During the steady-state portion, the curvature is
constant, and the curve is a circular arc.
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Figure 46 - Transience in the Reverse Turn
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1.9 Heading Response
If the mechanism actuates curvature more or less directly28, then the heading response curve is
the direct integral of the steering mechanism position at constant velocity because yaw rate is
given by:

This implies that the heading will grow quadratically, reach a maximum and descend back to zero
exactly as the steering mechanism reaches its goal because the area under the curvature signal is
zero as shown below:

Transient Steering Response

Mnax
o> 0

Q)

max

* o
0
0

So
"max'

Time in Seconds

1 •*
— — Command I ••"
^^^^m Response[•• 4

0 Tact

Time in Seconds

Figure 47 - Transient Steering Response

28. Ackerman steering actuates curvature more or less directly because although the relationship between
steer angle and curvature is an arctangent, it is mostly linear over the domain of interest.
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1.10 Nondimensional Transient Ttirning
Recall that the actuator reaction time is given by:

Real Numbers

For the HMMWV, it takes 3 seconds to turn the front wheels through their 60° of travel.

The time required to turn through an angle A\|/ at constant curvature is:

= A\|/ = A\|/ =

Thus, a transient turning coefficient can be defined as the ratio of these two:

This nondimensional is a particular instance of the normalized time constant. It provides a
measure of the importance of turning dynamics in a sharp turn. When it exceeds, say 0.1, it
becomes important to explicitly consider turning dynamics. Note that the number increases for
smaller constant curvature turns.

Real Numbers

For the HMMWV, this number is 1.27 at 5 m/s for a 90° turn. Hence, it is imperative to
consider turning dynamics.

1.11 Command Following Problem
Another important aspect of the high curvature turn at speed is the raw error involved in assuming
instantaneous response from the steering actuators. The difference between the two models is
illustrated in the previous figure. The length of this vector can be approximated by:

s = T V
error act

Thus, the modelling error associated with an ideal model of steering is equal to the reaction
distance of the steering actuator.

Real Numbers

For the HMMWV, the model error of the ideal arc response is 15 meters at 5 m/s. Hence, the
use of "arc" models of steering are fundamentally wrong at surprisingly moderate speeds.
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To cast this result in terms of the fidelity ratio, consider the minimum fidelity ratio for an
acceptable model error on the order of the wheel radius. Let this be called the turning fidelity
ratio:

Real Numbers

For the HMMWV, the model error of the ideal arc response is 15 meters at 5 m/s, the wheel
radius is 0.475 meters, and the vehicle width is 2.5 meters. This gives a fidelity ratio on the
order of 7.5 whereas the requirement is that it be less than unity. The fidelity ratio indicates the
importance of dynamic modelling.
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Section 2: Dynamics of Steering

An earlier section presented an analysis of the relative importance of computational reaction time
and vehicle maneuverability on the response ratio. In that analysis, actuators were considered to
respond instantaneously and perfectly to an input command - after some time delay had elapsed.
While this is a useful theoretical approximation, and while it is a good model of braking, the same
is not true of turning. Steering dynamics can only be modelled correctly by a differential equation.
This section presents an accurate steering model for an Ackerman steer vehicle.

While this section is written specifically for the Ackerman steer vehicle, many of the conclusions
apply in general because high speeds and rollover hazards limit the curvatures that a vehicle can
safely sustain. There are three principle problems associated with the Ackerman steering
mechanism. The first is steering dynamics, a latency problem, and the second is the
nonintegrability of constraints, a nonhonolomy problem. The third is the fact that the conversion
from steer angle to curvature is nonlinear. A further problem is that attitude rate is coupled to
both speed and steer angle.

2JL The Bicvcle Model

It is useful to approximate the kinematics of the steering mechanism by assuming that the two front
wheels turn slightly differentially so that the instantaneous center of rotation can be determined
purely by kinematic means. This amounts to assuming that the steering mechanism is the same as
that of a bicycle. Let the angular velocity vector directed along the body z axis be called (3. Using
the bicycle model approximation, the path curvature K, radius of curvature p, and steer angle a
are related by the wheelbase L.

1 _ ta _ dp
p L ds

Figure 48 - Bicycle Model
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Where ta denotes the tangent of a. Rotation rate is obtained from the speed V as:

The steer angle a is an indirect measurement of the ratio of (3 to velocity through the measurement
function:

a = afcml —j-J = atari ( K L )
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When the dependence on time of inputs and outputs is represented explicitly, this steering
mechanism is modelled by a coupled nonlinear differential equation thus:

2.2 Fresnel Integrals
The actuation space (A-space) of a typical automobile is the space of curvature and speed since
these are the variables that are directly controlled29. The configuration space (C-space) on the
other hand is comprised of (x, y, heading) or perhaps more degrees of freedom in cartesian 3D.
The mapping from A-space to C-space is the well-known Fresnel Integrals which are also the
equations of deduced reckoning in navigation. For example, the following equations map A-
space to C-space in a flat 2D world:

x (t) = xQ + JV (t) cos (V (t)) dt £lQ) = V (t) cosy (t)
0

Y (t) = y0 + JV (t) sin (V (t)) dt ^ j p = V (t) siny (t)
0

,}v(,)K(«)d. = ^ - V ( « ) « ,
0

The inverse mapping is that of determining curvature K (t) and speed V (t) from the C-space
curve. Notice that C-space is three-dimensional while A-space is two-dimensional. Not only is the
problem of computing this mapping a nonlinear differential equation, but it is underdetermined or
nonholonomic. This is a difficult problem to solve and, from a mathematics standpoint, there is
no guarantee that a solution exists at all. Practical approaches to the C-space to A-space mapping
problem often involve the generation of curves of the form:

where s is arc length30. These curves are linear equations for curvature in the arc length
parameter and are known as the dothoids. There is a growing body of literature on the generation
and execution of clothoid curves in indoor, non-omnidirectional autonomous vehicle applications.
The generation of clothoids can be computationally expensive. Their generation can also be
unreliable if the algorithm attempts to respect practical limits on the curvature or its derivatives.

29. The choice of what is to be considered the controlled variable depends on the level of abstraction. At
some boundary in the system, a speed is asked for and an error signal on speed is formed. Lower level loops
may form errors on other quantities.
30. Mathematically, the clothoid generation process is equivalent to the power series solution of a differen-
tial equation. The idea is to assume a power series solution, substitute it into the original differential equa-
tion and then solve the simpler recurrence relation which results. This is how many higher transcendental
functions (the Bessel function, for example) are defined.
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2.3 Dynamics of the Constant Speed Reverse Turn
The limited rate of change of curvature for an Ackerman steer vehicle is an important modelling
matter at even moderate speeds. A numerical feedforward solution to the dead reckoning
equations was implemented in order to assess the realistic response of an automobile to steering
commands. It was used to generate the following analysis. The maneuver is a reverse turn. The
following figure gives the trajectory executed by the vehicle at various speeds for a 3 second
actuator delay.

For a vehicle speed of 5 m/s, a kinematic steering model would predict that an immediate turn to
the right is required to avoid the obstacle. However, the actual response of the vehicle to this
command would cause a direct head-on collision. Any planner must explicitly account for
steering dynamics - even at low speeds, in order to robustly avoid obstacles.

There are two fundamental reasons for this behavior. First, steering control is control of the
derivative of heading, and any limits in the response of the derivative give rise to errors that are
integrated over time. Second, curvature is an arc length derivative, not a time derivative. Hence
the heading and speed relationships are coupled differential equations. The net result is that the
trajectory followed depends heavily on the speed.
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Figure 49 - Constant Speed Reverse Turn

Feedforward of dynamics is necessary for stable control. If the vehicle decided to turn slightly
right at 5 m/s speed, position feedback would indicate that the vehicle was not turning right. Any
feedback control law which attempted to follow the ideal commanded arc would continue to
increase the turn command while the steering servo tries to turn right. This overcompensation will
eventually lead to the maximum turn command being issued31 although a slight turn was
commanded. Acceptable control is not possible without knowledge of these dynamics.

31. This is a major reason for the poor reliability of kinematic arc-based planners at higher speeds.
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2.4 The Clothoid Generation Problem
The previous graph investigated the variability of the response to a steering command at various
speeds. Consider now the response at a single speed to a number of steering commands issued at a
speed of 5 m/s. Again using the reverse turn at t = 0, the response curves for a number of
curvature commands are as shown in the figure below:

The vehicle cannot turn right at all until it has travelled a considerable distance. Further, a
configuration space planner which placed curve control points in the right half plane would
consistently fail to generate the clothoid necessary, if it attempted to model the steering dynamics,
because the vehicle fundamentally cannot execute such a curve32. If the clothoid generator did
not model such limits, the error would show up as instability and ultimate failure of the lower
levels of control to track the path. The x-y region bounded by the curves is the entire region that
the vehicle can reach.

Constant Speed Partial Reverse Turn (5 m/s)

16

12

CD

"55 8
c
a) 4
"S3

I n

-8

Km

look

/

\ 1 +Kma J

"^

—

- c

—

• — ^

h-
\
\

j

1

-20 -16 -12 -8 -4 0
X coordinate in Meters

Figure 50 - Constant Speed Partial Reverse Turn

The only valid model of this system at even moderate speed is a coupled system of nonlinear
differential equations. From the perspective of trajectory generation, it is advisable not to attempt
the C-space to A-space transform in any form - particularly the generation of clothoids .

32. Thus, it is no accident that kinematic planners get "confused" as soon as a wide turn is executed. The
incorrect low latency assumption in its particular form as a kinematic steering model is the reason for this
behavior. The behavior will not arise if sharp turns are not attempted.
33. Of course, the fundamental issue is that of attenuation. Clothoid generation is feasible at low speed and
for moderate turns at any speed.
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2.5 Configuration Space
While it is difficult to compute the shapes of regions in configuration space in closed form, it is
relatively easy to write a computer program to enumerate all possibilities and fill in boxes in a
discrete grid which represents C-space at reduced resolution. The three dimensional C-space for
an Ackerman steer vehicle for a 4.5 m/s impulse turn was generated by this technique.

The results are plotted below in heading slices of 1/16 of a revolution. Symmetry generates mirror
images along the heading axis, so two slices are plotted on each graph. The maneuver is an
impulse turn from zero curvature to the maximum issued at time t = 0. A dot at a particular point
(x,y) in any graph indicates that the heading of the slice is obtainable at that position. There are 16
slices in total of which 6 are completely empty (i.e the vehicle cannot turn around completely in
20 meters). The total percent occupancy of C-space is the ratio of the total occupied cells to the
total number of cells. This can be computed from the figure to be 3.1%.

So 97% of the C-space of the vehicle is empty if the limited maneuverability of the vehicle is
modelled. The maneuverability is limited by both the nonzero minimum turn radius and the
steering actuator response. The impulse turn is the best case. If the initial curvature was nonzero,
the percentage occupancy is even less.

The occupancy of C-space does not account for higher level dynamics. There are severe
constraints on the ability to "connect the dots" in these graphs, so the total proportion of feasible
C-space paths is far lower.

I Ackerman Steer Configuration Space!
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Section 3: Positioning Fidelity

In order to correctly localize hazards, the entire system geometric model must be sufficiently
accurate. This implies that the vehicle location sensors and the perception sensors have accuracy
requirements. This section investigates the first of these.

3.1 Absolute Attitude Accuracy Requirement
In order to compute static stability, a system fundamentally needs to know the projection of the
body vertical axis onto the gravity vector, and this generates the need for:

• a sensor to measure 3D attitude at time t
• an absolute angular accuracy requirement on that sensor
• a 3D model of vehicle attitude and terrain following which allows the system to predict

the presence of the hazard along candidate trajectories

A rough terrain system must both measure in 3D and think in 3D. An absolute accuracy on
pitch and roll indications is necessary. As a rough rule of thumb, it must be an order of magnitude
less than the minimum angle of rotation which brings the center of gravity outside the horizontal
support polygon of the wheels. This arises again from the Nyquist sampling theorem and a
requirement to distinguish hazard from non hazard as an angular proximity measurement. It can
be called the attitude acuity rule.

3.2 Rigid Terrain Assumption
In order to predict tipover before it occurs, the system requires a model which maps the vehicle
position in the terrain map onto an attitude. This requires some assumptions about the ability of
the terrain to sustain compression and shear loads as well as a model of the vehicle suspension
(which may be a trivial, rigid model). If the terrain is assumed to always provide the support loads
required, without deformation, a rigid terrain assumption is being adopted.

3.3 Rigid Suspension Assumption
The suspension model allows the system to associate a unique vehicle attitude with each position,
and permits the computation of any volumetric intersection between the vehicle body and the
terrain. If it is assumed not to deflect at all, a rigid suspension assumption is being adopted.
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3.4 Image Registration Problem
A well-known problem in outdoor range image-based navigation is a special case of the fidelity
problem known as the image registration problem. A fidelity requirement on the measurement
of environmental geometry is that the relative error in elevation for the same spot on the ground
between two consecutive images not exceed the acuity requirement. Otherwise, artifacts of
systematic sensor error will appear as phantom obstacles in the terrain map. There are many
potential sources for such systematic errors including:

• systematic range sensor errors
• range sensor miscalibration34

• vehicle kinematic miscalibration
• systematic position and attitude sensor errors
• position and attitude sensor miscalibration

3.5 Linear Relative Accuracy Requirement
From the point of view of the impact of the fidelity requirement on linear position estimates, the
relative accuracy required is related to the vehicle vertical error excursion between images as
shown in the following figure:

Thus, it requires only 12% relative position accuracy to avoid an artifact that is within the
maximum acuity limit at 5 m/s.

Hence the image registration problem ought not to exist at all (on this basis) unless there are
gross systematic perception errors, overall miscalibration errors, or some inherent geometric
sensitivity.

3.6 Angular Relative Accuracy Requirement
The relative angular accuracy follows directly from the acuity limit itself. The relative angular
accuracy required of a position estimation system is on the order of the angle subtended by a
pixel. These last two requirements are well within the performance specifications of available
hardware.

34. Cartesian bias is the only form of miscalibration which can be ignored in a relative error model. Even
small angular or range errors generate nonconstant errors in elevation over the sensor field of view.
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Section 4: Perceptual Fidelity

Correct localization of hazards also depends on the accuracy of the range image itself. This section
investigates the effect of imaging geometry on the accuracy of a sensor.

4.1 Incidence Sensitivity Problem
The small incidence angle associated with large lookahead distance creates a severe sensitivity
problem in the localization of obstacles. Consider again the downrange projective differential
imaging kinematics expressions.

Therefore range resolution grows with the square of range for typical imaging geometry. This fact
is related to the minimum acuity requirement. The footprint of a range pixel is elongated in the
downrange direction, and the returned range value will have a large random component when the
range itself is large.

Real Numbers

For the HMMWV, a 30 meter range pixel of 10 mrad width is elongated to 3.3 meters. Range
measurement noise can be expected to be some fraction of this.

4.2 Attitude Sensitivity Problem
Notice that the vertical error excursion of a pixel due to a small error in vehicle pitch indications
is linear in the measured range because:

dz = Rd6

Unless the relative angular attitude accuracy is sufficiently high and the positioner bandwidth is
sufficiently high, phantom obstacles will be generated. Another source of these errors is relative
motion between the vehicle body and the sensor. Sensor shock mounts should be designed to
remove high frequencies, particularly in pitch, from this relative motion.
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Chapter 6: Interactions

The fundamental requirements of timing, speed, resolution, and accuracy are largely independent
in concept but they become related as soon as it is insisted that they be met simultaneously. This
section will investigate the interactions of requirements at a more fundamental level. In doing so,
it will establish the need for:

• a feedforward control approach to trajectory generation and tracking
• an adaptive approach to environmental perception
• a real-time approach to obstacle detection

Section 1: Rationale for a Feedforward Approach

The dynamics constraint is a catchall term to express the fact that system behavior is governed
by a differential equation and the realities of the latencies of the computer system on which it
runs. Any response trajectory which satisfies these set of constraints is said to be dynamically
feasible. This section discusses these issues and their impact on the problem of intelligent
mobility.

For some actuators, such as steering, response cannot be modelled as a kinematic function of the
input command. These systems require differential equation models. The solution of such
equations for the purpose of predicting response is called feedforward. Feedforward is
investigated in this section.

1.1 Command Following Problem
It is clear from Figure 45 that filters generally do not follow the commands that are given to
them.This ultimately is a matter of physics and Newton's laws of motion because any mass filters
input force through one time integral to get velocity and a second time integral to get position35.
Of course, the study of how to improve command following in various ways through the
introduction of extra energy is the province of feedback control.

This problem of plants not doing what they are told will be generally referred to as the command
following problem. In the case where the poor command following is due to latency, the problem
has been called the latency problem. In plain terms, a dynamic system generally cannot do what
it is told unless the agent generating the command understands the limitations of the plant being
controlled.

1.2 Modelling Problem
Given that the response of a dynamic system is a matter of unalterable physics, there remains the
question of whether or not a sufficiently accurate model can be used to predict response. The
problem of the generation of such a model will be called the modelling problem and getting it
calibrated to be sufficiently accurate has already been called the fidelity problem.

35. Though Newton certainly did not put it this way, all the world's a filter.
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It is very important to distinguish the command following and modelling problems because useful
controllers can be constructed which still inevitably exhibit poor command following provided
they are sufficiently well modelled.

1.3 Dynamics Feedforward
The control of vehicle speed and curvature for traditional steering mechanisms can cause massive
errors in feedback controllers if they expect good command following because it has already been
shown that these actuators operate solely in the transient regime. In the face of such dynamics,
two general conclusions can be made:

• The system fundamentally cannot follow commands given to it above some frequency.
• Error signals formed directly on the controlled variable will cause control loop instabil-

ity.

The traditional technique used to control highly latent systems is feedforward. The philosophy of
feedforward is to:

• Accept that the system cannot be configured as a high-fidelity command follower.
• Form an error signal over system response and not commands by predicting the response

to commands and comparing this to the feedback.

In general, a feedforward loop would look like the following block diagram:

rres

System
Model

predicted

err

'resf

System

Figure 52 - Feedforward

where the system box may include lower levels of control as well as the real system.

1.4 Impact of Feedforward Dynamics on Computational Complexity
There is a positive side to the problem of controlling a highly latent system. While large delays
cause problems that require feedforward, they are somewhat beneficial with respect to reducing
the bandwidth requirements of control loops36. In the context of the numerical solution of a
differential equation, or in the context of a digital feedback control law, there is little to be gained
by employing a high bandwidth servo to control a highly latent system, or at least, there are
rapidly diminishing returns available as bandwidth increases.

The system will respond no faster than its time constant (related to the actuator power limit)
predetermines. In control systems terms, the plant will not pass frequencies above its own natural
frequency so high frequencies can be eliminated at the input side of the model. Increasingly
higher loop bandwidth reaches an eventual point of diminishing returns in a throughput limited
system where the cycles can be put to better use elsewhere37.

36. Nyquist's sampling theorem of course says that sampling frequencies above twice the highest frequency
in the sampled signal provide no new information.
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In the context of obstacle avoidance planning, this issue appears in the form of adaptive regard
because the limited ability of the vehicle to respond is exploited to reduce the complexity of
motion planning search.

In the context of goal-seeking, this issue appears in the form of a relative soft goal-seeking loop.
The fidelity of the feedforward transfer function is far more important to command following than
the loop bandwidth because the plant will not pass high frequency command updates anyway.

1.5 Impact of Dynamics on Planner/Controller Hierarchy
The impact of these issues on the traditional control hierarchy is that the hierarchical view of
planners commanding paths from controllers through some high-level interface will not work
above some critical speed. The system will be unstable, and command-following fidelity will fail
to meet the fidelity requirements of the problem as was shown earlier because the turning fidelity
ratio significantly exceeds unity.

In high speed work, the emphasis must shift from the traditional AI hierarchy view to the tightly-
coupled real-time control view. This point will be the central argument behind the design of the
planner of the navigator where it will appear in the form of the tactical control layer to mediate
between the other two layers.

1.6 A Real Time Control View of High-Speed Autonomy
In general, the path planning problem of autonomous navigation can be cast into one of searching
some space of alternatives for those paths which meet two constraints:

• they must be safe from dangerous hazards (satisficing)
• they must be reachable by the vehicle (feasible)

On serial computers, these two constraints must inevitably be applied in the order stated or the
reverse order. However, while the local result is the same, the order of application of the
constraints can have a large impact on both the efficiency of the computation and the overall
robustness of the system. The hierarchical view of the robot navigation problem is to check for
collision first and give responsibility for execution of the path to a control algorithm placed lower
in the hierarchy. The control systems view of the problem is to generate feasible paths first and
then check for collisions. Both views are equally valid and have their domains of applicability.
However, the hierarchical view is not optimal in high-speed autonomy.

It is not efficient to plan in C-space because too many solutions will be generated that do not
satisfy the actuator dynamics constraint. C-space is almost completely degenerate in the heading
dimension38.

37. Consider the solution to the first-order filter equation presented earlier, for time steps below about 10%
of the time constant, the solutions are indistinguishable from a relative error standpoint.
38. It is not surprising that this has occurred. Most research on the AI approach to path planning has been
geometric in character - the implicit assumption being that dynamics could be safely ignored. Indeed they
can be at slow speed.
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The search space for planning purposes is degenerate because heading is practically not an option
at all and vehicle position is confined to a narrow cone. Thus the configuration space for an
Ackerman steer vehicle is degenerate above about 5 meters/sec speeds when typical steering
column response is considered. There is effectively no state space to be searched and search based
planners would accomplish nothing useful.

Explicit enumeration of the few alternatives that exist is the efficient method of planning paths.
The planning problem degenerates into a simple decision process, and quite often, even though
some regions in front of the vehicle may be clear of obstacles, the vehicle cannot turn fast enough
to reach them and the only alternative is to stop.

An efficient method of planning and evaluating paths would be based on, not candidate paths, but
candidate command signals expressed in actuation space (in terms of curvature and speed as a
function of time). Such a system would use a high-fidelity feedforward simulator to solve the
differential equations of motion in order to determine the exact response to these candidate
commands. This strategy has the following advantages:

• The paths generated meet the mobility constraints of the vehicle by construction, so the
difficult and often impossible problem of conversion from C-space to A-space is com-
pletely avoided. Instead, the reverse process of dead reckoning is used in the simulator.
This is a kind of feedforward.

• The paths coarsely span the entire region of space that the vehicle can reach, so no real
alternatives are missed within the fidelity requirement.
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Section 2: Rationale for Adaptive Perception

An autonomous vehicle must satisfy all component requirements of guaranteed safety
simultaneously and these requirements are all interrelated. For example, sensor range depends on
speed through the response requirement and resolution depends on range through the acuity
requirement and throughput depends on resolution, so throughput depends on speed. This section
will quantify this relationship between throughput and speed.

2.1 Throughput Problem
The throughput required to process an image depends on the number of pixels in the image. The
number of pixels depends on the field of view and resolution. Resolution depends on the acuity
requirement which implies it depends on range. The response requirement implies that range
depends on speed so that resolution depends on speed. The throughput requirement also implies
that field of view depends on speed. So ultimately, throughput can be expressed solely in terms of
speed.

With an analysis of response and acuity it is possible to analyze the computational complexity of
perception. In intuitive terms, guaranteed response implies that throughput is proportional to a
high power of velocity because:

• Maximum range increases quadratically with speed (because braking distance does).
• Pixel size decreases quadratically with maximum range (in order to resolve obstacles).
• Throughput increases quadratically with pixel size (assuming fixed field of view).

This relationship is indicated in the following figure:

speed
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sensor
range

ang
res
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fcpu t

Figure 53 - Throughput Problem

When throughput is limited, this relationship gives rise to a trade-off between speed and
resolution. Naive analysis suggests that the problem of high-speed navigation is nearly
impossible, because the necessary throughput is impractical. This will be called the throughput
problem.
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2.2 The Illusion
From an image processing perspective, the throughput problem appears to be impossible. Consider
that contemporary rangefinders are 10 mrad resolution and many researchers believe that 1 mrad
or so is needed to resolve obstacles. A ten-fold increase in resolution is a hundred-fold increase in
pixels and a hundredfold increase in required throughput. Today, it is not possible to process 10
mrad images fast enough on a 10 Mflop processor. Therefore, if resolution were increased tenfold,
it would be impossible to process 1 mrad images on a 1 Gflop processor. Brute force is not the
elegant way to solve this problem.

On the other hand, the raw requirement is the throughput requirement, and this is trivial to meet.
Consider that a 5 m/s vehicle covers about 6 map cells between images at 2 Hz, so there is band in
the image about six pixels wide which would supply exactly the needed steady state throughput.

This section will show that the throughput problem is an illusion which arises from an image
processing view of the problem and that simple adaptive techniques can solve it completely at
contemporary sensor resolutions.

2.3 Adaptive Perception
It is possible to solve the throughput problem while simultaneously guaranteeing safety as
efficiently as is theoretically possible by employing three principle mechanisms:

• Adaptive Lookahead is a mechanism for guaranteeing that the vehicle can respond to
any hazards that it may encounter at any speed.

• Adaptive Sweep is a mechanism for guaranteeing barely adequate throughput and the
fastest possible reaction time. In this way, speed is maximized.

• Adaptive Scan is a mechanism for ensuring barely adequate resolution that is as con-
stant as possible over the field of view. In this way, speed is maximized without compro-
mising robustness of the system.

Together, these mechanisms can increase the efficiency (measured in terms of range pixel
throughput) of a system by four orders of magnitude at 20 mph while simultaneously making it
considerably more robust.

An Approach to the High-Speed Cross-Country Autonomous Navigation Problem page 124.



2A Assumptions of the Analysis
The following subsections will analyze the throughput problem in terms of the design of a fixed
vehicle which is optimized for some maximum speed. The pixel size is permitted to change with
speed, so the graphs represent the variation of system designs versus speed and not the throughput
requirement for a single design as it drives faster.

The estimates that are produced are underestimates for many reasons:

• They are based on an oversampling factor of 1. A practical factor is at least 3. This
implies that the results must be multiplied by the square of 6, or 36.

• Minimum acuity will be used because this is actually the most stringent requirement
beyond some range.

• The maximum range that is chosen is based on the stopping distance. Actually it is the
minimum range which should be set to the stopping distance, but the approximation is
useful.

• Braking is chosen as the obstacle avoidance maneuver. This is viable for a system which
stops when a hazard is detected. However, when a vehicle turns to avoid obstacles, sen-
sor lookahead must exceed the stopping distance by a large factor.

• The processor load is assumed to be 50 flops per pixel when experience suggests that up
to ten times this is required in a practical system.

• The graphs estimate perception geometric transform processing only. Planning, position
estimation, and control are not included at all.

• Horizontal field of view is fixed at 80°, 120°, 170°, and 215° for each increasing reac-
tion time respectively, based on earlier analysis.

• Frame rate is set to 2 Hz.

2.5 Common Throughput Expression
Recall from previous analysis that the throughput required from the computer for perception
processing can be written as:

This can be written in terms of field of view and frame rate as follows:

f . l H F Q V X V F Q V x f i m a g e s
c p u T]s (IFOV)2

When it is necessary to employ a nonsquare pixel size, the horizontal and vertical pixel
dimensions can be differentiated as follows:

, HFOVxVFOVxf..p _ _i images
""" " TiQ I F O V U I F O V

o x l V
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2.6 Basic Mechanism
The basic mechanism for generating a complexity estimate is as follows:

• Choose an angular resolution that is consistent with the need to resolve obstacles at the
maximum range (guaranteed detection).

• Choose a maximum range consistent with the need to stop if necessary (guaranteed
response).

• Choose a fixed field of view and frame rate (because sensors are designed that way).
• Throughput is then simply the number of pixels generated per second times the cost of

processing one pixel.

Guaranteed detection is enforced by substituting for the IFOV from the minimum acuity rule
developed earlier:

Guaranteed response is enforced by substituting for the maximum range based on the
expression derived in an earlier section for the stopping distance in terms of the braking
coefficient:

R =

Complexity is estimated by noting that the braking coefficient does not approach 1 for the speed
regimes of current research, so it can be neglected. Under this kinematic braking regime
assumption, the stopping distance is the product of speed and reaction time. This is a
characteristic vehicle distance - the distance required to stop. All complexity results will be
polynomial in this distance.

The resulting complexity estimate represents the minimum computational throughput necessary
in order to meet guaranteed response, throughput, and detection simultaneously. It will be called
the throughput performance limit. Any system which cannot supply this throughput must
either:

• reduce resolution and violate guaranteed detection
• reduce field of view and violate guaranteed throughput
• reduce lookahead and violate guaranteed response
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2.7 Complexity of Constant Flux Range Image Processing
It turns out that, because a real sensor usually has a fixed field of view and fixed frame rate, it is
possible to compute, not the underlying requirement, but the complexity of processing all of the
data that the sensor generates if it is designed to properly resolve obstacles. This is the historical
view of the problem - that of processing images at some arbitrary rate in order to resolve
obstacles. The whole image is evaluated and geometry and perhaps an obstacle map is later
passed to a planner which determines an appropriate response.

The basic throughput expression under guaranteed detection is.:

Substituting the stopping distance gives:

In the kinematic braking regime, the following result for the computational complexity is obtained:

The following graph indicates the variation of throughput with speed when square pixel size is
chosen to satisfy the maximum acuity resolution requirement at the maximum range. This paints a
bleak picture. However, later sections will show that this graph arises from a design decision and
is not intrinsic to the problem of autonomous mobility.
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2.8 Complexity of Adaptive Sweep Range Image Processing
By analogy to the last section, it is possible to compute the processing requirements associated
with guaranteed response for a constant flux sensor if only the requirement for guaranteed
throughput is met. The basic idea is similar to the previous section except that the sensor vertical
field of view is chosen so that it barely meets the guaranteed throughput requirement. This does
not compromise guaranteed response and it leads to significant improvement.

The basic throughput expression under guaranteed detection is:

The sensor flux is, again, the solid angle measured per unit time. Thus:

where the product of the vertical field of view and the frame rate is a measure of the angular
velocity of the beam, and is known as the sweep rate:

= vFovxf images

An expression which relates the vertical field of view to its projection on the groundplane was
given earlier as:

VFOV - max min
h

Rmin

h
Rmax

h f
Rmaxl

'R m a x ^1
1

, Rmin )

(AR)

max min

Recall that the throughput ratio is given by:

VT
K cyc AR

Using this, eliminate all ranges but the maximum from the expression for VFOV, giving:

VFOV - f - ^ - ] Y T c y c / (RmaxPcyc)
eye ^ max^cyc''

Guaranteed throughput is implemented by setting p = 1. Recall the definition of the
lookahead ratio:
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This gives:

which is an angle considerably smaller than that used in the previous graph. The complexity
expression is now:

using the fact that:

there results:

pixels 1 { 4R4 V h ^ V T c y c l

^S ^sl(Lh)2ARmaxARmaxJ 'images'

Assuming every image is processed:

T = 1/f.eye images

so this becomes:

Substituting the stopping distance and noting that R = RmaY gives:

f _ 1 I react ^ J J
cpu ri T 2u'is L L n

In the kinematic braking regime, the following result for the computational complexity is obtained:

which is less than the previous result by the factor T r e a c tV or roughly two orders of magnitude.

This result leads to the conclusion that, in general, if the vertical field of view were adjusted for
speed, computer requirements would be reduced significantly. This idea will be called adaptive
sweep because it arises fundamentally from the direct relationship between throughput and the
sensor sweep rate. An alternate name is computational stabilization which borrows terminology
from strapdown inertial navigation.
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The following graph indicates the variation of throughput with speed when the vertical field of
view is computed from the above expressions and square pixel size is chosen to satisfy the
resolution requirement at the maximum range.
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Figure 55 - Throughput for Adaptive Sweep, Constant Scan

This graph demonstrates that the problems of the previous graph were an illusion. In fact, if the
vertical field of view is chosen such that it satisfies the guaranteed throughput requirement, the
throughput requirements are 300 times lower than constant flux at 10 meters/second speed.

Thus, while the logic of decreasing pixel size for higher speeds is inescapable, equivalent logic
leads to a reduced vertical field of view requirement. Adaptive sweep is the key to keeping the
navigation problem tractable because it is worth two orders of magnitude improvement in
efficiency.

The key to this complexity difference is the redundant measurement of the same geometry that
happens when images overlap on the groundplane. The average number of images that fall on a
given patch of terrain is called the imaging density cl.
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2.9 Complexity of Adaptive Sweep/Scan Range Image Processing
The complexity analysis of this section gives the best complexity that can be practically achieved
using a conventional fixed field of view sensor where the pixel shape is optimized in order to
match the groundplane resolution requirement.

Although adaptive sweep is a significant improvement in complexity, it addresses only the
optimum size of the image. It does not address the fact that the density of pixels on the
groundplane and the aspect ratio of a pixel are grossly suboptimal. If the sensor pixel size and
shape were optimal, then the throughput would be exactly equal to the theoretical minimum
possible throughput and another two orders of magnitude improvement would be possible. While
there are limits to what can be done, the idea of dynamically adjusting pixel size and shape, called
adaptive scan, is an important one.

It is difficult to construct a system with perfect density on the ground. However, it is easy to
subsample an image in azimuth to remove the effects of poor aspect ratio. Further, guaranteed
response already requires that high depression scanlines (where the density is too high) be avoided.
These two approaches can eliminate the effects of poor geometric efficiency. Recall that the cpu
load required to process all sensory data is given by:

In practical adaptive scan, the pixel aspect ratio is adjusted to be a constant over the field of view
and equal to the perception ratio, and this gives the opportunity to cancel one of the ranges. The
vertical and horizontal instantaneous field of view now have different expressions at minimum
acuity:

thus, the throughput required to process all sensory data is given by:

As before, the vertical field of view necessary for guaranteed throughput is:

VFOV = (h/R aY)f Y^ ,1 = (h/R_)

The complexity expression is now:
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which is, assuming every image is processed:

Substituting the stopping distance gives:

In the kinematic braking regime, the following result for the computational complexity is obtained:

which is less than the previous result by the factor T r eac tV or roughly one order of magnitude. The
following graph indicates the variation of throughput with speed when vertical field of view is
computed from the above expressions, nonsquare pixel size is chosen to satisfy the resolution
requirement at the maximum range, and system cycle time is set to the frame rate.
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Figure 56 - Throughput for Adaptive Sweep, Adaptive Scan

It is clear from this graph that a problem which at first appeared impossible, requiring
supercomputers, is in fact theoretically trivial. In fact, by using simple adaptive techniques, the
throughput requirements are 20 times lower at 10 meters/second speed than adaptive sweep and
5,700 times lower than constant flux at 20 mph.
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2.10 Complexity of Adaptive Sweep, Uniform Scan Image Processing
The following analysis considers the fundamental acuity and throughput requirements of
perception in terms of a terrain map but it does not necessarily imply that a map is explicitly
formed. As a minimum requirement, any sensor must generate map cells at a rate that is consistent
with the rate at which the vehicle consumes them through motion. For now, consider that the
motion of the vehicle consumes a swath of map cells directly in front of it as shown below:

W

consumed
area . replacement

area
Figure 57 - Area Consumption

In the simplest case, this consumed area must be replaced by adding new information to the map
shown to the right. In general, the new information need not be at the end of the map, but could be
anywhere where an unknown cell exists. This is a pure throughput argument. In fact, it has already
been argued that guaranteed response places limits on how close a measured pixel can be before it
becomes useless.

Also, although the information immediately to the left and right of the vehicle is not useful, the
system did not know this at the time it was measured. Further, guaranteed response requires that
the vehicle measure geometry a long way off, so, for now, there appears to be no solution to this
problem of measurement of useless lateral geometry .

The area consumed per second, expressed in map pixels, is the required absolute minimum
throughput of a perception system. This quantity is the minimum rate at which new geometric
information must be generated, regardless of the scanning pattern of any sensor, or the vehicle must
either

• drive over unknown terrain and violate guaranteed throughput
• accept inadequate resolution information and violate guaranteed detection

Let the width of the map be W, the velocity of the vehicle be V, and the map resolution (unit length
per cell) be 8. This minimum rate is given by:

In previous sections it was shown that, under guaranteed response, the maximum range can be
determined from the stopping distance. Let L be the vehicle wheelbase. Setting the width of the
map to twice the maximum range gives:

39. Something, at least, can be done, if the sensor field of view can be pointed.
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Putting all of these results together, gives the following expression for the processing load:

f
cpu

1 . f
xcells

i 2 T r e a c t v 2

L2

[ 1 -

In the kinematic braking regime, the following result for the computational complexity is obtained:

which is, in complexity terms, equal to the adaptive sweep, adaptive scan expression. This is the
fundamental complexity of the problem40. There is a multiplicative constant difference of
2 x HFO V between this minimum requirement and the adaptive sweep, adaptive scan expression
because the whole image is processed at the same nonsquare pixel resolution in adaptive scan.

This relationship is plotted below for minimum acuity map resolution of 3.3 meters versus vehicle
velocity for various values of system reaction time. Again, for consistency reasons, 50 flops per
cell are assumed. The analysis does not assume a uniform scan on the ground. It only assumes that
the average density of the scanning pattern is one. This average is accumulated up to the time the
vehicle drives past a particular point in the map.
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40. This is also why autonomy based on line scanners is feasible and so very efficient. Effectively, adaptive
sweep and adaptive regard convert an imaging sensor into an ideal computationally-stabilized line scanner.
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2.11 The Fundamental Speed/Resolution Trade-off
Recall that the complexity estimates are all consistently based on a kinematic braking regime
assumption. The true power of velocity is actually squared as speeds increase. Identical resolution
assumptions have led to the following throughput estimates for different image processing
algorithms:

Table 2: Throughput Estimates

Algorithm

constant flux

adaptive sweep

adaptive sweep, scan

ideal

Estimate at Minimum
Acuity, 4 second Reaction

Time, and 10 m/s speed

250 Mflops

0.7 Mflops

0.035 Mflops

0.0045 Mflops

Complexity
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The actual data for all 4 second reaction time curves is plotted below on a logarithmic vertical
scale.
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Figure 59 - Throughput for All Algorithms
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The logic of decreasing pixel size for higher speeds is inescapable, but equivalent logic leads to a
reduced vertical field of view requirement, so if the vertical field of view is not reduced, extreme
throughput waste is being tolerated. Further, because pixel aspect ratio is extremely elongated at
high ranges, the density of measurements in the crossrange direction is grossly suboptimal unless
it is managed.

Notice that the complexity in either of the above cases contains a constant times a power of the
product TrpantV. That is:

This will be called the fundamental trade-off because it indicates that the trade-off of finite
computing resources is one of reliability for speed. This is a basic trade-off of speed and
resolution which always arises from a system throughput limit. Computing resources establish a
limit on vehicle performance which can be expressed as either high speed and low reliability or
vice versa.

There are a few ways to read the result. If throughput is fixed, then speed is inversely proportional
to reaction time. If speed is fixed, throughput required is the nth power of reaction time. If
reaction time is fixed, throughput is the (n+m)th power of speed.
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Section 3: Rationale for A Real-Time Approach

The previous sections have shown that the throughput required of a system is proportional to high
powers of both speed and reaction time by substituting the dependence of maximum range on
speed, and the dependence of pixel size on range into the throughput expression. This was called
the throughput problem. The resulting throughput depended on both reaction time and speed.

3.1 Computational Spiral Effect
There is another dependence which has not been resolved. Reaction time itself depends on
throughput. It increases as throughput increases for a fixed computer system. The intuitive logic
behind this is:

• Driving faster, or reacting slower, requires looking farther ahead.
• Looking farther ahead requires increased sensor angular resolution in order to resolve

hazards at the lookahead distance.
• Increased resolution generates higher processing loads.
• Higher processing loads cause longer reaction times.
• Longer reaction times require looking farther ahead.

Therefore increased reaction time causes increased reaction time because computer cycle time is a
component of reaction time. That is, as speeds increase, the computer has to do even more work
per cycle than what would be expected based on the previous analysis. Effectively, reaction time
itself is a function of throughput and therefore it is a function of velocity . This will be called
the computational spiral effect.

The spiral effect arises fundamentally from the policy of guaranteed safety because it closes a
relational loop. It is indicated in the following figure:
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Figure 60 - Computational Spiral Effect

41. Note however, for fixed sensor angular resolution, throughput decreases as speeds increase because the
region of interest subtends a smaller angle in the image. If resolution is allowed to increase with speed, how-
ever, pixels decrease in size at the same rate as the angular width of the region of interest. As a theoretical
analysis, the latter case is considered here.
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3.2 Impact of the Spiral Effect
This spiral effect gives rise to a trade-off between throughput and reaction time. Conceptually,
throughput and reaction time are completely independent. However, in practice, any control
system will cycle at some finite rate and this causes the two to be related. Consider the following
simplification of the throughput expression:

for some constant K. . Thus, the change in required minimum throughput due to a change in
reaction time is given by:

A simple model of the dependence of reaction time on throughput is as follows:

where the fixed component is due to hardware and the variable component is due to software. It
has been assumed here that software cycle time will increase proportionally to the amount of data
processed. Thus, the change in reaction time due to a change in throughput is:

If this is substituted back in to the differential throughput expression, a difference equation
results:

The reactive ratio was defined earlier as the ratio of the software component of reaction time to
the total reaction time, thus:

In order to understand this expression, it is illustrative to assume p r e a c t ~ 1 • This amounts to an
assumption that most of the reaction time is due to software. Under tins assumption, it has been
shown that if a system processes slightly more data than absolutely necessary, the time it takes to
do this actually increases the minimum throughput required by N times the amount added. Now in
practical cases, the exponent, N, of reaction time in the throughput expression is greater than 1.

Thus, when a system can barely supply the required throughput, it is a losing battle to try to
improve system reliability with more sophisticated processing.
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The analysis suggests that optimal real-time performance is achieved by reducing the field of
view and increasing the frame rate in order to improve reaction time, but to ensure that guaranteed
throughput is still maintained. In theoretical terms, the trade-off is managed by reducing
throughput to a bare minimum and reducing reaction time as far as possible. This is the real
time approach*2 to the problem.

There are at least two other reasons to reduce throughput to a minimum. The first is that it permits
the highest possible vehicle speed. This is clear from the throughput ratio.

The second is that, because range data uncertainty increases quadratically with range, it is optimal
to reduce the lookahead as far as possible without violating guaranteed response. In this case,
the quality of the range data is as high as possible.

42. Guaranteed response implies that a real-time approach to the problem of high-speed mobile autonomy is
needed simply because there exists stringent response requirements which must be met. Here, a real-time
approach means simply that response is a consideration - it does not necessarily imply the need for a real-time
operating system.
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Chapter 7: Summary and Conclusions

This section summarizes all of the most important content of Part II: Analysis.

Section 1: Elements

The basic requirement of intelligent mobility is to maintain vehicle safety. This requirement can in
turn be expressed in terms of timing, speed, resolution, and accuracy requirements on sensors,
effectors, and computer models and algorithms.

Chapter 1 has expressed these four elements of the problem in nondimensional terms and identified
four nondimensional variables which relate vehicle parameters such as speed, response time,
wheelbase, and wheel radius, to sensor parameters such as lookahead and vertical field of view, and
to software system parameters such as processing cycle time, and environmental model spatial
resolution. The essence of the safety requirement is that the four requirements mentioned above
must be met at all times and this gives rise to nondimensional relationships between the above
variables which, it often turns out, must be managed actively as the system moves.

1.1 Summary of Elementary Nondimensionals
The following table summarizes these elementary nondimensionals:

Table 3: Elementary Nondimensionals
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1,2 Derivative Issues
Using these nondimensionals as a guideline, one can first of all establish natural thresholds on their
values which correspond to safety thresholds and then characterize all of the major failure modes
of autonomous navigators by progressively assigning blame to each element of each expression.

The response problem is that of responding fast enough. If a response failure occurs at some target
speed, it is either because the lookahead was too small - a myopia problem, or the response time
was too large - a latency problem.
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The throughput problem is that of sensing fast enough. If a throughput failure occurs at some
target speed, it is either because the sensor or computer was not fast enough, the sensor was not
pointed appropriately - a stabilization problem, or the field of view was not large enough - a
tunnel vision problem.

The acuity problem is that of representing the vehicle and its environment at sufficient resolution
to allow the system to resolve important features in space and events in time. There is some
resolution that is barely able to resolve the largest important feature - minimum acuity and some
resolution that is barely able to resolve the smallest important feature - maximum acuity. System
acuity failures can be related to inadequate spatial resolution - called the sampling problem and
inadequate temporal resolution - called the motion distortion problem.

The fidelity problem is that of representing the vehicle and its environment sufficiently accurately
to enable correct decisions. Models and associated measurements may be overly sensitive - a
sensitivity problem, not repeatable as in the image registration problem, or not observable - an
observability problem. An attendant issue of model fidelity is that inaccurate models can cause
control instability - a stability problem.

1,3 Derivative Adaptive Rules
Using these nondimensionals as a guideline, it is possible to elaborate mechanisms that adapt
system parameters that can be changed to those that cannot be changed in order to ensure safety.
For example, when a response failure is imminent, one can reduce speed, increase lookahead, or
reduce reaction time independently or in any combination in order to improve matters.

The top level system requirement was expressed as safety. This was converted into response,
throughput, acuity and fidelity in this section. The remaining chapters of this part of the thesis
elaborates these four requirements into the following fourteen aspects of performance before
presenting the design of the navigator:

• vehicle configuration
• reaction time
• braking and turning maneuverability
• sensory lookahead
• depth of field
• field of view
• sweep rate
• perceptual bandwidth
• angular resolution
• positioning bandwidth
• sensor geometric efficiency
• dynamic modelling fidelity
• positioning fidelity
• perceptual fidelity
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Section 2: Configuration

Many aspects of performance are intrinsically related to the dimensions of the vehicle - sensor
system. For this reason, a set of nondimensionals are developed in order to reduce the
dimensionality of the expression of vehicle shape.

2.1 Summary of Configuration Nondimensionals
The following table summarizes the vehicle configuration nondimensionals:

Table 4: Configuration Nondimensionals
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of these variables, the perception ratio and the undercarriage tangent will be most important
later.

An Approach to the High-Speed Cross-Country Autonomous Navigation Problem page 142.



Section 3: Response

The elements of the response ratio are reaction time, lookahead and speed. Taking speed as fixed,
this section investigated the other two elements of the requirement.

The reaction time of an autonomous system includes many components including those of
electronic, software, and mechanical systems and the total system response time is the sum of all
of these. The total system reaction time is a big number and for moderate vehicle speeds, the
vehicle travels a fair distance before the commands it generates are enacted in hardware. Rather
than consider the actual numbers in detail, a nondimensional approach to the analysis has been
taken.

3.1 Summary of the Response Nondimensionals
All of the nondimensionals given in this section are related to the response of the vehicle. They are
summarized below:

Table 5: Response Nondimensionals
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3.2 Maneuverability and Response Time
It is computational reaction time and mechanical maneuverability together which determine the
ability of the system to respond. In order to render the problem in a form suitable for analysis, a
few simplifying assumptions are made. First, because throttle-generated speed cannot normally be
changed much over the planning horizon, the obstacle avoidance maneuvers considered
concentrate on the other two available actuators - on braking and turning.

Second, four classical maneuvers are distinguished which employ combinations of these actuators.
These are the panic stop, the turning stop, the impulse turn, and the reverse turn.

3.3 Braking
In the case of braking, the braking coefficient represents how much of the distance in front of the
vehicle is consumed in braking. It turns out that most of the lookahead distance is consumed in
simply deciding to brake, so that stopping distance is mostly linear in initial speed.

This is good news in the sense that software is empowered to make a difference and bad news in
the sense that it now has to do the job. This point is expressed more concisely with the reactive
ratio. As a measure of software to total reaction time, it represents the relevance of software update
rate to vehicle safety.

A major conclusion of this section is that because the reactive ratio approaches unity in the mobility
application, it classifies the problem as one for which software update is indeed very important and
therefore as a real-time43 problem.

3.4 Turning
Turning requires much more space than braking in the sense that it takes more space to change
direction than it does to stop. This is unfortunate because continuously moving navigators must be
more sophisticated in order to stay in motion. The major conclusion of this section is that high
amplitude turns such as the reverse turn cannot be modelled by assuming instantaneous response
of the steering actuator as has been done classically at low speed. Indeed, this assumption is wrong
at even moderate speeds and its invalidity gives rise instability of both obstacle avoidance and goal
seeking behaviors.

3.5 Lookahead
An analysis of lookahead starts with the basic requirement of looking where you are going but an
even cursory look at the matter indicates a few important subtleties. Given that response times are
large, it seems more relevant to look, not where you are going, but where you will be when the
commands you are now considering will reach the hardware. This observation and a few related
ones are grouped in this section into a concept called adaptive regard.

In more plain terms, the issue under consideration is that the product of speed and reaction time,
the reaction distance, is a large number, and this number represents the distance that the vehicle
is already committed to travelling in any planning cycle. If the vehicle is already committed to this
motion, then there is nothing useful that a planner can do about it and hence it is wasteful to think
about the inevitable when in a survival situation.

43. By definition, a real-time problem is one for which response time is important. This classification has
nothing to do with whether a real-time operating system is used.
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The importance of adaptive regard is manyfold. First, it explicitly computes where the vehicle will
go when a command is issued - which later sections will show is not at all a trivial matter. Second,
it generates a characterization of where the vehicle is already committed to going - the dead zone,
where it cannot go - the free zone, and where it really has an option of going - the detection zone
Third, it provides the region of interest in the environmental model for planning purposes which
can be used by the perception system to compute a corresponding region of interest in the image.
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Section 4: Throughput

The elements of the throughput ratio in addition to speed are the environmental sensory
throughput expressed in terms of field of view and image processing frame rate44. Field of view is
investigated here in terms of a depth of field - a minimum and maximum range - and then horizontal
and vertical field of view.

4.1 Summary of Throughput Nondimensionals
The following table summarizes the throughput nondimensionals:

Table 6: Throughput Nondimensionals
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4.2 Depth of Field
From adaptive regard we know that range data inside the stopping distance is almost useless and
the measurement of range data outside the distance required to turn can be postponed until it is
really needed. Using this specification of the depth of field of a sensor leads to a system which first
tries to turn to avoid obstacles but which stops if turning is unsuccessful, so it leads to two levels
of defense against hazards.

When maximum range is quantified at high speed, it becomes clear that contemporary sensors have
a myopia problem because there are real physical limits on how much response time can be
reduced.

43 Horizontal Field of View
The horizontal field of view is quantified in terms of vehicle response and speed and the conclusion
that results is that most contemporary sensors have a severe tunnel vision problem. Indeed, a
system engaged in a sharp turn is often obliged to drive over unknown terrain and until the
horizontal field of view is increased significantly, the only available alternative is to artificially
limit the turning maneuverability of the vehicle.

4A Vertical Field of View
Requirements on the vertical field of view can be generated by several means. If a kinematic
argument is used and the sensor is not stabilized, then the requirement is for a very wide field of
view on rough terrain. Unfortunately, there exists a strong interrelation between vertical field of
view, sensor throughput and the stabilization problem. That is, one can easily solve either the

44. This is the rate they are processed, not the rate generated in hardware. Few if any systems can keep up
with a 30 Hz video camera.
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throughput problem or the stabilization problem but apparently not both. In plain terms, one can
either look everywhere - and process too much, or process as little as possible - and risk missing
something.

The difficulty of satisfaction of the kinematic requirements on vertical field of view lead to an
expression of the dynamic requirements in terms of a quantity called the sweep rate. This quantity
removes the dependence on field of view and frame rate by basically working with their product.

Under the assumption that mechanical or software stabilization can be achieved, the sweep rate
specification of throughput becomes the minimum throughput requirement. A mechanism called
adaptive sweep is proposed which achieves this required stabilization and the attendant
improvement in throughput. This notion is one of the most important elements of the navigator
design.
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Section 5: Acuity

The acuity ratios relate the configuration of the vehicle to the resolution required of the software
world model. While these ratios contain no interesting subcomponents, it is interesting to analyze
how world model resolution maps onto sensor resolution and what parameters affect this
transformation. It is vehicle resolution and sensor configuration together which determine the
ability of the system to resolve obstacles.

5.1 Summary of the Acuity Nondimensionals
The identified pi products for acuity are summarized below:

Table 7: Acuity Nondimensionals
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5,2 Range Image Acuity
The acuity analysis generates several key nondimensionals. First, the perception ratio identifies a
basic geometric fact of life for high speed autonomous navigators - stopping distance exceeds the
height of the sensor. The assumption that this is so is called the small incidence angle assumption
and it will be important later. The assumption has both advantages and disadvantages.

On the down side, because a sensor cannot practically be mounted over the region of interest
looking down at it, the spatial resolution of the world model is neither homogeneous nor isotropic.
Indeed, the size of a pixel can be expected to vary by up to three orders of magnitude (the cube of
the inverse perception ratio) over the field of view and the aspect ratio can be as high as 10 (the
inverse perception ratio). The up side will be discussed later in adaptive perception.
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Independent of whether resolution is constant is the issue of whether it is adequate. It turns out that
contemporary sensors can barely meet the minimum acuity requirement because a single range
pixel at the maximum range projects onto an area on the groundplane that can exceed the size of
the vehicle.

5.3 Range Acuity in Stereo Vision
The resolution of stereo vision range images is often poor for many reasons. In the case of range
resolution, the quadratic growth of range resolution with range implies that contemporary systems
cannot resolve a pitch hazard just as laser rangefinders cannot for other reasons. As a result,
subpixel disparity estimation is called for but this is a process that tends not to be robust.

5.4 Angular Acuity in Stereo Vision
Stereo vision angular acuity is also poor due to a basic tradeoff of reliability for resolution or in
more classical terms of detection for localization. Large correlation windows are more likely to
generate a distinct correlation peak at the cost of putting it in the wrong place. This issue is a central
limitation of stereo vision that is connected with its current inability to account for disparity
gradients across the correlation window.

5.5 Positioning Bandwidth
A matter of acuity concern that relates to time is the bandwidth of position estimates. This section
shows that removal of the distortions due to motion can necessitate position estimates that exceed
100 Hz in frequency. A related issue is the degree of simultaneity of image capture for stereo
vision. This section computes that no more than a few hundred microseconds is acceptable.

5.6 Geometric Efficiency
The geometric efficiency is defined as the inverse of the amount by which environmental
geometry is oversampled with respect to any target spatial resolution. The practical implication of
the sampling problem is that varying spatial resolution intrinsic to the sensor mounting geometry
must cause either undersampling at long range or oversampling at short range or both.

The geometric efficiency of a sensor has two elements. The efficiency of a single image is related
to the scanning density whereas the efficiency associated with image overlap is related to the
imaging density.

In practical terms, the efficiency of the ERIM laser rangefinder is only 2% - implying that 98% of
the geometry that it generates is redundant. The throughput problem is directly related to the
geometric efficiency issue. In the response section, the adaptive sweep mechanism was proposed
to reduce image overlap. In the language of this section it impacts the quantity called imaging
density. Another mechanism is also proposed here called adaptive scan. This mechanism will
reduce scanning density and attempt to remove the effects of the nonconstant mapping of
resolution from image space to the world model.
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Section 6: Fidelity

The fidelity ratios relate the configuration of the vehicle to the accuracy required of the software
models of the world and the vehicle. While these ratios contain no interesting subcomponents, it is
interesting to analyze how world model and vehicle model accuracy affect planning decisions in a
more quantitative manner.

6.1 Summary of the Fidelity Nondimensionals
The identified pi products for fidelity are summarized below:

Table 8: Fidelity Nondimensionals
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6.2 Modelling Dynamics and Delays
This section considers dynamics from the point of view of their importance to modelling fidelity.
Later sections will identify the impact of poor fidelity on the problem. Dynamics are defined here
to include the pure delays inherent in digital controllers, the dynamics of actuator response, and the
dynamics of vehicle - environment interaction. As a basic requirement, any system which attempts
to avoid obstacles must understand the environment and its own motion sufficiently well. It must
be able to interpret and localize latent sensory information sufficiently well and it must understand
its own ability to maneuver sufficiently well.

Simple calculations indicate that 1 second of unmodelled latency in a 3 m/s vehicle will cause 3
meters or about 10 ft. of localization error unless it is modelled and these numbers are not atypical.
If localization error is to be kept within the resolution of the world model, then the minimum
significant delay is on the order of one tenth of a second. Any delays in excess of this must be
removed through some sort of model of what is happening in time.

It was shown that because a conventional automobile actuates curvature, it is basically a filter.
Indeed, for a moderate speed of 5 m/s the difference between an ideal model of steering and an
accurate dynamic one is 15 meters45.

45. Note that this is the error between the predicted an actual response of the vehicle and it is not to be con-
fused with the errors in position estimation which are a separate matter, This 15 m error exists even if the
position estimation is perfect.
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The simplest expression of this issue is through a quantity called the normalized time constant.
As the ratio of actuator characteristic time to planner lookahead time, it expresses the importance
of dynamic models in the planning process. Its particular form for the steering actuator is called
the transient turning coefficient which has a typical value that implies that at least turning
dynamics must be considered for robust performance.

The major conclusion of this section is that a high speed navigator operates for local planning
purposes entirely within its transient regime and hence entirely within the regime for which
dynamic models of some form are necessary .

6.3 Dynamics of TYirning
This section elaborates an accurate model of the Ackerman steering mechanism - the primary
problem actuator - and assesses the impact of this model on the problem. There are three principle
problems associated with the Ackerman steering mechanism. The first is steering dynamics, a
latency problem, and the second is the nonintegrability of constraints, a nonhonolomy problem.
The third is the fact that the conversion from steer angle to curvature is nonlinear. A further
problem is that attitude rate is coupled to both speed and steer angle.

What all this means in effect is that while a forward model of steering is trivial to compute an
inverse model is almost impossible to compute. A forward model maps steering and speed
commands onto position and attitude. An inverse model maps position and attitude onto steering
and speed. There are at least three different reasons why an inverse model is so hard:

• Actuator Dynamics. While there exists a computable response for all commands, there is
no command that can generate a response that does not satisfy the underlying actuator
differential equation.

• Nonholonomic Differential Constraints. There are two inputs (speed and curvature) and
three outputs (x, y, and heading) so there clearly is no inverse mapping from an arbitrary
response to an associated command.

• Coupling. The path followed for any curvature command depends on speed and likewise
the path followed for any speed command depends on curvature.

These issues are cast in the traditional robotics terms by computing the impact of the dynamics
constraint on the size of the feasible subset of configuration space.

The conclusion is that for a typical maneuver, 98% of C space is not feasible. As in other matters
concerning dynamics, this is only bad news if it is not understood. Once it is understood, its impact
is that dynamic feasibility is a very powerful heuristic for reducing the search characteristic of
motion planning.

6.4 Positioning Fidelity
This section considers the fidelity requirements on the position estimation system. It concludes that
relative position accuracy on the order of 1% of distance travelled and absolute attitude accuracy
on the order of 1 ° are required.

46. That form need not be an explicit differential equation. The main point is that the system must compute
the correct system transfer function - however that is achieved.

An Approach to the High-Speed Cross-Country Autonomous Navigation Problem page 151.



Section 7: Interactions

While the previous sections have considered the four requirements of safety independently, this
section takes the point of view that they actually must be met simultaneously and, in effect, can be
substituted into each other. This leads to some general conclusions about the nature of the problem.

7.1 Rationale For a Feedforward Approach
The dynamics constraint is a catchall term to express the fact that system behavior is governed
by a differential equation and the realities of the latencies of the computer system on which it runs.
Any response trajectory which satisfies these set of constraints is said to be dynamically feasible.

The typical vehicle is fundamentally a filter and it operates entirely in the transient regime so poor
command following must be expected. Given that the command following problem has no
solution as a matter of basic physics, there remains the question of what can be achieved through
an accurate model of its admittedly poor response.

The use of such a model has traditionally been called feedforward. It leads to an expression of
motion planning for obstacle avoidance purposes in terms of a search over candidate commands
expressed in actuation space for safe or collision-free alternatives. Such an approach uses
forward modelling to map commands onto response, and introduces the following benefits:

• Vehicle control remains stable at high speeds.
• Higher fidelity models enable higher performance in hazard avoidance and goal-seeking

because the system can very precisely predict its own motion. This leads to the ability to
drive close to hazards when necessary and the ability to track paths with low error.

• System reliability is enhanced because dynamic feasibility is inherent in forward model-
ling approaches. No time is wasted generating infeasible alternatives so response time is
enhanced.

• Computational complexity of planning is reduced because the dynamics constraint is a
valuable heuristic to limit search. It is known a priori that the system cannot respond to
frequencies above the natural frequency so such alternatives need not be considered.

The major conclusion of this section is that the traditional hierarchical robotic architecture
consisting of a strategic planner connected directly to actuator level control will not work when the
reaction distance is large relative to the fidelity requirements imposed by obstacle avoidance and
goal seeking tasks. This conclusion is the organizing principle behind the design of the navigator's
planning subsystem.

7.2 Rationale For Adaptive Perception
This section presents an analysis of the computational complexity of perception based on the
observation that response, throughput, and acuity requirements must all be met simultaneously. By
substituting these requirements into each other, it has been possible to show that the complexity of
range image processing is basically polynomial in the reaction distance.

The policy of guaranteed safety implies that throughput is proportional to a high power of velocity
because:

• Maximum range increases quadratically with speed (because braking distance does).
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• Pixel size decreases quadratically with maximum range (in order to resolve obstacles).

• Throughput increases quadratically with pixel size (assuming fixed field of view).

This sensitivity of throughput to speed has been called the throughput problem.

There are four major conclusions of this section.
• It has been shown that to adopt a policy of guaranteed vehicle safety is to adopt a compu-

tational complexity of O ([TV] N) for range image processing where T is the vehicle
reaction time and V is the velocity.

• This result implies that increased vehicle speed will require nonlinear growth in compu-
tational bandwidth.

• This result identifies the fundamental trade-off of finite computing resources as one of
speed for either resolution or reliability.

• Quantitative theoretical comparisons of various image processing approaches have iden-
tified that adaptive scan and adaptive sweep are very important mechanisms that prom-
ise to improve system performance.

This last conclusion is the organizing principle behind the design of the navigator's perception
subsystem.

7.3 Rationale For a Real-Time Approach
This section identifies an effect referred to as the computational spiral effect which quantifies the
cost of more sophisticated processing algorithms in terms of their effect on reaction time and
therefore on the processing required. The essential argument here is that the problem has stringent
real-time constraints and that trying to be overly smart in software is not so smart in the final
analysis.

Luckily, there is a classical approach to this dilemma in real-time systems. The tradeoff between
throughput and response is managed by reducing throughput to a bare minimum in order to reduce
response time to a bare minimum. This real-time approach is the organizing principle of the entire
navigation system.
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PART III: Intelligent
Autonomous Mobility

Performance of high-speed rough terrain autonomous vehicles is compromised by inadequate real-
time response characteristics, poor models of vehicle dynamics and terrain following, and
suboptimal allocation of limited computational resources. An approach to high-speed rough terrain
autonomy is presented which solves these problems through a real-time predictive control
approach and the adaptive perception that makes it possible.

RANGER is an acronym for Real-time Autonomous Navigator with a Geometric Engine. It is a
computer program which allows a vehicle to intelligently drive itself over rugged outdoor terrain.
This part describes the overall design of the navigator. The system is composed of:

• An adaptive perception algorithm which computationally stabilizes the sensor sweep and
in doing so permits highest vehicle speeds. The algorithm supports either laser range-
finder or external stereo vision inputs and an internal stereo vision system is also incor-
porated.

• A state space feedforward optimal controller, which implements obstacle avoidance,
path planning, path generation, path following, goal seeking, and coordinated control of
steering, brake, throttle, and sensor pan/tilt actuators.

• A navigation Kalman filter, which generates a vehicle position estimate based on all
available information.

• A graphical simulation environment.
• A development support environment.

The simulation environment includes:

• Animated XI1 based wireframe and image graphics
• Visible surface ray tracing sensor simulator
• State space vehicle kinetic simulator
• Fractal geometry terrain simulator

The development environment includes:

• General event server for ease of porting the system to different vehicles
• Data logger for off-line analysis of field tests
• C language interpreter for configuration and parametric modification
• Command line configuration parser
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Chapter 1: Concept

This section discusses the problem of intelligent autonomous mobility from an architectural
perspective.

Section 1: Standard Architectural Model

There is a tendency in the field of autonomous navigation at this point in its history to consider the
entire problem from the perspective of control theory as well as an opposing tendency to consider
the entire problem from the perspective of AI. This section considers some basic architectural
matters in the context of high-speed autonomy and argues that both perspectives have their place.

Consider the following standard model for a class of architectures that are suitable for the
implementation of intelligent autonomous mobility.

Symbolic
Logical
Search-oriented
Sequential
Deliberative
Abstract

Policy Layer

Objectives

Strategic Layer

Goals Status

Tactical Layer

Set Points IStates

Control Layer

Commands
Spatio-temporal

Physical Layer

Feedback Arithmetic
Repetitive
Parallel
Reactive
Concrete

Figure 61 - Standard Model

Generally speaking, this architecture is a hierarchy. This architecture is obvious and virtually
universal and it provides a convenient perspective for organizing the exposition. It also provides a
perspective on where the thesis fits into the larger picture of autonomous vehicles.
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Higher levels of the hierarchy tend to be characterized by computation that is more symbolic,
logical, search-oriented, sequential, deliberative and abstract than lower layers. Lower layers tend
to be characterized by computation that is more spatial or temporal, arithmetic, repetitive, parallel,
reactive, and concrete than higher layers. As a general rule, higher layers exhibit longer reaction
times and longer cycle times.

The issues involved in assignment of system requirements to a particular layer are complex and
interdependent. One useful principle for the solution of the problem of assignment of update rate
might be called the principle of characteristic times. Here, this principle exploits the fact that
although more abstract decision-making tends to require more time to accomplish, many problems
can accommodate the time required.

Real-time analysis teaches us that event interarrival times are a basic consideration. If a system
must respond to an event within some period, the system component that addresses that
requirement must exist in the appropriate layer having an appropriate cycle time. Similarly, AI
planning teaches us that there are times when the future consequences of actions taken now must
be considered in order to avoid ultimate system failure. The design issue is to decide when these
elements are and are not operative, in which parts of the larger problem they are operative, and how
best to meet all requirements simultaneously and optimally.

1.1 Policy Laver
The policy layer is effectively omniscient. It enacts fundamental incontrovertible laws. It
generates the mission objectives, collectively called policy - the overall raison d'etre of the system.
These objectives may be encoded deliberately, they may emerge from the subsystems, or they may
be supplied by human direction. The important distinction here is that the goals specified by this
layer are highly abstract and not usually subject to much compromise. Examples of such goals are
"stay alive", or "find the X".

Failure to meet these objectives are mission level failures. Policy does not change often and can
usually be considered constant over the mission. Other mission failures may arise in the policy
layer through the omission of objectives or the specification of inappropriate ones. In any case,
because policy is not normally reversible over a mission lifetime, mission failures tend to be
absolute. Techniques used for policy generation are elusive and poorly understood - largely
because the important aspects of the problem itself are poorly understood. Examples of policy-
generating mechanisms are1 2generate and test, mission analysis, and the minimum potential
energy principle.

Computations involved in policy generation, if any, are considered to take place outside the system
at this level of conceptualization.

1. An example of the generate and test mechanism is biological evolution. Species tend to migrate with the
seasons because it has some supposed evolutionary value. In human endeavors, technological evolution con-
tinues to refine solution concepts based on past experience. This permits incremental improvement even
though the larger problem remains only partially understood.

2. Mission analysis is a human activity which would choose, for example, the area of a planet to be explored.
The minimum potential energy principle is an organizing principle of thermodynamics which all systems tend
to follow from an energy storage/conversion perspective. This principle governs everything from the deflec-
tion of a beam to the dynamics of a spacecraft to the climate of the earth.
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1.2 Strategic Laver
The strategic layer corresponds to the deliberative, logical, goal-generating component of
autonomous systems. It concerns itself with the larger picture within the confines of policy, with
avoiding local planning minima, with overall optimality, and with modelling and memory of the
environment. Relative to lower layers, this layer can afford (or is obliged) to consume more time
in its deliberations.

Implementation of the strategic layer lends itself to the techniques of Artificial Intelligence and
Operations Research. Problems solved at this level tend to be characterized by search of a large
number of alternatives and by overwhelming computational complexity. Heuristic techniques are
often used to attempt to reduce that complexity to manageable proportions. Two of the clear lessons
of research on problems solved in this layer are that:

• An appropriate representation of the problem can make a major difference in the quality
of the solution or in the time taken to compute it.

• The exploitation of constraints can be a very powerful heuristic.

Algorithmic results applicable to the strategic layer tend to concentrate on concerns of:

• completeness - Is a solution guaranteed to be found if it exists?
• soundness - Does the solution satisfy the constraints imposed?
• optimality - Will the chosen solution be the best one available?

One of the organizing principles of work on the strategic planning layer is the principle of
optimality of dynamic programming which states, loosely, that an optimal solution to the whole
problem must be composed of optimal solutions to its subproblems3.

1.3 Control Laver
The control layer corresponds to the real-time command following component of autonomous
systems. It might also be called the logistic layer. It concerns itself with the immediate low level
issues of how much current should be applied to actuators and generally, with doing exactly what
it is told to do to the best of its ability. This layer has extremely limited autonomous authority which
may be limited to such actions as cutting actuator power in an emergency when it has determined
that it is unable to follow commands for a variety of possible reasons.

Implementation of the control layer lends itself to the techniques of automatic control theory.
Problems solved at this level tend to be characterized by differential equation models of system
dynamics and by issues of response time and control bandwidth. One of the basic lessons of
research on problems solved in this layer is that feedback control makes it possible to alter system
dynamics and cause a system to follow its commands faithfully in the presence of a large number
of different nonidealities and disturbances.

Algorithmic results applicable to the control layer tend to concentrate on concerns of:

• controllability - Can the system do what it is told?
• observability - Can it know what its doing?
• stability - Will it lose its ability to control itself?

3. The A* algorithm of AI planning is related to dynamic programming through this principle. The principle
is often not satisfied in practice but it is a very useful concept.
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One of the organizing principles of work on the control layer is the sampling theorem which
states, loosely, that both sensing and actuation bandwidth must be commensurate with the
underlying frequency response of the plant being controlled.

1.4 Tactical Laver
One important aspect of the standard model from the perspective of the thesis is the introduction
of the tactical layer. An upcoming section will be devoted to this layer.
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Section 2: Bandwidth - Conceptualization Gap

A set of architectural design issues emerge for the problem addressed by the thesis which will be
referred to as the bandwidth-conceptualization gap. The origin of this term is that the strategic
layer usually cannot generate the bandwidth to respond to immediate concerns while the control
layer cannot conceptualize the world in rich enough detail to enable useful strategic response. In
other words, the strategic layer needs more bandwidth and the control layer needs more time and
neither layer has the luxury of these resources in practice.

The real architectural design issue in a hierarchical software system is to allocate responsibility and
authority appropriately to each layer. Some of these issues are outlined below by examining why
it is difficult to merge the strategic and control layers into one layer.

2.1 Fast Execution Monitoring and Path Replanning
The historical technique of execution monitoring is to monitor the degree to which lower levels
follow the plans given to them, and to react appropriately. Path replanning is an answer to the
problem that the strategic layer may have limited or no prior knowledge of the environment at the
resolution of obstacles. In the extreme the system can attempt to update the specification of the
strategic plan at high enough rates to capture unknown obstacles and replan the task.

At some point execution monitoring and path planning begin to look like the feedback and control
elements of feedback control, and at this point the strategic layer begins to do the job of a controller.
There are several practical problems with the idea of fast replanning.

• It violates the principle of characteristic times because it is not often the case that a
small amount of change in the execution of a plan will cause a large difference in opti-
mality. Most problems are well-behaved so fast replanning is not necessary and therefore
wasteful of computing resources.

• It is not often the case that an environment or task that is rich enough to require a strate-
gic layer can also replan its actions at sufficiently high rates to respond to execution
errors. The strategic layer cannot generate the necessary bandwidth anyway.

2.2 Smart Control
Instead of a faster planner, one might attempt to eliminate planning by adding smarts to the control
layer. This idea also has historical precedent. A simple example of this approach is the notion of
the potential field. In this approach, the world is modelled in terms that relate very directly to the
control task. Some potential field model is generated and the controller is smart enough to follow
its gradient in order to achieve its goal position. There are several practical problems with this
approach.

• It cannot handle rich goal specification or even intelligently update its goal based on
changes in the environment. It can be argued that the best a potential field can do is to
follow a strategic plan, and the generation of that plan is outside the scope of the tech-
nique.

• It cannot handle rich worlds. The essential assumption of this approach is that the world
will succumb to a locally linear model and a globally unimodal model. Yet, local minima
exist in real applications and these are the historic failure models of such systems.
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Section 3: Tactical Control Layer

While the two layer hierarchy can be justified with the preceding arguments, the practical fact of
the matter is that the bandwidth-conceptualization gap still cannot be spanned by only two layers.
The basic reason for this is the command following problem and the solution is the introduction
of a third intermediate layer - tactical control.

3.1 Command Following Problem
If the strategic layer talks directly to control, the control layer is not able to execute its commands
in the target application of high-speed autonomous mobility. A situation is created where the
strategic layer cannot do its job of directing the machine and the control layer cannot do its job of
following its commands faithfully.

It is tempting to propose that a system can live with the command following problem. The control
layer could be made more cognizant of its own limitations and reject commands outright that
cannot be executed. The major problem with this approach is the inefficiency inherent in
thrashing. Considerable resources are typically expended in the generation of the strategic plan
and it is not often possible to generate and test alternatives until the controller is satisfied. One can
attempt to blame control for being stupid or strategic planning for being slow but this does not
solve the practical problem.

3.2 Tactical Control laver
There are certainly times when the goals specified by the strategic layer must be ignored because
it is not aware of the immediate environment - but the control layer is not smart enough to deal with
the matter. There are also times when the control layer is unable to follow its commands - but the
strategic layer is too slow to deal with the matter.

The solution to this problem is to have a layer smarter than control and faster than planning. This
tactical layer4:

• Views the goals from the strategic layer as recommendations that it may be override
when the situation demands it.

• Incorporates sufficient bandwidth to ensure vehicle survival at the coordinated actuator
control level.

• Incorporates a sufficiently accurate model of vehicle dynamics that it understands and
adapts to the inability of the controller to follow its commands.

This three layer architecture imparts a degree of autonomy to the layer below the strategic to allow
it to implement basic survival without much regard for the mission imperatives. The basic
assumption is that survival is not such a continuous issue that mission imperatives will be ignored
for long because if that was the case, the system would not be viable anyway.

4. The title of the thesis derives from these properties of the tactical control layer. The navigator resides
almost entirely in this layer. It is intelligent enough to understand vehicle dynamics and a local world model,
predictive enough to see consequences as far ahead as a few vehicle response times, and based on multivariate
control theory.
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3.3 Hierarchical Time Spectrum
A useful way to conceptualize the three layers is in terms of their lookahead and update rate. Each
layer is concerned with an amount of temporal and spatial lookahead and updates its output at some
appropriate rate.

The strategic layer operates on a strategic time scale. It considers the future consequences of its
actions up to the point where the policy objectives are predicted to be achieved. It updates its plan
of action once over the minimum amount of time for which a change in the plan can significantly
affect overall optimality. A rough measure of the magnitude of strategic lookahead is the mission
duration.

The tactical layer operates on a faster tactical time scale. It considers the future consequences of
its actions up to the point where steady-state response of the entire vehicle has been achieved. It
updates its plan of action once over the minimum amount of time for which a change in the plan
can significantly affect the vehicle response trajectory. A rough measure of the magnitude of
strategic lookahead in the system reaction time.

The control layer operates on an even faster control time scale. It may or may not consider the
future consequences of its actions up to the point where steady-state response of each actuator has
been achieved. It normally updates its output at the highest frequency that the plant can pass. A
rough measure of the magnitude of control lookahead, if any, is the actuator response time.

3.4 Uncertainty
It is important to distinguish several kinds of uncertainty in autonomous systems because there is
a tendency to associate deterministic error that can be modelled well with random error that cannot.
This distinction is raised here because the tactical layer models dynamic command following error
that is often considered to be random uncertainty. Generally, information may be:

• random - inevitably random as a matter of physics
• unknown - not imparted to the system through sensing or encoded knowledge
• unknowable - outside of the parameters measurable or known

An example of random information is the fundamental physical noise present on a CCD array in a
camera. Unknown information includes obstacles that cannot be predicted because they are not
represented in the prior environment model and not currently in view, or because they have moved.
Unknowable information includes information for which no sensing technology exists or no prior
knowledge exists.

It is the case that techniques which deal with one form of uncertainty tend to be useful for other
forms, but it is nonetheless important to understand which form of uncertainty is operative. For
example, while models of random uncertainty may perform usefully in accounting for actuator
dynamics, the underlying process is a deterministic one completely governed by differential
equations. A properly calibrated dynamic model would be expected to outperform a random
model. Indeed, one of the most basic premises of calibration is to remove all systematic error
possible before modelling the remainder as random.

For this reason, the view taken here is that command following error is not random and the tactical
control layer can deal with it very effectively.
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Chapter 2: Design

This section outlines an approach to intelligent autonomous mobility based on intelligent
predictive control. Before elaborating on the design, a brief characterization of the problem is
presented. Given this, the major design decision is to implement an intelligent predictive control
approach.

Section 1: The Nature of High-Speed Autonomy

It has been shown that high-speed autonomy is a real-time problem because response time
requirements are stringent and throughput and response time depend on each other. Contemporary
sensor technology coupled with the latencies of sluggish massive vehicles and distributed control
schemes limit vehicle speeds. Computational resource limitations are severe at even moderate
speeds and a real-time approach is indicated which minimizes response time and maximizes
sensor lookahead. Through the adoption of a managed minimum reaction time strategy, an
optimal system becomes a real-time system.

It has been shown that optimal high-speed autonomy requires adaptive, minimum throughput
perception because the computational complexity of range image perception is severe when
measured against contemporary general purpose computing hardware and non adaptive image
processing techniques are used. Indeed, up to 98% of the information provided by contemporary
sensors is redundant.

It has been shown that the high-speed autonomy problem is a tactical control problem because
the vehicle configuration space is degenerate at high-speed and the mapping from configuration
space to actuation space is not defined over approximately 97% of the extent of configuration
space. Search-based C-space planners based on many fine AI algorithms are brittle and waste
resources because the clothoid generation problem is impossible in practical terms and most
vehicle configurations in C-space are not dynamically feasible. Therefore, an optimal system
considers path feasibility before obstacle avoidance. In optimization terms, such a system
considers the constraints before the utility function, and in doing so, becomes a controller.

It has been shown that high-speed autonomy is a feedforward control problem because
algorithmic stability of path tracking and obstacle avoidance can only be achieved by high fidelity
models of vehicle actuator dynamics.

It has been shown that high-speed autonomy is a state space control problem because a high-
speed vehicle satisfies a coupled nonlinear multidimensional differential equation. An optimal
system models this equation explicitly or implicitly, and in doing so becomes a state space
controller.
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Section 2: Intelligent Predictive Control

One of the axioms of the thesis work is that an intermediate layer between strategy and control is
both useful and required, and most of the thesis work falls into this layer. This layer exists to bridge
the bandwidth-conceptualization gap between the strategic and control layers. These two layers
speak different languages. They conceptualize the world on radically different time scales and
spatial resolutions. An intermediate layer is needed to connect them together and translate
information between them for the problem of high-speed autonomous mobility. Indeed, the
introduction of this layer is the most basic aspect of the problem solution.

The navigator is a high-level intelligent predictive controller. That is, it closes the overall perceive-
think-act loop for a robot vehicle. It is not concerned with the specific control of actuators
themselves, so it is not in the control layer. Further, while it can accept a specification of a strategic
goal, such as a path to follow, or a direction to prefer, it cannot generate its own strategic goals, so
it is not in the strategic layer.

The navigator solves the local planning problem for autonomous vehicles. That is, the problem
of deciding what to do based only on what can be seen at the moment within the field of view of
the environmental sensors. As a tactical layer entity, the system incorporates elements that might
normally exist in one of the other two.

2*1 Deliberative Elements
Like a strategic planner, the system performs an amount of search and heuristics are employed to
reduce that search. Like a strategic planner, the system models the environment and responds to it,
so it merits the designation intelligent. Like a strategic planner, the system considers alternatives
in an abstract space that is a transformation of reality - in this case, actuation space instead of the
configuration space commonly used in strategic motion planning.

Like a strategic planner, the system considers the consequences of its actions. However, unlike the
logical rules of precedence typical of at least symbolic planners, the system employs time
continuous precedence information in the form of a feedforward system dynamics model. The state
space model employed is more like the kinds of models used in controllers.

Like a strategic planner, the system employs some memory of the state of the environment.
However, the planning horizon is limited to the distances that can be traversed within the vehicle
reaction time, so the map used merits the designation local.

2.2 Reactive Elements
Like a controller, the system models the vehicle with a differential equation. However, because it
concerns itself with the coordinated control level, the equation is multidimensional. This level
considers the overall impact of the response of all actuators simultaneously and is typically far less
intelligent in a manipulation system.

Like a controller, the system is very concerned with response time and throughput management as
is common of real-time systems. However, the response and throughput issues are considered at
the level of the entire vehicle system instead of individual actuators. Like a controller, the system
is concerned with latencies and time tags and the precise timing of events.
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Like a controller, the system concerns itself with command following. However, the commands it
accepts are from the strategic layer, and are therefore specified abstractly - in terms of a path to
follow or a direction to prefer. These commands are taken as recommendations and may be
temporarily overridden by the tactical layer. The control layer could not accept such commands
unless it maintained a coordinated control function that knew how to transform actuator states into
vehicle states.
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Chapter 3: Implementation

When the various development features are removed, the remaining system modules are suitable
for embedded real-time environments. These core modules are called the real-time kernel. This
section provides an overview of the real-time kernel which follows the data flow diagram
convention of Ward and Mellor for real-time systems [81].

The diagram convention used here and throughout is the data flow diagram. In these diagrams,
the bubbles represent transformations of signal flows, and arrows signify data. Each diagram has
an implicit update frequency or characteristic cycle time associated with it. For the present
purpose, consider that double arrows indicate time-continuous data and single arrows indicate
intermittent data flows. Rectangles indicate external entities and parallel lines are called stores. A
store indicates memory of data beyond a single characteristic cycle time.

Section 1: Real-Time Kernel

At the highest level, the system can be considered to consist of 5 modules as shown in the following
data flow diagram:

Environment
Sensors

Processed
Images, M a p

Manager

Old
Vehicle
States

Navigation
Sensors

Environment
Properties

Predicted
Vehicle
States

Motion
•Commands

Vehicle
Actuators

Current
Vehicle
Cmd

Nav v
Sensor \ L 0

Readings

Current
Vehicle
States

Figure 62 - System Data Flow
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1.1 Position Estimator
The Position Estimator is responsible for integrating diverse navigation sensor indications into a
single consistent indication of vehicle state. Vehicle state information includes the positions of all
actuators and some of their derivatives, and the 3D state of motion of the vehicle body. This module
may be the built-in navigation Kalman filter or another system which generates the same output.

1.2 Map Manager
The Map Manager integrates discrete samples of terrain geometry or other properties into a
consistent terrain map which can be presented to the vehicle controller as the environmental model.
It maintains a current record of the terrain immediately in front of the vehicle which incorporates
all images necessary, and which automatically scrolls as the vehicle moves.

The map manager forms an abstract data structure when combined with the terrain map itself.
Images are transitory input flows at this level of conceptualization. Consumers read or write the
map in navigation coordinates and are ignorant of the underlying transformation and scrolling
operations.

Vehicle
The Vehicle object is both the control loop feedforward element and an abstract data structure
which encapsulates the vehicle state. This module incorporates FIFO queues which store a short
time history of vehicle states and vehicle commands. Old state information is required by the map
manager in order to register images in space. The current vehicle state is used as the initial
conditions of the feedforward simulation. Old commands are used in the feedforward simulation
as well. This module also provides daemons which compute derived properties of vehicle state
such as the planning range window and the maximum safe speed and curvature. Another set of
daemons is used to convert curvature, steer angle, and turn radius to any of the other two based on
the vehicle state and the wheelbase.

1.4 Controller
The Controller object is responsible for coordinated control of all actuators. This module includes
regulators for sensor head control, an obstacle avoidance tactical controller and a path following
strategic controller. It also incorporates an arbitrator to resolve disagreements between the latter
two controllers.

1.5 Perception
The Perception module is responsible for understanding or interpreting input images and putting
them in a form suitable for the Map Manager to process. Examples of perceptual preprocessing
include stereoscopy (stereo vision) which computes range from two or more images taken from
disparate viewpoints, and terrain-typing which labels each pixel in an image as rock, road,
shrubbery or tree. Stereo vision is the only perception that is currently supported.
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Section 2: Rationale - Bandwidth Requirements

The system is divided into these high-level objects because each has different response and
throughput requirements. Each can be implemented as a separate process, and all can run
asynchronously. Three main data streams connect the system to the physical world. These are:

• image input stream
• vehicle state input stream
• vehicle command output stream

Additionally, there may be sensor head state input streams and sensor head command output
streams. Perception and the Map Manager are serial transformations that may be treated as a unit.
The real-time clock is also considered to be an external device. The architecture is indicated in the
following figure:
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Figure 63 - Architecture

2.1 Image Input Stream
The frequency requirement of the image input stream is the rate at which images are generated.
However, because images generally overlap on the ground, it is not necessary to process all of
them. The adaptive perception mechanisms will minimize the amount of image information
processed if they overlap so the practical frequency requirement of the image input stream is the
guaranteed throughput requirement converted back into image space.

12 Vehicle State Input Stream
The frequency requirement on this stream comes from the need to remove image distortions due
to vehicle motion both during and since images were captured. Normally, this frequency is much
higher than the image frequency requirement so it is not feasible to consider image processing to
be indivisible and measure vehicle state only between images.

2.3 Vehicle Command Output Stream
The frequency requirement on this stream comes from the need to track commands faithfully. In
practice, little is achieved against control fidelity by attempting to drive the vehicle faster than it
can respond. Thus, the practical requirement on this stream is related to the vehicle natural
frequency and the sampling theorem. Roughly ten times the vehicle natural frequency is
appropriate for each controlled degree of freedom. The controller need not run any faster than this.
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Section 3: Test Environment Layer

The test environment is the highest level of conceptualization of the system. It externalizes system
interfaces to sensors, actuators, displays, and the file system in order to simplify porting to different
environments. Ideally, the system is ported by changing only these interfaces. This layer provides
a buffer layer which lies between the real-time kernel and the physical i/o drivers. The elements of
this layer are:

• the main event loop and associated world tree
• the i/o filter which consists of:

• simulators
• data logger
• physical i/o to the real vehicle

• development support tools such as:

• graphics facilities
• configuration parser
• command line parser

The main() function may reside in this layer, if necessary. The main event loop is usually
implemented in this layer.

It optionally:

• intercepts data for viewing purposes
• generates simulated data for nonexistent hardware modules
• records data to the file system
• plays data back for off-line review and analysis

It is the responsibility of the test environment to supply sensor measurements and to dispatch
commands. The existence of simulation, parameter editing, and data logging facilities is optional.
None are needed to run the system.

This layer insulates the system from the knowledge of whether it is embodied in real hardware or
executing in real time. It also insulates the system from the knowledge of whether or not it is the
highest level control loop.

An Approach to the High-Speed Cross-Country Autonomous Navigation Problem page 168.



3JL I/O Filter
Any external data interface can be implemented in simulation, from logged data on the file system,
or from the hardware - and the knowledge of which is being used is very localized. This data
dispatching mechanism can be visualized in the following figure:
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3.1.1 Data Logger

The data logger is one service that may transparently intercede between the generation of an event
and its dispatch. Its design is subject to four simplifying design decisions:

• determinism: because all input data including the clock is recorded, the system is guaran-
teed to produce the same output given the same input.

• zero state start-up: only the initial state is guaranteed to be repeatable so the logger can-
not be enabled and disabled dynamically.

• parameter constancy: some mechanism outside the data logger must ensure that system
parameters are consistent between record and playback.

• file layout constancy: changes to the layout of logger data files renders old data files
unusable.

3.1.2 Simulator

The simulator is another service that may intercede between the generation of an event and its
dispatch. If simulation is on, the physical i/o layer generates a pointer to an empty event which is
the correct event in its simulation sequence. The simulator will fill in the event with simulated data.
Various simulators are implemented inside their associated objects. The vehicle simulator is
necessary to run the system, but sensor and terrain simulation are not.

3.1.3 Physical I/O Layer

If neither the simulator nor data logger intercedes, events are managed by the physical i/o layer.
The physical i/o layer binds the real-time kernel to the physical sensors and effectors. The system
does not know if network, backplane, or board-level communications are involved in this
connection.
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General Rationale for Physical I/O
There are a few general principles imposed on the input/output services. This section outlines these
requirements.

3.2.1 Vehicle States

Image digitization for scanning laser rangefinders may take significant time and the vehicle moves
up to 5 meters over this time at 10 m/s. Therefore, the vehicle state must be sampled while this is
occurring and the state data must be supplied later on. Some agent close to the position and attitude
sensors must write vehicle state information at high frequency to the state communication channel.

3.2.2 Queues

This data must be queued until the system has time to read it. The physical i/o layer must flush this
state queue on every read and the Vehicle will store the data internally. The Vehicle queue may be
used for this purpose by synchronous i/o channels because the queues can be accessed while the
system is running concurrently.

3.2.3 Images

Image digitization is normally a synchronous process and although the Map Manager may not have
time to process all images, they typically overlap on the ground so this is not a serious concern.
Some agent close to the image formation hardware must write images to one of the image
communication channels as soon as they are generated. The physical i/o layer must flush this image
channel on every read and provide only the most recent image to the Map Manager.

3.2.4 Time Tags

All sensory inputs are ideally time-tagged at the source. A consistent system time standard is
assumed, however it is generated. Consistency of time stamps is necessary within each data stream,
and between data streams. This allows the system to register contemporary events in time even
though may have arrived at disparate times. It also allows the system to reason explicitly about
delays and their effect on the requirement to maintain high-fidelity control.

Images are tagged with the time that image formation commenced. States are tagged with the
instant in time to which the states correspond. Tagging agents must account for their own latency
in their time tags.

3.2.5 Sample Rate

Sensory inputs must be sampled at the Nyquist rate, and this rate differs for different sensors. The
system is not fast enough to do this itself, so i/o channels are responsible for a guarantee of high
resolution sampling. Timers hidden in the physical i/o layer can accomplish this by sampling at
regular frequency.

3.2.6 Concurrency

The map manager and controller objects copy the entire vehicle data structure at the start of their
cycles, so it is admissable to queue data into the vehicle queues while these objects are running
concurrently.
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3.3 Main Event Loop
A central event loop, called the main event loop, performs the following functions:

• reads vehicle state information at high, roughly synchronous rate and stores it in the
vehicle queues for later processing

• reads images from diverse environmental sensors as soon as their data is available
• reads the clock from time to time as needed

The event loop model is used for two reasons:

• Determinism can be guaranteed for data logging purposes because all system i/o must
pass through it.

• Response time can be minimized by an event-reaction model.

When an image is available, the event loop calls the map manager to request integration of the
image into a single consistent description of the local environment. Perhaps after the image is
processed, or in general at any time, the event loop calls the controller to cause it to update the
commands being sent to the vehicle.

3.3.1 World TVee

The object library and all layers below it makes no assumptions about the configuration of the
vehicle - although its dynamics are encoded in the state space model. Therefore, it is the
responsibility of the test environment layer to specify the configuration of the world at start up. The
initialization step involves the creation of a world tree that represents the physical connections of
objects with each other and their associated attributes.

3.3.2 Events

To enhance portability, the physical i/o interface is defined in terms of a generic io_datum object
which serves double duty as a place holder for events because, currently, all events are associated
with external i/o. This permits automatic management of several sensors without having to assume
a fixed number in the interface specification. It also permits the data logger to read the datum type
from the log file and discover its size so that it knows how to read the data itself.

3.4 Development Support Tools
The following development support tools are available:

3.4.1 Parameter Editor

A C language interpreter is available as a general tool for parsing configuration command strings.
This can be very useful for avoiding recompilation in the field and simplifies software
configuration control. A special set of built-in functions permit the specification of simulated
terrain of arbitrary complexity.

3.4.2 Graphics Tools

Graphics tools are available for displaying images, maps, and vehicles. These are not necessary to
run the system. They include image, spline, wireframe surface objects and general 2D and 3D
rendering primitives.
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Section 4: Computational Hardware

The design of the system makes it retargettable on an entire spectrum of computational engines.

4.1 Engineering Workstations
The entire system, including perception, planning, and control, runs in less than 50 msecs on a
SPARC 10 platform and this is already a very high cycle rate for the entire perceive-think-act loop.
The Kalman filter runs at a rate of 100 Hz in dead reckoning mode with periodic updates from
sensors at a rate of 10 Hz.

4.2 Implementation in Special Purpose Hardware
Higher performance can be achieved by porting the system to special purpose hardware. The
control laws are implementable solely in terms of matrix algebra, trigonometric functions and a
few signal operators - because they really are just one big differential equation. For example, a
graphics rendering pipeline would perform all of the necessary geometric transformations on
image sensory data to generate the map data structure. The system model is literally a discrete
matrix differential equation, and the hazard model can be implemented as a matrix. The arbitrator
could then be implemented in a digital signal processor.

4.3 Implementation in Parallel Hardware
In the case of the perception system, the entire processing cycle from image to map can be
performed in parallel at the pixel level. In the case of obstacle detection, each candidate command
trajectory can be computed in parallel. The position estimation and goal seeking aspects of the
system are not suitable for implementation in parallel hardware.
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Chapter 4: Results

Section 1: Vehicles Automated

The navigator has been configured to run successfully on two very different types of vehicles:

• HMMWV (Highly Mobile Multi-Wheeled Vehicle) - a converted army jeep.
• RATLER (Robotic All-Terrain Lunar Exploration Rover) - a planetary rover. [50]

These vehicles are shown below:

HMMWV RATLER

Figure 65 - Target Vehicles
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Section 2: Test Run Excursion and Speed

The navigator has been used with laser range data on the HMMWV and with stereo range data on
both vehicles. In the former case, excursions of 15 kilometers and instantaneous speeds of 15 km/
hr have been achieved while tracking an externally supplied path that was specified at roughly 10
meter resolution. Average speed was on the order of 7 km/hr. For such long excursions, the goa 1
seeking behavior of the navigator is used to seek some goal trajectory which is free from local
minima - but not necessarily free of obstacles. While there was a detailed path for the vehicle to
follow, errors in position estimation are such that the positioning system drifts a considerable
distance from the path after only a few minutes of operation. This has meant, in practice, that the
obstacle avoidance system is challenged regularly.

On the RATLER vehicle, the navigator is configured to run under human supervision. In this case,
semi-autonomous excursions on the order of 1 Km have been achieved and high speed is not a goal
of this work.

The Kalman filter has been implemented in stand alone mode and used as a basis for implementing
autonomous vehicle convoys. The sensor suite used included an AHRS for indicating attitude and
heading, a transmission encoder and doppler radar both for indicating vehicle speed, a video
crosstrack indicator based on a roadfoUowing system, and a GPS receiver. In this mode, the filter
cycles at 100 Hz and provides sufficient accuracy for blind operation of the follower vehicle over
excursions of about 1 kilometer.
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Section 3: Real-Time Performance

The real-time performance of the system is demonstrated in the following tables. With adaptive
perception enabled, using oversampling factors of 2 both horizontally and vertically , the
overwhelming computational cost is in the tactical feedforward associated with adaptive regard.

While adaptive perception resamples a range image for optimum coverage of the terrain, the
specific attributes of the range sensor used for this run are given in the table below:

Table 9: ERIM Range Sensor Parameters

Attribute

Image Rows

Image Cols

HFOV

VFOV

HEFOV (angular resolution)

VIFOV (angular resolution)

Frame Rate

Value

64

256

80°

30°

0.3125°

0.4688°

2 Hz

Adaptive perception and adaptive regard are affected primarily by the following parameters:

Table 10: Configuration Parameters

Attribute

Vehicle Speed

Imaging Density

Column Oversampling Factor

Row Oversampling Factor

Map Resolution - x

Map Resolution - y

# Turn Commands

Value

3m/s

1.2

2

2

0.75 m

0.75 m.

15

5. Oversampling of 2 implies, in this case, that 4 range measurements fall into a 0.75 meters terrain map grid
cell on average.
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The run-time of the system under these configuration parameters is summarized below:

Table 11: Run-Time (SPARC 20)

Subsystem

Perception

Strategic

Tactical - Command Generator

Tactical - Feedforward

Tactical - Arbitrate

Total Runtime

Value

0.064 sees

0.002 sees

0.003 sees

0.125 sees

0.014 sees

208 msecs.

The 64 milliseconds quoted for perception apply to range image processing only - the portion of
the code enabled for a laser rangefinder. Stereo vision requires significantly more processing.
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Chapter 5: Summary and Conclusions

This chapter summarizes the most important content of Part III: Intelligent Autonomous Mobility.

Performance of high-speed rough terrain autonomous vehicles is compromised by inadequate real-
time response characteristics, poor models of vehicle dynamics and terrain following, and
suboptimal allocation of limited computational resources. An approach to high-speed rough terrain
autonomy is presented which solves these problems through a real-time predictive control
approach and the adaptive perception that makes it possible.

RANGER is an acronym for Real-time Autonomous Navigator with a Geometric Engine. It is a
computer program which allows a vehicle to intelligently drive itself over rugged outdoor terrain.
The system is composed of:

• An adaptive perception algorithm which computationally stabilizes the sensor sweep and
in doing so permits highest vehicle speeds. The algorithm supports either laser range-
finder or external stereo vision inputs and an internal stereo vision system is also incor-
porated.

• A state space feedforward optimal controller, which implements obstacle avoidance,
path planning, path generation, path following, goal seeking, and coordinated control of
steering, brake, throttle, and sensor pan/tilt actuators.

• A navigation Kalman filter, which generates a vehicle position estimate based on all
available information.

For development purposes, the system includes a simulation environment, visualization tools, and
a data logger for off-line analysis of test results.

Section 1: Concept

1.1 Standard Architectural Model
A standard model for a class of architectures that are suitable for the implementation of intelligent
autonomous mobility has been proposed. In this model, the strategic layer corresponds to the
deliberative, strategic planning part of the system and the control layer corresponds to the
reactive command following part of the system. For the general problem of autonomous mobility,
both deliberative and reactive components are required.

The deliberative components achieve the larger goal through the use of representations of the
world, perhaps memory, and certainly lookahead in order to avoid local minima and limit cycles
and other undesirable global behavior. The reactive component achieves basic survival by reacting
in unsophisticated ways to unknown or changing information that, for whatever reason, could not
be dealt with by the deliberative components.
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1.2 Bandwidth - Conceptualization Gap
The tendency to merge these layers shows up in many proposed additions to algorithms at each
layer that attempt to avoid fundamental problems of architecture. This two-layer hierarchy can be
justified in terms of a bandwidth-conceptualization gap for which two layers are necessary.

The origin of this term is that the strategic layer usually cannot generate the bandwidth to respond
to immediate concerns while the control layer cannot conceptualize the world in rich enough detail
to enable useful strategic response. In other words, the strategic layer needs more bandwidth and
the control layer needs more time and neither layer has the luxury of these resources in practice.

It is tempting to try to use a single fast planning layer or a single smart control layer to solve the
problem, but this approach is limited in practical scope.

There are several practical problems with the idea of fast replanning.

• Most problems are well-behaved so fast replanning is not necessary and therefore waste-
ful of computing resources.

• The strategic layer cannot generate the necessary bandwidth anyway.

There are several practical problems with the idea of a smarter controller.

• It cannot handle rich goal specification or even intelligently update its goal based on
changes in the environment.

• Local minima exist in real applications and these are the historic failure models of such
systems.

1.3 Tactical Control Laver
While the two layer hierarchy can be justified with the preceding arguments, the practical fact of
the matter is that the bandwidth-conceptualization gap still cannot be spanned by only two layers.
The basic reason for this is the command following problem and the solution is the introduction
of a third intermediate layer - tactical control which is introduced by the thesis. This layer is
smarter than control and faster than planning. This layer :

• Views the goals from the strategic layer as recommendations that it may be override
when the situation demands it.

• Incorporates sufficient bandwidth to ensure vehicle survival at the coordinated actuator
control level.

• Incorporates a sufficiently accurate model of vehicle dynamics that it understands and
adapts to the inability of the controller to follow its commands.

6. The title of the thesis derives from these properties of the tactical control layer. The navigator resides
almost entirely in this layer. It is intelligent enough to understand vehicle dynamics and a local world model,
predictive enough to see consequences as far ahead as a few vehicle response times, and based on multivariate
control theory.
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Section 2: Design

This section outlined an approach to intelligent autonomous mobility based on an intelligent
predictive control architecture.

2.1 The Nature of High-Speed Autonomy
It has been shown that high-speed autonomy has the following problem characteristics:

• It is a real-time problem
• It requires adaptive, minimum throughput perception
• It is a tactical control problem
• It is a feedforward control problem
• It is a state space control problem

These problem characteristics lead to an intelligent predictive control approach to solving it.

2.2 Intelligent Predictive Control
The introduction of the tactical control layer implementing intelligent predictive control is the most
basic aspect of the problem solution. The navigator closes the overall perceive-think-act loop for
a robot vehicle. It is not concerned with the specific control of actuators themselves, so it is not in
the control layer and it cannot generate its own strategic goals, so it is not in the strategic layer.

The navigator solves the local planning problem for autonomous vehicles. That is, the problem
of deciding what to do based only on what can be seen at the moment within the field of view of
the environmental sensors. As a tactical layer entity, the system incorporates elements that might
normally exist in one of the other two.

The tactical control layer is somewhat deliberative because it:

• Performs an amount of search and uses heuristics to limit that search.
• Models and interprets the local environment with a world model.
• Considers the consequences of its actions.
• Employs some memory of the state of the environment.

The tactical control layer is also somewhat deliberative because it:

• Models the vehicle with a differential equation.
• Concerns itself with response time, throughput, latencies and time tags.
• Concerns itself with strategic command following.
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Section 3: Implementation

This section provided an overview of the real-time kernel - the operational part of the system.

3.1 Real-Time Kernel
At the highest level, the system can be considered to consist of 5 modules:

• The Position Estimator is responsible for integrating diverse navigation sensor indica-
tions into a single consistent indication of vehicle state.

• The Map Manager integrates discrete samples of terrain geometry or other properties
into a consistent terrain map which can be presented to the vehicle controller as the envi-
ronmental model.

• The Vehicle object is both the control loop feedforward element and an abstract data
structure which encapsulates the vehicle state.

• The Controller object is responsible for coordinated control of all actuators.
• The Perception module is responsible for understanding or interpreting input images

and putting them in a form suitable for the Map Manager to process.

3.2 Rationale - Bandwidth Requirements
The system is divided into these high-level objects because each has different response and
throughput requirements. Three main data streams connect the system to the physical world:

• image input stream
• vehicle state input stream
• vehicle command output stream

3.3 Test Environment Laver
The test environment is the highest level of conceptualization of the system. It externalizes system
interfaces to sensors, actuators, displays, and the file system in order to simplify porting to different
environments. Ideally, the system is ported by changing only these interfaces. This layer provides
a buffer layer which lies between the real-time kernel and the physical i/o drivers.
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Section 4: Results

4.1 Vehicles Automated
The navigator has been configured to run successfully on two very different types of vehicles:

• HMMWV (Highly Mobile Multi-Wheeled Vehicle) - a converted army jeep.
• RATLER (Robotic All-Terrain Lunar Exploration Rover) - a planetary rover. [50]

4.2 Test Run Excursion and Speed
The navigator has been used with laser range data on the HMMWV and with stereo range data on
both vehicles. In the former case, excursions of 15 kilometers and instantaneous speeds of 15 km/
hr have been achieved while tracking an externally supplied path that was specified at roughly 10
meter resolution. Average speed was on the order of 7 km/hr.

On the RATLER vehicle, the navigator is configured to run under human supervision. In this case,
semi-autonomous excursions on the order of 1 Km have been achieved and high speed is not a goal
of this work.

The Kalman filter has been implemented in stand alone mode and used as a basis for implementing
autonomous vehicle convoys. The sensor suite used included an AHRS for indicating attitude and
heading, a transmission encoder and doppler radar both for indicating vehicle speed, a video
crosstrack indicator based on a roadfollowing system, and a GPS receiver. In this mode, the filter
cycles at 100 Hz and provides sufficient accuracy for blind operation of the follower vehicle over
excursions of about 1 kilometer.

4.3 Real-Time Performance
The real-time performance of the system has been demonstrated. With adaptive perception
enabled, the overwhelming computational cost is in the tactical feedforward associated with
adaptive regard. For laser rangefinder range images, the perception and planning systems can both
run at 5 Hz on a single processor. Stereo vision requires significantly more processing.
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PART IV: Perception

In Part II: Analysis, Chapter 6: Interactions, it was shown that an adaptive approach to perception
based on the techniques of adaptive sweep and adaptive scan has several advantages. A more
complete list of these advantages is as follows:

• It has the potential to solve the throughput problem which has tended to increase vehi-
cle reaction time beyond the regimes of usefulness in real-time vehicle control.

• It amounts to a computational solution to the stabilization problem within the limits of
the sensor field of view. It essentially converts any imaging sensor into an ideal adaptive
line scanner.

• For limited field of view sensors, it provides an obvious basis for the generation of sen-
sor pointing commands which keep a region of interest centered in the image.

• It solves the sampling problem for practical purposes because variation in the range ratio
is very low over the small elevation width of the range window.

• It theoretically guarantees throughput, response, and acuity within the limits of the vehi-
cle and the sensor.

• It adapts to vehicle speed, attitude and terrain shape implicitly.

This part concentrates on the adaptive perception algorithm which forms the basis of RANGER'S
Map Manager and Perception objects. The techniques used should be applicable to any application
that models the environment with a terrain map.

Chapter 1: Concept

An adaptive perception algorithm is the organizing principle of the design of the navigator's
perception system. It confines the processing of range geometry to a focus of attention or region
of interest which extends to the end of the detection zone - but whose size is governed by the
distance moved since the last perception cycle. Thus, this mechanism applies to the image and the
perception problem and is based on a throughput argument1. Adaptive perception has three
conceptual parts:

• adaptive lookahead - set the maximum range to the end of the detection zone
• adaptive sweep - set the region of interest width to the distance travelled since last time
• adaptive scan - manage image resolution to achieve uniform groundplane resolution

The motivation for this approach to perception can be expressed in familiar terms. Analysis
suggests that much of the computational resources used to image and interpret the environment is
a waste of resources in mobility scenarios. This waste occurs for two principle reasons:

1. See Part V: Planning/Control, Chapter 1: Concept for a definition of adaptive regard that distinguishes
it from adaptive perception.
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• The sensor vertical field of view is aligned with the direction of travel so that image
sequences normally contain redundant information. Obstacles appear in the field of view
long before they can be resolved, and long after they cannot be avoided.

• The projection of image pixels on the groundplane is elongated in the wrong direction
for robust obstacle detection and minimum throughput.

This approach to perception has related precedents in other fields. Laser and video line scanners
have been used in specialized applications for a long time. Synthetic aperture radar has used
vehicle motion to provide the scanning motion of the sensor along the direction of travel. In a
phrase, the essential principle involved is why scan the sensor when the vehicle motion scans the
field of view over the terrain anyway.

The extreme instantiation of this approach would be to actually use line scanned sensors, but this
approach suffers on rough terrain due to abrupt attitude changes of the vehicle body causing holes
in the coverage of the sensor. Software adaptation provides the best of both worlds because it gives
the ideally focussed attention necessary for high speed and the wide field of view necessary for
rough terrain.

Section 1: Adaptive Lookahead

The design of adaptive lookahead is a straightforward matter. There is some maximum range
beyond which it is unnecessary to look because there will be time to look there later. In detail
implementation, the responsibility for computing this maximum range is left to adaptive regard and
the results of this computation are used to bound the far end of the focus of perceptual attention.

Section 2: Adaptive Sweep

The design of adaptive sweep is also relatively straightforward, once a key assumption is
identified, but its implications are more involved.

2.1 Selection Problem
Removal of redundant computation is apparently not a straightforward problem to solve. The key
issue is that the position of the end of a range pixel in world coordinates is unknown until it is
computed, and the computation of its location is the largest element of the computational expense
of a pixel. Any straightforward attempt to selectively process data in an area of interest apparently
falters because the problem of selection is as difficult as the problem of perception.

Luckily, for high-speed autonomy, the small incidence angle assumption solves the problem of
selection inexpensively by decoupling the problems of selection from perception.

2.2 Computational Range Image Stabilization
The central idea of adaptive perception is to specify a focus of attention in terms of the data in the
image itself. That is, the focus of attention is specified as a range window - some maximum and
minimum range within which the completely processed data must lie.
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This simple mechanism computationally points the sensor vertical field of view based on the
guaranteed response and guaranteed throughput requirements as shown in the figure below. Notice
that while the shape of the range window may be very irregular in image space, it corresponds to
a regular semi-annulus in the navigation coordinate system. This is directly due to the validity of
the small incidence angle assumption.

Image i+1

Shaded Region
Falls Within
Range Window

Image i

( Image i+1 ^

f Image i >

Figure 66 - Computational Image Stabilization

Terrain Map
(Navigation
Coordinates)

2.2.1 Computational Cost

The processing of pixels outside the range window is confined to simply reading their values and
comparing them to the range window interval. The cost offinding the range window is negligible.
The cost of processing the range window is several coordinate transformations per pixel which
was estimated in Part II: Analysis, Chapter 3: Throughput, at about 50 flops in theory and 500
in practice.

2.2.2 Physical Stabilization

If the vertical field of view is wide enough and the range sensor is fast enough in terms of range
pixel rate, this software adaptation is superior to the technique of physically stabilizing the sensor
because it responds instantaneously to both changes in the vehicle attitude and changes in the shape
of the imaged terrain.

2.2.3 Monotone Range Assumption

The 2-1/2 D environment assumption that is involved in the use of a simple terrain map leads to
an equivalent monotone range assumption - the assumption that range increases monotonically
with image elevation angle. The validity of this assumption in the target environment makes the
range window mechanism robust in practice.

2.2.4 Vertical Surfaces

The quest for the end of the range window will automatically process all data up to the top of the
image if necessary and, as a side effect, it will discover the height of a near vertical surface as
long as it remains within the range window2. This mechanism is superior to simply processing a
fixed subset of the vertical field of view (an elevation angle window).

2. Of course, it will also take more time to process a vertical surface, and this time is not reflected in any of
the theoretical analysis of the thesis. Thanks to Martial Hebert for pointing this out.

An Approach to the High-Speed Cross-Country Autonomous Navigation Problem page 184.



2.3 Computational Stereo Range Image Stabilization
Adaptive sweep is also possible for stereo ranging systems. The basic principle of the range
window can be converted to a disparity window3 for a stereo system because the two are related
by the stereo baseline.

Traditionally, the stereo problem is cast as one of determining the range for every pixel in the
image. Traditional stereo finds the range for each possible angular pixel position. Adaptive stereo
finds the angular positions of each possible range value. An adaptive approach determines those
pixels whose range value falls within a small range window, and it does so without computing the
ranges of pixels which are not of interest. This principle is called range gating in laser rangefinders
which employ it.

The motivation for the approach is that traditional mounting of sensors high on the vehicle, coupled
with the nonlinear mapping of range onto disparity, implies that the region of terrain which is
beyond the vehicle stopping distance corresponds to a very narrow region in stereo disparity space.

In a sense, the argument is that poor range resolution must be accepted anyway, so we might as
well derive benefit from the reduction in computation that should go along with it. Analysis
suggests that useful throughput improvements may approach two orders of magnitude.

Section 3: Adaptive Scan

The design of adaptive scan is a straightforward matter. Over the width of the range window, the
aspect ratio of a range pixel typically varies little - again because of the small incidence angle
assumption. Therefore, for the data of interest, a constant mapping from world model resolution to
image resolution can be assumed and images can be subsampled by appropriate factors to achieve
that resolution.

In the case of rangefinder images, a literal subsampling takes place. In the case of stereo vision, the
situation is more complex because range resolution and angular resolution are coupled. Later in
this part the implications of the use of a horizontal and a vertical baseline will be investigated in
order to make efficient adaptive scan possible in stereo vision.

3. There is a slight difference in the geometry of a stereo range image compared to a rangefinder image. The
first is based on perspective geometry and the second is based on spherical polar geometry. Therefore, a dis-
parity window corresponds to a window on the y coordinate and not the true polar range. However, in most
circumstances, this distinction can be safely ignored.
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Chapter 2: Design

Section 1: Adaptive Perception From Range Images

In the case of laser rangefinders, a range image is generated in hardware. For this class of sensors,
adaptive perception is limited to extraction of the range window from the complete image. The
adaptive perception algorithm constitutes a simultaneous implementation of adaptive
lookahead, adaptive sweep, and adaptive scan in one place. It proceeds in two phases: the
computation of the range window based on the current speed and cycle time; and the mapping of
this window into image space and the extraction of the data.

1.1 Range Window Computation - First Phase
Adaptive lookahead is implemented by computing the distance required to execute an impulse
turn at the current speed. This gives the maximum range of the range window. Adaptive sweep is
implemented by computing the distance travelled based on the current and last cycle distance
travelled and subtracting this distance from the maximum range. This adaptive sweep algorithm
will automatically adapt to any system cycle time, sensor frame rate, or vehicle speed - using
smaller sweeps for faster sensors. The planning window is defined precisely to be measured with
respect to the vehicle control point at the position of the vehicle when the command currently being
computed reaches the output communication routines. The problem of finding this data in an image
taken previously involves several aspects of time delays and geometric offsets.

First, the sensor is not mounted at the vehicle control point, so the planning window is adjusted for
the offset of the sensor in order to project the window into sensor coordinates. Second, the vehicle
is not itself a point, so if geometry under the front wheels must be known to evaluate hazards, then
the vehicle wheelbase must be added to the range window. Third, there may be significant delay
associated with the acquisition of an image, so the range measurements are adjusted for the age of
the image. The most robust way to compute this age is to find the vehicle pose when the image was
taken, as well as the most recent vehicle pose, and compute the distance travelled since image
acquisition. Fourth, the most recent vehicle state estimate is itself somewhat old and it will take
some time before the command computed this cycle reaches the output communications routines.

4. An impulse turn was chosen as the maneuver upon which to base adaptive lookahead because a vehicle
which stops when it sees an obstacle (panic stop maneuver) is not useful when obstacles are dense. The
impulse turn is a turn from zero curvature to the maximum. Other distinguished maneuvers are the panic stop,
the turning stop, and the reverse turn.
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So the distance that will be travelled by the time that the command reaches the output
communications routines is dependent on the age of the state estimate and the current cycle time
of the system. A conceptual C code fragment is shown below:

/*
** Plan Window
*/
rhomin = minimum safe turn radius
treact = impulse turn reaction time (turn only)
speed = most recent speed estimate
range_offset = distance from vehicle frame to sensor frame
Pmax = speed * treact + rhomin;/* adaptive lookahead */
/*

** Range Window
*/
img_dens = imaging density
cycle_dist = distance travelled since last cycle
Pmin = Pmax - img_dens*cycle_dist; /* adaptive sweep */
. /*
** Convert to image space - range feedbackward
*/
cur_dist = distance of most recent state estimate
img_dist = distance travelled when image was taken
delay = estimated latency of most recent state estimate
delay += system cycle time
fut_dist = cur_dist + speed*delay;
Rmax = Pmax + (fut_dist-img_dist)+range_offset ;
Rmin = Pmin + (fut_dist-img_dist)+range_offset;
/*
** Add the wheelbase
*/
Rmax += wheelbase

Figure 67 - Range Window Computation

1.2 Range Window Processing - Second Phase
The second phase of adaptive perception will be presented in two passes of increasing complexity.
First, a simple implementation is presented that ignores the issue of adaptive scan.

1.2.1 Adaptive Sweep

By the small incidence angle assumption, the projection of the sensor range onto the groundplane
is essentially the groundplane y coordinate. However, terrain roughness and nonzero vehicle roll
mean that the position of the range window in the image is different for each column. Thus the
range window is processed on a per column basis. In order to robustly find the range window, each
column is processed in the bottom-to-top direction. The direction of horizontal scan is irrelevant.

An Approach to the High-Speed Cross-Country Autonomous Navigation Problem page 187.



A conceptual code fragment is as follows:

/*
** Process Range Window
*/
j = image->start_col;
while ( j < image->end_col )
{
i = image->end_row;
while ( i > image->start_row )
{
if (range(i,j) > Rmax ) break;
else if( range(i,j) < Rmin ) {i-
else process_pixel_into_map();
i--;

continue;}

Figure 68 - Adaptive Sweep Implementation

The monotone range assumption appears as the break statement after the first conditional of the
inner loop. The start_col and end_col variables implement a fixed azimuth and elevation angle
window within which the range window always lies on typical terrain.

1.2.2 Adaptive Sweep/Scan

Now, a more detailed version would incorporate adaptive scan by intelligently subsampling the
image in both directions in order to keep the pixel density on the groundplane uniform. This can
be accomplished by invoking the flat world assumption as an approximation. From earlier
analysis, the projections of a range pixel onto the groundplane in the crossrange and downrange
directions are:

dy •IR2/hJd0 dx = Rd\|/

In the simplest form of adaptive scan, the number of pixels skipped in the horizontal and vertical
directions can be set in the ratio of the average expected value of the perception ratio h / R at the
maximum range. However, the differential relationships are also a function of range. Consider
attempting to keep dx and dy constant by varying the column step d\|/ and row step d0. The
actual width of the range window is narrow in elevation angle, so the variation in ideal column step
is small. Appropriate density is guaranteed by computing the column step at the maximum range
because it is smallest here. Thus
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is the ideal column step after it is converted to pixels. The ideal row step varies greatly with range.
It decreases quadratically with increased range.

Luckily, however, it can be computed anew for each pixel because the range window is processed
column by column. Although the flat world assumption may seem inappropriate on rough terrain,
the use of it in adaptive scan works well in practice. Fundamentally, the most important factor
affecting range pixel density is the local terrain gradient. If the range gradient is high in the image
in the horizontal or vertical direction, then it is probably the case that the terrain is undersampled
by the sensor, and the flat world assumption makes little difference because the data is of poor
quality. Indeed, it may be more robust to ignore such data. If however, the gradient is small, the
algorithm performs acceptably. A conceptual code fragment is given below:

Compute scan increments**
*/
ds = map resolution
col_skip = ds/Rmax*image->cols/HFOV;
/*
** Process Range Window
*/
j = image->start_col;

while ( j <= image->end_col + col_skip)
{
i = image->end_row;
while ( i >= image->start_row - row_skip)
{
if (range(i,j) > Rmax ) break;
row_skip = ds*h/(range(i,j)*range(i,j))*image->rows/VFOV;
else if( range(i,j) < Rmin ) {i -= row_skip; continue;}
else process_pixel_into_map();
i -= row_skip;
}

j += col_skip;

Figure 69 - Adaptive Sweep/Scan Implementation

One of the virtues of the algorithm is that it intelligently moves toward the bottom of the range
window by subsampling in the region of the image where the data density is extremely high. In
actual implementation, oversampling factors are introduced into both the row and column skip
factors as a safety margin.
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Section 2: Adaptive Stereo Perception

2.1 Basics of Stereo Perception
For outdoor terrain, area-based stereo algorithms are typically used because it is necessary to
estimate the range of every pixel in the image. The typical steps in the process are:

• Preprocess the images to enhance texture and remove bias and scale variations across the
image. The output of this process is a normalized image which corresponds to each input
image.

• For each candidate disparity considered, for a window around each pixel in the first
image, compute a measure of correlation between it and a window around the pixel in
the second image which is displaced by the disparity considered. The output of this pro-
cess is a cube of numbers of the form Corr[i,j,d] which will be called the correlation
tensor.

• The curve Corr[d] obtained by fixing the row and column indices of the correlation ten-
sor will be called the correlation curve. For each pixel in the first image, the correlation
curve is searched to find its extremum value. The value of the disparity at the extremum
value of the correlation curve for that pixel is the quantity of interest. The output of this
process is a disparity image.

• For each pixel in the disparity image, convert disparity to range using the stereo baseline.
The output of this process is the range image.

2.2 Stereo Triangulation
The basic stereo triangulation formula for perfectly aligned cameras is quoted below for reference
purposes. It can be derived simply from the principle of similar triangles.
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2.3 Width of Disparity Window
Using the previous result, consider the width of the disparity window which corresponds to a
typical range window. It is most useful to remove the dependence on the focal length by expressing
disparity as an angle, the normalized disparity, thus:

Then, for a range window between 25 meters and 30 meters, and a stereo baseline of 1 meter, the
angular width of disparity window is:

A8 = ^ - i - = 0.0067 = 0.38

Thus, the range of disparities which corresponds to a typical range window is very small indeed.
This implies that any process which robustly identifies global maxima of the disparity curve can
generate the range window in an image. Again, because of the validity of the small incidence
angle assumption, and because the window is based on the data itself, the process will
automatically adapt for rough terrain and vehicle attitude. Such a process implements adaptive
sweep inside the stereo algorithm.

2.4 Essential Difficulty
Consider the following typical correlation curve:.

Corr[d]

disparity
window

correct computed
disparity disparity

Figure 71 - Essential Difficulty
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If the search for the maximum is confined only to the disparity window, then a local maximum will
be found for the pixel, and not the correct global maximum. This will be called the local
correlation maximum problem. This implies that a typical image will contain pixels and regions
where the ranging is incorrect as well as the correct range window as shown below:

Disparity Image

Local Maxima

True Range Window

Figure 72 - Spurious Disparities

Spurious matches occur fundamentally because regions which do not correspond physically
actually look more or less the same. This is called the repetitive texture problem. Several
solutions to the repetitive texture problem help the situation somewhat but the simple technique of
computing connected components and removing small regions [59] works effectively and is
basically free because a disparity image cleanup pass is required even when a wide disparity range
is searched.
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Section 3: Refinements to Correlation-Based Stereo

This section introduces some refinements to correlation-based stereo vision that adapt the
traditional algorithm to the specifics of the application.

3.1 Optimal Shape of the Correlation Window
An earlier section derived the geometric decorrelation for a correlation window of constant
disparity gradient:

Notice that the decorrelation depends only on the disparity gradient and the window dimensions.

This expression can be optimized if another constraint equation is available. Let the area of the
correlation window remain constant while the width and height vary dependently. Then, setting the
derivative to zero, there results:

Thus the optimum aspect ratio of the correlation window is the inverse of the ratio of the
corresponding components of the disparity gradient5. This is intuitively appealing because it
requires that the extent of the window be minimized in the direction where disparity changes most.
This result explains why outdoor stereo systems tend to perform better when the correlation
window is wider than it is high. On average, the disparity gradient is mostly vertical in the image
plane in outdoor settings.

3.2 Complexity of Stereo Vision
It is a straightforward matter to compute the complexity of stereo vision when implemented on a
serial workstation by computing the complexities of the component processes6. A few assumptions
will be made to simplify matters.

3.2.1 Assumptions

These assumptions do not affect the result - they only simplify the analysis:

• Scaling and rectification are performed as a single pass operation as they currently are in
the navigator. This requires that scaling be done by subsampling, not filtering, and that
rectification be implemented by inverting the rectification matrices.

• Let the image consist of R rows and C columns and let the angular resolution be pre-
cisely adequate to provide a pixel footprint satisfying the acuity requirement.

• Let the cost of multiplying a vector by a homogeneous 3 X 3 matrix be K2 flops per

5. Bill Ross of VASC at CMU related this observation to me verbally several years ago. The above analysis
simply proves why it is so.
6. The component processes are explained in the next chapter on implementation.
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pixel.
• Let a moving average convolution operator cost K2 flops per pixel.
• Let the normalization and correlation windows be the same size and call this size W col-

umns by H rows.
• Let the number of disparities searched be a constant interval from 0 to some maximum

value of D.

3.2.2 Complexity of Traditional Stereo Vision

The total complexity can be developed as follows:

• Scale and Rectify. This operation consists of a multiplication by a matrix and hence, for
two images, it is O(2K{RC).

• Normalization. This operation is independent of the window size and can be imple-
mented with a moving average operator, so, for two images, it is O(2K2RC).

• Correlation. This operation is also independent of window size and can be implemented
with a moving average operator. Correlation must be performed for each value of dispar-
ity, so, for two images it is O(K3RCD).

• Disparity. This operation involves searching the disparity curve, containing D correlation
scores, for every pixel. It is therefore O(K4RCD).

• Cleanup. This operation involves checking connectedness of every horizontal and verti-
cal pair of pixels with some extra processing for relabelling that is not of substantial
complexity, so this operation is (XK^RC).

• Triangulation. This operation consists of converting disparity to range with a simple for-
mula and then multiplying a vector by a matrix, so it is (XK^RC).

The total complexity of traditional nonadaptive stereo vision is therefore (on a per frame basis):

3.2.3 Complexity of Partial Subsampling

Adaptive scan is somewhat problematic in stereo because the high angular resolution that is so
computationally expensive is necessary to provide the texture necessary for accurate triangulation.
Apparently, adaptive scan can be simply implemented in stereo by skipping columns in the input
images. Note, however, that this technique can fail in practice unless one is careful because
disparity resolution is unacceptably compromised.

It is possible to subsample the disparity image but the computations which generate the disparity
image (except disparity itself) normally must be performed at high resolution. Adaptive scan can
be implemented in the latter stages of stereo including the latter stages of correlation, disparity and
triangulation. This technique will be called partial subsampling [48]. Supposing that the
horizontal angular resolution is adjusted by a factor of the perception ratio relative to the vertical,
the complexity in this case is:
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If one is willing to accept the complexity of implementation, one can subsample the correlation
window in one of the images to further reduce processing7. The complete set of steps involved in
this more efficient approach are:

Subsample one of the images in the normalization and rectification step. Then:

2 (Kx + K2) becomes I 1 + ~ I (K1 + K2)

Subsample the correlation window and the correlation tensor. Then:

K3 + R K
4 becomes R ( K 3 + K 4 )

The final complexity then becomes:

fstereo = [( 1 + |) <K1 + K2> + | K
5

 + | K J RC + | <K3 + K4> R C D

fstereo = ( * " |) <K1 + K2> RC + | [ <2 K1 + 2 K 2 + K5 + K6> RC

3.2.4 Complexity of Complete Subsampling

Suppose there were a way to subsample the input images by the factor of the perception ratio. In
this case, the overall complexity of stereo would be reduced to — of its traditional value because
the common factor of C in every term would be multiplied by mis factor. This technique will be
called complete subsampling. Its complexity is trivially:

fstereo = | [ <2 K1 + 2 K 2 + K5 + K6> RC

Notice that this is less than the horizontal partially subsampled complextiy by the missing first
term:

I — (K +K )RC

It will be shown that the use of a vertical baseline permits this form of complete subsampling.

7. Thanks to Larry Mathies for pointing this out.
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3.3 Adaptive Scan in Stereo Vision
The techniques of partial and complete subsampling implement adaptive scan in stereo vision. This
section investigates the differences between both approaches. The perception ratio is on the order
of 1/10, so adaptive scan stereo vision can be an order of magnitude faster than traditional stereo
because the raw input images can be reduced in horizontal resolution by an order of magnitude.

3.3.1 Equivalent Distortion

Earlier sections have introduced a quantity called the geometric decorrelation as a measure of the
local distortions of corresponding regions that is inherent to stereo vision. This quantity is
dependent only on the disparity gradient over the correlation window and therefore only on the
scene geometry. Hence, the local distortions of horizontal and vertical baseline stereo systems are
identical and distortion is not a material concern in choosing between the two.

3.3.2 Resolution Coupling

Fundamentally, the difficulty of implementing adaptive scan in stereo vision arises from the
relationship, intrinsic to triangulation, between angular resolution and range resolution. To see this,
consider again the fundamental acuity relationships for a non-triangulated rangefinder. Recall the
usual axis conventions where x points to the right, y forward, and z up. Then for horizontal and
vertical pixels of sizes d\|/ and d0 respectively (see page 70):

dx = Rd\|/ dz = Rd9 dy = 5-
n

Solving these for the angular resolutions:

In stereo vision, the range resolution relationships for horizontal and vertical baselines are as
follows (see page 81) where the approximation R « Y has been used:

dy = — d\|/ (horizontal baseline)
b

dy = — d0 (vertical baseline)
b

Solving these for the angular resolutions:

d\|/ = — dy (horizontal baseline)
R

d0 = — dy (vertical baseline)
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3.3.3 Triangulation

These equations can be used to detennine angular resolution by fixing the spatial resolutions
(dx, dy, dz) and solving for the angular resolutions (d\|/, d0) . The minimum value of each

resolution variable is the requirement on the imaging system. Let all three spatial resolutions be
equal (dx = dy = dz) . Then, assuming that the baseline is less than the height, the most
constraining equations for both stereo pair orientations become:

d\|/ = — dy
R

d9 = -2-dy
R

(horizontal baseline)

R

(vertical baseline)

The reason for this asymmetry is that angular resolution requirements are already higher in the
elevation direction for any type of sensor in high-speed autonomy.

3.3.4 Visualization

The points made above in algebraic terms can be easily seen with a picture. Let a cube exist in the
environment whose dimensions are exactly the smallest dimension of interest (minimum acuity).
Let the image pixels be such that they project onto precisely this dimension in the downrange
direction. In the case of horizontally triangulated traditional stereo, the left figure results for a
perception ratio of 8 and 72 range pixels fall on the cube.

The central point being made is that it is not possible to widen the image pixels in the x direction
on the front surface because this also widens the pixels on the top surface of the cube in the y
direction. In the horizontally triangulated adaptive scan case, the cube geometry is subsampled in
order to reduce computation, and 9 pixels fall on the cube. In the vertically triangulated adaptive
scan case, it is the z direction which is coupled to y, so it is possible to widen the pixels on the front
surface and again 9 pixels fall on the cube. Note that:

• In all cases the minimum acuity requirement is barely met.
• The ratio of numbers of pixels from traditional to subsampled is precisely the inverse

perception ratio of 8.

r
f z

Traditional
(Horizontal)

Partial Subsampling
(Horizontal)

Complete Subsampling
(Vertical)

Figure 73 - Adaptive Scan in Stereo Vision
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3.3.5 Advantages of Vertical Baseline

Vertical baseline stereo has several advantages. Some of these are:

• Complete subsampling is more straightforward to implement than partial subsampling,
because this allows the requirement on the horizontal resolution to be relaxed at the input
to the stereo algorithm. One simply runs the traditional stereo algorithm on rotated and
scaled input images.

• It does not reduce the horizontal field of view (which is often already too small) but
instead reduces the vertical field of view (which is often larger than necessary).

• It promises to permit extremely wide field of view stereo from a single camera pair
because the distortions introduced by a wide field of horizontal view do not matter much
when triangulating vertically.

• It permits a straightforward operation to remove the distortions due to the average
expected disparity gradient. The vertical dimension of the bottom image is simply scaled
spatially by the inverse of the disparity gradient.

3,4 Adaptive Sweep
A full implementation of adaptive perception requires that adaptive sweep be introduced. The
implementation of adaptive sweep is based on the disparity window presented earlier as well as an
associated computation of the azimuth window in the image to which the disparity window is likely
to correspond. From the transformations provided in the appendices, the closed form stereo range
image of flat terrain is:

where Y is the range measured normal to the image plane, 0 is the pixel depression angle (positive
downwards) and p is the tilt (pitch) angle of the camera (positive downwards). Clearly this
relationship can be solved for the pixel depression of a given range. Hence, for a given range
window, we have:

In order to account for the fact that the flat terrain assumption is not entirely correct, this window
is enlarged by an appropriate amount in either direction. The disparity window is computed in
straightforward manner from the basic triangulation equation.
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Section 4: Terrain Mapping

This section describes the terrain map data structure which is used to model the environment in
rough terrain.Terrain mapping is the process by which surface descriptions, obtained from different
vantage points, are accumulated into a consistent environmental model [31]. In order to provide
the path planner with a single, coherent, uniform density data structure that may span several
images, the approach taken is to transform images into a regularly-spaced cartesian grid called a
Cartesian Elevation Map (CEM) or simply a map. In the map, each cell encodes z.. where the z
coordinate is unique for any pair i,j and is referenced to some fixed coordinate system called the
navigation coordinate system with respect to which the vehicle moves. Individual elevation
buckets in a terrain map are called cells to distinguish them from range image pixels.

Under some circumstances, natural outdoor terrain is well approximated by a surface expressed as
z = f(x,y) where the z axis is aligned with the local gravity vector. An important exception to this
assumption is trees and other large vegetation, but barren terrain is assumed in this work in order
to avoid the need to differentiate vegetation that can be traversed from vegetation that constitutes
a hazard. Thus, the use of a terrain map normally means that the 2-1/2 D world assumption is
being adopted.

4.1 Wrappable Map
Consider the implications of satisfaction of guaranteed response and acuity on the memory and
computation required to manage a traditional terrain map. Up to 30 meters of lookahead is not
uncommon and resolutions on the order of 1/6 meter are theoretically necessary. Using only 20
bytes of memory per map cell, over 1/2 megabyte of memory is required to store a typical map. If
this map is stored as a physically coherent block of memory, it must be physically shifted and
copied after the acquisition of each image in order to account for the relative motion between the
vehicle and the terrain. Using a realistic frame rate necessary to guarantee detection, the overhead
involved in simply storing and managing the environmental model is not justified in a real-time
system.

The solution to this problem is a classical one from computer science - the ring buffer. However,
there is no intrinsic requirement to insert and delete nodes into a linked structure because the map
is spatially coherent and of uniform resolution. Hence, a simple array accessed with modulo
arithmetic suffices to logically scroll the map as the vehicle moves.

The operating principle of the wrappable terrain map is that the indices into the array are
determined by modulo arithmetic as follows:

Figure 74 - Wrappable Map Indexing
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The operator [ x j is the least integer function and rem(x/y) is the floating point remainder
function. These are implemented more efficiently than a function call in the code8. The operation
of the technique when applied to three successive images is indicated below.

First
Image

Second
Image

Third
Image

{^7
A wpt

Scrolling
Map

Wrappable
Map

Figure 75 - Wrappable Terrain Map

This approach creates new problems, the most serious of which is the condition that the mapping
from world coordinates to map indices is multiply defined and therefore the inverse mapping is not
a function. In mathematical terms, the coordinate transform is not onto.

An infinity of points in global coordinates correspond to a single cell in the map, so remnants of
images of arbitrary age may remain in the map indefinitely. Suppose the elevation at the point (15,
25) is needed and the map is 10 by 10. Then the point (5,15) may also be in the map. A query for
the elevation at (15, 25) may get the elevation at (5, 15) instead.

The system manages this problem in a very simple way. Although all data remains in the map until
it is overwritten, each entry is tagged with the distance that the vehicle had travelled since the start
of the mission at the time the pixel was measured. If the "age" of the last update is too old, the cell
is considered to be empty9. This technique eliminates all of the overhead of map management
except for the coordinate transformation necessary to access it. If pixels older than the length of
the map are discarded in this way, it is impossible for old data to poke through the holes in new
data.

The impact of this data structure is that it is never necessary to perform a copy of the map data
structure, or completely traverse it for any reason. Theoretically, the complexity of map
management is squared in the resolution unless the map is wrappable. The cost of management of
this data structure is independent of both its size and its resolution.

4.2 Motion Distortion Removal
By the time an image is received by the perception system, the vehicle may have moved a
considerable distance since the image was acquired. So, the processing of the geometry in the
image must account for the exact position of the vehicle when the image was taken. Further, some
sensors such as scanning laser rangefinders may require significant time to scan the laser beam over
the environment. In the worst case, there is a distinct vehicle pose associated with each pixel in a
ladar image. If this motion distortion is not accounted for, the terrain maps computed from images
will be grossly in error.

8. By assuming excursions are limited to a few times the distance to the moon!
9. Age is measured by distance and not time because otherwise the geometry under the wheels will eventually
disappear when the vehicle stops.
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The worst case is a high angular velocity turn as indicated in the figure below. If rangefinder
scanning takes about 0.5 sees and the vehicle is travelling at 6 mph and turning sharply, its angular
velocity can be as high as 1 rad/sec, so an obstacle can be smeared by 30° in a rangefinder image
at high speed. Similarly, if the input latency is 0.5 sees and it is not accounted for, objects will also
be shifted by 30° in a rangefinder image at high speed. Of course, the range to an object will also
be overestimated by the distance travelled in 1 second.

Note: Scanning from top to bottom.

Perceived
Object

Instantaneous Scan at Pos 1

True Scan from Pos 1 to 2

Process
Image
Position 3

End
Scanning
Position 2

Start
Scanning
Position 1

Real
Object

Instantaneous Scan at Pos 3

Figure 76 - Motion Distortion

This distortion of range images is removed by maintaining a history of vehicle poses sampled at
regular intervals for the last few minutes of execution and searching this list for the precise vehicle
position at which each range pixel was measured.

4.3 Delayed Interpolation
The terrain map is not interpolated at all because interpolation requires a complete traversal which
is too expensive to perform. Instead, the responsibility for interpolation is left with the users of the
map. Spatial interpolation is wasteful because the ultimate use of the map is to evaluate vehicle
safety and vehicle safety can be expressed as a time signal.

It is more efficient to delay interpolation until the point in the computation at which it is really
needed, and this point occurs inside the path planner. Also, only a small portion of the map is
actually used in some situations because the vehicle maneuverability is limited. Any interpolation
of unused geometry amounts to a waste of resources.
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Another aspect of the interpolation problem is that occlusion is inevitable anyway, so spatial
interpolation can never succeed fully without unjustified and harmful smoothness assumptions on
rough terrain.

Thus the path planner interpolates in time instead of in space. Throughout its internal processing,
the central data structure is a time signal which may or may not be known at a particular point in
time. The system is robust by design to unknown signal values and, as a by-product of its
processing, computes an assessment of how much geometry is actually unknown and reacts
accordingly. In this way, interpolation and occlusion are treated in a unified way and the system
considers too much of either to be hazardous.

4.4 Image Registration
A simple image registration algorithm is used in situations where the imaging density is reduced
below the amount necessary to ensure that the geometry under the rear wheels comes from the
same image as the front wheels in the feedforward simulation.

The basic mechanism is to compute and remove the average elevation deviation between the
overlapping regions of consecutive images. Currently, only the elevation (z) coordinate is matched
and this works best in practice due to systematic errors which are, as yet, unidentified. When the z
deviation of two consecutive images is computed, it is applied to all incoming geometry samples
in order to remove the mismatch error.

4.5 Elevation Uncertainty
After the mean mismatch error is removed, there are still random errors in the elevation data. In
order to represent the variation in geometry in a single map cell and to improve signal to noise
ratios, a scatter matrix is computed [35] incrementally as each new range pixel is merged into the
map. The scatter matrix is defined as:

s =
X x x Xxy Xx z

X?x Xyy X^2

X z x Zzy X z z

The advantage of this incremental approach is that the mean and standard deviation of the
evolving 3D distribution is available at any point in time from some simple formulas. Specifically,
the deviation in z is useful for computing the uncertainty in the hazard estimates generated by the
path planner.
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Chapter 3: Implementation

This section overviews the implementation of the perception system. Image generation may be as
simple as a hardware function for color, intensity, or laser range images, or may involve nontrivial
processing for stereo images. The perception system converts range image sequences into a large
number of samples of the geometry of the vehicle's immediate environment specified in the
navigation cartesian coordinate system. This subsystem incorporates an image processing element
which converts a raw image into an ideal image, an adaptive perception element which determines
which region of the image contains new information and therefore warrants the computational cost
of coordinate conversion, and finally the coordinate transformation itself.

Section 1: Coordinate Transformation

The coordinate system conversion proceeds from image space all the way to global coordinates.
Therefore the vehicle position estimate specified in the vehicle state is required in order to do this
transformation. Old vehicle positions are used in the coordinate transformation in order to remove
the distortion associated with the delay of the perception and communication electronics.

The data flow diagram for the coordinate transform component of the map manager object is given
below. The mathematics of these transforms are documented in the appendices. This section takes
a range image as input and produces samples of geometry in navigation coordinates as output.

Elevation
Samples

Range
Range \ Window / Compu
Window ) « ( Range
Filter / \ Window

1.3 / \ 1.4

Planning
Range
Window

Figure 77 - Coordinate Transformation Data Flow
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1.1 Ambiguity Removal
For amplitude modulated sensors, range is available modulo some effective modulator wavelength.
This module reconstructs an ideal range image from a range staircase generated by an AM laser
rangefinder.

1.2 Median Filter
This module uses the well-known median filter algorithm to reduce image noise without smoothing
the entire image as a side effect.

1.3 Range Window Filter
This module implements the adaptive perception algorithm. For each column of the image, the
algorithm walks up from the bottom to the top to determine the range pixels which are within the
current region of interest, and only those pixels are passed onto later stages in the processing.

1.4 Range Window Computation
This module transforms the planning range window, supplied by the vehicle object, into a range
window in sensor coordinates. The transform accounts for the position of the sensor on the vehicle,
the latency of the sensor, and the size of the vehicle wheelbase.

1.5 Image to Sensor
Based on the projection model for the sensor, which may be azimuth polar, elevation polar, or
perspective, this module converts coordinates from (range, row, col) to (x,y,z) in a sensor-fixed
cartesian coordinate system. A lookup table called the projection table is used which specifies the
direction cosines of the ray through each pixel for efficiency reasons.

1.6 Sensor to Vehicle
Based on the position and orientation of the sensor frame on the vehicle, this module converts
coordinates from the former to the latter via multiplication by the relevant homogeneous transform.
If the sensor is mounted on a head, the head transform is incorporated in real time. If not, the
transform is fixed and is computed once at start-up.

L7 Vehicle to World
This module uses the position of the vehicle when each pixel was measured in order to convert
coordinates into the global frame of reference via the relevant homogeneous transform. Elements
of this transform change as the vehicle moves, so it is recomputed each cycle.

1.8 Pose Selector
This module interpolates linearly between old vehicle states based on the known physical scanning
pattern of the rangefinder (or a single pose can be used for stereo) and assigns a (potentially unique)
pose to every pixel in the image. In this way, both motion distortion and aliasing in the terrain map
are avoided. The transforms required to form the range image (such as disparity to range for stereo)
are considered to exist outside this part of the system.
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Section 2: Map Manager

The Map Manager deals with the transformation of data into and out of the discrete representation
of the terrain map. The data flow diagram for this component is given below:.
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Figure 78 - Map Management Data Flow

2.1 World to Map
This module converts coordinates from (x,y) to (i,j) in order to process terrain samples into a map.
A single block of memory is used to store elevation and the (i,j) coordinates of a point are
computed by modulo arithmetic on the input (x,y) tuple.

22 Map to World
This provides the inverse transformation to the above for debugging purposes.

2.3 Registration
This module recovers the vehicle excursion between images by matching the overlapping regions
of consecutive images. Only the elevation (z) coordinate is matched. When the z deviation is
computed, it is applied to all incoming samples in order to remove the mismatch error.
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2.4 Fusion/Accumulation
This module computes mean and standard deviation statistics for map cells in situations when two
or more range image pixels from the same image (or optionally, from consecutive images) fall into
the same map cell.

2.5 Write Map
This module performs the physical memory write operation. When pixels are placed in the map,
they are tagged with the current distance travelled in order to implement a cell aging feature that
prevents overlap of separate pages of geometry. This is a very efficient mechanism for avoiding the
problems of page overlap. It is easy to implement because of the finite radius of curvature of the
vehicle.

Aging is performed on a cell-by-cell basis in the map so that old pages do not poke through the
holes in new images. They will be correctly discarded based on age even though they are still
physically in the map. The mechanism works correctly for a stationary vehicle because distance is
used instead of time as a measure of age.

2.6 Read Map
This module performs the physical read of memory when a query is received.

2.7 Age Filter
When the map is read, this module checks the age of the information against the current distance
of the vehicle. If the information is too old, the cell is treated as unknown outside the map manager.
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Section 3: Stereo Vision

The implementation of correlation-based stereo vision is a straightforward series of
transformations of the input image based on the techniques used in [71]. The data flow diagram for
this component is given below.

Correlation
Tensor

Range
Image

Sensor
Definition

Disparity
Image

Figure 79 - Stereo Vision Data Flow

3.1 Scale and Normalize
This module replaces each pixel with its normalized value based on the mean and standard
deviation of intensity over the correlation window. This operation enhances texture and removes
localized bias from the image. An efficient moving average algorithm is used to compute the
convolutions quickly.

3.2 Rectify
This module warps the input images into ideal epipolar geometry. This operation ensures that a
match for a given region of the first image will be found along the same row (horizontal baseline)
or same column (vertical baseline) of the second image. The inverse rectification matrix is used so
that processing time is proportional to the number of output pixels rather than the number of input
pixels. When speed is important, the scaling and rectification operations can be merged together
very efficiently by using the inverse rectification matrix.

33 Correlation

This module computes the correlation between each window in the first image and each window
in the second image within the disparity image. An efficient moving average algorithm is used to
compute the convolutions quickly.
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3.4 Disparity
This module finds the disparity value at which the correlation curve for each pixel in the first image
is maximum. Optionally, a subpixel disparity estimation routine computes subpixel disparity.
Pixels whose maximum correlation scores are low or whose maxima are not sufficiently unique are
marked as bad.

3.5 Cleanup
This module uses a classical blob-coloring algorithm to remove those connected regions in the
disparity image whose overall size is a small fraction of the total image.

3.6 Triangulation
This module uses the camera model of the first camera to convert disparity to (x,y,z) coordinates
in the camera frame.
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Chapter 4: Results

Section 1: Parameter Configuration

The following two section will present results for perception based on laser range images and
stereo vision. In both cases, the following configuration of important system parameters applies.
While adaptive perception resamples a range image for optimum coverage of the terrain, the
specific attributes of the range sensor and cameras used for the following results are given in the
table below:

Table 12: ERIM Range Sensor Parameters

Attribute

Image Rows

Image Cols

HFOV

VFOV

HIFOV (angular resolution)

VIFOV (angular resolution)

Frame Rate

Value

64

256

80°

30°

0.3125°

0.4688°

2 Hz

Table 13: Camera Parameters (Vertical Baseline Case)

Attribute

Image Rows

Image Cols

HFOV

VFOV

HIFOV (angular resolution)

VIFOV (angular resolution)

Frame Rate

Value

640

486

20°

20°

0.0412°

0.0312°

30 Hz
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Adaptive perception and adaptive regard are affected primarily by the following parameters:.

Table 14: Configuration Parameters

Attribute

Vehicle Speed

Imaging Density

Column Oversampling Factor

Row Oversampling Factor

Map Resolution - x

Map Resolution - y

# Turn Commands

Value

3m/s

1.2

2

2

0.75 m

0.75 m.

15
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Section 2: Range Images

In a typical image, the pixels that are actually processed by the adaptive perception algorithm form
a jagged-edged band across the horizontal. The width of the band decreases quickly as the vehicle
speed increases and adaptive lookahead moves the window up the image. However, the validity of
the small incidence angle assumption10 guarantees that adaptive perception will generate a
perfect wedge of geometry which is exactly the requirement for the current planning cycle
regardless of the vehicle attitude or terrain shape.

The following figure gives a sequence of range images for a run of the system simulator on very
rough terrain using a simulated rangefinder where the pixels that were actually processed fall
between the thin black lines. On average, even in this worst case, only 75 range pixels out of the
available 10,000 (or 2%) were processed per image11. Thus, the 2% geometric efficiency of the
sensor is effectively increased to 100% and throughput is increased by a factor of 100 times, or two
orders of magnitude.

There are five range images arranged vertically on the left. These are rendered as intensity images
where darker greys indicate increasing distance from the sensor. The terrain map constructed by
the perception system is rendered on the right. The top figure shows the map as an image where
lighter greys indicate higher elevations. In the center of the map is the vehicle at the position where
the 5th image was captured. The lower right figure is the same terrain map rendered as a wireframe
surface from the vantage point of the initial position.

There are three hills in the scene whose range shadows are clearly visible in the terrain map. In the
first image, the vehicle is accelerating but still travelling relatively slowly. The range window is
relatively wide and positioned near the bottom of the image. The first hill is in the range window.
In the second image, the second hill is in the range window and the first hill has already been
processed. Indeed, none of the left side of the image is processed because the data in the range
window is occluded. In the third image, the third hill is now in the range window. In the fourth
image, the vehicle is driving past the first hill and is rolled to the right because of it. This rolls the
image to the left and the algorithm compensates appropriately. In the fifth image, the range window
has moved past the third hill to the flats beyond and a fourth hill is barely visible in the distance.

The system performs identically on real images, but simulated ones were used here to illustrate
several points within a limited space.

10. Of course, it is the relative accuracy of the small angle assumption across two images which really matters
for throughput reasons, so the continuity assumption makes the small angle assumption even more valid.
11. Note that the 100 times improvement is consistent with Figure 59 at a speed of 5 meters/second. This is
an experimental and theoretical result. At 20 mph, the improvement is theoretically 4 orders of magnitude.
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Range Image Sequence

Image 5

Image 4

Image 3

Image 2

Image 1

Terrain Map

Hill 3 93

Figure 80 - Adaptive Rangefinder Perception

Actual perception performance is given in the tables below for a series of images of flat terrain:

Table 15: Adaptive Perception Performance

Attribute

# Pixels Processed

Run Time

Value

75

0.022 sees
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Table 16: Nonadaptive Perception Performance

Attribute

# Pixels Processed

Run Time

Value

16384

0.352 sees

Performance on rough terrain can be expected to be worse than this because vertical surfaces
project into larger regions in the image plane than do horizontal ones12. The results do not scale
linearly because the adaptive result includes a constant setup time. Nonetheless, the adaptive result
is 16 times faster than the nonadaptive result and if the ERIM sensor had better angular resolution,
the improvement would be proportionally better.

In more concrete terms, the example can be understood in terms of the number of scanlines per
image that would be processed if the terrain were flat. If the terrain were flat, there would be no
occlusion and the number of pixels processed per image would be on the order of 100, not the 75
given in the table. There are 256 range pixels in azimuth. These are subsamped at roughly a factor
of 8. The angle spanned between pixels is thus 2.5°. The maximum range of the range window was
15 meters. Thus, the horizontal spacing of pixels is 0.65 meters which is within the map resolution.

In the downrange direction, there are about 3 scanlines processed per image because there are 100
total and 32 in a line. Thus, the angular width of the region of interest is 1.4°. Using the acuity
relationships in the downrange direction, the distance projected onto the groundplane is 1.83
meters for three pixels or 0.61 meters per pixel which is also within the map resolution.

Clearly, the system achieves barely adequate spatial resolution and hence minimum throughput.
The system achieves the throughput necessary for 20 mph rough terrain autonomy on a typical
engineering workstation.

12. Thanks to Martial Hebert for pointing this out.
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Section 3: Stereo Vision

3.1 Horizontal Baseline
The following figure illustrates the operation of adaptive stereo on two horizontal baseline input
images. The initial input images appear at the left. The normalized, texture-enhanced images
appear to the right of the input images. To the right are the nonadaptive and adaptive disparity and
range images. The disparity images are shown to demonstrate the spurious matches which are
caused by incorrectly chosen extrema in the correlation curve. In the case of the adaptive version,
further spurious matches are a by-product of the disparity window approach.

In the adaptive case, some of these spurious matches correspond to local maxima in the correlation
curve, but there is no information available to detect this. Finally, the cleaned-up range images are
presented below the disparity images. The cleanup algorithm incorporates an efficient filter, based
on classical region-finding techniques, which removes the local maxima and provides a clean range
image for processing by the rest of the navigation system:

Figure 81 - Adaptive Horizontal Baseline Stereo

A breakdown of this horizontal baseline run is shown in the table below:

Table 17: Horizontal Baseline Stereo - SPARC 20

Attribute

Input / Output / Adaptive Rows

Input / Output / Adaptive Cols

Disparities

Setup

Value (Nonadaptive)

480/120

512/128

60

9 msecs.

Value (Adaptive)

480/120/48

512/128/128

10

1 msecs.
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Attribute

Scale & Rectify

Normalize

Correlation

Disparity

Cleanup

Triangulate

Total Runtime

Table 17: Horizontal Baseline Stereo

Value (Nonadaptive)

23 msecs.

70 msecs.

683 msecs.

713 msecs.

25 msecs.

16 msecs.

1539 msecs.

- SPARC 20

Value (Adaptive)

10 msecs.

30 msecs.

69 msecs.

55 msecs.

10 msecs.

9 msecs.

203 msecs.

3,2 Vertical Baseline
The feasibility of vertical baseline stereo is demonstrated in the following vertical stereo pair.

Terrain Map

Terrain Map

Figure 82 - Vertical Baseline Stereo
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A ran of the same stereo pair from the previous example is shown below. This ran is of sufficient
density to completely populate a 1/2 meter resolution terrain map between the ranges of 25 meters
and 30 meters.

Top Image

Bottom Image

Disparity Image

Figure 83 - Adaptive Vertical Baseline Stereo

A breakdown of both vertical baseline rans is shown in the table below:

Table 18: Vertical Baseline Stereo - SPARC 20

Attribute

Input / Output / Adaptive Rows

Input / Output / Adaptive Cols

Disparities

Setup

Scale & Rectify

Normalize

Correlation

Disparity

Cleanup

Triangulate

Total Runtime

Value (Nonadaptive)

640/160

486 / 123

60

1 msecs.

32 msecs.

84 msecs.

532 msecs.

14 msecs.

22 msecs.

8 msecs.

700 msecs.

Value (Adaptive)

640/160/45

486/123/123

10

4 msecs.

11 msecs.

26 msecs.

50 msecs.

4 msecs.

6 msecs.

5 msecs.

96 msecs.

These results imply 10 Hz update rates on a serial workstation - ignoring the time required to i/o
(which can be made negligible).
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Chapter 5: Summary and Conclusions

This section summarizes all of the most important content of Part IV: Perception.

In Part II: Analysis, Chapter 6: Interactions, it was shown that an autonomous vehicle requires
computational throughput on the order of O |_T V J where T is the vehicle reaction time and V is
the velocity. On the other hand, the traditional approach of nonadaptive range image processing
requires throughput on the order of O|_T V J . The product TV is on the order of 10 for a
conventional automobile so the difference between these two expressions is four orders of
magnitude at 20 mph. Nonadaptive range image processing requires about 200 Megaflops in order
to achieve 20 mph speeds whereas the algorithm presented here requires 3/100 of 1 Megaflop under
identical assumptions(see page 135).

An adaptive approach to perception based on the techniques of adaptive sweep and adaptive scan
has several advantages. A more complete list of these advantages is as follows:

• It has the potential to solve the throughput problem which has tended to increase vehi-
cle reaction time beyond the regimes of usefulness in real-time vehicle control.

• It amounts to a computational solution to the stabilization problem within the limits of
the sensor field of view. It essentially converts any imaging sensor into an ideal adaptive
line scanner.

• For limited field of view sensors, it provides an obvious basis for the generation of sen-
sor pointing commands which keep the region of interest centered in the image.

• It solves the sampling problem for practical purposes because variation in the range ratio
is very low over the small elevation width of the range window.

• It theoretically guarantees throughput, response, and acuity within the limits of the vehi-
cle and the sensor.

• It adapts to vehicle speed, attitude and terrain shape implicitly.

This part concentrated on the adaptive perception algorithm which forms the basis of RANGER'S
Map Manager and Perception objects. The techniques used should be applicable to any application
that models the environment with a terrain map.

Section 1: Concept

An adaptive perception algorithm is the organizing principle of the design of the navigator's
perception system. It confines the processing of range geometry to a focus of attention or region
of interest which extends to the end of the detection zone - but whose size is governed by the
distance moved since the last perception cycle. Adaptive perception has three conceptual parts:

• adaptive lookahead - set the maximum range to the end of the detection zone
• adaptive sweep - set the region of interest width to the distance travelled since last time
• adaptive scan - manage image resolution to achieve uniform groundplane resolution
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The motivation for this approach to perception can be expressed in familiar terms. Analysis
suggests that much of the computational resources used to image and interpret the environment is
a waste of resources in mobility scenarios. This waste occurs for two principle reasons:

• The sensor vertical field of view is aligned with the direction of travel so that image
sequences normally contain redundant information. Obstacles appear in the field of view
long before they can be resolved, and long after they cannot be avoided.

• The projection of image pixels on the groundplane is elongated in the wrong direction
for robust obstacle detection and minimum throughput.

1.1 Adaptive Lookahead
The design of adaptive lookahead is a straightforward matter. There is some maximum range
beyond which it is unnecessary to look because there will be time to look there later. In detail
implementation, the responsibility for computing this maximum range is left to adaptive regard and
the results of this computation are used to bound the far end of the focus of perceptual attention.

1.2 Adaptive Sweep
The design of adaptive sweep is also relatively straightforward, once a key assumption is
identified. Any straightforward attempt to selectively process data in an area of interest apparently
falters because the problem of selection is as difficult as the problem of perception. Luckily, for
high-speed autonomy, the small incidence angle assumption solves the problem of selection
inexpensively by decoupling the problems of selection from perception.

The focus of attention is specified as a range window - some maximum and minimum range within
which the completely processed data must lie. In the case of stereo vision, the basic principle of
the range window can be converted to a disparity window. This simple mechanism points the
sensor vertical field of view computationally - providing implicit instantaneous adaptation of the
focus of perceptual attention based on both the vehicle attitude and the shape of the external terrain.

1.3 Adaptive Scan
The design of adaptive scan is a straightforward matter. Over the width of the range window, the
aspect ratio of a range pixel typically varies little - again because of the small incidence angle
assumption. Therefore, for the data of interest, a constant mapping from world model resolution to
image resolution can be assumed and images can be subsampled by appropriate factors to achieve
that resolution.

Section 2: Design

2.1 Adaptive Perception From Range Images
In the case of laser rangefinders, a range image is generated in hardware. For this class of sensors,
adaptive perception is limited to extraction of the range window from the complete image. The
adaptive perception algorithm constitutes a simultaneous implementation of adaptive
lookahead, adaptive sweep, and adaptive scan in one place. It proceeds in two phases: the
computation of the range window based on the current speed and cycle time; and the mapping of
this window into image space and the extraction of the data.
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Adaptive lookahead is implemented by computing the distance required to execute an impulse
turn at the current speed. This gives the maximum range of the range window. Adaptive sweep
is implemented by computing the distance travelled based on the current and last cycle distance
travelled and subtracting this distance from the maximum range. The problem of finding this data
in an image taken previously involves several aspects of time delays and geometric offsets:

• The sensor is not mounted at the vehicle control point.
• The vehicle is not itself a point
• There may be significant delay associated with the acquisition of an image.
• The most recent vehicle state estimate is itself somewhat old.
• It will take some time before the command computed this cycle reaches the output com-

munications routines.

By the small incidence angle assumption, the projection of the sensor range onto the groundplane
is essentially the groundplane y coordinate. However, terrain roughness and nonzero vehicle roll
mean that the position of the range window in the image is different for each column. Thus the
range window is processed on a per column basis. In order to robustly find the range window, each
column is processed in the bottom-to-top direction.

2.2 Adaptive Stereo Perception
The range of disparities which corresponds to a typical range window is very small. This implies
that any process which robustly identifies global maxima of the disparity curve can generate the
range window in an image. Such a process implements adaptive sweep inside the stereo algorithm.
The essential problem with this simple idea is that local extrema in the correlation curve
masquerade as a global extremum.

Several solutions to this repetitive texture problem help the situation somewhat but the simple
technique of computing connected components and removing small regions [59] works effectively
and is basically free because a disparity image cleanup pass is required even when a wide disparity
range is searched.

2.3 Refinements to Correlation-Based Stereo
This section introduced some refinements to correlation-based stereo vision that adapt the
traditional algorithm to the specifics of the application.

2.3.1 Optimum Shape of Correlation Window

It was shown that the optimum aspect ratio of the correlation window is the inverse of the ratio of
the corresponding components of the disparity gradient. Of course, the disparity gradient is
unknown until the range image is available, but it is a good assumption in outdoor work that it is
mostly vertical in most places in most images.

13. An impulse turn was chosen as the maneuver upon which to base adaptive lookahead because a vehicle
which stops when it sees an obstacle (panic stop maneuver) is not useful when obstacles are dense. The
impulse turn is a turn from zero curvature to the maximum. Other distinguished maneuvers are the panic stop,
the turning stop, and the reverse turn.
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2.3.2 Complexity of Stereo Vision

It is a straightforward matter to compute the complexity of stereo vision when implemented on a
serial workstation by computing the complexities of the component processes. Complexities were
computed for traditional nonadaptive stereo, partially subsampled stereo, and completely
subsampled stereo. It was shown that completely subsampled stereo is theoretically an order of
magnitude faster than traditional stereo in the target application and that this theoretical speed
improvement is slightly less in the case of partially subsampled stereo.

2.3.3 Adaptive Scan in Stereo Vision

It was shown that because geometric decorrelation is identical in horizontally and vertically
triangulated systems, distortion is no basis for preferring one to the other. Then it was shown that:

• Horizontal triangulation couples crossrange resolution to downrange resolution.
• Vertical triangulation couples vertical resolution to downrange resolution.

Adaptive scan can be implemented in either latter case for an overall improvement in throughput
roughly equal to the inverse perception ratio. Vertical baseline stereo has other advantages as
well. Some of these are:

• Complete subsampling is more straightforward to implement than partial subsampling,
because this allows the requirement on the horizontal resolution to be relaxed at the input
to the stereo algorithm. One simply runs the traditional stereo algorithm on rotated and
scaled input images.

• It does not reduce the horizontal field of view (which is often already too small) but
instead reduces the vertical field of view (which is often larger than necessary).

• It promises to permit extremely wide field of view stereo from a single camera pair
because the distortions introduced by a wide field of horizontal view do not matter much
when triangulating vertically.

• It permits a straightforward operation to remove the distortions due to the average
expected disparity gradient. The vertical dimension of the bottom image is simply scaled
spatially by the inverse of the disparity gradient.

2.3.4 Adaptive Sweep

An implementation of adaptive sweep for stereo vision was introduced based on the kinematics
of projection and a rough flat world assumption.

2.4 Terrain Mapping
This section described the terrain map data structure which is used to model the environment in
rough terrain. Terrain mapping is the process by which surface descriptions, obtained from
different vantage points, are accumulated into a consistent environmental model [31]. In order to
provide the path planner with a single, coherent, uniform density data structure that may span
several images, the approach taken is to transform images into a regularly-spaced cartesian grid
called a Cartesian Elevation Map (CEM) or simply a map. The use of a terrain map normally
means that the 2-1/2 D world assumption is being adopted.

An Approach to the High-Speed Cross-Country Autonomous Navigation Problem page 220.



2.4.1 Wrappable Map

The overhead involved in representing vehicle motion through the environmental model can be
overwhelming unless something is done to make the process efficient. The navigator introduces a
wrappable map data structure which represents this motion at negligible computational cost. The
impact of this data structure is that it is never necessary to perform a copy of the map data structure,
or completely traverse it for any reason.

Although all data remains in the map until it is overwritten, each entry is tagged with the distance
that the vehicle had travelled since the start of the mission at the time the pixel was measured. If
the "age" of the last update is too old, the cell is considered to be empty14. This technique
eliminates all of the overhead of map management except for the coordinate transformation
necessary to access it.

2.4.2 Motion Distortion Removal

By the time an image is received by the perception system, the vehicle may have moved a
considerable distance since the image was acquired. So, the processing of the geometry in the
image must account for the exact position of the vehicle when the image was taken. Other
distortions result from the non-instantaneous scanning of laser rangefinder images.

This distortion of range images is removed by maintaining a history of vehicle poses sampled at
regular intervals for the last few minutes of execution and searching this list for the precise vehicle
position at which each range pixel was measured.

2.4.3 Delayed Interpolation

The terrain map is not interpolated at all because interpolation requires a complete traversal which
is too expensive to perform. Instead, the responsibility for interpolation is left with the users of the
map. The path planner interpolates in time instead of in space because this is a more efficient
solution to the sampling problem.

2.4.4 Image Registration

A simple image registration algorithm is used in situations where the imaging density is reduced
below the amount necessary to ensure that the geometry under the rear wheels comes from the
same image as the front wheels in the feedforward simulation.

2.4.5 Elevation Uncertainty

In order to represent the variation in geometry in a single map cell and to improve signal to noise
ratios, a scatter matrix is computed [35] incrementally as each new range pixel is merged into the
map.

14. Age is measured by distance and not time because otherwise the geometry under the wheels will eventu-
ally disappear when the vehicle stops.
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Section 3: Implementation

This section overviewed the implementation of the perception system. This subsystem
incorporates

• An image processing element which converts a raw image into an ideal image.
• An adaptive perception element which finds the region of interest in the image.
• The coordinate transformations necessary to create the terrain map.

3.1 Coordinate Transformation
Old vehicle positions are used in the coordinate transformation in order to remove the distortion
associated with the delay of the perception and communication electronics. The elements of this
subsystem are Ambiguity Removal, Median Filter, Range Window Filter, Range Window
Computation, Image to Sensor, Sensor to Vehicle, Vehicle to World, and Pose Selector.

3.2 Map Manager
The map manager deals with the transformation of data into and out of the discrete representation
of the terrain map. The elements of this subsystem are World to Map, Map to World, Registration,
Fusion/Accumulation, Write Map, Read Map, and Age Filter.

33 Stereo Vision
The implementation of correlation-based stereo vision is a straightforward series of
transformations of the input image based on the techniques used in [71]. The elements of this
subsystem are, Scale and Normalize, Rectify, Correlation, Disparity, Cleanup, and Triangulation.

Section 4: Results

4.1 Range Images
A sequence of range images for a run of the system simulator on very rough terrain was provided
in order to demonstrate the feasibility and performance of adaptive perception from range images.
On average, only 75 range pixels out of the available 10,000 (or 2%) were processed per image.
The system performs identically on real images, but simulated ones were used here to illustrate
several points within a limited space.

In terms of runtime performance, the adaptive algorithm is 16 times faster than the nonadaptive
result and if the simulated sensor had better angular resolution, the improvement would be
proportionally better. The system achieves the throughput necessary for 20 mph rough terrain
autonomy on a typical engineering workstation.

4.2 Stereo Vision
The operation of adaptive stereo on two horizontal baseline input images was illustrated. The
feasibility of vertical baseline stereo was also demonstrated in a vertical stereo pair. The results
imply 10 Hz update rates on a serial workstation - ignoring the time required to i/o (which can be
made negligible).

An Approach to the High-Speed Cross-Country Autonomous Navigation Problem page 222.



An Approach to the High-Speed Cross-Country Autonomous Navigation Problem page 223.



PART V: Planning/Control

This part describes the state space model which forms the core of the planning system. This part
concentrates on the trajectory tracking, obstacle avoidance and sensor stabilization aspects of the
navigator. These algorithms form the basis of RANGER'S Controller and Vehicle objects.

An approach to the high-speed mobility problem is presented which is based fundamentally on the
state space representation of a multi-input / multi-output dynamical system and the problem
analysis presented in Part II: Analysis.

Chapter 1: Concept

The principle of adaptive regard is the organizing principle of the design of the navigator's
planning system. Adaptive regard is a notion applied to the planning problem. Essentially, this
mechanism confines the search for hazards through the environmental model to the detection zone
- that region of the near environment which the vehicle can reach and is not already committed to
travelling. Thus, this mechanism applies to the terrain map and the planning problem and is based
on a response argument. Adaptive regard is based on four principles:

• don't look where the vehicle cannot go (free zones)
• don't look where the vehicle is committed to going (dead zone)
• don't look where the vehicle will get another look later (beyond detection zone)
• look where there is an immediate decision of traversability required (detection zone)

The motivation for this approach to planning can be expressed in familiar terms. Analysis suggests
that much of the computational resources used to plan paths through the environment are a waste
of resources in high-speed mobility scenarios. This waste occurs because:

• Dynamics and other constraints of many kinds including braking and steering maneuver-
ability, underactuatioii of the vehicle, and processing and communication delays amount
to an overwhelming constraint on the feasibility of arbitrary trajectories expressed in
configuration space.

• Search through any space of candidate trajectories which do not respect the dynamics
constraint amounts to alot of time wasted thinking about the impossible which tends to
increase reaction time and therefore to limit system performance.

In order to implement adaptive regard, several component problems must be solved. First, the
hierarchical approach to planning implicit in the standard model is used to augment the local
navigator by the trajectory recommendations of the strategic layer. Second, an optimal control
formulation is used to merge the actuator commands that result from obstacle avoidance and goal-
seeking components of the planner in order to solve the actuator contention problem. Third, the
state space modelling technique of multivariate control theory is used as the mechanism by which
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vehicle response is predicted and therefore by which the detection zone is computed. Fourth, an
actuation space search strategy is used in cooperation with forward modelling to implement the
optimal control approach.

Section 1: Optimal Control

In this domain of autonomous mobility, the problem is that of achieving some useful goal while
simultaneously avoiding damage to the vehicle. The goal of the vehicle may be to move from its
initial position to some distant other position, to map an entire area, or to search an area for objects
of interest. It may also be useful to optimize use of fuel, distance travelled, or some other criterion
over the mission.

In realistic terrain, the vehicle is challenged by regions that would cause tipover, trapped wheels,
or loss of traction. Some regions are not traversable at all and others may cause disastrous system
failures like falling into an abyss. On rough terrain, the concept of an obstacle can be generalized
to that of any unsafe condition as was initially done for the Autonomous Land Vehicle [13].

This section outlines an approach to high-speed cross-country navigation based on an actuation
space search expression of path planning. The approach discussed here applies to high-speed,
rough-terrain, cross-country navigation. The navigator attempts to travel continuously when the
terrain permits, and to traverse, when necessary, any terrain that the vehicle can negotiate.

1.1 Hierarchical Planning
The local minimum problem is perhaps the most serious threat to robustness of any local obstacle
avoidance strategy for autonomous navigation. In order to achieve robust navigation, a sound
strategic plan that avoids these minima is a solution that works well in practice. In order to enhance
robustness, the navigator supports the input and continuous monitoring of strategic goals. With
goal-seeking and obstacle avoidance goals operative simultaneously, a means for arbitrating
between them in order to avoid actuator contention is necessary. Thus, the highest level design
strategy for the planning/control system is hierarchical planning with arbitration as shown
below:

Strategic Layer (S)

Goals

Strategic
Controller
(Goal Seeking)

\
Optimal Control
Arbiter
(Actuator
Contention)

Set Points 1 '

f Status

Tactical
Controller
(Obstacle Avoid.]

{ States

Control Layer (C)

Figure 84 - Hierarchical Planning with Arbitration
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The navigator defines a strategic goal as some path or position to be followed or achieved and a
tactical goal which is to simultaneously avoid all hazardous conditions. The essential problem of
this hierarchical approach is that these goals conflict at times and the conflicts between them must
be resolved in some way. This is the actuator contention problem.

While there are many potential conflict resolution strategies, the one used here is to notice that the
problem can be expressed in the familiar terms of optimal control theory and to then apply the
associated techniques and abstractions of this theory to the problem as described in the next
section.

L2 Optimal Control
The task of safe navigation can be expressed in classical optimization terms. The navigator must
achieve some useful goal while simultaneously satisfying the constraint of avoiding damage to the
vehicle or its payload and the constraints of limited vehicle maneuverability. Navigation of such a
system can be cast as a suboptimal solution to the following optimal control problem:

minimize:
Hi(t)

subject to:

Figure 85

L[Xi(t)] = 1 Xi(t) -

dx = Ax + Bu

g(x) = 0

S=Cx+Du

1 Xi(t) 1 < Ythresh

- Local Navigation as

^goalW (proximity to goal)

(vehicle dynamics)

(terrain contact)

(hazard kinematics)

(maintain safety)

an Optimal Control Problem

for some suitable norm (I I) of ^(t).

The concept of state space is well-known from control theory. It is spanned by the state vector x.
The actuation space is the space spanned by the command vector u. The hazard vector j , can
be considered to span an abstract hazard space. Thus, corresponding trajectories can be formed in
actuation space (jfc(t)), state space (Xj(t)), and hazard space &i(t)) which represent a command
under consideration and the state space and hazard space trajectories to which it corresponds.

The objective function L[Xj(t)] expresses the need to cause the navigator to perform some useful
function. Optimal performance against this requirement is achieved by minimizing the deviation
of the state space trajectory from the goal trajectory. The goal trajectory may be a path to follow,
or a point in space, or generally any arbitrary trajectory XgoalC*)- Higher-level abstractions of the
objective function to include fuel consumption, complete coverage of an area etc. are also possible.
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1.3 State Space Model
The navigator is a state space controller because it explicitly forms an expression of the vehicle
dynamic state vector in order to predict the hazard signals upon which decisions are based. Instead
of forming an inverse model which attempts to compute curvature and speed from a C-space
curve, a forward model is used which implements the equations of dead reckoning. This process
which converts an actuation space trajectory to a state space trajectory is a constrained
multidimensional differential equation called the state space model.

This model encodes actuator constraints, kinematics, and dynamics, body dynamics, and terrain
contact. In the model, A models the steering and propulsion dynamics, B models the
communications delays, and the abstract kinematic equation g(x) = 0 models the terrain contact
constraint.

This kind of model is known classically as a multivariable state space system (Figure 86). For a
linear system1, the conventional state space model of a system is the venerated two matrix
equations:

=Ax+Bu

I = C x + D u

Note in particular that the first equation is a differential one. The command vector u includes
vehicle steering and speed as well as demand signals to any sensor heads. The terrain disturbances
Ua model the terrain contact constraint2. Terrain geometry is represented in a terrain map data
structure that is generated by the perception system.

The state vector x includes the vehicle steering, speed, and the state of motion of the vehicle body
and the sensor heads. It includes the 3D position and 3-axis orientation of the vehicle body as well
as its linear and angular velocity.

The output vector y is also the hazard vector in this case. It can be any function of both state and
inputs, and in this case it is also a function of the terrain on which the vehicle rests. These equations
are often indicated in a block diagram as shown below:

Figure 86 - Multivariable Linear System Block Diagram

1. Our system is not linear. No real system is perfectly linear. Consider this a model for now, and the domain
of validity of the model to be an open question.
2. Of course, at sufficiently high speeds, the vehicle need not remain in contact with the terrain.
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The system dynamics matrix A propagates the state of the vehicle forward in time. The system
model is based on the assumption that velocity can be considered constant for a small period of
time. While the input commands to the model respect only the maximum curvature constraint, the
output state estimate is consistent with the response of all actuators and the body kinematics of
motion over rough terrain. Alternative trajectories of the system are expressed in terms of steering
alternatives, but more generally, can be any time-varying command vector u(t).

Hazards ^ are complex functions of the vehicle state, the terrain on which it rests, and the input
commands. Each element of the hazard vector corresponds to a different hazardous condition and
the hazard vector moves over time in hazard space as the vehicle state moves over time in state
space.

Once the vehicle trajectory is known, a set of kinematic operators is convolved with the terrain
along the known trajectory in order to assess vehicle safety. Safety is considered to be a time-
varying, multidimensional field. Later stages in the planner integrate these safety assessments with
a higher-level strategic goal and ultimately decide on a command to be sent to the vehicle for the
current planning cycle.

1.4 Actuation Space Search
Perhaps the most well-known abstraction used in robot path planning is configuration space or C-
space[55]. For a rigid-bodied vehicle moving in three dimensional space, the C-space can be
considered to be a subset of state space - that is, the coordinates of the vehicle control point
expressed as (x, y, z, roll, pitch, yaw). C-space has several advantages as an abstract space in which
to conduct search. However, C-space techniques do not capture dynamics well.

The system discussed here plans instead in actuation space by considering a number of actuation
space alternatives which span the feasible set of commands for the vehicle at some gross
resolution. For each command, a number hazardous conditions are considered, and these hazards
are evaluated at every point on each trajectory. An actuation space approach to path planning has
been adopted because:

• A conventional automobile is underactuated (non-holonomic), so the mapping from
C-space to actuation space is under-determined. It is not possible, in general, to com-
pute the speed and steering commands which will cause a vehicle to follow an arbitrary
C-space curve. The use of actuation space and forward modelling avoids entirely the
problem of path generation for non-holonomic vehicles.

• Many constraints on vehicle motion are differential in nature and most naturally
expressed in actuation space. In the case of steering in particular, a kinematic model can
be considered to be one for which curvature can be changed instantaneously. Yet, a mod-
erate-speed vehicle cannot reverse curvature within the maximum useful range measure-
ment that a stereo or lidar sensor can produce. Thus, high-speed motion demands that
actuator response characteristics be considered, and the natural space in which to model
them is actuation space. The use of actuation space permits expression of these dynamic
constraints in terms of dynamic models of actuators.

• Actuation space planning is more computationally efficient. Continuous high-speed
motion implies that a vehicle has very little time to react to what it sees. A planner must
decide what to do under stringent timing constraints or the entire navigator will fail.
Actuation space permits a fast, coarse-grained evaluation of all feasible alternatives. The
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problem of C-space combinatoric explosion is solved by planning in actuation space.

The actuation space for a conventional automobile is spanned by the variables of speed and path
curvature. These variables map more or less directly to the controls of throttle and steering.

1.5 Feedforward Optimal Control
One of the defining characteristics of intelligent systems is the ability to act now on the basis of the
future consequences of candidate actions. This property of deliberation is clearest in systems that
normally exist in the strategic layer of the standard model and techniques of AI planning [24] have
been very successful in solving such problems. However, because the high-speed autonomous
navigation problem is highly dynamic and requires time-continuous differential equation models,
deliberation here takes the form of feedforward.

The navigator attempts to guarantee safety by predicting into the future the relationship between
future safety and current command options. Then it acts now based on future consequences. It does
this by using a state space simulator. The details of the previous figure can be suppressed into a
single box that generates hazard estimates based on the terrain map, the input commands, and some
hidden vehicle state as shown below:

Figure 87 - State Space Simulator

Feedforward is employed for several reasons:

• It imparts stability to both goal-seeking and obstacle avoidance3.
• It computes the detection zone required to implement adaptive regard.
• It allows the planner to conduct its search over the space of feasible commands

U (t) E U without explicitly considering feasibility because trajectories expressed in
actuation space are inherently feasible. Feedforward solves the clothoid generation
problem trivially.

The system model amounts to a complicated differential equation constraint. The satisfaction of
this constraint is generally very difficult to achieve unless alternatives are expressed in actuation
space where the constraints are trivially satisfied. The set of trajectories Xj(t) which:

• satisfies the system model equations (dx/dt = A x + B u and y = Cx + Du)
• maintains the vehicle in contact with rigid terrain (g(x) = 0)
• and avoids dangerous hazards (I jrj(t) I < y thresh)

is called the feasible set.

3. It has not been mentioned yet, but feedforward prevents "waffling" in the arbiter because once a slight turn
is commanded, it affects all subsequent response trajectories by biasing them to reflect the distance the steer-
ing wheel will turn for that cycle. Feedforward leads to a more confident controller because it recognizes
when a partial commitment has been made to turn in a certain direction.
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The navigator satisfies the first constraint by construction through feedforward. The second
constraint is satisfied by construction by altering the vehicle attitude at each step in the simulation.
The third constraint is satisfied by pruning alternatives that do not satisfy it in later stages of the
planner.

The optimization problem is solved by sampling the feasible set of trajectories at some practical
resolution that ensures adequate coverage of the set, and then choosing the trajectory with the best
value of the functional L[Xj(t)].

The feedforward element can be represented by duplicating the state space model and indicating
that it is an estimate with a super hat diacritical mark. The fact that an optimal trajectory is chosen
can be represented by a complex minimum transformation. This entire process is illustrated in the
following figure:

Figure 88 - Optimal Control Through Actuation Space Search

1.6 Forward Modelling
The differences between classical C space planning and actuation space (A space) planning are
indicated in the following figure.

On the left of the figure, the search of planning alternatives is expressed in configuration space.
A commonly invoked assumption is the expression of obstacles as discrete points in this space.
When a clear region or set of points has been found in front of the vehicle, a clothoid generation
algorithm is invoked to map C space onto the vehicle actuation space and these commands are sent
to the hardware for execution.

On the right of the figure is the actuation space approach. Note first that the direction of the arrows
are reversed. The inverse system model of the above diagram is never evaluated explicitly - the
system simply remembers the correspondence of commands to response trajectories and inverts
this list of ordered pairs. In this manner, alternatives are considered in actuator terms, and the
navigator plans in actuation space.
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Note also that state space serves as an intermediate between actuation space and hazard space
whereas the classical mapping is more direct. It is clear from the figure that state space is, in fact,
a superset of configuration space - including all C space variables plus any derivatives that appear
in the system dynamic model. Like C space, hazard space abstracts the vehicle to a point, but that
point executes a trajectory as the vehicle moves. This is because hazard is associated with the
moving vehicle instead of the stationary environment.

The essential computational efficiency argument of the approach is:

• Motion planning is a problem involving search.
• Efficiency of search can be improved with constraint ordering heuristics.
• Forward modelling, which considers dynamic modelling before obstacle avoidance, is a

valuable ordering heuristic which improves both computational efficiency and system
robustness.
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Figure 89 - Forward Modelling in Local Navigation
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Section 2: Obstacle Avoidance

Several hazardous conditions can be evaluated at each point along a trajectory. Some typical
hazards are:

• Tipover: The movement of the weight vector outside of the support polygon formed
from the wheel contact points.

• Body Collision: Collision of the underbody with the terrain.
• Discrete Obstacles: Regions of locally high terrain gradient.
• Unknown Terrain: Regions that are occluded, outside the field of view of the sensors,

unknown from poor measurement accuracy or resolution, or devoid of matter (such as
the region beyond a cliff edge).

As an example of a hazard signal, a tipover hazard signal can be split into two signals - for pitch
and roll. The pitch signal is then given by:

Each of these hazards can be computed over time and a normalized signal can be prepared whose
amplitude is limited to values between 0 and 1 where 0 represents complete safety and 1 is
complete system failure. This normalization permits the navigator to compare different hazards in
a consistent system of units. On normalized hazard vectors, the distance between points can have
meaning if the normalization is performed carefully.

In order to make a decision based on these signals, it is necessary first to integrate out the time
dimension and second to merge all of the hazard predictions together. The second step generates a
holistic estimate of the degree of safety expected if the command is executed. In general, this can
be performed by some measure of distance in hazard space such as:

In practice, a simple maximum over the dimensions of hazard space performed acceptably in
system tests. The output of this process is the hazard vector which is supplied to the optimal control
arbiter. Detailed hazard kinematics will be given in a later section.
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Section 3: Goal-Seeking

Several forms of strategic goals can be supported within the optimal control context of the planner
design. The only nontrivial aspect of tracking a strategic goal is high-fidelity tracking of a
convoluted path over rough terrain. Other types of goals such as goal headings, goal points, goal
curvatures, etc. can be extracted as trivial subcases of the more general path tracking problem
discussed below. Although the stated algorithms are given for a conventional automobile, they can
be extended to other kinds of vehicles with little changes because it is normally possible to express
a trajectory in terms of speed and curvature independent of the underlying steering and propulsion
kinematics.

Goal-seeking incorporates an adaptive path tracker which is based on the pure pursuit algorithm.
The pure pursuit algorithm has been around for some time [74]. It is basically a proportional
controller formed on the heading error computed from the current heading and the heading derived
from the current vehicle position and a goal point on the path. The goal point is computed by
finding the point on the path which is a predetermined distance from the current vehicle position.
There are many variations possible on the basic algorithm.

Path
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Figure 90 - Basic Pure Pursuit

Heading is measured at the center of the rear axle. The proportional gain is normalized by the
lookahead distance L. This can be viewed an adaptive element or, more simply, as a unit
conversion from heading error to curvature. Indeed, the ratio \ | / e r i /L is the average curvature
required to reacquire the path at the goal point.

A limiter is used which ensures that the curvature is limited at higher speeds to prevent rollover.
Another limiter maintains the angular acceleration below a threshold. These measures ensure
vehicle safety and directly prevent instability at the cost of an inability to track high curvature paths
at high speed. However, vehicle dynamics already prevent tracking high curvature paths at high
speed so generality is not lost.
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Chapter 2: Design

This section provides detailed algorithm descriptions for the planning and control subsystem.

Section 1: Optimal Control

The system attempts to satisfy two goals simultaneously. The tactical goal is to avoid obstacles
while the strategic goal is to track the goal trajectory. At times, goal-seeking may cause collision
with obstacles because, for example, the goal may be behind an obstacle. The system incorporates
an arbiter which permits obstacle avoidance and goal-seeking to coexist and to simultaneously
influence the behavior of the host vehicle. The arbiter can also integrate the commands of a human
driver with the autonomous system. The arbitration mechanism is the implementation equivalent
of the optimal controller specified in the concept section.

1,1 Goal Arbitration
The mechanism used for merging the conflicting goals of obstacle avoidance and goal-seeking is
to form a vote vector for each goal and to choose the command signal which is closest to the
strategic vote maximum while still remaining acceptable to obstacle avoidance. The strategic goal
is used to bias obstacle avoidance when there are a number of alternatives, and obstacle avoidance
wrests absolute control from the strategic goal seeker when it is necessary to do so.

Several times a second, the planner considers approximately ten steering angles to use during the
next control cycle. The forward model simulates the effect of using these steering angles over a
short period of time and evaluates each of the resultant paths. Any steering angles that result in
paths that go near or through hazardous vehicle configurations (determined from an elevation map)
are discarded. The steering angle that results in a path that both satisfies obstacle avoidance
constraints and optimizes the cost function is chosen.

The output of the steering arbiter may be very discontinuous if a hazard suddenly appears or
disappears and because high steering rates constitute a hazard by themselves, the steering arbiter
output is smoothed to remove steering discontinuities except when drastic action is called for. That
is, the strategic steering output is smoothed whereas the tactical one is not.

This approach to arbitration has the side effect that following of an extended feature such as a cliff
edge or roadside hill will emerge naturally, and the system will immediately take the opportunity
to reacquire the strategic goal if an opportunity presents itself. While this describes the emergent
behavior, the algorithm itself is to:

• sort the votes of the tactical planner using the corresponding strategic votes as the key
• choose the first path in the sorted list which satisfies obstacle avoidance

If obstacle avoidance does not care which direction to choose, the strategic planner is given control.
If it does care, it will continually veto the strategic votes in order of strategic preference until a safe
one is presented to it. If no safe path exists, a stop command is issued.
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1.2 State Space Model
A high fidelity feedforward actuator dynamics and terrain following model is introduced here. The
forward vehicle model is mathematically involved because it involves solution of a coupled set of
eight nonlinear differential equations which form the vehicle state space model. The system
mechanizes these equations in real time. The equations are coupled because:

• position at step i depends on attitude and speed at step i-1
• attitude at step i depends on steering response, propulsion response, and attitude step i-1
• steering response at step i depends on steering response and steering command at step i-1
• propulsion response at step i depends on attitude, propulsion response and propulsion

command at step i-1
• attitude at step i depends on suspension state at step i-1

1.2.1 State Space Terrain Following Model

By solving the equations in their true coupled form, the system can correctly simulate a vehicle
driving along the side of a hill, for example. It correctly simulates the dependence of actual
trajectory on the terrain itself, the speed, the actuator response characteristics, and the initial
conditions.

The basic simulation loop can be written as follows. At each time step:

• simulate suspension - determine attitude from terrain geometry and position
• simulate propulsion - determine new speed from command, state, and attitude
• simulate steering - determine angular velocity from steering and speed
• simulate body - dead reckon from linear and angular velocity and time step

A mechanization diagram is shown below for these equations:

terrain V

state vector

(x,y,z,V,e,<|>,y,$) I , <(), \ | / )

Suspension Propulsion Steering Body

Figure 91 - Feedforward Simulator

In the figure, (x, y, z) represents the position of the vehicle in the navigation frame; (0, <|>, \|/)
represents its attitude in terms of pitch, roll, and yaw angles respectively, V is the vehicle speed
along the body y axis; a is the steer angle of the front wheels; p is the angular velocity of the body
projected onto the body z axis; and the subscripts c and a represent commanded and actual
quantities respectively.
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1.2.2 Reference Points

The positions of distinguished points on the body, called reference points, are maintained in
navigation coordinates throughout the simulation. The kinematics transforms involved in doing
this are documented in the appendices. These points are at the same elevation as the bottom of the
wheels and are positioned at the wheel contact points or the center of the axles. The processing of
the reference points consists of converting coordinates from the body to nav frame based on the
vehicle position and attitude for each cycle of the simulation.
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All aspects of both system state and hazardous conditions can be computed from the reference
points and the terrain elevation under them. In this way, coordinate system transformation
operations are reduced to an absolute minimum.

1.2.3 Suspension Model

Using the reference points only, a proper model of a flexible vehicle suspension would:

• compute the elevation "under" each wheel
• compute the deflections of each wheel from the minimum potential energy principle [76]
• compute the positions of three points on the body
• compute the body attitude from these three points

This is a lot of somewhat costly work to do. These computations are considered too costly so the
suspension model that is actually used is based on:

• a rigid terrain assumption
• a rigid suspension assumption
• a locally-planar terrain assumption

The first assumption results from using the terrain map elevations measured by a sensor when the
vehicle was not loading the terrain. The second occurs because the positions of the wheels relative
to the body are taken as fixed. The third occurs because the elevations under the four wheels are
used in forming two vectors even though they do not necessarily lie on the same plane.
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The last problem in the process can be expressed as that of recovering an unknown rotation matrix
from a few points which are transformed using it. The inverse RPY transform is computed in the
appendices for this purpose. The displacement transform from body coordinates to world
coordinates for a z-x-y Euler angle sequence can be expressed as:
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Yaw and pitch can be determined from any vector known to be aligned with the body y axis:

Roll can be derived from the world coordinates of a vector known to be aligned with the body x
axis.

- r 3 1 c 0 ,

The above equations are an exact inverse kinematic solution. However, the system makes a valid
small pitch assumption currently in order to reduce the trigonometric computations. The vectors
are formed from the reference points. The algorithm is simply:

/*
** Simulate
* /
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1.2.4 Propulsion Model

Propulsion is modelled as a proportional controller with gravity compensation4. Under an
assumption that the torque at the wheels can be directly actuated and that the terrain can generate
any necessary shear reaction (no slip) Newton's law can be written along the body y axis as
follows:

P-WsmG = Ma

•••ares = M -

Figure 93 - Propulsion Plant Model

which gives the plant model. A proportional controller using velocity feedback is configured as in
the following block diagram5:
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The inverse of the proportional gain K is the time constant. A time constant of 5 seconds
corresponds to the generation of 0.1 g command for a 5 m/s speed error. A limiter is added to reflect
the fact that the output torque has some limit. One way to compute this limit is to choose a pitch
angle corresponding to some grade that is the highest grade that the vehicle can climb. Under this
model, the computer algorithm is the finite difference version of the system differential equation,
which is simply :

/*
** Simulate Propulsion
*/
now = read_clock();
vdelay = queue_lookup(prop_queue,now - prop_delay);
verr = vdelay - vres;
acmd = verr / prop_time_constant;
if (fabs(acmd) > amax) acmd = amax * acmd / fabs(acmd);
ares = acmd - g * sin(pitch);
vres += ares dt;

4. This model is similar to the JPL speed controller except that throttle is actuated, not torque.
5. If, like most of us, the reader has forgotten Laplace Transforms, 1/s is an integral and s is a derivative.
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This model has several advantages over an ideal one. It will correctly cause the simulated vehicle
to take several seconds to respond to a step input command and it will even cause the simulated
vehicle to back up on a steep grade and generally slow down or speed up depending on the grade.

1.2.5 Steering Model

The steering model is involved because it must account for the nonlinear relationship between
curvature and steer angle. This model is also a primary area of coupling between speed and attitude
rate, so it is one of the most important elements of the model. The bicycle model of the steering
kinematics is given in the appendices. Typically, the steering wheel itself is actuated, so the loop
must be closed back at the steer angle. This assumes only that the steering wheel to steer angle
transform is linear. Either position or speed could be the controlled variable, but a proportional
position loop is assumed7. Both the position and the speed are limited8. The complete dynamics
can be expressed with the following block diagram:

Figure 95 - Steering Servo

Again the coding is straightforward:

/*
** Simulate Steering
*/
now = read_clock();

Dynamics

alpdelay = queue_lookup(steer_queue,
alperr = alpdelay -
if (fabs(alperr/dt)
alperr = alpdotmax

ares + = alperr;

alpres;
> alpdotmax)
* dt * alperr /

now - steer_delay);

fabs(alperr);

These few lines of code are responsible for the high-speed stability of the navigator.

6. If we distinguish control algorithms from complete controllers, many actuator control algorithms can be
implemented in just a few lines of code. The above situation is the rule, not the exception. Code is provided
to illustrate that however sophisticated dynamic models may sound, implementing simple ones is easy.
7. At this moment, a position loop is used because a speed loop requires speed feedback which is not available
on some vehicles. It could be generated internally by differentiating the position feedback, but the speed limit
is considered to be the overriding element of the delay anyway.
8. There may also be a trapezoidal command velocity profile. This amounts to an acceleration limit on the
command.
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1.2.6 Body Dynamics

The 3D dead reckoning equations also form the system model in the Kalman filter which is
documented in Part VI: Position Estimation. The attitude rate about the body y axis is available
from the instantaneous velocity and the instantaneous steer angle (or curvature) as follows:

1.3 Discrete Time Nonlinear Model
The last section gave a linear systems model of a MIMO system. The system model actually used
is a nonlinear model, but it can still be expressed as a set of matrix equations if the matrices
themselves are allowed to vary with the state vector.

1.3.1 State Vector

The state vector includes the position and attitude of the body and the linear velocity along body
y and the angular velocity around body z:

1.3.2 Command Vector

The command vector includes the commanded speed and commanded "yawrate":

1.3.3 System Model

The system model is based on a low dynamics assumption. This is the assumption that velocity
can be considered constant for a small period of time. The model is given below:
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The terms in the bottom of the vector account for the nonlinear dependence of the attitude rate on
the attitude of the body. Angular velocity kinematics are given in the appendices. This model will
correctly account for motion out of the plane - correctly turning the vehicle around the body z axis
instead of the gravity vector. This aspect of the model can be expressed as transition matrix, if its
elements are allowed to vary with the state vector.

1.3.4 Forcing Function and Ackerman Kinematics

The relationship between the yawrate and the steer angle is:

If we ignore the nonlinear limiters for the purpose of illustration, and model the actuator loops as
first order systems, the relationship between the command vector and the state derivative vector
can be written as:
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1.3.5 Terrain Contact Constraint

Under a small pitch assumption, the terrain contact constraint alters the attitude each cycle. It can
be written as:
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Section 2: Obstacle Avoidance

The system adopts the basic assumption that all hazardous conditions can be computed from the
reference points. Hazards are represented as sampled time signals which are parameterized by the
commands to which they correspond. At any point in forward projected time, the system is
designed to be robust to the absence of information because the sampling and the occlusion
problems are intrinsic and inevitable.

2.1 Temporal State Interpolation
The interpolation algorithm used in the system is an interpolation of both the state vector and the
hazard signals in time, rather than an interpolation of the terrain map in space.

Field testing of the system on typical rough terrain indicates that, if occlusions are distinguished
from poorly sampled regions of the environment, the need for sophisticated terrain map
interpolation is questionable. Specifically, the degree of undersampling depends on the local
incidence angle of pixels to the terrain and the need for interpolation directly implies that the terrain
is mostly flat anyway. The reverse argument is more compelling. If a small vertical step in the
terrain exists, then it must span several pixels due to its near normal incidence. Therefore, it cannot
be undersampled.

These observations imply that it is unnecessary to interpolate an entire terrain map before it is used
for planning computations. It can be done on the fly, and more importantly, it can be done on the
vehicle state vector. The state vector alone supplies the information necessary to propagate the
system state forward in time, and the terrain contact constraint can be modelled as a "disturbance"
which modifies the vehicle attitude whenever the terrain under the wheels is known (which, in
practice, is almost always).

2»2 Hazard Representation
Each hazard is represented on a normalized scale where the maximum value indicates certainty of
danger and the minimum value indicates certainty of safety. A typical hazard signal looks like the
following:

Figure 96 - Hazard Signals
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2.3 Hazard Arbitration
The evaluation of hazards amounts to the generation of a 3D field of the form
merit(hazard,command,time) because safety is different for each command, different for each
hazard, and a time signal. The obstacle avoidance hazard estimator computes a functional on this
3D field which forms the basis of the decision of whether the entire trajectory is to be considered
safe. The first step of the process is to collapse the time dimension. This is done by computing the
signal norm as follows:

merit = f V (merit (i))

for some power a. In practice, however, a straightforward maximum was found to produce
acceptable results. This step reduces the field to merit(hazard,command).

The next step is to collapse the hazard dimension. Hazards are considered independent because,
for example, body collision is completely irrelevant to static stability. Therefore, a straightforward
maximum applied across this dimension gives the worst unsafe condition for all dimensions of
safety considered provided all hazard elements are represented in some normalized unit system.
This step reduces the field to merit(command).

The final step is to reduce the command dimension, and this has been discussed in the context of
joint arbitration of tactical and strategic votes. However, before the tactical vote vector is passed
to the arbiter concerned, it is sometimes smoothed by Gaussian filtering9 in order to increase
reliability. The principle of this approach is that since the environment exhibits a degree of
smoothness, it is appropriate at times for poorly-rated trajectories to degrade the ratings of their
spatial neighbors. In this manner, the impact of errors in both feedback and actuation will be less
relevant because this smoothing mechanism will cause the vehicle to give obstacles a wide berth.
At times, this mechanism is disabled depending on the spacing of the candidate trajectories
investigated.

2.4 Hazard Estimation
Three principal forms of hazards are incorporated:

• unknown terrain
• collision of the terrain with the body
• static instability

2,4.1 Unknown Terrain

Unknown map cells may arise from undersampling or terrain self-occlusion. An overall
information density merit is computed for each candidate command which is based on the number
of wheel elevations which are known at each time step.

9. Earlier, it was stated that only the strategic output is smoothed, but this was a discussion about temporal
smoothing. The above smoothing is spatial.
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2.4.2 Terrain-Wheel Collision

Wheel collision is computed as the slope of the elevations under each wheel as tu
propagated forward.

merit (i) =

i + 1

(dz
v3i

dz\

Figure 97 - Wheel Collision

In practice, this signal can be noisy if the sensor cannot supply the angular resolution and relative
range accuracy necessary. Sometimes, it is not used at all.

2,4.3 Terrain-Body Collision

Body collision is computed as the lost volume under the body normalized by the area under the
body, so it is an expression of the average height under the body. The result is normalized by the
number of map cells which were actually known.
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2.4.4 Static Stability

Static stability measures the proximity of the vehicle to tipover. The static stability margin can
be expressed as the remaining angle between the gravity vector and the support polygon formed
by the wheel contact points (which is a rectangle in this case). Graphically, the margin is the
minimum distance to any side of the support rectangle normalized by the height of the center of
gravity above the terrain.
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Figure 99 - Static Stability

The margin can be expressed as the maximum of the tangent of simple approximations to roll and
pitch normalized by some maximum. The distinction between measurement as an angle or its
tangent is irrelevant for small angles10.

2.5 Matrix Representation

The hazard estimates can be expressed in matrix notation in order to relate them to the abstract
system model described previously.

2.5.1 Hazard Vector

The hazard vector can be written as a 4 vector which includes the wheel collision, body collision,
and stability margin:

10. One of the implications of this model is that the vehicle will turn into a steep grade so as to increase the
stability margin unless the strategic goal biases it away from the grade. The system actually computes pitch
and roll margins individually, and performs the maximum outside the hazard evaluator. This is a measure used
to permit easy debugging. The system can navigate successfully over smooth terrain based on this hazard
alone.
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The wheel collision output relationships are:

The static stability output relationships are:

—
y w K

2
h

1

0
1

0

-1
0

0
1

0
1

0
-1

0
-1

- 1

0

zlf

zrf

z lr

7,
L TrJ K

2.6 Hazard Uncertainty
Most hazards outlined above are computed as gradients of the terrain over some support. In such
cases, the elevation uncertainty stored in the terrain map is used to compute an uncertainty on the
hazard estimates as outlined in Part II: Analysis.
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Section 3: Goal-Seeking

The basic pure pursuit algorithm specified in the concept section suffers from a few problems.
Large tracking errors or, equivalently, too short a lookahead distance or too high a gain all result in
servo instability. This is a well-known problem with pure pursuit which can be addressed with
feedforward as discussed later.

3.1 Rough Terrain Pure Pursuit
A few modifications are introduced to adapt pure pursuit for rough terrain. First, extremely large
tracking errors must be acceptable to the servo without causing instability. This is managed by two
devices indicated in the following figure.

(x3, y3)

Adaptive
Lookahead

L

/*
** Adaptive Pure Pursuit
*/
min = HUGE; way_pt = closed-
while (L23 < L12 + lookahead)
{
x3 = path_x[way-pt];
y3 = path_y [way__pt] ;
if( L13 < min )
{
close = way__pt;
}

way_pt++;
}

way__pt = close;
while(L13 < L12 + lookahead)
{
x3 = path_x[way-pt];
y3 = path_y[way_pt];
goal_pt = way_pt;

Figure 100 - Adaptive Pure Pursuit

Instead of using the current vehicle position as the origin of the lookahead vector, the system
maintains a running estimate of the point on the path which is closest to the current vehicle
position. This is done because it is very expensive to search the entire path each iteration. In doing
so, the system is assuming that the vehicle will never have a heading error which exceeds 90° for
an extended period of time. This is a monotone arc length assumption. This assumption
completely eliminates the overwhelming computational cost of simpler implementations of the
algorithm.
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The lookahead distance is adaptive to the current tracking error - increasing as the error increases
(indicated in the accompanying code fragment). The first while loop is responsible for maintaining
a running record of the close point, point 2. It searches through an arc length window which adapts
to the path tracking error. As the error gets larger, this loop will cause the close point to jump over
high curvature kinks in the path as they become less relevant at the resolution of the tracking error.

The second while loop computes the goal point in an identical manner. It basically moves point 3
forward until it falls outside a circle centered at the vehicle whose radius is the sum of the error
distance and the nonadaptive lookahead. In this way, when an obstacle avoidance maneuver causes
significant path error, the algorithm will search to reacquire the path on the other side of the
obstacle instead of causing a return to the front of the obstacle.

Notice that under normal circumstances when the vehicle is tracking the path, the close point is at
the vehicle position, the error distance is zero, and the adaptive lookahead is the nonadaptive
lookahead. In plain terms, the algorithm gracefully degenerates to classical pure pursuit when
obstacle avoidance is not necessary.

3.2 Feedforward Pure Pursuit
A feedforward option in the tracking algorithm incorporates the output of the system model
simulator into the tracker. The cost of a feedforward simulator must be borne, so an additional
feedforward element in the tracker is available for free. The basic idea is as follows. First, at each
point in the simulation, evaluate the distance from the vehicle to the goal point. Second, the
candidate command which comes closest to the goal point becomes the vote of the strategic
controller. Such an algorithm provides excellent path following in three dimensions over rough
terrain.

The concept is indicated in the following figure. During a high curvature turn at speed, the
feedforward simulator skews the response curves toward the current steering direction.

Note, the vehicle
is in a sharp left turn
and happens to have
zero heading at t=0.

Dynamic
Feedforward
(Stable)

Figure 101 - Feedforward Pure Pursuit

A kinematic tracker would issue a hard right command in the situation depicted above whereas a
dynamic one would recognize that such a command would actually increase the tracking error. A
dynamic tracker would issue a zero curvature command and would correctly acquire the goal point
as the steering wheel slowly turned toward zero.
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Section 4: Adaptive Regard

In order to evaluate safety, the tactical control module computes the response to candidate
commands simulated forward in time until the detection zone is reached. The spatial extent of the
detection zone can be computed from the state space system model as the convex hull of the
response trajectories for all considered command alternatives. However, there is no real need to
compute this region explicitly - the only real requirement is to determine where it starts and where
it ends in terms of distance from the vehicle position.

4,1 Planning Window
The planning window of tactical planning is analogous to the range window in perception. It
confines the search for hazards to the detection zone. One of the highest level system requirements
is to attempt to maintain continuous motion, so adaptive regard must be based on turning
maneuvers (which consume more space) instead of braking maneuvers.

In the worst case, the vehicle will need to execute a very aggressive turning maneuver in order to
avoid a large obstacle so the detection zone for this maneuver is used in the design. Specifically,
the planning window is computed by predicting the distance required to execute an impulse turn
at the current speed with the best available estimates of the output latencies that will apply. An
impulse turn is a turn from zero curvature to the maximum allowed curvature.

Precision in computation of the planning window requires careful treatment of time as will be
discussed in the next section. The planning window is measured from the vehicle position but
because the vehicle is moving while all i/o and processing takes place, there are many candidates
for this position, including:

• where the last image was taken
• where the last pose was measured
• where the vehicle is at the moment the planning window is computed
• where the vehicle will be when the steering command is issued
• where the vehicle will be when the steering actuator starts moving

Depending on which of these positions is chosen, a slightly different algorithm applies to the
computation of the detection zone. The alternative used is the fourth one - the position of the
vehicle when the steering command is issued by the system. In this case, the time required to turn
the wheel to full deflection depends on the communications delay to the actuator and the dynamics
of the actuator.

The algorithm for computing this window based on an impulse turn maneuver is given below. An
idealized model of response is used in the sense that all transients are lumped into the turning
reaction time. When it expires, the wheel is considered to switch curvature instantaneously. After
the wheel moves, the vehicle still requires a distance equal to the turn radius to actually execute the
turn.

Finally, in the worst case, an obstacle will exist just outside the planning window computed so far.
If this is the case, the next cycle of the controller will be unable to avoid it because the vehicle will
have moved a distance of speed * cycle_time closer to it by the time the steering command is
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recomputed. Therefore, this distance must be added to the current cycle's lookahead in order to be
safe. This "extra cycle" is necessary regardless of the obstacle avoidance maneuver used because
it arises from the finite cycle time of the system:

/*
** Adaptive Regard
*/ '
treact = time to turn steering wheel to full deflection;
rhomin = minumum safe turn radius;
Pmax = speed * treact + rhomin;
cycle_time = controller cycle time;
speed = current speed;
Pmax += speed*cycle_time;

4.2 Real-Time Latency Modelling
It was shown in the perception part that failing to account for image input latency causes obstacles
to be incorrectly positioned laterally by as much as 30° when turning and the distance to them to
be overestimated by as much as 20 meters when moving at 20 m/sec. Further, failing to account for
the scanning time of rangefinders can cause discrete objects to be smeared across 30° of the
horizontal field of view.

The planning problem has similar latency concerns. While perception overestimates the distance
to obstacles significantly, obstacle avoidance significantly underestimates the distance required to
react for two reasons.

• Position estimate input latency implies that the vehicle is actually much closer than the
last available position measurement suggests.

• Command output latency and actuator dynamics imply that it actually takes much more
distance to turn than would be expected from instantaneous response models.

These issues are illustrated below for typical latencies and a moderate speed of 3 m/s:
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Figure 102 - Latency Effects

A reliable measurement of the precise times at which events occur is essential for the system to
function correctly. In particular, the system needs to match images with vehicle states which may
arrive intermittently and it needs to remember the commands that were issued to all actuators in
previous iterations of the main control loop because the system cycles faster than the output
latencies. This is accomplished with the following mechanisms:

• all input and output is time-stamped
• all input and output is stored in internal FIFO queues
• all sensor latencies are modelled
• all actuator latencies are modelled

It is important to recognize that these FIFO queues do not introduce artificial delay. They are used
to model the delays which already exist in the hardware and to register contemporary events in
time.
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The availability of a state space model makes it possible to model sensor and actuator latencies
very precisely. For example, the instantaneous position of the vehicle at any point during the main
processing loop can be computed by feeding the last known position forward over the terrain map
based on the FIFO-queued commands issued in previous iterations. Some of the procedures
involved are described below.

4.2.1 Localization of Image Pixels

The smearing of the environment model which arises from incorrect models of the motion of the
perception sensor during the image digitization process is called the motion distortion problem.
All incoming vehicle state information is stored in a FIFO queue until it is needed to process
images which normally arrive much later. The state queue and the time tags are used to register the
ray through every pixel with a unique vehicle pose before its value is converted to world
coordinates.

4.2.2 Localization of the Vehicle

When the system uses the latest vehicle state as its estimate of position, the error involved in doing
so is the velocity times the latency of vehicle state information. Clearly a delay of only one second
causes 5 meters of localization error in the vehicle position at 5 m/s and pretty well guarantees
collisions with obstacles solely because the system does not know how close it is to the obstacle.
For this reason, an estimate of position sensor latency is used and fed forward just like any other
parameter .

4.2.3 Localization of the Feedforward Vehicle

All output commands are stored in a FIFO queue and are used for the next several iterations in
implementing command feedforward. When the system is generating the current command, there
may be quite a few previous commands still en route to the hardware, so a proper model must feed
these pending commands into the model before the current one is used and make decisions based
on the last command to go out, because the system still has control over only that current command.

11. This is a practical measure because extant vehicle positioning systems and computing hardware have no
consistent time standard. Ideally, the latency could be simply measured from the current time and the time tag
of the state.
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Section 5: Adaptive Regulators

In cases where the vehicle infrastructure permits, adaptive regulation mechanisms are available to
couple vehicle speed to its own estimates of reliability and to intelligently point the sensor field of
view.

5.1 Sensor Stabilization and Pointing
Sensor head control algorithms are provided that incorporate both somatic and environmental
feedback. These algorithms can also be used to control the field of view of real-time programmable
sensors.

5.1.1 Head Model

A controllable pan/tilt sensor head is modelled by two differential equations which are similar to
those used for the other actuators. It is likely that the system would not have access to speed
feedback, so again, a position loop is used to model the dynamics. A loop which is identical to the
steering model can be used to reflect the limited angles of excursion and the limited maximum
speed. For the tilt (or pitch) axis, the servo would be configured as follows:
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Figure 103 - Head Servo
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5.1.2 Azimuth Controllers

The pan axis must move with the vehicle and because it is mounted to the vehicle, any response
on this axis is useful.

The first azimuth controller is the steering regulator. This controller generates pan commands
which match the commands to the steering wheel. It would have been possible to servo to the
steering feedback, but that option is considered to incorporate a delay and provide no benefit in
return.

The second azimuth controller is the detection zone tracker. The steering feedforward simulator
provides an intelligent basis for pointing the pan axis because the centroid of the region which is
reachable by the vehicle can easily be computed. This controller computes the average angle
subtended at the initial position by the response curve endpoint. In a sentence, this servo looks
where the vehicle is going.

5.1.3 Elevation Controllers

The tilt axis must move against the vehicle and therefore must be able to respond significantly
faster that the vehicle itself in order to be of any use.
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The first elevation controller is the pitch regulator. This servo drives the elevation degree of
freedom to the opposite of the vehicle pitch. Note that if the vehicle pitch is indicated by an inertial
sensor, the servo gives effective inertial stabilization of the head without the cost of extra
gyroscopes.

The second elevation controller is the range window tracker. In rough terrain, the field of view
can only be pointed by a loop closed around the perception system because the body attitude and
terrain roughness affect the projection of the field of view onto the groundplane and only the high
level control loop knows this information.

The adaptive sweep algorithm provides an excellent measure of the deviation of the sensor tilt from
the ideal. This is computed as the average deviation of the range window from the vertical center
of the image. This error signal is used to drive the head, and in the process, a rough-terrain adaptive
sensor head controller results. This controller provides impressive stabilization on rough terrain
and it can also drive a roll axis with little modification.

5.2 Speed Planning
The speed which should be commanded of the vehicle depends on the local environment. It makes
sense, for instance, for the vehicle to slow down when it encounters challenging terrain and
likewise increase speed when benign terrain is encountered.

The motivation for speed planning is there is reason to expect that:

• there is a way to measure system robustness
• there is a way to relate robustness to speed in rough terms

The principle used for a speed planner is to close a proportional control loop around the average
predicted merit of all candidate commands because this average merit is low in dense hazard
environments and high in regions free of hazards. This principle is complemented by the fact that
higher speeds tend to lead to reduced maneuverability and hence lower reliability for the same local
terrain. That is, robustness can be altered in a small region by adjusting speed alone.

Many aspects of performance are implicitly figured in this algorithm. For example, occlusion,
resolution, map quantization noise, etc. are all implicitly expressed in the hazard signals. The
system will eventually reach equilibrium with respect to the most constraining sensor characteristic
and an appropriate speed will emerge naturally.

When a planner gets confused, it tends to stay confused for a time and when it is relatively stable,
it also tends to stay stable. This implies that there is a low frequency component to system
robustness which is long enough in time constant to exceed the vehicle response limits. Hence, a
vehicle may be able to respond fast enough to change things before it's too late. It should also be
noted that the tactical controller is designed so that a panic stop (slamming on the brakes) is
always guaranteed to avoid vehicle damage. The speed planner uses more graceful measures to
improve performance.
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A simple loop is configured as follows:

This loop is implemented with a time constant that is relatively large so that the speed loop will
respond only to the low frequencies in the overall merit.
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Chapter 3: Implementation

This section overviews the implementation of the planning and control system. This system is
implemented as two main objects - the vehicle and the controller. The vehicle encapsulates vehicle
state information and maintains the time histories of both measured states and issued commands.
It also implements the state space model used for implementing feedforward. The controller
consists of a tactical controller responsible for obstacle avoidance, a strategic controller
responsible for goal-seeking, and an arbiter which implements the optimal control algorithm
through a prioritized sort of the votes of the two controllers.

Section 1: Controller

Most aspects of the control laws (with the exception of feedforward itself) are implemented as
controller modules as illustrated below:
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Figure 105 - Controller Data Flow
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1.1 Command Generator
The Command Generator module uses knowledge of the vehicle kinematic steering constraints
and the dynamics of rollover to compute a set of equally spaced command trajectories which are
presented to the vehicle simulator for feedforward. The data flow for this module is given below:

Vehicle
Definition Maximum

Dynamic
Radius of
Curvature Vehicle

Commands

Figure 106 - Command Generator Data Flow

1.2 Tactical Controller
The Tactical Controller is a module which attempts to maintain nonzero forward velocity while
avoiding tipover, collision, or other hazardous situations. Based on the response state signals, the
tactical controller forms a holistic noise-immune estimate of the overall merit of turning in each
direction. Then it chooses the best alternative, and sends a command vote vector to the arbiter for
integration with the strategic vote. The data flow diagram is given below.
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Figure 107 - Tactical Controller Data Flow
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The hazard signals, for some suitable hazard vector, encode all information necessary to assess
safety in a minimalist manner. The hazard signals themselves are computed in this module from
the reference point coordinates and the terrain under them.

The hazards computed are static stability, body collision, discrete obstacles, and the information
density of the signals, called sampling. This module also stores, in signal form for graphical display
purposes, a time history of the feedforward vehicle states used.

This module computes the optimal controller objective functional. There are a number of hazards
considered, and each is a time signal, and each hazard time signal is computed for each candidate
trajectory. The first two dimensions are integrated out in this module to produce the tactical vote
vector which is passed to the arbiter for the final decision.

1.2.1 Pitch Merit Generator

This module computes the signal norm of the pitch turnover hazard signal for each curvature.

1.2.2 Roll Merit Generator

This module computes the signal norm of the roll turnover hazard signal for each curvature.

1.2.3 Body Collision Merit Generator

This module computes the signal norms for the body collision hazard signal for all reference points
on the body for each curvature.

1.2.4 Sampling Merit Generator

It is considered very undesirable for the vehicle to drive onto unknown terrain. This module
computes a norm of the sampling signal which is basically the degree to which terrain is unknown
for sampling or occlusion reasons.

1.2.5 Discrete Obstacle Merit Generator

In order to maintain acceptable response characteristics, it is necessary to use a relatively low
resolution terrain map. This implies that obstacles smaller than a map cell cannot be resolved from
terrain map gradients. This module computes a norm of the discrete obstacle signal which is
generated by applying an obstacle detector to the scatter matrix in each cell as discussed in [53].

1.2.6 Overall Merit Generator

This module computes the minimum of the merit factors of the above four hazards. In principle,
the existence of any one of the above hazards is undesirable, so it is appropriate to rate the
corresponding command by the worst of these.
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1.3 Strategic Controller
The Strategic Controller module accepts a strategic goal which biases the system behavior in the
long-term. The strategic goal may be to follow a heading, a fixed curvature, a single point, or a
convoluted path. The path tracker component is the only nontrivial one. It accepts a specification
of a path to be followed in global coordinates and generates steering preferences which would
cause the vehicle to track the path. The tracking algorithm is a modification of pure pursuit. The
output of this module is overridden by the arbiter if tracking the path would lead to a hazardous
situation. The data flow diagram for the tracker module is given below.
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Goal
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Generator
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Curvature

Curvature \ '
Generator

Figure 108 - Global Path Tracker Data Flow

1.3.1 Goal Point Generator

This module uses the current vehicle position and heading to determine the closest point on the path
which is outside the pure pursuit lookahead distance. The lookahead distance is adaptive to the
current tracking error - increasing as the error increases. In this way, when an obstacle avoidance
maneuver causes significant path error, the algorithm will search to reacquire the path on the other
side of the obstacle instead of causing a return to the front of the obstacle.

1.3.2 Curvature Generator

This module computes a preference curvature for the vehicle based on where it is now, and the
position of the goal point on the path. This algorithm is pure pursuit. The feedforward version
chooses the curvature corresponding to the arc command whose associated response trajectory is
closest to the goal point.

1.3.3 Path Recorder

The tracker incorporates a recording facility which permits the recording of paths which are
traversed when a human is driving. This permits convenient generation of test trajectories. Raw
positions are recorded each cycle to a file which is further processed later when it is read during
playback.
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1.4 Arbiter
The Arbiter integrates out the curvature dimension of the vote vectors of both the tactical and
strategic controllers to generate a single command to the hardware. When the system operates as a
voting element in a larger system, no physical i/o takes place and the vote vectors are available
externally. The data flow diagram for the arbiter module is given below.
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Figure 109 - Arbiter Data Flow

1.4.1 Smooth Over Curvature

The environment normally exhibits a degree of smoothness, so it is appropriate at times for poorly-
rated trajectories to degrade the ratings of their spatial neighbors. This mechanism will reduce the
impact of errors in both feedback and actuation by causing the vehicle to give obstacles a wide
berth. At times, this module is disabled depending on the spacing of the candidate trajectories
investigated. The algorithm itself is simple Gaussian filtering in one dimension.

1.4.2 Curvature Merit Generator

This module computes a merit for the strategic vote vector elements based on the distance of each
command from the maximum of the strategic vote vector measured in curvature space. This
measures the degree of disagreement between the two controllers for each element of the tactical
vote.

1.4.3 Sort by Curvature Merit

This module sorts the tactical vote vector using the curvature merit of the corresponding strategic
votes as the key. Candidate commands are then presented to the final decision process in order of
preference.

1.4.4 Threshold

This module implements the final decision. The first trajectory in the sorted list which exceeds a
merit threshold is chosen and sent to the vehicle controller. If no curvature exceeds the threshold,
a panic stop command is issued.
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Section 2: Vehicle

The Vehicle object implements very precise models of actuator dynamics, body dynamics, and
terrain following. It also encapsulates the vehicle command and vehicle state FIFO queues and
provides various daemons for accessing the queued information conveniently. The data flow
diagram for the vehicle simulator is given below.

2.1 System Model
The simulation component of the vehicle object serves double duty as the feedforward element in
the tactical controller and as a simulation tool for simulated runs in a simulated world. The
commanded trajectory is specified in terms of curvature and speed. The predicted vehicle states are
the computed vehicle response to that command expressed in terms of the six-axis position and
orientation of the vehicle, for each command, as a function of time.
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Figure 110 - System Model Data Flow

2.1.1 Suspension

This module uses the current estimate of position and heading and drops the vehicle slowly onto
the terrain map in order to determine the attitude it achieves when it settles. Strictly speaking, the
attitude determination problem is nonlinear and nonlinear techniques are necessary to solve it.
However, the simple technique used here works well in practice.
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This module is also responsible for on demand interpolation of the vehicle state. It computes the
elevation of the terrain under each wheel and if the map is unknown, it attempts to propagate
elevation forward from the last known wheel elevation along the response trajectory. Interpolation
is limited to a small distance which corresponds to the assumed smoothness of the terrain.

2.1.2 Propulsion

This module computes the speed for the current cycle from the speed of the last cycle and the speed
command.

2.1.3 Steering

This module implements the differential equation which models the transfer function of the
steering column as a delayed, limited, first-order system in velocity. Basically, the current steering
position and velocity are the initial conditions for the differential equation and a straightforward
rectangular rule integration scheme gives the response of the steering to the input command. A
bicycle model approximation to the Ackerman steering model is used.

2.1.4 Body

This module computes the Fresnel integrals which convert the speed and curvature signals into
position and heading. Correct 3D linear and angular dead reckoning equations are used.

2.2 FIFO Queue Daemons
The FIFO queue daemons perform simple transformation functions on data on an as-required basis.
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Figure 111 - FIFO Queue Daemons Data Flow
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2.2.1 Put Current State

This module stores incoming time-tagged vehicle states in the state FIFO. Normally this data is
generated from an external sensor and the position estimator.

2.2.2 Put Current Command

This module stores incoming time-tagged vehicle commands in the command FIFO. Normally this
data is generated by the controller. After a command is issued to the real vehicle, a copy is stored
in the queue.
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2.2.3 Get Old State

This module looks up old state data. Normally this data is needed by the map manager when
processing images.

2.2.4 Get Old Command

This module looks up old command data. This data is needed by the vehicle itself in implementing
feedforward of delays.

2.3 Vehicle Daemons
The vehicle daemons compute important properties of the vehicle for the purpose of implementing
adaptive regard.

2.3.1 Get Planning Window

This module uses the current vehicle velocity and vehicle and processing latencies to determine the
lookahead required in the planning algorithm.

2.3.2 Get Adaptation Speed

The problem of computing the planning window is circular because the trajectory traversed is not
known until the speed is, and the speed is not known until the trajectory is. For the purpose of
computing the planning window, this module uses either the current speed (when a human controls
the throttle) or the mean predicted speed (when the vehicle has a propulsion controller).

2.3.3 Get T\irn React Time

This module estimates the turning reaction time from an estimate of the dynamics of the steering
column for the purposes of calculating the planning window.
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Chapter 4: Results

Section 1: Optimal Control

Figure 112 is a screen capture of the terrain map data structure including the vehicle and the
feedforward response trajectories as the vehicle approaches a large hill that is not traversable. The
system issues a left turn command to avoid a hill to its right. The histograms represent the votes
for each candidate trajectory (higher values indicate preferred trajectories). The hazards are
excessive roll, excessive pitch, collision with the body, and collision with the wheels. The tactical
vote is the overall vote of hazard avoidance. The strategic vote is the goal-seeking vote. The arbiter
chooses the third trajectory from the left because this is the trajectory which is closest to the
strategic vote maximum (straight) but which also satisfies obstacle avoidance.

preferred
path

Roll Pitch Body Wheel Tact Strat

Figure 112 - Goal Arbitration
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Section 2: Obstacle Avoidance

The system has been integrated with a stereo vision system [57] at the Jet Propulsion Laboratory
on a HMMWV. The following figure presents a short autonomous excursion along a dirt road near
JPL bounded by trees and bushes on the right and a ravine on the left. In this run of the system, the
strategic controller is turned off, and the vehicle wanders the road based on obstacle cues to the
sides.

The sequence of images to the left are the stereo range images. To the right are intensity images of
the scene corresponding to the range images. The images are positioned more or less in
correspondence with their associated position in the terrain map. The terrain map, drawn in the
center, is rendered with intensity proportional to elevation. The path followed is drawn leading to
the position of the vehicle near the end of the run. A wireframe rendering of the terrain map is
provided at the extreme right of the figure.

The run terminates at the end of the road. Two distinct obstacle avoidance maneuvers occur. The
first is a left turn to avoid a large tree and the second is a recovery right turn to prevent falling into
the ravine. The system drives this road routinely at this point in its development.

RAVINE

TREE

Figure 113 - Obstacle AvoidanceTest Run
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Section 3: Goal-Seeking

The following figure illustrates the performance of the feedforward algorithm relative to the
kinematic one for a simulated vehicle:

Kinematic Tracker
4.5 m/s 475 m lookahead

140

2120

"5)100

c 80
B 60
cti

=§ 40

2 20

-20

p
} //

J

1
\

-40 -20 0 20 40 60 80 100 120
X Coordinate in Meters

Feedforward Tracker
4.5 m/s 4.5 m lookahead

140

£120

•55100

1 80
B 60
CO

1 40
8 20
o n

-20.

/
/
(—.

.

— /
/ \

7 y

\
)

-40 -20 0 20 40 60 80 100 120
X Coordinate in Meters

Figure 114 - Performance of Feedforward Pure Pursuit

Each graph shows the target commanded trajectory and the actual trajectory followed under the
algorithm used. Both paths are indistinguishable most of the time. Note, however, that the
kinematic tracker goes unstable in the top left figure whereas the feedforward one does not.
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Section 4: Adaptive Regulation

The results for a run of the speed planning system in a simulated dense obstacle field at high speed
are indicated below:
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Figure 115 - Performance of Speed Planning

The vehicle was driven in simulation for 500 cycles at a nominal speed of 4.5 m/s at 3 Hz cycle
time. When speed planning was on, the excursion was 703 meters versus 687 meters when it was
off. The planner was considered to have failed when the merit fell below a threshold of 0.4. With
speed planning on, "failure" occurred 4% of the time, whereas it occurred 6% of the time with
speed planning off. More important, the seriousness of the failures with planning off were much
worse than those with planning on. The system attempts to maintain a constant merit of 0.4 when
the loop is closed. The figure shows that the deviation from 0.4 is much higher in the left figure.
The peaks and valleys are wider in the left figure indicating sustained periods of confusion. In plain
terms the algorithm makes it possible to drive farther more robustly.

An extra benefit of the speed planning loop is that it will automatically back the vehicle up and
drive off in another direction when a panic stop is issued. The path planner supports this as well
because it plans correctly for negative velocities, so it backs up "smartly" avoiding obstacles until
a new alternative presents itself.
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Chapter 5: Summary and Conclusions

This section summarizes all of the most important content of Part V: Planning/Control.

An approach to the high-speed mobility problem is presented which is based fundamentally on the
state space representation of a multi-input / multi-output dynamical system and the problem
analysis presented in Part II: Analysis. The high-speed local navigation problem has been
formulated as an optimal control problem where the search of alternatives is conducted in actuation
space. Obstacle avoidance, path planning, path generation, and path following algorithms are
introduced which are based on the state space model. These algorithms are stable and reliable at
10 mph on rough terrain and promise to maintain stability at 20 mph and above.

This part describes the state space model which forms the core of the planning system. This part
concentrates on the trajectory tracking, obstacle avoidance and sensor stabilization aspects of the
navigator. These algorithms form the basis of RANGER'S Controller and Vehicle objects.

Section 1: Concept

The principle of adaptive regard is the organizing principle of the design of the navigator's
planning system. Adaptive regard is a notion applied to the planning problem. Essentially, this
mechanism confines the search for hazards through the environmental model to the detection zone
- that region of the near environment which the vehicle can reach and is not already committed to
travelling. Thus, this mechanism applies to the terrain map and the planning problem and is based
on a response argument. Adaptive regard is based on four principles:

• don't look where the vehicle cannot go (free zones)
• don't look where the vehicle is committed to going (dead zone)
• don't look where the vehicle will get another look later (beyond detection zone)
• look where there is an immediate decision of traversability required (detection zone)

The motivation for this approach to planning can be expressed in familiar terms. Analysis suggests
that much of the computational resources used to plan paths through the environment are a waste
of resources in high-speed mobility scenarios. This waste occurs because:

• Dynamics and other constraints of many kinds including braking and steering maneuver-
ability, underactuation of the vehicle, and processing and communication delays amount
to an overwhelming constraint on the feasibility of arbitrary trajectories expressed in
configuration space.

• Search through any space of candidate trajectories which do not respect the dynamics
constraint amounts to alot of time wasted thinking about the impossible which tends to
increase reaction time and therefore to limit system performance.

1,1 Optimal Control
The problem of intelligent mobility is that of achieving some useful goal while simultaneously
avoiding damage to the vehicle.
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1.2 Hierarchical Planning
The local minimum problem is perhaps the most serious threat to robustness of any local obstacle
avoidance strategy for autonomous navigation. In order to enhance robustness, the navigator
supports the input and continuous monitoring of strategic goals. With goal-seeking and obstacle
avoidance goals operative simultaneously, a means for arbitrating between them in order to avoid
actuator contention is necessary. The highest level design strategy for the planning/control system
is hierarchical planning with arbitration.

1.2.1 Optimal Control

The task of safe navigation can be expressed in classical optimization terms. The navigator must
achieve some useful goal while simultaneously satisfying the constraint of avoiding damage to the
vehicle or its payload and the constraints of limited vehicle maneuverability.

1.2.2 State Space Model

The navigator is a state space controller because it explicitly forms an expression of the vehicle
dynamic state vector in order to predict the hazard signals upon which decisions are based. Instead
of forming an inverse model which attempts to compute curvature and speed from a C-space
curve, a forward model is used which implements the equations of dead reckoning. This process
which converts an actuation space trajectory to a state space trajectory is a constrained
multidimensional differential equation called the state space model.

1.2.3 Actuation Space Search

Perhaps the most well-known abstraction used in robot path planning is configuration space or C-
space[55]. C-space techniques do not capture dynamics well. The system discussed here plans
instead in actuation space by considering a number of actuation space alternatives which span the
feasible set of commands for the vehicle at some gross resolution. An actuation space approach to
path planning has been adopted because:

• A conventional automobile is underactuated (non-holonomic), so the mapping from
C-space to actuation space is under-determined. It is not possible, in general, to com-
pute the speed and steering commands which will cause a vehicle to follow an arbitrary
C-space curve. The use of actuation space and forward modelling avoids entirely the
problem of path generation for non-holonomic vehicles.

• Many constraints on vehicle motion are differential in nature and most naturally
expressed in actuation space. In the case of steering in particular, a kinematic model can
be considered to be one for which curvature can be changed instantaneously. Yet, a mod-
erate-speed vehicle cannot reverse curvature within the maximum useful range measure-
ment that a stereo or lidar sensor can produce. Thus, high-speed motion demands that
actuator response characteristics be considered, and the natural space in which to model
them is actuation space. The use of actuation space permits expression of these dynamic
constraints in terms of dynamic models of actuators.

• Actuation space planning is more computationally efficient. Continuous high-speed
motion implies that a vehicle has very little time to react to what it sees. A planner must
decide what to do under stringent timing constraints or the entire navigator will fail.
Actuation space permits a fast, coarse-grained evaluation of all feasible alternatives. The
problem of C-space combinatoric explosion is solved by planning in actuation space.
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1.2.4 Feedforward Optimal Control

One of the defining characteristics of intelligent systems is deliberation. The high-speed
autonomous navigation problem is highly dynamic and requires time-continuous differential
equation models, so deliberation here takes the form of feedforward.

Feedforward is employed for several reasons:

• It imparts stability to both goal-seeking and obstacle avoidance12.
• It computes the detection zone required to implement adaptive regard.
• It allows the planner to conduct its search over the space of feasible commands

U (t) G U without explicitly considering feasibility because trajectories expressed in
actuation space are inherently feasible. Feedforward solves the clothoid generation
problem trivially.

1.2.5 Forward Modelling

The differences between classical C space planning and actuation space (A space) planning were
summarized. In the classical C space scheme, the search of planning alternatives is expressed in
configuration space. In the actuation space approach used here, the inverse system model is
never evaluated explicitly - the system simply remembers the correspondence of commands to
response trajectories and inverts this list of ordered pairs. In this manner, alternatives are
considered in actuator terms, and the navigator plans in actuation space.

The essential computational efficiency argument of the approach is:

• Motion planning is a problem involving search.
• Efficiency of search can be improved with constraint ordering heuristics.
• Forward modelling, which considers dynamic modelling before obstacle avoidance, is a

valuable ordering heuristic which improves both computational efficiency and system
robustness.

Section 2: Design

This section provided detailed algorithm descriptions for the planning and control subsystem.

2A Optimal Control
The system attempts to satisfy two goals simultaneously. The tactical goal is to avoid obstacles
while the strategic goal is to track the goal trajectory. At times, goal-seeking may cause collision
with obstacles because, for example, the goal may be behind an obstacle. The system incorporates
an arbiter which permits obstacle avoidance and goal-seeking to coexist and to simultaneously
influence the behavior of the host vehicle. The arbiter can also integrate the commands of a human
driver with the autonomous system.

12. It has not been mentioned yet, but feedforward prevents "waffling" in the arbiter because once a slight
turn is commanded, it affects all subsequent response trajectories by biasing them to reflect the distance the
steering wheel will turn for that cycle. Feedforward leads to a more confident controller because it recognizes
when a partial commitment has been made to turn in a certain direction.
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2.1.1 Goal Arbitration

Several times a second, the planner considers approximately ten steering angles to use during the
next control cycle. The steering angle that results in a path that both satisfies obstacle avoidance
constraints and optimizes the cost function is chosen.

2.1.2 State Space Model

A high fidelity feedforward actuator dynamics and terrain following model was introduced here.
The forward vehicle model is mathematically involved because it involves solution of a coupled
set of eight nonlinear differential equations which form the vehicle state space model.

The basic simulation loop can be written as follows. At each time step:

• simulate suspension - determine attitude from terrain geometry and position
• simulate propulsion - determine new speed from command, state, and attitude
• simulate steering - determine angular velocity from steering and speed
• simulate body - dead reckon from linear and angular velocity and time step

The positions of distinguished points on the body, called reference points, are maintained in
navigation coordinates throughout the simulation. The suspension model that is used is based on
assumptions of rigid terrain and suspension and it computes the attitude of the vehicle which is
consistent with terrain contact. Propulsion is modelled as a proportional controller with gravity
compensation. The steering model is based on an angular velocity limit on the steering wheel and
the bicycle model of steering kinematics. Body dynamics are simulated using the 3D dead
reckoning equations which also form the system model in the Kalman filter which is documented
in Part VI: Position Estimation.

2.2 Obstacle Avoidance
Hazards are represented as sampled time signals which are parameterized by the commands to
which they correspond.

2.2.1 Temporal State Interpolation

The interpolation algorithm used in the system is an interpolation of both the state vector and the
hazard signals in time, rather than an interpolation of the terrain map in space.

2.2.2 Hazard Representation

Each hazard is represented on a normalized scale where the maximum value indicates certainty of
danger and the minimum value indicates certainty of safety.

2.2.3 Hazard Arbitration

The evaluation of hazards amounts to the generation of a 3D field of the form
merit(hazard,command,time) because safety is different for each command, different for each
hazard, and a time signal. The obstacle avoidance hazard estimator computes a functional on this
3D field which forms the basis of the decision of whether the entire trajectory is to be considered
safe.

2.2.4 Hazard Estimation

Three principal forms of hazards are incorporated:
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• unknown terrain
• collision of the terrain with the body
• static instability

2,2.5 Hazard Uncertainty

Most hazards outlined above are computed as gradients of the terrain over some support. In such
cases, the elevation uncertainty stored in the terrain map is used to compute an uncertainty on the
hazard estimates as outlined in Part II: Analysis.

2.3 Goal-Seeking
The basic pure pursuit algorithm specified in the concept section is modified to adapt it to both
rough terrain and high speeds. First, the lookahead distance is adaptive to the current tracking error.
Second, a feedforward option in the tracking algorithm incorporates the output of the system model
simulator into the tracker.

2.4 Adaptive Regard
In order to evaluate safety, the tactical control module computes the response to candidate
commands simulated forward in time until the detection zone is reached. There is no real need to
compute this region explicitly - the only real requirement is to determine where it starts and where
it ends in terms of distance from the vehicle position.

2.4.1 Planning Window

The planning window of tactical planning is analogous to the range window in perception. It
confines the search for hazards to the detection zone. One of the highest level system requirements
is to attempt to maintain continuous motion, so adaptive regard must be based on turning
maneuvers (which consume more space) instead of braking maneuvers.

The planning window is computed by predicting the distance required to execute an impulse turn
at the current speed with the best available estimates of the output latencies that will apply. An
impulse turn is a turn from zero curvature to the maximum allowed curvature.

Precision in computation of the planning window requires careful treatment of time. The planning
window is measured from the position where the vehicle will be when the steering actuator starts
moving.

2.4.2 Real-Time Latency Modelling

The planning problem has latency concerns similar to those of perception. Without latency models,
obstacle avoidance significantly underestimates the distance required to react for two reasons.

• Position estimate input latency implies that the vehicle is actually much closer than the
last available position measurement suggests.

• Command output latency and actuator dynamics imply that it actually takes much more
distance to turn than would be expected from instantaneous response models.

A model of these latencies is accomplished with the following mechanisms:

• all input and output is time-stamped
• all input and output is stored in internal FIFO queues
• all sensor latencies are modelled
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• all actuator latencies are modelled

It is important to recognize that these FIFO queues do not introduce artificial delay. They are used
to model the delays which already exist in the hardware.

2.5 Adaptive Regulators
In cases where the vehicle infrastructure permits, adaptive regulation mechanisms are available to
couple vehicle speed to its own estimates of reliability and to intelligently point the sensor field of
view.

Section 3: Implementation

This section overviewed the implementation of the planning and control system. This system is
implemented as two main objects - the Vehicle and the Controller. The Vehicle encapsulates
vehicle state information and maintains the time histories of both measured states and issued
commands. It also implements the state space model used for implementing feedforward. The
Controller consists of a Tactical Controller responsible for obstacle avoidance, a Strategic
Controller responsible for goal-seeking, and an arbiter which implements the optimal control
algorithm through a prioritized sort of the votes of the two controllers.

3.1 Controller
Most aspects of the control laws (with the exception of feedforward itself) are implemented in the
controller module. The elements of this subsystem are Command Generator, Tactical Controller,
Strategic Controller, and Arbiter.

Vehicle
The Vehicle object implements very precise models of actuator dynamics, body dynamics, and
terrain following. It also encapsulates the vehicle command and vehicle state FIFO queues and
provides various daemons for accessing the queued information conveniently. The elements of this
subsystem are System Model, and FIFO Queue Daemons.

Section 4: Results

4A Optimal Control
An illustration of the operation of the optimal control arbiter was provided where the goal-seeking
behavior wants to go straight and hazard avoidance wants to turn left. The output of the arbiter is
the softest left turn which avoids the obstacle directly in front of the vehicle.

4.2 Obstacle Avoidance
The system has been integrated with a stereo vision system [57] at the Jet Propulsion Laboratory
on a HMMWV. A short autonomous excursion along a dirt road near JPL bounded by trees and
bushes on the right and a ravine on the left. The run terminates at the end of the road. Two distinct
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obstacle avoidance maneuvers occur. The first is a left turn to avoid a large tree and the second is
a recovery right turn to prevent falling into the ravine. The system drives this road routinely at this
point in its development.

43 Goal-Seeking
The performance of the feedforward algorithm relative to the kinematic one was illustrated for a
simulated vehicle.The kinematic tracker goes unstable whereas the feedforward one does not.

4.4 Adaptive Regulation
The results for a run of the speed planning system in a simulated dense obstacle field at high speed
were presented. The algorithm makes it possible to drive farther more robustly.
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PART VI: Position Estimation

This part describes the state space Kalman Filter which forms the core of the position estimation
system. These algorithms form the basis of RANGER'S Position Estimator object.

The Kalman filter has many applications in mobile robotics ranging from perception, to position
estimation, to control. This part formulates a navigation Kalman filter. That is, one which estimates
the position of autonomous vehicles. The filter is developed according to the state space
formulation of Kalman's original papers which is particularly appropriate for the problem of
autonomous vehicle position estimation.

R. E. Kalman solved the optimal estimation problem for a certain class of linear systems about 35
years ago. There is really only one Kalman filter with a few variations and most research on the
Kalman filter amounts to filling in the elements in the matrices which appear in the original
formulation. This is not to say that this modelling problem is trivial.

The most important decisions in the filter design problem are the modelling decisions which
outline the states, the measurements, the noise models, coordinate systems, linear approximations,
etc. Thus, the purpose of this part is to outline a set of plausible modelling decisions for the
navigation problem for autonomous vehicles which have led to a working Kalman filter.

Chapter 1: Concept

This section outlines an approach to autonomous vehicle position estimation based on the state
space Kalman filter. This particular filter formulation is quite general. This generality is possible
because the problem has been addressed

•in 3D
• in state space, with an augmented state vector
• asynchronously
• with tensor calculus measurement models

The formulation has wide-ranging uses. Some of the applications include:

• as the basis of a vehicle position estimation system, whether any or all of dead reckon-
ing, triangulation, or terrain aids or other landmarks are used

• as the dead reckoning element and overall integration element when INS or GPS is used
• as the mechanism for map matching in mapping applications
• as the identification element in adaptive control applications

It can perform these functions individually or all at once - subject to the availability of sensors and
the underlying requirements of observability.
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Section 1: State Space Kalman Filter

The fundamentals of the state space Kalman filter are described in the appendices for the benefit
of readers unfamiliar with the basic concept. The equations of the appendix can be represented in
the following block diagram. The system model used is identical to the model used in the planner.
It is expressed here as the transition matrix O^. Conceptually, the system model estimates vehicle
state based solely on a measurement of time because it expresses the differential equations of
motion and the state vector provides all required initial conditions.
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Figure 116 - State Space Kalman Filter

1,1 Positioning Requirements
The basic requirements on position estimation for the purposes of implementing autonomous local
navigation are as follows:

1.1.1 Bandwidth

Position updates must be available at 100 Hz in order to remove image distortions. This can be
achieved by running the system model equations of the filter at this rate because the system model
update rate is completely independent of the measurement arrival rate.

1.1.2 Relative Accuracy

Relative position accuracy must limit accumulated position error to one terrain map cell over a
distance of the maximum planner lookahead over the mission. At 20 mph, this implies a
requirement of about 1% of distance travelled. Odometry is typically available on autonomous
ground vehicles and can meet this requirement if properly calibrated.
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1.1.3 Absolute Accuracy

While the strategic layer of the standard model may require bounded absolute position accuracy,
the only absolute accuracy requirement of the tactical layer is to measure attitude (pitch and roll)
to within about 10% of the maximum expected over rough navigable terrain. In order to avoid
tipover, the navigator must know "which way is up" to about 1° absolute accuracy.

1,2 Design Decisions and Assumptions
For the requirements mentioned above, an AHRS dead reckoning Kalman filter promises to meet
all requirements - assuming that the system model cycles much faster than the sensors can provide
measurements and the attitude and heading measurements are sufficiently accurate. The filter is
formulated for a general redundant asynchronous sensor suite. In order to achieve the 100 Hz
update rate, the asynchronous model permits many measurement models to be expressed in closed
form as scalar equations, and this reduces the matrix computations to a minimum. A few key
assumptions permit the filter to perform as required:

1.2.1 Low Dynamics Assumption

This assumption that linear and angular velocity are mostly constant between measurements makes
it possible to reduce the state vector dimensionality to a minimum.

1.2.2 Taylor Remainder Theorem

Under this basic theorem of calculus, provided the low dynamics assumption holds, uncertainty
models for sensors and states can be generated from the last neglected term in the relevant Taylor
series.

1.2.3 Principle Motion Assumption

This assumption that the vehicle moves primarily along the body y direction and rotates primarily
about body z permits the filter to be formulated in observable form without the need for any
landmark damping. It also eliminates two linear and two angular velocities from the state vector.
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Section 2: AHRS Dead Reckoning

AHRS is an acronym for Attitude and Heading Reference System which is used in the navigation
industry to mean a suite of components used for measuring the attitude of a vehicle and sold as an
integrated package. The primary distinction between the AHRS and the INS is the absence of
accelerometer dead reckoning. The AHRS often provides no position output at all and is best suited
for odometric dead reckoning. This section proposes a filter for a mobile robot position estimation
system which utilizes an AHRS as the attitude indicator.

2.1 AHRS Components
The AHRS can be considered to be a sensor package consisting of any of the following
components:

• integrating gyroscopes
• a magnetic compass
• inclinometers

2.2 Other Sensors
The position estimation system will integrate these attitude indications with:

• wheel or transmission encoder(s)
• Doppler ground speed radar
• steering wheel encoder

2.3 Extended Kalman Filter
In many cases, either the system model or the measurement matrices or both are nonlinear so a
linearized Kalman filter of some form is necessary. In order to support wide excursion missions,
and because a nominal trajectory is not always available, an EKF will be formulated.

2£ Unforced Kalman Filter
It is possible to incorporate deterministic control inputs into the Kalman filter, and this requires
slight changes to the following equations. It is a simple matter to incorporate steering dynamics via
the steering control signal1. However, in the case of autonomous commercial vehicles, little is
known in land-based autonomous vehicle circles about powertrain dynamics, so any such model
might be grossly in error to the point of destroying the utility of the filter. For this reason, only the
unforced Kalman filter is considered here.

A second source of deterministic inputs are the disturbances which result from terrain following in
cross-country vehicles. These amount to forces generated by the terrain which prevent the vehicle
from sinking into the terrain. For example, a high-speed vehicle pitches violently when it
encounters a steep grade. These can be estimated and folded into the filter.

1. Note control signals are distinguished from sensory feedback. In the case of steering, the drive amp current
demand is the drive signal.
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Section 3: Advantages

It is worth noting the advantages of applying the Kalman filter to the position estimation problem
in such a simple case. The main advantage is the improvement in accuracy available due to
redundant measurements.

3.1 Redundant Measurements
Sensors such as a transmission encoder and Doppler groundspeed radar provide redundant
measurements of velocity which can be used to improve the estimate. The 3 axis AHRS output
makes 3D dead reckoning possible and a steering encoder may be able to improve attitude response
of the AHRS around the most important axis for dead reckoning purposes since it does not suffer
from the settling problems of many commercial AHRS systems.

3*2 Integration of Dead Reckoning and Triangulation
Of course, if any fix information is available, the formulation provides a simple mechanism for
improving a dead reckoned estimate considerably.

3.3 Modelling Frequency Response
Most inexpensive AHRS systems are based on fluxgate compasses for heading and inclinometers
for attitude. Both of these sensor types can have unacceptably long settling times - they cannot
track high dynamics faithfully. State vector augmentation can be used to model the frequency
response of such sensors and then, when rate gyros are added to the sensor suite, the overall attitude
and heading estimate can be improved.

3.4 Computational Inertial Force Compensation
Another problem of commercial AHRS systems is centrifugal coupling of acceleration and
attitude. Inclinometer devices cannot distinguish acceleration from attitude changes, but other
measurements of path curvature and linear velocity can be used to compensate for centrifugal
accelerations by removing them computationally from the clinometer outputs.

3.5 Nonlinear Error Propagation
Accelerometers or acceleration states would permit modification of the measurement noises to
account for settling problems. The advantage of the EKF over the linear KF is that the uncertainty
propagation is more accurate. For example, if a poor heading reference is used, it is the direction
transverse to the direction of travel which can incur the most error. The cross-coupling terms in the
system Jacobian can correctly account for this.

3.6 Noise Immunity

Another advantage, specifically of the state space formulation of the Kalman filter, is its true
filtering behavior. Appropriate choice of the system disturbance model will cause the filter to
automatically reject erroneous high frequency input. This arises as a side-effect of considering the
new estimate to be a weighted sum of the old estimate and the estimate generated by the
measurements. In practice, however, a "spiky" sensor is best managed by a true low-pass
prefiltering operation.
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Chapter 2: Design

Section 1: AHRS Dead Reckoning System Model

This section begins the business of writing out the math. The rest of this part depends heavily on
the kinematic notation and relationships set out in the appendices. Most of the measurement and
system model is a 3D kinematic model. The reader will have to refer to the appendices in order to
closely follow the kinematics here.

1.1 Nav Frame System Model
Under the low dynamics assumption, the discrete system model can be formulated as the six-axis
dead reckoning equations. The first question to resolve is the coordinate system in which to
represent the linear velocity states. A practical choice depends on the observability issue.

Let x, y, z, 0, <|>, and \|/ denote the vehicle position and attitude in the navigation frame. For
notational convenience, translational and attitude variables will be grouped together as follows:

The state equations are then:

d
dt
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This matrix is trivial because the assumed dynamics were trivial. It is recommended that the
equations be partitioned for efficiency reasons, but they are cast in this form to identify the state
variables. Given measurements of the rate variables and the time step, it is clear that the transition
matrix is:

x knhi ~
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because the F matrix is constant and vanishes when squared, so that:

<Dk = I + Fdt

exactly. This defines the Ok matrix in the model, and notice that it makes the constant velocity low
dynamics assumption quite explicit. This is also a literal expression of the usual equations of dead
reckoning.
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1.2 Observability in the Nav Frame
Unfortunately, the above model was attempted and found to have observability problems with the
standard suite of dead reckoning sensors. The nav frame model is ideal when an INS or GPS is
available to provide measurements in the nav frame, but without such sensors, the filter diverges
unacceptably. Even with perfect DR sensors, this formulation does not work as a matter of
mathematics.

1.2.1 Entire State Vector Observability

To see this, consider a sensor suite that provides direct measurement of attitude and attitude rate,
plus a measurement of the forward component of velocity. Let the vehicle drive along the x axis of
the navigation frame - then, for this trajectory:
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Recall that the observability question rests on the rank of the following matrix being that of the
system model, which is 12 in this case:

S = [ H T O T H T ...

Each vertical partition of the matrix E is of the form2:

H T(<D T) n =

0 0 0 1 0 0 0 0 0 ndtO 0
0 0 0 0 1 0 0 0 0 0 ndt 0
0 0 0 0 0 1 0 0 0 0 Ondt
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

T

2. Note that the transpose of the RHS is the result so the partitioning is vertical in this view.
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so that each partition contains a column linearly independent on the corresponding columns of all
other partitions. Therefore the rank is that of a single partition. Notice that for any partition,
columns 1,2,3,8 and 9 are all zeros so that the rank of this matrix is 7. Hence the system is not
observable.

1.2.2 Rate Variable Observability

A more careful analysis would reflect on the fact that the position states are never observable in a
pure dead reckoning system such as the one proposed here - in either the nav or body frames. While
it is the case that the initial conditions can be used to compute the position states from velocity and
attitude, the observability criterion does not capture this possibility. However, if the criterion is
reformulated for the rate variables only, the system remains unobservable.

To see this practically, notice that either a transmission encoder or Doppler groundspeed radar
measures only the component of vehicle velocity which is directed along the body y axis. The
measurement matrices for such sensors act so as to project the speed residual onto all three of the
state variables x, y and z. However, once the velocity vector is of correct magnitude, all
adjustment stops. So if the predicted speed is correct but the velocity vector is wrong, the filter will
not rotate the velocity vector in order to correct it.

The measurement models of the nav frame model generate the body to nav transform in the
measurement models of the DR sensors, so provided the measurement models of the forthcoming
section are modified, the above nav frame model can be successfully used with INS or GPS, or any
sensor suite which measures translation along the nonobservable axes.

Some AHRS provide accelerations in the body frame. These can be integrated in a straightforward
manner with either the nav frame model or the body frame model discussed next.

1,3 Body Frame System Model
These problems of observability can be overcome by changing the system model to force the
velocity vector to be oriented along the body y axis. However, this would be like having one state
variable and faking three others. In truth, only one is independent, so there is only one. There is a
more elegant way. Specifically, the state variables are reduced in number and the system model is
reformulated to explicitly assume that:

• the vehicle translates only along the body y axis
• the vehicle rotates only around the body z axis

These are assumptions, of course, which will be violated under certain circumstances. However,
there is no choice without some mechanism to measure translation in the vertical and sideways.
This will be called the principal motion assumption, and it amounts to replacing six legitimate
states with two special combinations of themselves. The principal motion assumption solves the
observability problem.

1.3.1 State Vector

In this model, the state variables are:
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where V is the projection of the vehicle velocity onto the body y axis, and (5 is the projection of
the vehicle angular velocity onto the body z axis.

The observability problem is fixed by writing the continuous time system differential equations as
follows:

d
dt

X

y
z

V

9

4>
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-Vs¥c9
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Vs9
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|3c<))/c9

0

This result incorporates kinematic transforms from the appendices. Technically, this system model
is nonlinear, therefore it must be linearized according to the rules for an EKF.

1.3.2 System Jacobian

The linearized continuous-time differential equation is:
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which gives the F matrix of the EKF.
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1.3.3 Transition Matrix

The above system Jacobian matrix should be distinguished from the transition matrix. Admittedly,
O does not exist for nonlinear plants, but the system differential equation can be approximated by
reinvoking the low dynamics assumption. The above nonlinear plant is linearized in time as
follows. Under the assumption that V and p represent all components of the linear and angular
velocity of the vehicle, then the dead reckoning equations are:
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where the kinematic transforms of the appendices were used to compute the projections of the
velocity and angular velocity vectors. This transition matrix is just the equations of 3D dead
reckoning. It has been generated by re-expressing the nonlinear plant as a matrix function of the
states. It is first-order in time because the highest order time derivatives included are order 1.
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Section 2: AHRS Dead Reckoning Measurement Model

Certain of the measurement relationships for dead reckoning sensors are nonlinear. Therefore, a
linearized Kalman filter is necessary in this application whether or not the system model is
nonlinear. A slow moving vehicle assumption has already been adopted in the system model, so it
is unnecessary to use a simple linearized filter in order to track high accelerations. Therefore, an
extended Kalman filter will be formulated. This section provides the 3D measurement models for
such a filter incorporating many of the sensors commonly used on autonomous vehicles.

One of the advantages of the body frame system model is that almost all of the measurement
models are trivial. The tradeoff is that now the system model has rotation transforms in it. These
rotation matrices cannot be avoided - they can only be moved around.

2.1 Transmission Encoder
While, strictly speaking, a transmission encoder measures differential distance, it can be
considered to be integral with the system clock and therefore it is a device which measures velocity.
Relative computer clock accuracies are such that they can be considered perfect. This avoids the
considerable difficulty associated with the arc length derivative called curvature in a model where
everything else is a time derivative.

The measurement model is trivial.

2.2 Doppler Groundspeed Radar
The Doppler sensor has a model similar to the transmission encoder. As a range rate measurement
device, its output must be calibrated to recover the constant cosine of the slant angle between the
direction of the beam and the direction of the body forward axis. This amounts to a scale factor
which can be assumed to have been calibrated out, so that Vd o is considered to represent the
vehicle speed3vehicle speed3

3. A second Doppler radar mounted transverse near the front of an Ackerman steer vehicle should provide a
good redundant measurement of yaw rate. Note however, that the measurement must be adjusted for pitch
and roll.
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2.3 Compass
Compasses differ in their ability to reduce heeling error, and may have nontrivial dynamics. The
fluxgate can sometimes sustain as much as 45° of heel without significant error. Newer three coil
devices are immune to heeling error. With no information on compass dynamics or construction,
the following model can be adopted. Under the assumption that variation and deviation are
already accounted for in the measurement:

2A AHRS
The clinometers, compass, and gyros in an AHRS can be assumed to measure the vehicle attitude
directly so their measurement matrices are the identity matrix. For example:

"ahrs L J K p ^

0 0 0 0 10 0 0
0 0 0 0 0 10 0
0 0 0 0 0 0 10

2.5 Steering Wheel Encoder
A steering wheel encoder provides a low fidelity measurement of trajectory curvature, and hence,
when multiplied by the speed, a measurement of the rate of rotation of the vehicle about the body
z axis . The 3D formulation of this relationship is surprisingly difficult. Let the angular velocity
vector directed along the body z axis be called (3. Using the bicycle model approximation, the path
curvature K, radius of curvature R, and steer angle a are related by the wheelbase L.

1 ta d$ ^
K ~ R " L " ds ^ ^

R

L

n ̂  ̂
I]

Where toe denotes the tangent of a. Rotation rate is obtained from the speed V as:

4. Note that this is not yaw. Yaw is measured about the z axis of the navigation frame. Consider driving up a
steep hill. The vehicle steers in the plane of the hill, not about the gravity vector.
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Finally, then, the steer angle a is the quantity indicated by the encoder. It is an indirect
measurement of the ratio of (5 to velocity through the measurement function:

a = atanl —j I = atari ( K L )

The Jacobian is the measurement matrix. It is easier to formulate the measurement matrix by
utilizing the chain rule and considering the product KL to constitute a single variable.

da
dv W+ (KL

H a =

.2X vJ
da (
ap v

1 \
1+ (KL)2^i p J

Note that V is derived from the states and not from the encoder or radar. In general, any
measurement model uses only the current state and parameter estimates and never any other
measurement. The partial derivatives will approach infinity if they are evaluated in this form near
zero linear or angular velocity. Since K = p / V , they can usefully be rewritten as:

where the apparent singularities have been removed. Provided at least one of $ and V are nonzero,
the filter will do the right thing5. However, when both are zero, the Jacobian is filled with zeros and
this may cause a singular matrix in the computation of the Kalman gain. Physically, the steer angle
is irrelevant when the vehicle is not moving, so the measurement must be discarded.

The steering measurement model is also unique in that it is the only DR measurement model for
which the predictive measurement is not directly equal to a state. This results simply from the
choice of the steer angle as the measurement instead of the angular velocity state.

2.6 Wheel Encoders
It is more convenient on many vehicles to measure wheel rotations rather than engine or
transmission rotations. Indeed, if the wheels are actuated by electric motors, there is no engine or
central transmission from it to the wheels at all. It is important to distinguish several kinds of
measurements that may be available from instrumented wheels. A fixed wheel is permitted to rotate
about a single axis - the one associated with forward motion. A free wheel may rotate about a
vertical axis as well as the axis associated with forward motion. Either of these two degrees of
freedom may be powered or not and either may be instrumented.

5. For an Ackerman steer vehicle, if the vehicle speed is zero and the angular velocity is not, something else
is probably wrong.
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Consider a single wheel on a vehicle that has two degrees of rotational freedom as shown below.
Let p be the position vector of the wheel relative to the vehicle control point. Let the wheel radius

be r. It is simplest to formulate the measurements in the body frame. The velocity of the end of
the wheel axle relative to the world is available from vector algebra as:

2.6.1 Steer Angle

Now the available measurements actually invert these relationships. First the steer angle a of the
wheel and its gradient are:

a =

3a
BY

da

atari (a)

3a 3a
3a3V

3a 3a
a°ap

= atari

f i
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This is a measurement of the ratio of angular to linear velocity and hence is a measure of curvature
just as is the Ackerman steer angle.
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2.6.2 Free Wheel Velocity

A free wheel will rotate automatically about the body z axis by the necessary steer angle due to
friction. Its measurement relationship in radians is:

ave r'

e = rUvx +

1 - sin (a)

$ - \U
ap r

> +2v o
y y *
2v

1 - - (v cosoc + v «na)
/ r x y

This is a measurement that responds to both the linear and angular velocity of the vehicle but they
cannot be distinguished from a single measurement.The filter will automatically distinguish linear
and angular velocity when two or more wheel velocities are measured.

2.6.3 Fixed Wheel Velocity

A fixed wheel will not rotate automatically about the body z axis. Its measurement relationship in
radians is:

9 = v » j = v / r = -

Again, this is a measurement that responds to both the linear and angular velocity of the vehicle
but they cannot be distinguished from a single measurement. The filter will automatically
distinguish linear and angular velocity when two or more wheel velocities are measured.

2.7 Complete PR Measurement Matrix
The complete measurement matrix for the 3D AHRS dead reckoning (without wheel encoders)
system is then:

z =

X —
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If direct access to the attitude package is available, additional states can be added to the filter to
model the dynamics of these sensors. As currently formulated, there is little coupling between the
attitude reference and the odometry.
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Section 3: AHRS Dead Reckoning Uncertainty Model

In theory, one must estimate every element of a covariance matrix in order to provide the filter with
the information it needs. In practice, there are often correlated and systematic error sources which
are roughly known in magnitude to far exceed any random errors but which are nonetheless not
known well enough to model. Often, there is also no knowledge of correlation of error sources, and
both the Q matrix and the R matrix are assumed to be diagonal.

Q = diagfe o2 a2 a2 a* a* a*

= diag
[_

R = diag a2 a? a2 a 2 * u a2 n a2 a2

[ enc dop com pitch roll yaw steerj

The P matrix will evolve off diagonal terms naturally as the filter runs. Having made the
uncorrelated measurement error assumption, the remaining issue is the estimation of
systematic error sources for each state and each measurement.

A Kalman filter is a mathematical idealization that happens to be useful in practice. However, it is
important to note that there is a big difference between an optimal estimate and an accurate
estimate. In practical use, the uncertainty estimates take on the significance of relative weights of
state estimates and measurements. So it is not so much important that uncertainty be absolutely
correct as it is that it be relatively consistent across all models.

3.1 State Uncertainty
The state uncertainty model represents the disturbances which excite the linear system.
Conceptually, it estimates how bad things can get when the system is run open loop (i.e with no
sensors) for a given period of time. It is difficult to estimate these white sequences which drive the
system model.

Given the assumption of low dynamics, and the neglecting of the entire control input, the errors
associated with these assumptions far outweigh the effects of any truly random forcing function.
In the absence of any other information, a plausible approach is to estimate error as the Taylor
remainder6 in the dead reckoning equations, because, after all, dead reckoning is a truncated Taylor
series in time. The Qk matrix can be assumed diagonal, and its elements set to the predicted
magnitude of the truncated terms in the constant velocity model. They can arise from:

• disturbances such as terrain following loads
• neglected control inputs such as sharp turns, braking or accelerating
• neglected derivatives in the dead reckoning model
• neglected states

6. Clearly, this approach is equivalent to associating the magnitude of the truncated term with the spectral
amplitude of a white sequence and integrating over the time step to get the variance.
7. Remember that the elements in the covariance matrix are the variances, not the standard deviations, so the
following expressions must all be squared when used.
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3.1.1 The Gamma Matrix

The F matrix is convenient because the uncertainties of some of the variables can be represented
in the body frame where they can be determined by intuition and they will be automatically
converted as necessary. Let the T matrix be given by:
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The Q matrix contains infinite entries as the vehicle approaches 90° of pitch because the "yaw"
and "roll" axes become coincident then. This is an essential singularity of the Euler angle definition
of 3D attitude.

3.1.2 Linear Position States

The translational uncertainty can be set to one-half the maximum acceleration times the square of
the time step. This is the error expected when constant velocity is assumed. This gives:

This error source alone is expected to grow roughly with the square root of the number of
observations because:

Gtotal (t)

Gtotal (t)

i

n

i = 1

a m a x ( A t ) V t / ( A t )

2

For a sampling rate of 10 Hz, this gives about 10 meters of accumulated error per g of acceleration
per hour of operation. For a rate of 1 Hz it is 300 meters per g per hour8. A very rough number for
the maximum acceleration is about 1/10 g on roads and perhaps 1 g on rough terrain. The number
is not truly acceleration - it represents the best guess for wheel slip, vehicle acceleration, and terrain
disturbances.

8. This is the formal reason why velocity dead reckoning must cycle quickly on an accelerating vehicle.
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A better model would also account for the fact that the errors vary greatly with their direction with
respect to the vehicle. Let the maximum acceleration be a vector quantity. Its components directed
along the body x, y, and z axes are roughly weighted as follows:

A basic assumption of encoder dead reckoning is that vehicle motion is always aligned with the
forward body axis. This has been called the principle motion assumption. It is violated in
situations where the wheels slip laterally and it is violated when the local terrain tangent plane is
not aligned with the body frame (i.e when the vehicle fails to follow the terrain). One important
special case of the latter is the deflections of the vehicle suspension. This is a very large error source
which is appropriately modelled in the state equations and not in the sensors, since it amounts to a
modelling assumption. A nav frame formulation would not suffer from this type of error.

Nevertheless, it is generally the case that a vehicle does not slide sideways or accelerate upward
very quickly, so this model takes this into account. The uncertainties expressed in the nav frame
are then automatically computed by the F matrix.

3.1.3 Angular Position States

For the angular position states, there are no measurements of velocity in the DR equations for all
axes, so the truncation error is a velocity term. These uncertainties cannot be left at zero because
the filter will first not project forward in the state equations, and secondly, compute zero gains for
the measurements. The states will not move at all. When the measurement residuals are computed
for these, the state vector is one cycle old and has not moved. A very rough error estimate for these
is:

Gtotal

0

(t) Ji

0 <|> \|/ max

1CTl 2
27tfAtVt/ (At)

2

Where f is the estimated highest frequency of attitude changes of the vehicle body. Using a cycle
rate of 10 Hz and a frequency of 1/24 Hz or 15° = 1/4 rad per second, this gives about 4 rads per
hour of operation. This may sound unreasonable, but the issue at hand is the error in predicting
constant attitude for a vehicle which can rotate at 15° per second over an hour with no
measurement. This simply tells the filter to trust the readings of the sensors and forces the angular
states to track the sensors.
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A more refined model could make explicit use of the assumption that the vehicle cannot pitch or
roll more than about 15°, but this is not really necessary unless the sensors have drift problems9.
One addition to the model is to account for the fact that the errors vary greatly with their direction
with respect to the vehicle. Let the maximum angular velocity be a vector quantity. Its components
directed along the body x, y, and z axes are roughly weighted as follows:

where it is assumed that the primary direction of rotation is about the body z axis.

3.1.4 Linear Velocity States

In the case of linear velocity, there are no acceleration states which propagate it forward in time via
the transition matrix, so this state will not move if its uncertainty is set to zero. Again, using the
remainder theorem:

°total( t) ^ ° i

°V = amaxAt

a max A t A / t / <At> ai
2 2

This gives 10 meters of error for an hour of operation at 10 Hz cycling rate using 1 g.

3.1.5 Angular Velocity States

Following the technique, an estimate of the maximum angular acceleration of the vehicle is needed
in order to estimate the truncation error. By Euler's equation, this is the ratio of the applied torque
to the moment of inertia, assuming a diagonal inertia dyadic. Numbers for these quantities are hard
to come by. One way to get a reasonable number is to assume that the angular velocity cannot
change any faster than zero to the maximum in less than some number of seconds, which amounts
to an assumption about the magnitude of the disturbance loads. This would give:

where T is an adjustable "time constant". Then the angular velocity state is uncertain at:

9. As an idea for dealing with drift, it may be possible to add fake measurements of zero attitude with high
uncertainty. This may have the useful side effect of enforcing level indications over the long term while still
allowing the attitude sensors to capture dynamics. This idea is used in inertial systems which slave the gyros
to the accelerometers because they indicate the direction of gravity.
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3.2 Measurement Uncertainty
The measurement uncertainties are far more critical to the filter operation, because, after all, the
whole system is considered to fail if sensors are lost for only a few seconds and filter optimality is
not an issue. For sensors models, some of the error sources to be estimated include:

• bias and scale instability
• neglected sensor dynamics
• noise, vibration, backlash, EMI, and compliance, etc.

This section will model all sources of error as if they were random. A better form of model would
augment the state vector to include bias and scale factor states for some of these sensors to allow
the filter to tune itself. Of course, such states will require appropriate sensor redundancy, so they
are not included in this general formulation.

3.2.1 Encoder

The random error in the encoder measurement can be estimated by driving the vehicle at constant
velocity and plotting the encoder output. Since the vehicle is a filter on speed inputs, any vibrations
or electrical noise will manifest itself in such an experiment.

However, there are far more important systematic sources. It is expected that scale errors will
predominate because the wheel radius actually varies with time and temperature, compliance has
been an important historical issue, and there is of course, longitudinal wheel slip. Since the
assumed error is a scale factor error, it is modelled as a fraction of the measurement itself. This has
the property that the uncertainty is correctly increased when the time step increases.

A final issue with encoders is that encoder readings must be either time-stamped or read
synchronously. Otherwise the velocity computed will be in error by the degree to which the filter
cycle time is asynchronous10. In a non real-time testing scenario, this error can be several hundred
percent, so it must be addressed. With these caveats, the uncertainty model is:

enc enc enc

From experience, about 5% of total distance travelled is appropriate for the position states.
However, the issue here is the error in the encoder estimate of the forward component of velocity.
So something less than 5% is appropriate unless there are significant errors beyond scale errors.

3.2.2 Doppler

Without more information about a specific Doppler device, little can be said about the nature of its
systematic error sources after calibration. There is likely a velocity dependence, and hence a scale
error, and it would be surprising if it performs significantly better than a well-calibrated encoder
on pavement. Hence, tentatively set:

10. The encoder is the only sensor for which this is necessary. The dt used by it must be the real dt between
when the sensor was physically read. For the state equations, it is appropriate to read the clock just before
execution and subtract it from last time around to get the dt.
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3,2.3 Attitude

All of the attitude sensors will be considered as a unit. It is difficult to quantify the attitude
uncertainty without more knowledge of the components inside. It is expected that considerable
systematic error will be present which will have complicated dynamics, so an output noise test may
not be very meaningful.

In the absence of information, the best that can be done is to assume some constant uncertainty.
However, it is common to find that yaw uncertainty is worse than that of the other two angles,
because the former is often based on the gravity vector, and the latter on the weak and unreliable
local magnetic field so tentatively set:

Some well known issues for attitude sensors are listed below for consideration in the estimates.

3.2.3.1 Accelerometers and Inclinometers

Both of these devices function by measuring the deflection of a mass attached to a calibrated
restraint where the indicated degree of freedom is either linear or rotary. As a matter of basic
physics11, no instrument can instantaneously distinguish acceleration from gravity.

Inclinometers will measure vehicle linear acceleration as well as the direction of gravity, so their
dynamics may have to be considered depending on their transfer function. Oftentimes,
inclinometers intended for use on vehicles are constructed as low-pass filters for this reason. The
filtering of inclinometer outputs has the side effect of filtering vehicle attitude dynamics from the
inclinometer signal as well. Based upon the time constant of the inclinometer filter, a Taylor
remainder analysis may be appropriate.

Accelerometer measurements of acceleration are corrupted by gravity and inertial forces due to the
earth's rotation if they are low-pass devices. The technology of accounting for this leads to the
inertial navigation system before the accounting is complete.

It is possible to account for the corruption of attitude by centrifugal acceleration in inclinometers
by changing the measurement relationship to reflect that the measurement is the sum of either pitch
and forward acceleration or roll and lateral acceleration.

3.2.3.2 Gyroscopes

The rate gyro is a nice complement to the inclinometer because it responds well to high frequency
inputs. Gyro drift is the major source of error and it arises from very small disturbance torques
generated on the device rotary bearings, whatever their nature, whether the devices are strapdown
or not. Frequency response and drift models may be available from the manufacturer. Gyro drift
rate is well modelled by a combination of random bias, exponentially-correlated error, and random
walk. It has also been suggested that a random ramp is necessary.

11. Specifically, Einstein's principle of relativity implies that a man in an elevator in free-fall in a gravitational
field can never know he is falling based on any measurement conducted in the elevator frame. Thus, acceler-
ometers confuse gravity for acceleration, and inclinometers confuse acceleration for gravity.
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3.2.3.3 Compasses

The magnetic compass comes in various forms, but regardless of the form, there are three issues to
consider. First, the variation of the local geomagnetic field and geographic north is a constant for
small excursions that can be easily calibrated out12. Second, the term deviation is reserved for the
effects of the vehicle residual magnetic field. The geomagnetic field is fixed in the earth frame
whereas the vehicle field is fixed in the vehicle frame. Hence, the device measures the time-varying
sum of the two. A short Fourier series in vehicle heading can be constructed to calibrate this out
against a reference by spinning the vehicle one full turn in azimuth.

Heeling error is the term for the error induced when the vehicle approaches vertical because the
local field no longer projects onto the sensor sensitive axis. For fluxgates, heeling error is not an
issue. However, fluxgates require nontrivial settling times, so they have the same filtering property
on heading as clinometers do on pitch and roll. Therefore, a heading gyro is often necessary to
augment a compass in even moderate angular velocity vehicles.

3.2.4 Steering

Steering wheel position can be measured with any number of simple transducers. It is typically a
very low-fidelity measurement that does not benefit from overly precise error characterization. Let:

asteer

where the constant is determined from a linearity test.

12. The variation for the eastern seaboard of the United States is about 15° east of north. However, this is an
outdoor assumption for an isolated compass. Any magnetic sources close to the vehicle will distort the local
field. My thanks to R. Coulter for educating me on compasses.
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Section 4; Aided AHRS Dead Reckoning

The pure dead reckoning filter of the previous section is unlikely to achieve an accuracy which
exceeds a few percent of the distance travelled. This is because of the essential integration of errors
in the process of dead reckoning. In particular, notice that none of the measurement matrices of the
previous section have a nonzero element in the first three columns. That is, none of them measures
the vehicle position - even indirectly. They all measure attitude or derivatives of position.

Whatever the fidelity of the measurements used in practical dead reckoning, a fix is needed at
regular intervals to damp the DR and the mechanism for doing this is the subject of this section.
The Kalman filter is an ideal formalism for integration of dead reckoning and position fixes
because fixes are simply additional measurements which can be folded into the equations in like
manner to the DR measurements.

4.1 Fixes in the Navigation Frame
The simplest form of position fix is a direct measurement of the vehicle position in the navigation
frame. In practice, the survey point is the only such fix available because position indicating
devices cannot usually be mounted at the center of the body frame. Here, the vehicle is positioned
at a point which has been presurveyed in the nav frame. Once the filter is told that this is the case,
it can use its stored knowledge of the true coordinates of the survey point to generate the fix. Survey
points are useful for development as well as operational purposes since they can be used to
calibrate the system models.

When generating survey points using a positioning device, it is important to place it in exactly the
same place on the vehicle each time it is used, and to account for its position explicitly.

A distinctive turn in the trajectory may constitute a survey point. Such path features can be used
provided:

• there is some mechanism to ensure that the vehicle is actually on the stored trajectory
(say, a human driver)

• there is some mechanism to recognize when the feature is encountered

The measurement matrix for survey points is trivial:

LxsP y s p
 zsPJ H =

10 0 00000
0 10 0 0000
0 0 10 0 0 0 0
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4.2 Fixes in a Positioner Frame
Sensors which can provide fixes on their own position include the GPS receiver13 and the inertial
navigation system. The measurement matrix for such a sensor is relatively trivial:

z - Tb[*8PS ^ v ] T H - Tb
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

Estimation of GPS uncertainty is a difficult matter because it depends on such matters as the
presence or absence of Selective Availability (the dominant source of error), various technological
error sources such as receiver noise, dynamics, multipath, etc., and the satellite geometry. Ideally,
a receiver would provide the covariance matrix in the navigation frame directly. Without such
information, the only option is to assume a constant covariance which is relatively conservative.
In the case of civilian GPS receivers, position error is highly correlated, and a correlation model is
appropriate.

Estimation of INS uncertainty is even a harder problem because of the Schuler dynamics involved.
Again, a large number is better than no number. Technically, the INS is a DR device, and it does
not actually generate a "fix". The implication of this is that INS uncertainty models must have a
time growth associated with them.

13. In truth, the GPS receiver has a complicated measurement model which is four-dimensional range trian-
gulation. It is possible to ignore this if an estimate of uncertainty in the GPS output is available. Even the
GDOP output of a receiver can be used somewhat.
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Section 5: Roadfollower Aiding

A roadfoUowing system provides an observable which can be described as relative crosstrack
error. It is measured relative to the path in view (the road), more or less transverse to the path. It
is usually measured in a visual feedforward sense (i.e it is the crosstrack error in front of the
vehicle).

An EKF can accept any indirect measurement of state and since the road deviation in an image is
dependent on the vehicle position and attitude, it provides an indirect measurement of state.
Integration of a road follower into the EKF amounts to a continuous landmark observable. Note
however that this will not improve the performance of the roadfollower - it has direct visual
feedback already, but it should improve the position estimate of the vehicle.

5.1 Measurement Model
The measurement model must be formulated in an indirect sense - that is, the relationship between
the path and the vehicle state which generates the observable is required. In reality, the observable
depends on the complete six-axis pose of the vehicle, but because a typical roadfollower does not
make such distinctions and typically does not store a 3D path, a 2D formulation will be used.

5.1.1 Observable

Let 1 be the lookahead distance, and let the roadfollower generate the crosstrack error d at the
lookahead distance that would be observed if the vehicle travelled in a straight line on its current
heading. Let point 1 be at the end of the lookahead vector and point 2 be the corresponding point
on the path being tracked visually. This is indicated in the figure below:
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and the letters r, 1 and d will refer to the magnitudes of these vectors except that the latter will be
a signed quantity. The vector 1 will be called the lookahead vector, d will be called the
crosstrack vector, and i will be called the goal vector. The observable is clearly:

The crosstrack observable d will be defined to be positive when the path is to the left of the end
of the lookahead vector as shown in the figure. This depends on the sign of the angle from the
lookahead vector to the goal vector, and it is positive when this angle is counterclockwise. This can
be determined without using the arctangent by a vector cross product as follows:

signof ( lx*) = signof (1 r -1 r )
A y y x

signof (lx^) = signof [(x^x) (y2~y) - (5^-y) (x2-x)]

The coordinates of point 1 depend on the vehicle state vector thus:

. = x-lsin\\f

. = y + lcos\\f

This gives the observable as an indirect measurement of vehicle position and orientation in 2D.
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5.1.2 Measurement Jacobian

The measurement Jacobian is available through partial differentiation - which is a difficult problem
in this case. Note that as the vehicle moves in x, y, or yaw, both the end of the lookahead vector
and the point (x2,y2) move in an uncorrelated manner. It is useful to establish a (u,v) coordinate
system at the current point (x2,y2) and consider both of these effects separately.

Consider a differential motion of the vehicle in x and y and yaw which causes the crosstrack point
to separate from the path. The differential change in the crosstrack observable is the change in
length required to reattach it. If the old crosstrack is df, and the tangent of the path relative to the
v axis is y, then the new crosstrack d is given by:

The (u,v) coordinates of the vehicle are:

u

V

= ( x -
= - ( x -

x2)

x2)

cosy

sin\\f

+

+
(y

(y

_y2)

-y 2 )

sin\\f

cosy

So the measurement Jacobian is given by:
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5.2 Predictive Measurement
Recall the state update equation of the EKF:

This equation runs in the filter when a measurement arrives. It amounts to the formation of a
measurement residual - the difference between what is observed zk and what was expected based
on the current state estimate hi xk I.

In order to generate the prediction, the system must:

• know the coordinates of every point on the path in the navigation frame
• be able to search the path forward to generate the crosstrack prediction

Let u be a unit vector oriented along the lookahead vector:

Then the lookahead distance for any point (x9, y9) on the path is:

= (x2-x) (siny) + (y2-y) (cosy)

The predictive measurement can be obtained by searching forward from a point on the path near
the vehicle until the above expression is equal to the required lookahead distance. Then the formula
for d gives the predictive measurement.

5.3 Advantages
The primary advantage of the roadfoUower observable is that it constitutes the only landmark
observable in the absence of GPS or visual landmarks. This element of the Kalman filter will force
the state estimate to track the known or recorded position of the path.
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Section 6: Terrain-Aided AHRS Dead Reckoning

Vehicle perception sensors provide many mechanisms for generating a fix. Landmark recognition
can be folded into the filter, but the measurement model is nontrivial because it must account for
the imaging process. This section and the following three present a general model of the perception
measurement process which is applicable to many different scenarios.

6.1 Terrain Aids
Terrain-aiding schemes can be distinguished and classified along several independent dimensions:

6.1.1 Image Dimension

The image dimension amounts to the size of the measurement vector. Some options include:

• 3D scanning laser rangefinder
• 2D scanning laser rangefinder
• 3D stereo range images
• 2D color images
• 2D intensity images

An important distinction of the last two is that their imaging transform is not invertible. In this case,
it is not possible to use a single image to convert the image coordinates of a landmark into its
coordinates in the nav frame. However, because the Kalman filter is formulated in terms of sensing
and not perception, this is not overly important. Underdetermined measurements of state are quite
legal.

6.1.2 Image Information Density

Schemes can also be classified based on the amount of information extracted from a single image:

• correlation schemes match pieces of images in order to generate a single vector mea-
surement

• feature-based schemes match a small number of "interesting" points to generate a small
number of vector measurements

• iconic schemes match every pixel in the image in order to generate a large number of
vector measurements

6.1.3 Absolute and Differential Observations

Schemes can be classified based upon whether landmarks are considered known in the nav frame
or whether they are considered unknown in the nav frame and observed to change from image to
image:

• absolute observations match observations against the known position of a "landmark"
in the nav frame

• differential observations match observations in the current image against either their
position in the last image or their predicted position in the current image
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6.2 Measurement Uncertainty
Uncertainty models for perception sensors can be generated from knowledge of the physics of the
operation of the sensor and the conditioning of the embedded computations, if any. Measurement
uncertainty is modelled in the R, matrix. Some specific cases are:

6.2.1 AM Laser Rangefinders

These devices have a well-known variation in range accuracy which varies directly with the square
of the range and inversely with the angle of incidence and the reflectance of the surface. Angular
uncertainty can be estimated as the width of a pixel but may also include an accounting for the
fidelity of the mirror drive control laws.

6.2.2 TOF Laser Rangefinders

For time of flight devices, variation with range is probably a function of the range quantization and
terrain incidence angle. Variation with reflectance and angle of incidence can be accounted for by
considering the operation of the thresholding electronics. Similar comments about angular
uncertainty apply.

6.2.3 Stereo Vision Rangefinders

Stereo uncertainty can be generated from a knowledge of the particular algorithm used, the
baseline, and the sensory hardware. It can sometimes be produced as a by-product of the stereo
algorithm.

6.2.4 CCD Images

For CCD images, a model of the transformation between intensity noise and the noise on the
measured angle to a feature is required. The basic issue is the fidelity of localization of the
landmark in the image. Accuracies larger or considerably smaller than a pixel are possible
depending on the feature extraction algorithm used.
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Section 7: Absolute Landmark Recognition

This section and the following two will present models for various terrain-aiding techniques. In all
cases, matrix notation is used to abstract away the details of the kinematics of various sensors.
These transforms and their Jacobians are given in the appendices.

7.1 Absolute Landmarks
Absolute landmark recognition is distinguished by the true knowledge of the landmark position in
the nav frame.This distinction appears in the interpretation of the predictive measurement hi xk I
in the state update equation. In this case, the predictive measurement arises from "simulating ' the
generation of the landmark position in the image according to the measurement model evaluated
at the current vehicle position and the known landmark position. Many special cases of absolute
aiding can be distinguished.

7.1.1 3D Landmark Recognition with a Rangefinder

If a rangefinder is used, the rangefinder imaging Jacobian is used. In this case, the sensor to image
transform is spherical polar and the measurement is 3D, so it is 3 X n.

7.1.2 2D Landmark Recognition with a Video Camera

If a camera is used, the camera imaging Jacobian applies. In this case, the sensor to image
transform is a perspective projection and the measurement is 2D, so it is 2 X n.

7.1.3 Video Crosstrack Observations

A degenerate example of the above landmark recognition is the use of the crosstrack error
observable generated by a road-follower. This case was presented earlier in detail.

7.1.4 Convoy Image Sequences

If sufficient radio bandwidth is available, following vehicles in a convoy can maintain a kind of
video lock by computing the position of the correlation peak over a small window between the
current image and the image generated by the front vehicle when it was close to the current
position. Relative crosstrack and alongtrack error should be easy to compute in this case 14.

7.1.5 2D Point and Line Feature Matching

For indoor 2D applications, it is possible to match a wall of known shape against the current range
image from a single line rangefinder. Based on the current position estimate and a known map of
the environment, every pixel in a single line rangefinder constitutes a measurement whose residual
can be used to update the position estimate. For 2D problems, the state vector is only 3 X 1 and no
matrix inversion is required.

14. Both of the previous scenarios will benefit if only the lower image pixels are used because the parallax
observable will be largest and more useful in this region of the image. Of course, the entire image will not
correlate anyway because of the perspective geometry of the imaging process. If they did, stereo would never
work.
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7.2 Feature-Based Scheme

In a feature-based scheme, an interest operator identifies interesting points in an image and a
mechanism is provided which constructs candidate matches of landmarks against their predicted
positions in the image.

Let the position of a landmark in the navigation frame be known to be:

Consider a generalized perception sensor which generates a 3D image of which most real sensors
are special cases. Such a sensor can be modelled as generating the landmark position somewhere
in the image through the image formation process expressed in terms of a concatenation of
transformations through intermediate frames.

The transformation from the navigation to the sensor frame is:

XL

zs

b n ^ '

XL

yL

_ZL

Where Tn (x) is the nav frame to body frame homogeneous transform, and T£ is the body frame
to sensor frame homogeneous transform. The measurement matrix for the transform is evaluated
as the product of the constant body to sensor transform, the Jacobian tensor of the nav to body
transform, and the landmark position vector.

Now to express the generated image, let a generalized nonlinear imaging function map a point in
the sensor frame into image coordinates:

where f^ is the triple (range, azimuth, elevation) for a rangefinder or the pair (row, column) for a
video camera. The complete measurement Jacobian is then given by the chain rule:

H L = :>-s

This is the general case for any sensor.
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Recall that the measurement Jacobian provides the information necessary to project the residual
onto the state vector. The measurement uncertainty itself arises in the Rk matrix. So the analysis
thus far has nothing to do with the sensor itself. Rather, it answers the question of how an error in
vehicle position relates to an error in the position of a landmark in the image for a perfect sensor.

This will be called the landmark Jacobian. In order to use this formula for any particular sensor,
the imaging Jacobian must be substituted for the particular sensor used.

The matrix partial is a tensor. Let it be 4 X 4 X n. Its second index is matched with the row index
of the landmark position vector to generate the 4 X n matrix:

Notice that the fact that the filter is using the difference between the projected position of the
landmark and the actual position of the landmark in the image is not explicit. The operation of the
filter is such that it automatically computes what the differential change in the state vector has to
be in order for the observed measurement to be made.

7.3 Uncertain Absolute Landmarks
The above treatment of landmark recognition assumes that the landmark position is known
precisely in the navigation frame. However, in some cases, the landmark has its own uncertainty.
This issue can be managed in the general formulation because the R, matrix exists to quantify
measurement uncertainty. However, there is some difficulty involved because the R, matrix is
expressed in image coordinates. Recall that the transformation of the landmark position into the
image plane is given by:

Thus, the uncertainty in the image plane arising from an uncertain landmark can be computed as

where the chain rule has been used and it was noticed that the argument to the imaging function is
linear in the landmark position in the nav frame. Now from the expectation operator:
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So that if CL is the covariance of the landmark expressed in the navigation frame, then the Rk

matrix for the measurement is:

This analysis produces the contribution of landmark uncertainty to the R, matrix. The effect of
sensor uncertainty must be (literally) added to this, and the effect of vehicle position uncertainty is
already accounted for in the measurement Jacobian.

In this formulation of the uncertain landmark, the landmark position is not considered part of the
state vector and, hence, is not updated. It is possible to augment the state vector to include the
landmark position. This will be discussed in a later section.

7.4 Iconic Scheme
In an iconic absolute landmark scheme, the "landmarks" are really a continuous geometric
description of all or part of the environment which is known a priori. In 2D, a line segment world
description or a collection of occupancy points suffices. In the latter case, and in general, it may be
necessary to interpolate a sparse a priori model of world geometry in order to generate the
predictive measurements. The predictive measurements are generated by "simulating" the image
that would be expected if evaluated at the current position estimate and the known world geometry
model.

Such a scheme implemented in 3D amounts to a least squares continuous match of the entire terrain
map from a single image against the known continuous world model.
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Section 8: Differential Landmark Recognition

Differential aids have a very close connection to mapping applications. The distinction is based
on whether the vehicle position or the landmark position (or both) is considered unknown. That is,
whether one or the other or both appear in the state vector. It is possible to consider both unknown
if the uncertainties are treated correctly and the state vector is augmented. This is considered in the
next section.

In differential applications, if the vehicle position estimate is updated before the image is
transformed into a map section, then mapping is performed simultaneously with position
estimation. After all, the filter is attempting to minimize the residual in order to produce the optimal
position estimate, but in this case, the residual is the map mismatch, so it is directly minimized.
This can only be done, of course, when an invertible sensor transform is used, but this is necessary
to form the terrain map anyway, so it is not an extra requirement.

8.1 Differential Landmarks
When landmarks are observed differentially, the predictive measurement is used to generate a
residual between where it should appear based on the last time it was seen, and where it does
appear in the current image. Under the measurement models for sensors used here, the residual is
formed in image space. Nav frame schemes are possible too, but they are a mathematical
equivalent where the transforms in the measurement models are just moved around from the Hk

matrix to the R, matrix.

Again, iconic and feature-based schemes are possible and these can be distinguished by the
interpretation of the predictive measurement h[ xv J in the state update equation:

8.2 Feature-Based Scheme
Here, discrete features are used and matched from image to image. This is done by tracking the nav
frame positions of the landmarks and transforming them into image space as needed.

After dead reckoning has supplied a position estimate, the predictive measurement can be simply
generated through the measurement model evaluated at the current position estimate:

Zk " rL

8.3 Iconic Scheme
Iconic schemes require a map unless images are acquired fast enough that flow information is high
enough in fidelity to justify the linear assumption of the filter. When a map is available, the
predictive measurement for every pixel in the image is generated by "simulating" what the sensor
should see in the current position given by the current position estimate. This simulated image is
generated from the evolving map as it exists before the current image is incorporated.

15. The map matching of local terrain map navigation is a trivial kind of mapping.
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Thus, considering the computed point of intersection of the image ray with the terrain map to
constitute the "landmark" fL, the measurement model is:

where the notation suggests that the landmark position is predicted.

Complete iconic schemes are probably only feasible in 2D worlds with 2D sensors because the
simulation is expensive computationally. However, it is also possible to undersample the image to
reduce the load in the 3D case..

8.4 Examples of Differential Aids
8.4.1 3D Terrain Aided Navigation

In a manner very similar to video lock, a rangefinder navigation system can use the mismatch
difference between two sequential terrain maps in order to update the vehicle position estimate. If
the range images are close together in time, the computation may be poorly conditioned, so it is
probably best to compute the mismatch over the largest excursion for which two images still
overlap. In this scenario, the position of a feature from the last image forms the landmark position
and the position in the current image forms the measurement. It would be very computationally
intensive to process every range pixel in this manner, so a feature extraction process will be a
practical necessity.

8.4.2 2D Point and Line Feature Matching

For indoor 2D applications, the evolving map may be a set of geometric primitives such as lines or
simply a set of occupancy points. When the map is interpolated, a mechanism for simulating the
image expected is available. Based on the current position estimate and the evolving map of the
environment, every pixel in a single line rangefinder constitutes a measurement whose residual can
be used to update the position estimate.
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Section 9: Simultaneous Mapping and Position
Estimation

With an augmented state vector, it is possible to "distort" an evolving map in order to produce a
better estimate of both the vehicle position and the environmental map. This is achieved, of course,
with state vector augmentation.

9.1 State Vector Augmentation
The augmented state vector includes the vehicle position estimate as well as the position of the
landmark in the nav frame:

The system model then becomes:

d
dt =

f(x)
0

9.2 Measurement Model
The measurement model now generates a better reflection of the uncertainties in both subvectors
of the state. Now that the landmark position is part of the state vector, the measurement model
becomes:

9.3 Measurement Jacobian
The measurement Jacobian is available by stacking the Jacobians of the state subvectors:

Ail
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where the usual assumption of uncorrelated measurement error has been made. This formulation
will both estimate vehicle position and produce an optimal map. The extension to differential
observations is straightforward.
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Section 10: Real Time Identification

The filter formulation can be modified to recover important system calibration constants using state
vector augmentation techniques. Consider, for example, that the most important calibration
constants in a rangefinder perception system are:

• the height c£ of the sensor
• the tilt angle 0b of the sensor
• the range image bias Rb ia s

• the range image scale factor K ran

This section is the clearest example of why the tensor notation has been adopted. The measurement
models are very involved and it would be hopeless to attempt to formulate them without the
compactness afforded by the tensor notation.

10.1 State Vector Augmentation
The state vector can be augmented to include these variables. Formulating in general, let the
additional state variables be denoted:

where the notation suggests parameters of a particular transformation, and introduce them into the
system model through the additional differential equations:

d
dt

h
X

0

0
L SJ L~~J

Then the system model has been appropriately modified. The only measurements which involve
these new states are the landmarks, so they can only be observed with landmark-aided navigation.

10.2 Measurement Model
In the simplest formulation of the problem, consider that landmarks are known in the navigation
frame and they generate point features in a range image.

An interest operator is used to identify features in a range image, and for each feature, the image
position forms the zk observation vector. The predictive measurement h(x) , where the
augmented state vector is used, computes the predicted position of the features in each image based
on their known positions in the navigation frame:
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10.3 Measurement Jacobian
The measurement Jacobian is available from the matrix interpretation of the chain rule and the
mechanism of stacking. This formulation will require modifications to the imaging Jacobian to
include differentials with respect to the parameters x s . It also requires the formulation of the
Jacobian tensor of the body to sensor transform which is straightforward.

Consider that the expression for the landmark position in the image is a nonlinear function of three
vector variables. Then the total derivative is given by the chain rule:
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This formulation will both estimate vehicle position and calibrate the system kinematic models.
The extension to differential observations is straightforward.
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Chapter 3: Implementation

This section overviews the implementation of the position estimation system. The position
estimation system converts a diverse set of readings from sensors which are:

• redundant
• inaccurate
• asynchronous

into a single consistent estimate of vehicle state of the required temporal resolution and of optimal
accuracy in the Kalman filter sense of optimality.

Section 1: Position Estimator

The three main components of the Position Estimator are the System Model, the Sensor Model,
and the Kalman Filter. These elements implement two independent update loops which
continuously update the vehicle state. The System Model cycles at a nominal rate of 100 Hz. The
Sensor Model and Kalman Filter both cycle together at a rate determined by the frequency response
and update rate of each sensor involved. The data flow diagram for the Position Estimator is given
below. The mathematics of these transforms are documented in the appendices and in this part.

Old
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New
Sensor
Reading

New
State

New
State
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Filter I

Value,
Prediction,
Gradient,
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Figure 117 - Position Estimator Data Flow
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1.1 System Model
The System Model implements the equations of 3D dead reckoning under a low dynamics
assumption. It is an embodiment of the state update equation based on the transition matrix and
time step, and the state uncertainty update equation.

1.2 Sensor Model
The Sensor Model computes the predictive measurement based on the current state estimate and
the explicitly coded model. It also computes the measurement gradient with respect to the state
vector.

13 Kalman Filter
The Kalman Filter computes the difference between the predictive measurement and the actual
measurement. Based on this measurement residual, and the Kalman gain, it updates the state
estimate.

Section 2: System Model

The System Model is responsible for interpolation of the state estimate between the arrival of
measurements. The data flow diagram for this component is given below:
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2.1 Transition Matrix
This module computes the elements of the transition matrix based on the explicitly coded 3D dead
reckoning model, the current linear and angular velocity, and the time step.

23, State Update
This module simply multiplies the state vector my the transition matrix to get the new state.
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2.3 System Jacobian
This module computes the system Jacobian of the nonlinear plant based on the first order models
discussed in the appendices.

2.4 Covariance Update
This module computes the uncertainty of the new state estimate based on the standard matrix
quadratic form for uncertainty update.

Section 3: Sensor Model

The Sensor Model is responsible for computing the nonlinear measurement matrices which
correspond to each measurement, their uncertainty, and the predictive measurement based on the
current state. The data flow diagram for this component is given below:
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Figure 119 - Sensor Model Data Flow

3.1 Prediction
This module computes the prediction of the measurement based on the current state.

3*2 Gradient
This module computes the gradient of the measurement with respect to the state vector at the
current state.

3.3 Covariance
This module updates the state covariance based on the uncertainty in the old state and the
uncertainty in the measurement.
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Section 4: Kalman Filter

The Kalman Filter is responsible for merging individual measurements into the state estimate. The
data flow diagram for this component is given below:
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4.1 Kalman Gain
This module computes the Kalman gain matrix based on the state uncertainty, the measurement
matrix, and he measurement uncertainty.

4U2 Residual

This module computes the measurement residual from the actual and predicted values.

4.3 Covariance Update
This module updates the state covariance based on the uncertainty in the old state and the
uncertainty in the measurement.

44 State Update
This module implements the actual Kalman state update equation which recomputes state from the
measurement residual and the Kalman gain.
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Section 5: Calibration and Timing

The Kalman filter is a mechanism that accounts for random errors in such a way as to generate an
optimal estimate. If nonrandom errors exist in the model or the measurements, the filter cannot do
much about them unless it is told about them. Further, the estimate is only as good as the
uncertainty estimates that are given to the filter. The mathematical ideal of the zero mean white
sequence noise source must be stretched significantly in practice. This section discusses these and
other matters that are important to the implementation of a working filter.

Once the filter equations are implemented, the remaining practical issues include:

• the calibration of systematic errors
• the characterization of remaining error sources, as if they were random, in terms of then-

first order statistics and correlation models

A real filter must be tuned very precisely for "optimal performance", and it may not work at all if
this is not done properly. This section outlines some techniques used to achieve these goals.

The significance of calibration to Kalman filtering is that zero mean noise sources are assumed, and
any bias in the distribution will result in suboptimality. In practical terms, most sensors in use are
nominally linear, and the measurement model is a straight line. For such a model, the calibration
problem becomes one of estimating bias and scale factor, which are just the y intercept and the
slope of the measurement model. Any remaining misfit in the model can be regarded, in practice,
as uncertainty to be given to the Kalman filter.

On occasion, the model parameters are known to have stability problems (i.e. to vary with
unmodelled parameters such as time) and adaptive techniques can be used to estimate them in real
time. Constant bias occurs in several sensors in the suite. The compass for instance may not be
calibrated for the local region. Gyros may exhibit slight biases which may or may not be constant.

It can be shown that even very small systematic error in the attitude indications can ultimately
cause enormous error in the filter output position. This is because these errors act forever. It is very
important to remove systematic attitude error through calibration techniques.

When bias stability is known or suspected to be a problem, the following techniques are used.

5.1 Relative Navigation
Relative navigation avoids the bias issue completely because it cancels out in the mathematics of
the application. For example, bias in the compass heading can be ignored if no measurements of
landmarks are referenced to a geocentric frame of reference. This is possible since high-pass gyros
will not require knowledge of the transform to the geocentric earth frame, and thus, vehicle
azimuth can be treated as a relative quantity. The east and north directions are arbitrary. In inertial
navigation systems, this idea is called wander azimuth but it is done for different reasons.
However, if any device such as GPS is used which reports position in a geographic frame, the
details of the alignment to that frame will have to be addressed. Differential GPS is another form
of relative navigation, as is traditional encoder dead reckoning when the start point is taken at zero.
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5.2 Zups
Another type of bias removal is the zero velocity update, or zup. For terrestrial vehicles, sustained
speeds below a few inches per second are uncommon enough to be considered to result from sensor
biases and not vehicle motion. The zup can be engaged after sufficiently long periods of very slow
velocities are observed coming from the sensors. Attitude zups are possible too, for if the velocity
is zero, it is likely that the attitude is not changing either.

Zups are useful and sometimes necessary for other reasons. Specifically, when the Q matrix is not
zero, the P matrix grows in magnitude with each iteration of the system model. This may be
unrealistic and even harmful to the operation of the filter. Once the filter enters zup mode, this can
be checked until motion begins again. Zups must be triggered by the measurements and not the
state vector. Otherwise, there is no simple way to exit zup mode.

5.3 State Vector Augmentation
Another mechanism for bias removal, state vector augmentation, was discussed in an earlier
section and is elaborated in the appendices. Analogous techniques are available for adaptive
measurement of scale factor.
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Section 6: Initialization and Reconfiguration

The filter equations make no distinction between the first cycle and any other, so any choice of the
initial state vector and its uncertainty can be made provided it is consistent. Also, sensors can be
added and removed dynamically in some cases, provided the filter observability criterion is not
compromised.

6JL Initialization
Two general cases are possible and they can be mixed across the elements of the state vector and
covariance matrix.

6.1.1 Relative Navigation

Set the initial position to zero and its uncertainty to zero. Provided the appropriate elements of Qk

are nonzero, the state estimate will evolve normally in time as if the initial position was known
perfectly. This technique applies mostly to linear position states. Since it requires that landmarks
be known with respect to the initial position, it may be difficult to use with any landmark
observations unless they are observed differentially.

6.1.2 Absolute Navigation

Set the initial state value to zero and its uncertainty to a large number. The first measurement of
that state will naturally replace the initial value when it is incorporated into the estimate. Note
however, that the filter will run open loop with respect to that state until a measurement is received.
Depending on the time interval involved, this may or may not be a problem.

6.2 Reconfiguration
Certain issues arise during the development of a filtering algorithm for which a small number of
simple techniques are useful.

6.2.1 Removing Sensors

When for some reason, a sensor becomes unavailable, it may be necessary to change the operation
of the filter. The simplest case is when the filter is implemented for asynchronous measurements
and the appropriate variables can be set to indicate that the measurement is no longer available. If
this is not possible, the uncertainty of the measurement can be set to a large number in the Rk

matrix. If the removed sensor is the last sensor which measured a particular state, then that state
may need to be removed as well because cross-coupling in the matrices will generate fictitious
values for the state which will then begin to corrupt other states. In the event that observability is
compromised, the whole filter is not viable without the lost sensor.

6.2.2 Removing States

In order to remove a state, the numerical operation of the filter must be as if the filter was originally
formulated without it. It is not enough to set the state uncertainty to a large number; the value of
the state must be set to zero every cycle in order to damp the errors introduced by every iteration.
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Section 7: Bandwidth and Efficiency

7.1 Asynchronous Implementation
One matter to be addressed in implementation is the asynchronous nature of the measurements. For
example, Doppler readings may not be available as frequently as encoder readings. GPS
measurements cannot be generated faster than 2 Hz whereas inertial systems can be 100 times
faster than this. The state equations are run at about 100 Hz while measurements are incorporated
at whatever rate they are generated by the sensors. The basic algorithm is given below:

State_Update() /* entered every cycle */
{
update state estimate for a time step of dt
via the transition matrix(dt);
if( Doppler measurement available)
run Kalman() on Doppler;

if( Encoder measurement available)
run Kalman() on encoder;

if( AHRS measurement available)
run Kalman() on AHRS;

if( Compass measurement available)
run Kalman() on compass;

if( Steering measurement available)
run Kalman() on steering;

Kalman()

7.2 Efficiency
In implementing the filter equations, it is typical to find that most of the time is spent computing
the uncertainty matrices, and the Kalman gain, and in inverting and multiplying matrices. Some
simple steps can be taken to reduce this problem. The following two steps make it possible to run
the filter at 100 Hz.

7.2.1 Kalman Gain

The matrix Kalman gain equation for an EKF is:

Let a single measurement arrive for integration with the state estimate. Then, the R matrix is a
scalar:

R = [r]
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Let the measurement project onto a single state whose index is s with a coefficient of unity. Then
the H matrix is a row vector with a single unit element in the s'th position:

H = [o 0 0 0 0 1 0 0 0 o]

- T - - T
The expression PkHk is the s'th column of Pk and the expression HkPkHk is the (s,s) element of
P^. Define:

ss

Finally, the Kalman gain is a column vector equal to a constant times the s'th column of Pv :

7.2.2 Uncertainty Propagation

The matrix uncertainty propagation equation for an EKF is:

P = [ I - (KH)]P

This can be computed many times faster as:

P = P - K ( H P )

and this rewrite is valid regardless of the form of the measurement matrix H.

Further simplification is possible in the case of a single scalar measurement. Let a single
measurement arrive for integration with the state estimate. Again, let the measurement project onto
a single state whose index is s with a coefficient of unity. Then the H matrix is a row vector with
a single unit element in the s'th position:

H = [o 0 0 0 0 1 0 0 0 o]

The expression HP is then the s'th row of P k . Reusing the last result, the expression KHP is
simply a constant times the outer product of the s'th column and the s'th row of P v :

ViVj
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Section 8: Outlier Rejection

Although a Kalman filter can handle random measurement noise, a single outlier can cause a large
erroneous change in the state estimate unless it is rejected before it is used in the state update
equation. This section describes some techniques used to achieve outlier rejection.

8.1 Angular Addition
Notice that the Kalman state update equation and the system model constitute two places where
angles are added. After each iteration of these equations, and during the formation of the
measurement residual, the angular states must be forced into some canonical sector of the unit
circle such as -n to 71. If this is not done, the measurement residuals will begin, apparently
randomly, to overestimate the mismatch by a full revolution and the state vector will rotate one
revolution over a few cycles. This is usually quite a disaster if the filter output forms the sensor for
a control loop.

8.2 Reasonableness Checks
At other times, a sensor that is not wired correctly, not turned on, poorly calibrated or in any other
way not functioning correctly can cause a computational tug of war in the filter that may lead to
divergence. One good generic reasonableness check is to compare the Kalman residual for each
measurement with its own nominal uncertainty. If the residual is much larger than the uncertainty,
then something is probably wrong and the measurement can be discarded. This is a good way of
eliminating spikes and outliers. If a sensor fails to meet this criterion consistently, then it can be
disabled forever and an error message issued.

8.3 Legitimate State Discontinuities
When high quality measurements, like fixes, arrive infrequently, it is possible for the state estimate
to undergo a rapid change in a short period of time. This can wreak havoc in any closed loop system
since it appears as a large deviation between the reference input and the feedback signal.

One technique for dealing with this is presented in the appendices in the form of the simple
linearized Kalman filter which computes the state error vector instead of the state. Another
technique is to low-pass filter the state output but this has the disadvantage of delaying control
response to legitimate high dynamic feedback if the entire state vector is filtered.

Since discontinuities will only arise in practice in the position states, it is appropriate to slowly
filter the x, y, and z components of the state discontinuity only into the state estimate used as
position feedback by control algorithms. An appropriate choice of time constant in the filter will
prevent unusual behavior. This approach becomes increasingly less viable as the frequency of fix
information is reduced.
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Chapter 4: Results

Section 1: AHRS Dead Reckoning

The 3D dead reckoning AHRS filter has been implemented and tested in the field. Tuning of the
state uncertainties was required to optimize the tradeoff between data smoothing and sensor
tracking. A zup mode was included in order to check undesirable growth of the state uncertainty
when the vehicle was stopped. It was observed that heading uncertainty was treated much more
accurately in EKF mode. Specifically, uncertainty grows primarily in the direction of travel in LKF
mode, whereas when the coupling terms of the EKF are introduced, uncertainty grows transverse
to it. The latter is more realistic in situations when the heading indication is poor. Indeed, the
overwhelming component of position error was due to poor attitude indications.

The sensors used were a steering wheel potentiometer for "yawrate measurement, transmission
encoder and redundant Doppler radar for measurement of velocity, and an AHRS for three-axis
attitude. Time stamps were used to compute encoder velocity precisely. Significant systematic
errors were easily identified from the signal plots which were not resolved before this writing.

One of many test runs will be used to illustrate performance. In this run, winding mountainous city
streets were driven. The total excursion was about 4 Km in the horizontal plane and 200 meters
vertically. Aggressive braking and accelerating maneuvers were common. On many occasions, the
vehicle stopped for traffic lights, and the filter idled in zup mode until motion resumed. The
following comments apply to Figure 121.

The qualitatively correct growth of uncertainty is illustrated because the uncertainty ellipses touch
the path when it was driven in the other direction. Point repeatability less than 1% of the travelled
distance was normally achieved. Relative and absolute accuracy were not quantified.

One of the advantages of the 3D formulation is the availability of the z coordinate. Zups appear as
flat regions because the abscissa is time. Notice that the start and end do not agree. This is likely
due to the high vehicle accelerations corrupting the inclinometers used. In fact, the plotted pitch
signal shows significant periods when the output during the downhill leg was positive. However
the relative accuracy for a few seconds is very good. This suggests that the z output should be good
enough to avoid map matching problems in a mapping perception system.

The position output in the plane is illustrated. Notice that the return path from the turn point could
be rotated through a small angle at the turn point and the graphs would overlap almost perfectly. A
residual systematic error in heading is responsible for this.

The yaw output indicates the success of the reasonableness checks in angle addition in the filter.
Both the yaw sensor and the filter state are plotted but they cannot be distinguished beyond the first
few cycles.

16. The measurement of body vertical angular velocity is not really yawrate because yawrate is measured
about global z, not body z.

An Approach to the High-Speed Cross-Country Autonomous Navigation Problem page 324.



CD

I
CO

Oo
3

|
o

I
I
I
S
3

"8
"8
to

"yawrate" in rads/sec

6 6 6 p p p
Jv> io ^ b ^ Io

rcpll in radians
p p p p p p p p p

ro

OQ - ^

ro

-*—

s*
-ssamm

v,

—
— J S"

CD 4 ^

go,

oo

r- _;

i

—• R
o

ll

&

CO

o°
speed in meters/sec
w ^ o> oo o io

pitch in radians
o o p p p p p p p

c a l o ^ - b ^ r o G ) ^

y coordinate in meters (/100)
i i i i i •

o

I
2.
CD 05

5'

55

JU1

ro

%<*

go.
1°
CD v l

o

—4.

ro

, yayv in radians
ro -* p p -»• ro
oi oi 01 (JI bi bi

y

1

r

i

<

i

y coordinate in meters (/100)

1
- 2 |

r

V
"I";

V

o

/

"oni
OD

\
\
1

P
lan

e
P

o
sition

X
o

8'

(D

1 1 1 1

Oo> oi ^ o

vl

8
©

cD

(SS)

C)

a ro -

JO?

(

(

>

a

9

L

c

ertain
ty G

ro
w

th

z coordinate in meters (/10)

oor>

ro
o

C D " ^

go,

oco

I

(

0 -P

1
SJ

?
)

^ O) OD O M J!

T
f

— ———•-*—
>

ical P

8ition



The roll state and sensor reading are plotted. Again, the state simply tracks the single sensor.
Corruption via vehicle acceleration is likely because the signal is not symmetric.

The pitch signal shows how vehicle acceleration during braking maneuvers causes the state to lag
the sensor output. Curiously, the output is again more positive than it should be. This is a
calibration issue which cannot be accounted for in the filter itself, at present.

The yawrate state is available from the steering wheel encoder. A nonlinearity in the steering sensor
causes a bias near zero which causes the graph to be predominantly positive, when, in fact, it should
be roughly skew symmetric about a vertical line.

The speed output shows how both redundant sensors are used to determine the state. The Doppler
and encoder readings agree so well that the averaging of the filter is hard to see. On magnification,
it is clear that the filter is using both and determining an estimate which is a weighted average when
they disagree slightly.
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Section 2: Crosstrack Aiding

The ALVINN system [69] was used to generate a crosstrack observable for testing purposes and
the overall effect on the position estimate was a negative one. While, at times, the system seemed
to work, there were many times when large jumps in the state estimate occurred that no amount of
tuning could remove. Oftentimes, the state jumps occurred near turns or where high curvature path
points occurred. These were the very points where the crosstrack observable was potentially the
most useful.

The conclusion that can be drawn is that while a crosstrack observable may be useful in theory, it
had two severe problems in practice on the test vehicle. First, because crosstrack is a ID
measurement, it can only reduce uncertainty in the crosstrack direction. On long straight path
segments, in the absence of other fix information, uncertainty is unbounded in the alongtrack
direction.

Second, when the alongtrack uncertainty is large, the fundamental linearity assumption of the
EKF is violated. This is illustrated in the following figure. Suppose the vehicle position estimate
is somewhat ahead of the true vehicle position. Then, the predictive crosstrack measurement will
have a substantial positive value. However, the vehicle is really several lengths behind the estimate,
so the true observed crosstrack is approximately zero.

On this basis, the filter will compute the position error which would have caused the deviation
based on the measurement Jacobian at the current state estimate. This will cause the updated
position to be to the left of the current estimate as shown. Fundamentally, the problem is that the
measurement Jacobian changes direction rapidly over the region of state uncertainty, so the second
derivative cannot be neglected.

True
Position

Corrected
Position

Perceived
Position

Position Uncertainty Ellipse

Figure 122 - Crosstrack Aiding Problem

This problem with crosstrack aiding is really a universal problem with using fix information when
the dead reckoning error is already substantial.
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Chapter 5: Summary and Conclusions

This part described the state space Kalman Filter which forms the core of the position estimation
system. These algorithms form the basis of RANGER'S Position Estimator object. The most
important decisions in the filter design problem are the modelling decisions which outline the
states, the measurements, the noise models, coordinate systems, linear approximations, etc. Thus,
the purpose of this part was to outline a set of plausible modelling decisions for the navigation
problem for autonomous vehicles which have led to a working Kalman filter.

Section 1: Concept

This section outlined an approach to autonomous vehicle position estimation based on the state
space Kalman filter. This particular filter formulation is quite general. The formulation has wide-
ranging uses.

LI State Space Kalman Filter
The fundamentals of the state space Kalman filter are described in the appendices for the benefit
of readers unfamiliar with the basic concept. The system model estimates vehicle state based solely
on a measurement of time because it expresses the differential equations of motion and the state
vector provides all required initial conditions.

1.1.1 Positioning Requirements

The basic requirements on position estimation for the purposes of implementing autonomous local
navigation are as follows:

• Position updates bandwidth must equal or exceed 100 Hz.
• Relative position accuracy must equal or exceed 1% of distance travelled.
• Absolute attitude accuracy must equal or exceed 1°.

1.1.2 Design Decisions and Assumptions

For the requirements mentioned above, an AHRS dead reckoning Kalman filter promises to meet
all requirements. In order to achieve the 100 Hz update rate, the asynchronous model permits many
measurement models to be expressed in closed form as scalar equations, and this reduces the matrix
computations to a minimum. A few key assumptions permit the filter to perform as required:

• The low dynamics assumption asserts that velocity is nearly constant between measure-
ments of velocity.

• The Taylor remainder theorem is used to estimate the system model uncertainties nec-
essary to implement the filter.

• The principle motion assumption asserts that linear velocity occurs only along the for-
ward body axis and angular velocity occurs only along the body vertical axis.
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1.1.3 AHRS Dead Reckoning

AHRS is an acronym for Attitude and Heading Reference System which is used in the navigation
industry to mean a suite of components used for measuring the attitude of a vehicle and sold as an
integrated package. A filter for a mobile robot position estimation system is proposed which
utilizes an AHRS as the attitude indicator.

The AHRS can be considered to be a sensor package consisting of integrating gyroscopes, a
magnetic compass, and inclinometers. The position estimation system integrates these attitude
indications with wheel or transmission encoder(s), Doppler ground speed radar, and a steering
wheel encoder.

In order to support wide excursion missions, and because a nominal trajectory is not always
available, an extended Kalman filter was formulated.

1.1.4 Advantages

Some of the advantages of applying the Kalman filter to the position estimation problem are:

• Redundant odometric and attitude measurements can be integrated together.
• Dead reckoning and triangulation measurements can be integrated together.
• Frequency response of sensors can be modelled.
• Inertial force compensation can be performed.
• Nonlinear error propagation is more accurate.
• Noise immunity is a characteristic of the position estimate.

Section 2: Design

2A AHRS Dead Reckoning System Model
This section begins the exposition of the modelling decisions. It was shown that the formulation of
the system model in the navigation frame leads to an observability problem because a measurement
of forward velocity cannot be used to estimate the entire 3D vehicle velocity vector.

This problem can be eliminated by reformulating the filter system model in the body frame. The
state variables are reduced in number and the system model is reformulated to explicitly assume
that:

• the vehicle translates only along the body y axis
• the vehicle rotates only around the body z axis

This will be called the principal motion assumption, and it amounts to replacing six legitimate
states with two special combinations of themselves. The principal motion assumption solves the
observability problem.

Having made this assumption, the body frame model was elaborated in more detail. The state
vector includes the position and attitude of the body and the components of linear and angular
velocity mentioned above. This gives an eighth-order Kalman filter. The system model is
elaborated as the nonlinear equations of 3D dead reckoning. The model nonlinearity is a
consequence of the body frame model. Therefore the must be linearized according to the rules for
an extended Kalman filter. The system Jacobian and transition matrix were elaborated for this EKE

An Approach to the High-Speed Cross-Country Autonomous Navigation Problem page 329.



2.2 AHRS Dead Reckoning Measurement Model
Measurement models were provided for all of the following sensors:

• Transmission encoder
• Doppler groundspeed radar
• Fluxgate compass
•AHRS
• Steering wheel encoder
• Wheel encoders

2.3 AHRS Dead Reckoning Uncertainty Model
An uncorrelated measurement error assumption is adopted to render the associated covariance
matrices diagonal.

2.3.1 State Uncertainty

The state uncertainty model represents the disturbances which excite the linear system. In the
absence of any other information, a plausible approach is to estimate error as the Taylor
remainder in the dead reckoning equations, because, after all, dead reckoning is a truncated
Taylor series in time.

2.3.2 Measurement Uncertainty

The measurement uncertainties are far more critical to the filter operation, because, after all, the
whole system is considered to fail if sensors are lost for only a few seconds and filter optimality is
not an issue. For sensors models, some of the error sources to be estimated include:

• bias and scale instability
• neglected sensor dynamics
• noise, vibration, backlash, EMI, and compliance, etc.

This section modelled all sources of error as if they were random. Models were elaborated for all
of the sensors mentioned above.

1A Aided AHRS Dead Reckoning
The pure dead reckoning filter of the previous section is unlikely to achieve an accuracy which
exceeds a few percent of the distance travelled. This is because of the essential integration of errors
in the process of dead reckoning. The Kalman filter is an ideal formalism for integration of dead
reckoning and position fixes because fixes are simply additional measurements which can be
folded into the equations in like manner to the DR measurements. Some of the fix-generating
mechanisms discussed were survey points, path features, GPS, and roadfollower crosstrack
observations.

17. Clearly, this approach is equivalent to associating the magnitude of the truncated term with the spectral
amplitude of a white sequence and integrating over the time step to get the variance.
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2.5 Terrain-Aided AHRS Dead Reckoning
Vehicle perception sensors provide many mechanisms for generating a fix. Landmark recognition
can be folded into the filter, but the measurement model is nontrivial because it must account for
the imaging process. This section and the following three presented a general model of the
perception measurement process which is applicable to many different scenarios.

2.6 Simultaneous Mapping and Position Estimation
With an augmented state vector, it is possible to "distort" an evolving map in order to produce a
better estimate of both the vehicle position and the environmental map. This is achieved with state
vector augmentation.

2/7 Real Time Identification
The filter formulation can be modified to recover important system calibration constants using state
vector augmentation techniques. A model was proposed for the recovery of calibration constants
in a rangefinder perception system.

Section 3: Implementation

This section overviews the implementation of the position estimation system. The position
estimation system converts a diverse set of readings from sensors which are:

• redundant
• inaccurate
• asynchronous

into a single consistent estimate of vehicle state of the required temporal resolution and of optimal
accuracy in the Kalman filter sense of optimality.

3.1 Position Estimator
The three main components of the Position Estimator are the System Model, the Sensor Model,
and the Kalman Filter. These elements implement two independent update loops which
continuously update the vehicle state. The System Model cycles at a nominal rate of 100 Hz. The
Sensor Model and Kalman Filter both cycle together at a rate determined by the frequency response
and update rate of each sensor involved.

3.2 System Model
The System Model implements the equations of 3D dead reckoning under a low dynamics
assumption. It is an embodiment of the state update equation based on the transition matrix and
time step, and the state uncertainty update equation.

3.3 Sensor Model
The Sensor Model computes the predictive measurement based on the current state estimate and
the explicitly coded model. It also computes the measurement gradient with respect to the state
vector.
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3.4 Kalman Filter
The Kalman Filter computes the difference between the predictive measurement and the actual
measurement. Based on this measurement residual, and the Kalman gain, it updates the state
estimate.

3.5 Calibration and Tuning
The Kalman filter is a mechanism that accounts for random errors in such a way as to generate an
optimal estimate. If nonrandom errors exist in the model or the measurements, the filter cannot do
much about them unless it is told about them. Further, the estimate is only as good as the
uncertainty estimates that are given to the filter. This section discussed these and other matters that
are important to the implementation of a working filter.

Once the filter equations are implemented, the remaining practical issues include:

• the calibration of systematic errors
• the characterization of remaining error sources, as if they were random, in terms of their

first order statistics and correlation models

The significance of calibration to Kalman filtering is that zero mean noise sources are assumed, and
any bias in the distribution will result in suboptimality.

3.6 Initialization and Reconfiguration
The filter equations make no distinction between the first cycle and any other, so any choice of the
initial state vector and its uncertainty can be made provided it is consistent. Also, sensors can be
added and removed dynamically in some cases, provided the filter observability criterion is not
compromised.

3.6.1 Initialization

Two general cases are possible and they can be mixed across the elements of the state vector and
covariance matrix. In relative navigation, set the initial position to zero and its uncertainty to zero.
In absolute navigation, set the initial state value to zero and its uncertainty to a large number.

3.6.2 Reconfiguration

Certain issues arise during the development of a filtering algorithm for which a small number of
simple techniques are useful. The problems associated with removing sensors and states were
discussed.

3̂ 7 Bandwidth and Efficiency
A few techniques were discussed which lead to significant improvement in the bandwidth of the
filter. Efficient scalar equations were given for computation of the Kalman gain and the
propagation of uncertainty.

3.8 Outlier Rejection
A single outlier can cause a large erroneous change in the state estimate unless it is rejected before
it is used in the state update equation. This section described some techniques used to achieve
outlier rejection including proper angular addition, reasonableness checks, and filtering legitimate
state discontinuities.
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Section 4: Results

4.1 AHRS Dead Reckoning
The 3D dead reckoning AHRS filter has been implemented and tested in the field. The sensors used
were a steering wheel potentiometer for "yawrate" measurement, transmission encoder and
redundant Doppler radar for measurement of velocity, and an AHRS for three-axis attitude.

One of many test runs was used to illustrate performance. In this run, winding mountainous city
streets were driven. The total excursion was about 4 Km in the horizontal plane and 200 meters
vertically. Aggressive braking and accelerating maneuvers were common. On many occasions, the
vehicle stopped for traffic lights, and the filter idled in zup mode until motion resumed.

4.2 Crosstrack Aiding
The ALVINN system [69] was used to generate a crosstrack observable for testing purposes and
the overall effect on the position estimate was a negative one. While, at times, the system seemed
to work, there were many times when large jumps in the state estimate occurred that no amount of
tuning could remove.

When the alongtrack uncertainty is large, the fundamental linearity assumption of the EKF is
violated and this seems to be the reason for the failure of the crosstrack observable to amp position
errors. This problem with crosstrack aiding is really a universal problem with using fix information
when the dead reckoning error is already substantial.
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PART VII: Summary and
Conclusions

This part will summarize the thesis in terms of its basic arguments, results, and conclusions.

Section 1: Problem Statement

The problem addressed by this thesis is intelligent autonomous mobility. That is, the problem of
moving a robot vehicle around in an environment while remaining safe. This problem classification
includes the problems of obstacle avoidance, perception, position estimation, coordinated actuator
control, and goal-seeking but does not include the problem of strategic motion planning.
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Section 2: RANGER Navigator

The navigation system called RANGER can be classified as an intelligent, predictive controller
for autonomous vehicles. It is intelligent because it uses range images that are generated from
either a laser rangefinder or a stereo triangulation rangefinder in order to perceive the immediate
environment of the vehicle. It is predictive because it reasons based on its knowledge of its own
capability to react to hazards in real time. The system closes the overall perceive-think-act loop for
a robot vehicle at relatively high update bandwidth and incorporates both somatic and
environmental feedback.

The goal of the project has been to increase speed and enhance the reliability of robotic vehicles in
rugged outdoor settings. The navigator has navigated over distances of 15 autonomous kilometers,
moving continuously, and has at times reached speeds of 15 km/hr. The system has been used
successfully on a converted U.S. Army jeep called the NAVLAB II and on a specialized Lunar
Rover vehicle that may, one day, explore the moon.

2.1 Operational Modes
The system can autonomously seek a predefined goal or it can be configured to supervise remote
or in-situ human drivers and keep them out of trouble.

2.2 Goal-Seeking
The system can follow a predefined path while avoiding any dangerous hazards along the way or
it can seek a sequence of positions or a particular compass heading. In survival mode, seeking no
particular goal, it will follow the natural contours of the surrounding terrain.

2,2 World Model
A computerized terrain map data structure is maintained which models the geometry of the
environment. It is an array of elevations that represents the world as a 2-1/2 D surface where the
vertical direction is aligned with the gravity vector. This representation, combined with a model of
vehicle geometry, permits a robust assessment of vehicle safety.

Figure 123 - Terrain Map
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1A Vehicle Model
The system is a solution to the difficulties of autonomous control of land vehicles based on a
tightly-coupled, adaptive feedforward control loop. It incorporates measurements of both the state
of the vehicle and the state of the environment and maintains high fidelity models of both that are
updated at very high rates.

At sufficiently high speeds, it becomes necessary to explicitly account for the difference between
the ideal response of the vehicle to its commands and its actual response. The vehicle is modelled
as a dynamic system in the sense of modern control theory. Although the system uses a nonlinear
model, the linear system model expressed in the following generic block diagram provides a sense
of the important signals and transformations involved.

Figure 124 - State Space Vehicle Model

FIFO queues and time tags are used to model the delays associated with physical i/o and to register
contemporary events in time. The command vector u includes the steering, brake, and throttle
commands. The disturbances u^ model the terrain contact constraint. The state vector x includes
the 3D position and 3 axis orientation of the vehicle body as well as its linear and angular velocity.
The system dynamics matrix A propagates the state of the vehicle forward in time. The output
vector x is a time continuous expression of predicted hazards where each element of the vector is
a different hazard.

2,5 Hazard Assessment
Hazards include regions of unknown terrain, hills that would cause a tip-over, holes and cliffs that
would cause a fall, and small obstacles that would collide with the vehicle wheels or body.

The process of predicting hazardous conditions involves the numerical solution of the equations of
motion while enforcing the constraint that the vehicle remain in contact with the terrain. This
process is a feedforward process where the current vehicle state furnishes the initial conditions for
numerical integration. The feedforward approach to hazard assessment imparts high-speed
stability to both goal-seeking and hazard avoidance behaviors.

System components above the state space model in the software hierarchy translate the hazard
signals x(t) into a vote vector. This is accomplished by integrating out the time dimension to
generate a vote for each steering direction based on a normalization of the worst case of all of the
considered hazards.
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In the figure, the system issues a left turn command to avoid the hill to its right. The histograms
below represent the votes for each candidate trajectory, for each hazard. Higher values indicate

Hill

Roll Pitch Body Step Tact Strat

Figure 125 - Hazard Detection and Avoidance

safer trajectories. The hazards are excessive roll, excessive pitch, collision with the undercarriage,
and collision with the wheels. The tactical vote is the overall vote of hazard avoidance. It wants to
turn left. The strategic vote is the goal-seeking vote. Here it votes for straight ahead.

2.6 Arbitration
At times, goal-seeking may cause collision with obstacles because, for example, the goal may be
behind an obstacle. The system incorporates an arbiter which permits obstacle avoidance and goal-
seeking to coexist and to simultaneously influence the behavior of the host vehicle. The arbiter can
also integrate the commands of a human driver with the autonomous system.

2.7 Sensors
The navigator accommodates both laser rangefinder and stereo perception systems and it
incorporates its own integrated stereo correlation algorithm. In either case, the design achieves
significant increases in vehicle speeds without sacrificing either safety or robustness.

2.8 Adaptive Perception
Perception has long been acknowledged as the bottleneck in autonomous vehicle research. Yet, a
moving vehicle generates images which contain much redundant information. Removal of this
redundancy is the key to fast moving robot vehicles.

A new range image perception algorithm has been developed for the navigator. It selectively
extracts a very small portion of each range image in order to reduce the perceptual throughput to a
bare minimum. In this way, vehicle speed is less limited by the computer speed.
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The algorithm searches each image for a band of geometry that is between two range extremes,
called the range window as shown in the figure. Only the data between the white lines is processed.
The algorithm also accounts for vehicle speed by moving the range window out as speeds increase.

White Lines Outline Range Window

Figure 126 - Adaptive Perception

This approach also stabilizes the sensor in software because the search for the data of interest
adapts automatically to both the shape of the terrain and the attitude of the vehicle. It is up to 6000
times faster than traditional approaches and it achieves the throughput necessary for 20 m.p.h.
motion on an ordinary computer workstation.

2.9 Position Estimation
The navigator incorporates a Kalman Filter algorithm that merges the indications of all of the
navigation sensors into a single consistent estimate of the vehicle position, attitude, and velocity.
Any number of sensors in any combination can be accommodated including, wheel or transmission
encoders, compasses, gyroscopes, accelerometers, doppler radar, inclinometers, terrain aids such
as landmarks and beacons, and inertial and satellite navigation systems.

2.10 Implementation
While the real-time core of the system can be expressed in about 1000 lines of C, the navigator
includes a simulation and development environment incorporating a data logger and simulators for
natural terrain, vehicles, sensors, and pan/tilt mechanisms. Real-time animated graphics provide
feedback to the human supervisor. A custom C language interpreter is used to configure and control
the system at run-time.

2.11 Architecture
Implemented in C language, the system is composed at the highest level of four objects. The Map
Manager integrates all environmental sensor images into a single consistent world model. The
Controller implements hazard detection and avoidance, goal-seeking, and arbitrates between them.
The Vehicle encapsulates the state of the vehicle and provides dynamics simulation and
feedforward. The Position Estimator implements the position estimation Kalman filter system.
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Section 3: Perspectives on Intelligence

There exists in the literature at this point in the history of the field a clear spectrum of approaches
to intelligent mobility from minimalist reactive approaches [8],[15] to more deliberative reasoned
approaches [51],[77], [54]. Few groups propose that one approach or the other solves all problems,
and, of course, there is considerable value in asking the question of how much can be accomplished
within a single paradigm. Rather than taking an extreme position on the reactive-deliberative
spectrum, the thesis argues that all of these elements have their place, and indeed are necessary, to
solve the problem.

3«1 On Memory
While it may be possible to continually measure the environment at high rate and simply react to
what is seen in each frame independent of other frames, there are reasons why memory is necessary
in high-speed navigators. The perceptual complexity analysis demonstrates that high-speed
navigators cannot afford the computation necessary to continually process the same scene
geometry at sufficiently high resolution. Thus, for high-speed navigators, the memory involved in
the mapping of the environment is an essential system capability.

3.2 On Deliberation
A high-speed vehicle incorporates its own memory as a matter of basic physics. There are limits
on its maneuverability which arise fundamentally from the state memory which is the defining
characteristic of dynamic systems. It has been shown that a mobility system which fails to model
this memory will be unreliable. Unlike the environmental geometry memory mentioned above, the
impact of this form of memory is that it requires some form of deliberation. In particular, for high-
speed navigators, models of dynamics take the place of models of logical precedence used in AI in
that they limit the states reachable in a small period of time from any given state. In such
navigators, the deliberative reasoning about the future impact of current actions (that is
implemented in feedforward models) is an essential capability.

3.3 On Reaction
No one would argue that a high-speed vehicle need not respond to external stimuli within finite
time. This is the essence of obstacle avoidance. Yet, the latency models developed in the thesis and
the precision timekeeping that has been incorporated seem more applicable to the control systems
of fighter aircraft than to autonomous vehicles. For high-speed navigators, real-time response
means more than reacting fast. Indeed, high-speed navigators must reason about their ability to
respond and, at least on the current generation of vehicle testbeds, this reasoning (about response)
is an essential capability.
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Section 4: Fundamental Arguments

This section interprets the impact of the analysis on the design problem. It summarizes the most
important arguments and the logic behind the design of the navigator.

4.1 Guaranteed Safety
One of the primary goals of the navigator has been to maximize speed. Driving fast requires:

• looking far ahead and/or reacting fast
• reducing the amount of scene geometry processed and/or processing it fast
• a sufficiently accurate and precise model of the environment and the vehicle

The design of the navigator starts with the adoption of the policy of guaranteed safety - the policy
of guaranteeing that all of the above things remain true at all times while the system is in operation.
Later analysis of this policy lead to the classification of the problem of driving fast as a real-time
problem for two reasons:

• Response time is a major concern and must be reduced.
• Throughput is a major concern and must be reduced.

4.2 Response
The design takes the point of view that response time must be reduced. The problem of minimizing
response time leads into a quest to reduce throughput, reduce acuity (resolution) and increase
fidelity (accuracy).

4.3 Throughput
Throughput must be reduced because it affects response. Higher throughput takes more time to
achieve in software so higher throughput causes longer response times. An effect called the
computational spiral effect expresses the intuitive logic that a system that must react fast must
cycle fast and one that must cycle fast must minimize its computational throughput. This logic is
the organizing principle behind the design of the adaptive perception algorithm for perception, and
the adaptive regard algorithm for planning. Both algorithms concentrate only on a focus of
attention of minimal size in order to reduce throughput.

4.4 Acuity
Resolution affects throughput and therefore response. In the case of planning the area of the focus
of attention divided by the resolution is the throughput required in range pixels. In the case of
planning, the number of trajectory alternatives considered divided by the resolution is the
throughput required in configuration checks. The previous paragraph argued that the area of the
focus of attention must be minimized, whereas this paragraph argues that the resolution with which
this area is checked must also be minimized.

The mapping from image space to world coordinates is nonlinear and it generates pixel footprints
that are neither homogeneous nor isotropic on the groundplane. While this appears at first glance
to be a major problem, when it is considered along with response and throughput requirements, this
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sampling problem is revealed as much less severe. The important points here are that range must
be large because of response and the width of the focus of attention must be narrow because of
throughput.

4,5 Fidelity

Fidelity must be maximized for three separate reasons:

• Poor fidelity causes thrashing in the standard architectural model and hence affects
throughput and therefore response.

• Poor fidelity is a major cause of collisions because the system has an inadequate under-
standing of its ability to control the vehicle.

• Poor fidelity causes instability in obstacle avoidance and goal seeking.

Given that fidelity must be maximized, the design was driven toward a state space model of vehicle
dynamics. Another issue that arose was the fact that this model, necessary in its own right, was not
solvable in reverse. For this reason, a formulation of planning in terms of optimal control and a
generate and test search was introduced to allow using the forward model only. This approach
ultimately had a beneficial affect on response because it allows a low resolution search of the
feasible set without explicitly considering feasibility.
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Section 5: Key Assumptions

Some of the most important assumptions used in the navigator are outlined below. This list is
provided in order to:

• be explicit about the important assumptions
• identify the major failure modes of the system

5.1 Continuity Assumption
Many aspects of adaptive perception and feedforward control involve circular logic. For example,
it is impossible to know where the vehicle will go until the terrain is known and it is impossible to
know what image data to use until the vehicle trajectory is known. Luckily, conservative
approximations can often be made to break this circle. When this is not feasible, information from
the last cycle of computations can be used as an approximation for the current cycle. This
assumption that, for example, system cycle time is a smooth function of time will be called the
continuity assumption.

5.2 Terrain Smoothness Assumption
Some degree of terrain smoothness assumption must always be adopted. Use of a particular map
resolution is tantamount to adopting this assumption. This assumption is critical to the successful
operation of autonomous navigators but it also, unfortunately, implies that systems will fail with
some regularity when this assumption is violated.

5.3 Obstacle Sparsity Assumption
The navigator minimizes its search through the use of a forward model of the vehicle and a gross
sampling of the commands available at any instant of time. This sample of commands is kept small
in order to minimize processing time, but it also implies that convoluted trajectories and
trajectories that squeeze between narrowly spaced hazards will not be searched. In effect, real-time
performance has lead to adopting the obstacle sparsity assumption as a pragmatic matter to
maximize speed.

5.4 Small Incidence Angle Assumption
The small incidence angle assumption together with the 2-1/2D world assumption and the static
environment assumption decouples the problem of selection from the problem of perception and
makes adaptive perception possible. However, the first of these assumptions is not a strong one
because it is always possible to use a more accurate kinematic model to transform a entire region
of interest from vehicle coordinates to the image plane.

5J5 2-1/2D World Assumption
One of the most important assumptions of all is the assumption that the environment can be
modelled as a sampled surface of the form z = f(x,y). This assumption is implicit in most
implementations of terrain maps. It is called the 2-1/2D world assumption. If a terrain map is
used, the range values can be consistently assumed to be monotonic in elevation angle and this can
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be used to dramatically reduce perceptual processing because some pixels need never be visited at
all. This monotone range assumption follows from the 2-1/2D world assumption and also
provides the basis for ambiguity removal in phase ambiguous sensors like AM rangefinders.

5.6 Static Environment Assumption
Another very important assumption is the assumption that obstacles stay put as the vehicle drives
past them. This permits the perception system to localize and resolve hazards only once and
position them in the navigation frame. Without this assumption, it is necessary to continually
reassess the geometry of the entire field of view.
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Section 6: Conclusions

This section presents a short list of conclusions which seem most significant to the problem and
most relevant to the more general problem of autonomous mobility.

• Spiral Effect. The computational spiral effect measures the cost of being smart in terms of its
effect on reaction time. A tradeoff between throughput and response exists which can be managed
by minimizing throughput in order to minimize reaction time.

• Real-Time Approach. Minimum reaction time will, in turn, give the highest possible speeds and
the highest quality environmental sensing for any given sensor.

• Complexity of Geometric Perception. The policy of guaranteed vehicle safety implies a
computational complexity of O ([TV] N) for range image processing where T is the vehicle
reaction time and V is the velocity. This result implies that increased vehicle speed will require
nonlinear growth in computational bandwidth.

• Fundamental Tradeoff. This analysis identifies the fundamental tradeoff of finite computing
resources as one of speed for either resolution or reliability.

• Adaptive Perception. The throughput problem of autonomous navigation can be eliminated at
contemporary speeds by computational stabilization of the sensor sweep.

• Computational Image Stabilization. Adaptive perception techniques which computationally
stabilize the vertical field of view provide the best of both worlds. They provide the high
throughput necessary for high-speed motion and the wide field of view necessary for rough
terrain.

• Adaptive Stereo Perception. The techniques of computational image stabilization have been
applied to the stereo vision problem as it occurs in mobility scenarios. In rough numbers, adaptive
sweep, implemented through a disparity window and appropriate postprocessing, improves
throughput by a factor of 10. Similarly, adaptive scan, implemented through a vertical baseline
and appropriate angular resolution promises to improve throughput by another factor of 10,
although this has not been demonstrated conclusively here.

• Adaptive Regard. In a manner similar to the use of a focus of attention in perception, a focus of
attention can be computed for obstacle avoidance that reflects the capacity of the vehicle to react
at any given time. Adaptive regard places a limit on how close a vehicle should look for hazards
because it cannot react inside of some distance. Thus, adaptive regard calls for all data inside
some lower limit to be ignored and limits are placed on the extent of data processed beyond this
minimum limit by considerations of both minimum planning throughput and range data quality.

• Tactical Control Layer. A modification to the standard architectural model of robotic systems
has been proposed which connects strategic geometric reasoning to dynamic reactive control in
an effective manner when the system under control exhibits poor command following.The
problem is solved in this intermediate layer between AI and control, between reactive and
deliberative approaches. An optimal solution to the problem includes elements of deliberation
and elements of reactivity both.
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» Actuation Space Search. Dynamics of many kinds imply that the local planning problem is
actually relatively easy from the point of view of search complexity. The planning "state space1"
of the high-speed Ackerman vehicle is degenerate. Ordering heuristics generally optimize search
by imposing the most constraining limits first and reducing the size of the search space as fast as
possible. This principle is used here because once dynamically infeasible paths are eliminated,
only a few remaining alternatives are spatially distinct enough to warrant consideration.

• Dynamic Models. The incorporation of dynamics models has generated a local navigation
system which remains stable past the limits beyond which kinematically modelled systems
became unstable. The use of dynamic models also makes obstacle avoidance more reliable in
general by imparting to the system a more accurate understanding of its ability to respond.

• Forward Modelling. Physical dynamics amounts to an overwhelming constraint on the
maneuverability of a high-speed vehicle. For a vehicle or operating regime for which classical
path generation based on via points becomes difficult, forward modelling has the advantage that
generated trajectories are feasible by construction.

> Arbitration. The simultaneous satisfaction of hazard avoidance and goal seeking can cause
contention for the absolute control of vehicle actuators, and in a practical system, this contention
must be resolved through some arbitration mechanism. The problems of goal seeking, local path
planning, and hazard avoidance have been unified into an optimal control context. In this context,
a functional computed over the feasible set of response trajectories serves as the quantity to be
optimized and the hazard avoidance mechanism specifies the confines of the feasible set.

> Hazard Space. In strict mathematical terms, the configuration space (C-space) of AI planning is
a subset of the state space (S-space) of multivariate control. It is a well-established technique to
abstract a mobile robot into a point in six-dimensional position and attitude coordinates. The
significance of hazard space (H-space) is that it performs the same function for dynamic planning
that C-space performs for kinematic planning.

• State Space Kalman Filter. A definitive formulation of position estimation has been posed
which is specifically designed for autonomous vehicles based on the state space Kalman filter.
The major architectural advantage of this formulation is that state estimation is a completely
separate process from the measurement model so it is inherent and straightforward to supply an
interpolated position estimate at significantly higher rates than can be supplied by the underlying
sensory hardware. Additionally, state vector augmentation techniques permit modelling the
dynamics of sensors, removal of known systematic sensory errors, and implementation of self-
calibration routines based on landmark observations.

1. In AI, the term "state space" has a slightly different connotation than in control theory.
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PART VIII: Contributions

At the time of this writing, autonomous mobility is a field in its infancy. This is clear because the
number of systems developed and documented to drive themselves outdoors can be counted on a
single hand. In such a wide open field, opportunities to make a difference and influence the future
are many. This section will present the work in the context of its contributions to the research.

Section 1: General Claims

1.1 Codification
The analysis section of this document is probably the most complete description of the problems,
subproblems, issues, tradeoffs, design rules, and terminology of off-road mobility in print. This
matters because any design process requires both requirements and constraints as a starting point
and these two elements were not so comprehensively elaborated anywhere prior to this work.

1.2 Classification
It is significant that the problem has simply been classified as a real-time control problem. This
matters because competing perspectives have been held in the past and a balanced view must weigh
all perspectives. Regardless of whether any particular view becomes the dominant one, the
importance and quantitative implications of response and throughput on the problem, and the
significance of forward modelling to path planning will remain important.

1.3 Demonstration
Of course, two of the most important questions to ask before attempting any work are "is it worth
doing at all" and "is it even possible". The system developed here has shown that off-road mobility
is possible at 10 mph for usefully long excursions and because of this, the work has redefined,
however humbly, the line between the possible and the impossible.
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Section 2: Specific Claims

2.1 Perspective
The perspective of the work can be summarized in two sentences. First, high speed mobility is a
problem with stringent real-time constraints. Second, in order to meet those constraints, an
adaptive approach to perception and a control approach to obstacle avoidance are indicated.
Simply put, this perspective has lead to a certain approach, and that approach is directly responsible
for an improvement in the capabilities of autonomous navigators.

2.2 Approach
The computational image stabilization algorithms and the feedforward control algorithms are the
key elements of the approach. These algorithms are new and are implemented in a variation on the
classical hierarchical robotic control architecture.

2.3 Generality
Simply because current autonomous navigators must attempt to survive with inadequate perceptual
acuity, adaptive perception will be important for the immediate future until such time as computer
speed catches up. State space modelling is a type of model for vehicle dynamics that is far more
general than competing approaches. It is likely to remain an important aspect of autonomous
navigation whenever a vehicle exhibits deterministic behavior.
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Section 3: Limitations / Future Work

While there are many remaining problems on the testbed vehicles that limit performance, some
problems are clearly caused by software and ought to be solved in software.

3.1 Strategic Planning
While the problem of choosing the strategic goal to be sought has been clearly stated to be outside
the scope of the work, it must be also stated that strategic planning is a critical system component
in practice.

3.2 Stereo Vision
Much of the work undertaken here in stereo vision has been speculative and experimental in
character. The emphasis has been to demonstrate feasibility but the considerable effort required to
construct robust stereo ranging has not been expended.

3.3 Identification
The latency and actuator dynamics models used in the navigator suffer from the same problems of
all models that attempt to be accurate - they need to be calibrated. In the long run, it will make sense
to construct a system identifier that watches the vehicle being driven in order to calibrate these
models most accurately.

3.4 Coordinated Control
Experience on the RATLER vehicle has pointed to a clear problem in the implementation of the
navigator in that it assumes that coordinated control loops exist which minimize command
following error after the system has issued its current command. If the system makes the claim of
being integrated and comprehensive, then such loops must also be included in the package.

3.5 Map Matching
The algorithm used for merging images together is rudimentary - primarily because more
sophisticated approaches actually resulted in worse performance. Nonetheless, it should be
possible to incorporate at least the scatter matrix information to avoid the problems of registration
at vertical surfaces.

3J6 Kalman Filter
The Kalman filter work undertaken has been only a small part of what should be done. Perhaps the
most interesting area of future work is the use of visual landmarks to quantify the vehicle position.
At the very least, feature tracking from image to image or the placement of landmarks in the test
area could be investigated to quantify their value in outdoor settings.
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PART IX: Appendices

The following appendices include detailed mathematical analysis and results that were deemed too
detailed for the body of the document. These results will serve as useful references for those
readers interested in reusing the details for their own purposes.
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Chapter 1: Kinematic Transforms

Kinematic modelling is one of the most essential analytical tools of robotics. It is used for
modelling mechanisms, actuators, and sensors for on-line control, off-line programming, and
simulation purposes. A short tutorial on Homogeneous Transforms is presented covering the triple
interpretation of a homogeneous transform as an operator, a coordinate frame, and a coordinate
transform. The operator / transform duality is derived and its use in the Denavit Hartenberg
convention is explained. Forward, inverse, and differential kinematics are derived for a simple
manipulator to illustrate concepts.

A standard set of coordinate frames is proposed for wheeled mobile robots. It is shown that the
RPY transform serves the same purpose as the DH matrix in this case. It serves to interface with
vehicle position estimation systems of all kinds, to control and model pan/tilt mechanisms and
stabilized platforms, and to model the rigid transforms from place to place on the vehicle. Forward
and inverse kinematics and the Euler angle rate to the angular velocity transform are derived for
the RPY transform.

Projective kinematics for ideal video cameras and laser rangefinders, and the imaging Jacobian
relating world space and image space is derived. Finally, the kinematics of the Ackerman steer
vehicle are presented for reference purposes.

Control of autonomous vehicles in 3D can require precise kinematic models of mechanisms, the
image formation process, terrain following, steering kinematics, and more. This chapter provides
the tools necessary to solve these problems in one place for reference purposes. It is both a tutorial
and a reference for the transforms used in the RANGER vehicle controller.
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Section 1: Notational Conventions

The 3 X 3 matrix R denotes a rotation matrix which transforms a displacement from its
expression in coordinate system 'a' to its expression in coordinate system 'b'. The 4 X 4 matrix
Tg denotes the homogeneous transform which transforms a vector from its expression in
coordinate system 'a' to its expression in coordinate system ' b \ If pa denotes a point expressed
in coordinate system 'a', then the notation for conversion of coordinates to coordinate system 'b'
is easy to remember by considering that the a's cancel:

The 4 X 4 matrix P denotes a nonlinear projection operator represented as a homogeneous
transform. In such notation, the vector normalization step is implicit in the transform. The 3 X 1
vector f represents the translation vector from system 'a' to system 'b' expressed in system 'a'
coordinates. The matrix J denotes the Jacobian of the transformation from system 'a' to system
' b \

The specification of derivatives will be necessarily loose. If X and y are scalars, X and y are
vectors, and X and Y are matrices, then all of the following derivatives can be defined:

ay

o
y

dY
dx

a partial derivative

a vector partial derivative

a matrix partial derivative

ay
ax

a _

av
ax

a gradient vector

a Jacobian matrix

a Jacobian tensor

The notation ca and sa is shorthand for cos(a) and sin(a) respectively. Sums of angles, for example,
will be indicated by cascaded subscripts as follows:
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Section 2: Homogeneous Coordinates and Transforms

Homogeneous coordinates are a method of representing 3D entities by the projections of 4D
entities onto a 3D subspace. This section investigates why such an artificial construct has become
the cornerstone of robot kinematic modelling.

IX Points
A point is a position in space. Points will be represented by column vectors such as:

where the superscript T denotes the matrix transpose and permits writing a column vector as a row
vector.

2.2 Operators
An operator is any process which maps points onto other points. For the present purpose,
operators will be limited to those which can be represented as matrices. The above point p. can
be altered in many different ways by multiplying it by a general 3 X 3 matrix T:

P2 =

X 2

y2

Z2

= T P l =
xx xy xz

yx yy yz

> lzy lzz

x i

yi

_zi

= Vi + Vi + Vi

>Xl+tzyyl+tzzZl_

Some simple operators are scale, reflection, rotation, projection, and shear. All of these can be
generated from the above matrix by a suitable choice of the entries in the matrix.

2.3 Homogeneous Coordinates
Even though the above operator is very general, it is not general enough to be used conveniently
in many robotics applications because it cannot represent a translation. That is, there exists no 3 X
3 matrix which adds a constant vector, like p~ to p. . Such a translation could be expressed as a
vector addition:

p2 = Pl + P3 =

x l X3

This cannot be done by a matrix because p~ cannot be represented, in general, as a linear
combination of the elements of p. - it is supposed to be independent of p j .
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However, the situation can be fixed with a standard trick. In homogeneous coordinates, an extra
element can be added to each point to represent a kind of scale factor:

and it is conventional to consider that this 4-vector is projected into 3D by dividing by the scale
factor:

Pl =
w l w l wl_

T

Points are typically represented with a scale factor of 1. Thus:

is a point in homogeneous coordinates. It is also possible to represent a pure direction in terms of
a point at infinity by using a scale factor of 0. Thus:

is a direction in homogeneous coordinates.

2.4 Homogeneous Transforms
Using homogeneous coordinates, it is now possible to represent the addition of two vectors as a
matrix operation, thus:

P2 = Pi + P3 =

X l

Z l

X 3

Z 3

1_

=

1 0 0 x3

0 1 0 y 3

0 0 1 z3

0 0 0 1

x l

z l

= Trans (p3)pj

where T r a n s (p~) is the homogeneous transform which is equivalent to a translation operator
for the translation vector p~ .
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2.5 Homogeneous Transforms as Operators
Suppose it is necessary to move a point in some manner and express the result in the same
coordinate system as the original point. This is the notion of an operator. The basic operators are
translation along and rotation about any of the three axes. The following table gives the four
elementary operators which are sufficient for the purposes of the document, and for almost any real
problems. Operators are identified by an upper case first letter.

1 0 0 u
0 1 0 v
0 0 1 w
00 0 1

Rotx(9) =

Roty(<|>) = 0
-S(|)

0

0

1
0
0

0
c<)>
0

0

0
0
1

A
^ X

1 0 0 0
0 c6 -s9 0
0 s9 c0 0
0 0 0 1

y

Rotz (\(/)

c\|/ -s\|/ 0 0

s\|/ c\|/ 0 0

0 0 1 0
0 0 0 1

It is important to remember the precise semantics of these operators. They take a point expressed
in some coordinate system, operate on it, and supply the result expressed in the same coordinate
system.

One of the most common operators used in robotics is a rotation followed by a translation. The
homogeneous transform can be used to represent this operator as a single matrix. In general, many
kinds of operators can be represented by homogeneous transforms. However, the operator
interpretation is but one of three possible interpretations of the homogeneous transform.
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2.6 Example • Operating on a Point
The homogeneous coordinates of the origin O are clearly:

As an example of applying operators to a point, the following figure indicates the result of
translating the origin along the y axis by V units and then rotating the resulting point by 90°
around the x axis.

P = [o 0 v

X

i ] T i z

/ •

0

p =

1
0
0
0

\

0
0
1
0

[o

0
-1

0
0

v 0

0
0
0
1

y

i]

l
0
0
0

T

0
1

0
0

0
0
1
0

p

0
V

0
1

=

0
0
0
1

Rotx

1
0
0
0

(71/2)

0
0
1

0

0
-1

0
0

Trans (0,

0
0
0
1

0
V

0
1

v,0)o

0
0
V

1

Notice that the operators are written in right to left order because this is the order in which they are
applied to the original column vector representing the origin. The order is important because matrix
multiplication is not commutative. Also notice that the initial point, intermediate point, and final
result are all expressed in terms of the axes of the original coordinate system. Operators have fixed
axis semantics.

2.7 Homogeneous Transforms as Coordinate Frames
Recall that homogeneous coordinates can be used to represent directions as well as points. This is
done by using a zero scale factor. The unit vectors of a cartesian coordinate system can be
considered to be directions. The x, y, and z unit vectors can be written as:
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Therefore, these three columns can be grouped together with the homogeneous coordinates of the
origin to form an identity matrix:

[i j k o] =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

= I

Clearly, the columns of the identity matrix can be interpreted as the unit vectors and the origin of
a coordinate system. The result of applying an operator to these four vectors has a similar
interpretation that will be shown by example.

2.8 Example - Interpreting an Operator as a Frame
These four vectors can be transformed simultaneously by applying the same two operators to the
identity matrix:

[o - l o o]T
[o o i o]T

I1 = Rotx (T I /2 ) Trans (0, v, 0)1

I1 =

1

0
0

0

0
0
1
0

0
- 1

0
0

0
0
0
1

1
0
0
0

0
1

0
0

0
0
1
0

0
V

0
1

1
0
0
0

0
1

0
0

0
0
1
0

0
0
0
1

1
0
0
0

0
0
1

0

0
- 1
0
0

0
0
V

1

This result is just the product of the original two operators. Each column of this result is the
transformation of the corresponding column in the original identity matrix. Thus the transformed
vectors are:

= [l 0 0 o] j' = [o 0 1 o]

= [o -1 0 0]T ° ' = [ 0 0 v 0]T
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It has been shown that the column vectors of any compound fundamental operator are just the
homogeneous coordinates of the transformed unit vectors and the origin. This is because the
operators apply to any vectors - including the origin and the unit vectors. The result can be
visualized by drawing the new transformed axes at the new position.

2.9 The Coordinate Frame
So far in the discussion, there are two complementary interpretations of exactly the same 4 X 4
matrix. It can be an operator which moves points and vectors around, or it can be a representation
of a cartesian coordinate system positioned somewhere in space relative to another one. Cartesian
coordinate systems positioned in space are a central concept in 3D kinematics. They encode both
a position and an attitude. With an encoded position and attitude available, it becomes possible to
talk about the state of motion of the origin in terms of translation and orientation and all of their
associated time derivatives. Therefore, this entity embodies the properties ofa frame of reference.

With a set of three orthogonal unit vectors, it is possible to represent an arbitrary vector quantity in
terms of its projections onto these axes. Therefore, this entity also embodies the properties of a
cartesian coordinate system. This moving set of unit vectors is often called a coordinate frame or
simply a frame. Often, imaginary frames are embedded in the links of a mechanism in order to
keep track of its configuration. These embedded frames are central to the study of manipulators,
legs and other mechanisms.

2.10 Homogeneous Transforms as Coordinate Transforms
There is a third interpretation of a homogeneous transform. It was shown that they move points and
move and orient frames and that they directly represent frames. However, if they move frames, one
can think about the original frame and the transformed frame as two different frames and then ask
about the relationship between the coordinates of any point in each frame. Let the original frame
be called 'a' and the transformed one be called 'b'.

Let a general point p be expressed in the coordinates of frame 'b'. This will be represented by a
superscript b. Its coordinates in this frame are:

Alternately, it can be written as a true physical vector thus:

This vector can be expressed in the coordinates of frame 'a' by expressing the unit vectors of frame
'b' in the coordinates of frame 'a' and adding the position of the origin, thus:
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but this is just the same as if a matrix multiplication were used:

p a =

1
0
0

0

0
0

1
0

0
-1

0
0

0
0
V

1

xb~
y b

z*>
1

It has been shown that the same homogeneous transform that moves frame 'a' into coincidence
with frame 'b' also converts the coordinates of points in the opposite direction - from frame 'b' to
frame 'a'. The reason for the opposite sense in the interpretation is that moving a point "forward"
in a coordinate system is completely equivalent to moving the coordinate system "backward".

It is easy to show that the inverse of a rotation matrix is equal to its transpose. This is called the
property of orthogonality. This leads to a second set of 4 matrices, the fundamental transforms,
which are the inverses of the operators and which therefore convert coordinates from 'a' to 'b'.
These are given in the table below. In the document, the transforms will be denoted with lowercase
first letters in their names.

rotx(9) =

1 0 0 -u
0 1 0 -v
0 0 1 -w
0 0 0 1

1 0 0 0
0 c6 s0 0
0 -s0 c8 0
0 0 0 1

c\p s\j/ 0 0

-s\|i c\y 0 0

0 0 1 0
0 0 0 1
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2,11 Example - Transforming the Coordinates of a Point
Again, the homogeneous coordinates of the origin o are:

° = [o 0 0 l]

As an example of applying transforms to a point, the following figure indicates the result of
transforming the origin of frame 'b' into the coordinates of frame 'a' where the two frames are
related by the same sequence of operators used earlier. Frame 'b' is moved into coincidence with
frame 'a' by first rotating by -90° around the x axis of frame ' b \ and then translating by -v along
the z axis of the intermediate frame.

i

yb1

xb

xa
a

z a

V ya

p a =

1
0

0
0

0
1

0
0

0

0
1

0

0
0
V

1

Pa

1

0
0
0

0
0
1

0

= trans (0,

0
-1
0
0

0
0
0

1_

0
0
0
1

0, -v) rotx (

_ 0

0
0

0
1
0
0

0
0
1

0

0
0
V

1

-71/2)

0
0
0
1

_

0

0
0
V

1

Notice that the transforms are written in right to left order because this is the order in which they
are applied to the original column vector representing the origin. The order is important because
matrix multiplication is not commutative. Also notice that, for transforms, each new transform is
interpreted as if it were applied to the last frame in the sequence of frames that ultimately bring the
first into coincidence with the last. Transforms have moving axis semantics.

Inverse of a Homogeneous Transform
The homogeneous transforms that will be used in this document will all be structured according to
the following template:

Rotation
Matrix

Perspective

Po
si

tio
n

V
ec

to
r

Scale
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The scale factor will almost always be 1 and the perspective part will be all zeros except when
modelling cameras. Under these conditions, it is easy to show by multiplying the inverse by the
original matrix, that the inverse is:

-

0

R

0 0

—1

u

1

-1

—

0

RT

0 0

—1

-RT
E

1

This is very useful for converting from a matrix that converts coordinates in one direction to one
that converts coordinates in the opposite direction. Throughout the document, remember that it is
trivial to reverse the sense of a coordinate transform.

2.13 A Duality Theorem
The careful reader has probably noticed that operators and transforms are inverses. Whether a
particular matrix is considered to be operator or transform is a matter of taste. This has an important
implication for kinematic modelling that will be demonstrated by example. Using the previous
example, the moving axis operations which bring frame 'a' into coincidence with frame 'b' are:

• translate v units along the z axis
• rotate 90° around the new x axis

The complete transform that converts coordinates from frame 'a' to frame 'b' can be written as:

T b = rotx (7t/2) trans (0, 0, v)

This can be rewritten in terms of operators as:

= Rotx (-rc/2) Trans (0, 0, -v)

The inverse of this matrix will convert coordinates from frame 'b' to frame 'a', and as was shown
earlier, also represents the position and attitude of frame 'b' with respect to frame 'a'. Using the
well known method for inverting a matrix product, this inverse matrix can be expressed as follows:

= Trans (0 ,0 , -v)" 1Rotx (-71/2)-1

= Trans (0,0,v) Rotx ( T I / 2 )

So that the transform from 'b' to 'a' can be written in terms of transforms from right to left or in
terms of operators in the reverse order. The latter view is traditional in robotics and it will be used
in the next section.1

1. One implication of this is that any set of rotations about fixed axes is equivalent to the same set executed
in the reverse order about moving axes.
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Section 3: Forward Kinematics

Forward kinematics is the relatively straightforward process of chaining homogeneous transforms
together in order to represent the articulations of a mechanism or simply to represent the fixed
transformation between two frames. In this process, the joint variables are given, and the problem
is to find the transform.

3.1 Nonlinear Mapping
It is clear that it is possible to transform coordinates between coordinate systems which are fixed
in position and attitude with respect to each other. It is also possible to perform elementary
operations with homogeneous transforms. Ultimately, this is possible because such operations are
linear. That is, the result is always a weighted sum of the original point or vector.

Most mechanisms, however, are not linear. They are composed of one or more rotary degrees of
freedom. It turns out that the homogeneous transform can still be used to model such complex
devices if they are viewed in a different way. In the study of mechanisms, the parameters of the
rotations and translations between the frames are considered to be variables. In this sense, the
problem is one of understanding the variation in a homogeneous transform when it is considered
to be a function of one or more variables.

In the study of mechanisms, the real world space in which a mechanism moves is often called task
space, and points and vectors are normally expressed in terms of cartesian coordinates. However,
the mechanism articulations are most easily expressed in terms of angles and displacements along
axes. This space is called configuration space. So far, we have studied linear transformations
within task space. This section and the following sections will consider the more difficult problem
of expressing the relationship between task space and configuration space. This problem is one of
multidimensional nonlinear mapping.

3.2 Mechanism Models
It is natural to think about the operation of a mechanism in a moving axes sense - because most
mechanisms are built that way. That is, the position and orientation of any link in a kinematic chain
is dependent on all other joints that come before it in the sequence.

Conventionally, one thinks in terms of moving axis operations applied to frames embedded in the
mechanism which move the first frame sequentially into coincidence with all of the others in the
mechanism. Then, a sequence of operators is written to represent the mechanism kinematics. The
conventional rules for modelling a sequence of connected joints are as follows:

• assign embedded frames to the links in sequence such that the operations which move
each frame into coincidence with the next are a function of the appropriate joint variable

• write the operator matrices which correspond to these operations in left to right order

This process will generate the matrix that represents the position of the last embedded frame with
respect to the first, or equivalently, which converts the coordinates of a point from the last to the
first. This matrix will be called the mechanism model.
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3.3 Modelling a Mechanism
In 1955, J. Denavit and R. S. Hartenberg [14] first proposed the use of homogeneous transforms to
represent the articulations of a mechanism, and this form of model has been used almost
universally since. A mechanism is considered to be any collection of joints, either linear or rotary,
joined together by links. The total number of movable joints is called the number of degrees of
freedom.

3.4 Denavit Hartenberg Convention for Mechanisms
It is conventional in many aspects of robotics to use a special product of four fundamental operators
as a basic conceptual unit. The resulting single matrix can represent the most general spatial
relationship between two frames. This convention with a small number of associated rules for
assignment of embedded frames has come to be called the Denavit-Hartenberg (DH) convention.

For two frames positioned in space, the directions of, say, the z axes of two frames define two lines
in 3D space. For nonparallel axes, there is a well-defined measure of the distance between them
given by the length of their mutual perpendicular. Let the first frame be called frame i-1 and the
second frame i. The first can be moved into coincidence with the second by a sequence of 4
operations:

• rotate around the x^ axis by an angle 6j
• translate along the x^ axis by a distance Uj
• rotate around the new z axis by an angle \|/j
• translate along the new z axis by a distance Wj
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The following figure indicates this sequence graphically.

y
X \

The matrix, conventionally called Aj, that converts coordinates from frame i to frame i-1 can be
written using the rules for forward kinematic modelling given previously.
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This matrix has the following interpretations:

• its columns represent the axes and origin of frame i expressed in frame i-1 coordinates
• it converts coordinates from frame i to frame i-1
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3.5 Examples 3-Link Planar Manipulator
Although the homogeneous transform matrices can represent any complex 3D
process of writing forward kinematic equations will be illustrated for a simple 2D
composed of three rotary joints, three links and an end effector. Coordinate frames are assign,
the center of each rotary joint and the datum angle for each is set to zero as illustrated in the figuiv
below.

It is conventional to assign the z axis of a frame so that the associated degree of freedom, linear or
rotary, coincides with it. Also, the x axis is normally chosen so that it points along the mutual
perpendicular. In this case, this means that frame 1 is a rotated version of frame 0:

The joint parameters are indicated in the table below:

Table 19: 3-Link Planar Manipulator

Link

0

1

2

3

6

0

0

0

0

u

0

Li

L2

L3

V

Vi
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¥ 3

0

w

0

0

0

0
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This gives the following Denavit-Hartenberg matrices. Their inverses are computed from the
inverse formula because they will be useful later:

A =
1

A 2 =

A =
3

A, =
4
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0
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The position and orientation of the end effector with respect to the base is given by:

TO _

c l

s l

0
0

0
0

0

0

1
0

0

0

0

lj

C2

S2

0
0

" S 2

C2

0
0

0

0

1

0

L l l
0

0

lj

C3

S3

0
0

- S 3

C3

0
0

0

o
1

0

L 2

0

0
1

1

0
0
0

0

1
0
0

0

0
1
0

L 3

0
0
1

C123 S123

S123 C123 °

0 0 1

0 0 0

(C123L3 + C12L2 + C 1 L P

(s 123' S12L2 + S 1 L P

0
1
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Section 4: Inverse Kinematics

Inverse kinematics is the problem of finding the joint parameters given only the numerical values
of the homogeneous transforms which model the mechanism. In practice, this is useful because it
solves the problem of where to drive the joints in order to get the hand of an arm or the foot of a
leg in the right place, at the right orientation.

Proficiency with inverse kinematics requires a degree of skill and practice and there are few general
guidelines that can be given. This section will discuss this difficult problem and continue with the
simple example.

4.1 Existence and Uniqueness
The inverse kinematic problem is considerably more difficult than the forward one because it
involves the solution of nonlinear equations. In general, there is no guarantee that nonlinear
equations have a solution, and if they do, it may not be unique. It has been shown theoretically by
Pieper [67], that a six degree of freedom manipulator for which the last three joints intersect at a
point is always solvable. Most manipulators are constructed in this way, so most are solvable.

Any real mechanism has a finite reach, so it can only achieve positions in a region of space known
as the workspace. Unless the initial transform to be solved is in the workspace, the inverse
kinematic problem will have no solution. This manifests itself, for example, as inverse sines and
cosines of arguments greater than 1. Further, mechanisms with many rotary joints will often have
more than one solution and these soluitions which will exhibit various forms of symmetry. The
latter case is known as redundancy.

4.2 Technique
This problem would be very difficult to solve without the discipline afforded by the use of
homogeneous transforms. Using the DH convention, a mechanism can be "solved" more or less
one joint at a time by a process of rewriting the forward kinematics equations in several different
ways.

Any DH matrix has only six degrees of freedom. The rotation matrix part is constrained to be
orthonormal. That is, the rows or columns must be of unit length and mutually perpendicular. The
bottom row is constrained to contain zeros and ones. The position vector contains three
independent values.

The inverse kinematic problem is solved by rewriting the forward transform in many different
ways to attempt to isolate unknowns. Although there are only 6 independent relationships, they can
be rewritten in many different ways.
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Using a three degree of freedom mechanism for example, the forward kinematics can be written in
all of these ways by premultiplying or postmultiplying by the inverse of each link transform in turn:

TPO — A A A A
4 ~" 1 2 3 4

1 4 = 2 3 4

A - I A - I T ^ — A A
A 2 A l l4 ~ ^3 4

3 2 1 4 = 4

^4 ^3 ^2 1 4 =

•yO — A A A A
4 ~~ 1 2 3 4

yO/v-1 — A A AX 4 A 4 - A l A 2 A 3

T 4 A 4 A 3 = A l A 2

T 0 A - 1 A ~ 1 A ~ 1 — AX 4 A 4 A3 A2 " 1

T^A~1 A~l A~l A~l — T
14 /^4 ^3 -^2 1 ""

These are, of course, redundant specifications of the same set of equations, so they contain no new
information. However, they often generate equations which are easy to solve because the DH
convention tends to isolate each joint. It is conventional to use the left column of equations, but the
right column is easier to follow in our case, so it will be used.

4.3 Example: 3 Link Planar Manipulator
The process is started by assuming that the forward kinematic solution is known. Names are
assigned to each of its elements as follows:

T° =

rn
r21

r31

0

r l 2

r22

r32

0

r13
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r33

0

Px

Py

Pz
l

For our example, we know that some of these are zeros and ones, so that the end effector frame is:
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An Approach to the High-Speed Cross-Country Autonomous Navigation Problem page 367.



The first equation is already known:
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From the (2,1) and (1,1) elements we have:
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The next equation is:
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r l l

r21

0
0

hi
xll

0
0

0 -

0 -

1

0

r l l

r21

0
0

-rll

"r21

hi
xll

0
0

L 2

0
1

0

0

1

0

TjA-1

I + Px

S+Py

-

C123

S123

0
0

" r l l L 3 + P x

- r 2 1 L 3 + P y

0
1

= A1 A 2

~S123 °

C123 °

0
0

c

s

-

1

0

123

123

0
0

A 3

C l ( c

S j ( c

"S123

C123

0
0

o

o
1

0

-2 + L1)-.1(^)l

'2 + L l ) + c l ( s 2 L 2 )

0
1

C 12 L
2

 + C lL l"

S12L2 + S1L1
0
1

An Approach to the High-Speed Cross-Country Autonomous Navigation Problem page 368.



These can be squared and added to yield:

k?+k2 = .2 + 2 L 2 L 1 ( c 1 c 1 2 + s l f

1 , 2 , 1 , 2 _ T 2 , r 2 , I T T c

And this gives the angle \|/9 as:

2L2Lj

The result implies that there are two solutions for this angle which are symmetric about zero. These
correspond to the elbow up and elbow down configurations. Now, before the expressions were
reduced to include a sum of angles, they were:

With \|/9 now known, these can be written as:

This is one of the standard forms that recur in inverse kinematics problems for which the solution
is:

Finally, the last angle is:
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4.4 Standard Forms

There are a few forms of trigonometric equations that recur is most mechanisms. The following set
of solutions is sufficient for most applications. One of the most difficult forms, solved by square
and add, was presented in the example. In the following, the letters a, b, and c represent arbitrary
known expressions.

4.4.1 Explicit Tangent

This form generates a single solution because both the sine and cosine are fixed in value. It can
arise in the last two joints of a three-axis wrist, for example. The equation:

has the trivial solution:

4.4.2 Point Symmetric Redundancy

This form generates two solutions that are symmetric about the origin. It can arise in the shoulder
or hip joint, for example. The equation:

s n a - c n b = 0

can be solved by isolating the ratio of the two trig functions. There are two angles in one revolution
which have the same tangent so the two solutions are:

\|/n = atan2(b, a)

\|/n = atan2(-b, -a)
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4.4.3 Line Symmetric Redundancy

This form generates two solutions that are symmetric about an axis because the sine or cosine of
the deviation from the axis must be constant. The sine case will be illustrated. It can arise in the
shoulder or hip joint, or in an elbow or knee joint, for example. The equation:

s n a - c n b = c

can be solved by the trig substitution:

a = rcos (9) b = Tsin(Q)

where:

r = ±sqrt(a2 + b2) 9 = atan2(b, a)

This gives:

snc9-cns9 = c/r

s(9-\|/n) = c/r

So the cosine is:

This gives the result:

-y n ) = ±sqrt( l-(c/r)2)

\|/n = atan2(b, a) - atanl [c, ±sqrt (r z-c z) ]
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Section 5: Differential Kinematics

Differential kinematics is the study of the derivatives of kinematic models. These derivatives are
called Jacobians and they have many uses ranging from:

• resolved rate control
• sensitivity analysis
• uncertainty propagation
• static force transformation .

5.1 Derivatives of Fundamental Operators
The derivatives of the fundamental operators with respect to their own parameters will be
important. They can be used to compute derivatives of very complex expressions by using the
chain rule of differentiation. For reference, they are quoted below:

^r—Trans (u, v, w) =
du

3—Trans (u, v, w) =
dv

TT—Trans (u, v, w) =
dw

1 0 0 1
0 1 0 0
0 0 10
0 0 0 1

10 0 0
0 10 1
0 0 10
0 0 0 1

10 0 0
0 1 0 0
0 0 11
0 0 0 1

36

1 0 0 0
0 -sG -cG 0
0 cG -sG 0
0 0 0 1

—s<() 0 cc|) 0

0 1 0 0

—c(() 0 —s(() 0

0 0 0 1

- s \ | / -cv|/ 0 0

c\|/ - s \ | / 0 0

0 0 1 0

0 0 0 1

Similar expressions can be generated for the fundamental transforms.

5.2 The Mechanism .Tacobian
If a sequence of joints can be represented by the product of a series of homogeneous transforms, it
is natural to ask about the effect of a differential change in joint variables on the position and
orientation of the end of the mechanism. A frame matrix represents orientation indirectly in terms
of three unit vectors, so an extra set of equations is required to extract three angles from the rotation
matrix in order to represent orientation. In terms of position, however, the last column of the
mechanism model gives the position of the end effector with respect to the base.
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In general, let a mechanism have variables represented by the vector q, and let the position and
orientation, or pose, of the end of the mechanism be given by the vector X. Then, the end effector
position is given by:

x = F(q)

where the nonlinear multidimensional function F comes from the mechanism model. The Jacobian
matrix is a multidimensional derivative defined as:

, = i-x = i-(F(q)) =
N

dx, dx
i n

* i - *%

The differential mapping from small changes in q to the corresponding small changes in X is:

dx = Jdq

The Jacobian also gives velocity relationships via the chain rule of differentiation as follows:

which maps joint rates onto end effector velocity. Note that the Jacobian is nonlinear in the joint
variables, but linear in the joint rates. This implies that reducing the joint rates by half reduces the
end velocity by exactly half and preserves the direction.

5.3 Singularity
Redundancy takes the form of singularity of the Jacobian matrix in the differential kinematic
solution. A mechanism can lose one or more degrees of freedom:

• at points where two different inverse kinematic solutions converge
• when joint axes become aligned or parallel
• when the boundaries of the workspace are reached

Singularity implies that the Jacobian loses rank and is not invertible. At the same time, the inverse
kinematic solution tends to fail because axes become aligned, and infinite rates can be generated
by rate control laws.
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5.4 Example: 3-Link Planar Manipulator
For the example manipulator, the last column of the manipulator model gives the following two
equations:

which can be differentiated with respect to \\f. , \ j / ^ , and \|/~ in order to determine the velocity of
the end effector as the joints move. The solution is:

which can be written as:

X
=

( ~ S 1 2 3 L 3 S 12 L 2 S l L l ) ^ S123L3 S12L2^ S123L3

123 3 12 2 1 1 123 3 12 2 123 3 I
5.5 Jacobian Determinant
It is known from the implicit function theorem of calculus that the ratio of differential volumes
between the domain and range of a multidimensional mapping is given by the Jacobian
determinant. This quantity has applications to a technique of navigation and ranging called
triangulation.

Thus the product of the differentials forms a volume in both configuration space and in task space.
The relationship between them is:

(dX ldx2 . . .dxn) = |J |(dq1dq2 . . .dqm)
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5,6 .Tacobian Tensor
At times it is convenient to compute the derivative of a transform matrix with respect to a vector
of variables. In this case, the result is the derivative of a matrix with respect to a vector. For
example:

This is a three-dimensional cube of numbers which can loosely be called a tensor. The mechanism
model itself is a matrix function of a vector.

For example, if:

Then there are three slices of the tensor, each a matrix, given by:
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Section 6: Vehicle Kinematics

Some aspects of the kinematics of moving vehicles are simpler than that of mechanisms, others are
more difficult. This section presents an abbreviated discussion of the kinematic transforms
necessary for control of a vehicle in 3D.

6.1 Axis Conventions
There are at least two prevailing conventions for the assignment of axes for the coordinate systems
of vehicles. In aerospace vehicles, it is conventional to point the z axis downward, and this makes
it natural to point the x axis forward and the y axis out the right side of the vehicle. The convention
used here is that the z axis points up, y forward, and x out the right side. This has the advantage
that the projection of 3D information onto the x-y plane is more natural.

It is important to note that the form of rotation matrices depends firstly on the order of their
component rotations, and secondly on the linear axis conventions. The convention used here
corresponds to a z-x-y Euler angle sequence. Therefore, it is not advisable to use the
homogeneous transforms developed here until they are verified to be correct for any sensors and
actuators that are used.

6.2 Frame Assignment
Several coordinate frames are important for moving vehicles. For legged vehicles, the frames
embedded in the legs are assigned according to the DH convention and the frames for the rest of
the system are analogous to those for wheeled vehicles. This section will present a set of frames
for wheeled vehicles that occur in most applications.

These frames are indicated in the figure below:
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6.2.1 The Navigation Frame

This is the coordinate system in which the vehicle position and attitude is ultimately required.
Usually, this frame is taken as locally level (i.e. the z axis is perfectly aligned with the local gravity
vector, not the local terrain tangent plane). The z, up, or azimuth axis is aligned with the gravity
vector; the y, or north axis is aligned with the geographic pole2; and the x axis points east to
complete a right-handed system. In some applications, any frame that is fixed on the earth is
satisfactory whether or not it is aligned with the earth's fields. This frame is identified by the letter
n.

6.2.2 The Body Frame

The body frame is positioned at the point on the vehicle body which is most convenient and is
considered to be fixed in attitude with respect to the vehicle body. For Ackerman steer vehicles, the
center of the rear axle is a natural place for this frame. In some applications, the best estimate of
the position of the center of gravity is more appropriate. The z axis points up, y forward, and x out
the right side. This frame is identified by the letter b.

6.2.3 The Positioner Frame

This frame is positioned at the point on or near any position estimation system which reports its
own position. If the system generates attitude and attitude rates only, this frame is not required
because the attitude of the device will also be that of the vehicle. For an INS, this is typically the
center of the IMU and for GPS it is the phase center of the antenna3. Axes directions are defined
similarly to the body frame directions. There is a different positioner frame for each positioning
device. This frame is identified by the letter p.

6.2.4 The Sensor Head Frame

Sometimes, environmental perception sensors are mounted on stabilized platforms or on pan/tilt
mechanisms. These provide isolation of the sensor attitude from that of the vehicle and/or the
ability of the system to literally point its "head". Axes directions are defined similarly to the body
frame directions. In cases where the rotary axes of the device all intersect at a point, this frame is
positioned at the common point of intersection of these axes. Axes directions are defined similarly
to the body frame directions.

In cases where the environmental perception sensor axes are not aligned with respect to those of
the vehicle (for example, when the sensor looks downward), or in cases where there is a
misalignment which must be accounted for, a rigid sensor head can be defined which tilts the body
axes into coincidence with those of the sensor. This frame is identified by the letter h.

6.2.5 The Sensor Frame

This frame is positioned at the center of the environmental perception sensor with axis definitions
similar to the body frame when the sensor points forward. For video cameras, it is positioned on
the optical axis at the image plane behind the lens. For stereo systems, it is positioned either
between both cameras or is associated with the image plane of one of them. For imaging laser

2. The geographic pole is determined by the earth's spin axis, not the magnetic field.
3. The antenna may be nowhere near the GPS receiver.
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rangefinders, it is positioned as the average point of convergence of the rays through each pixel.
Axes directions are defined similarly to the body frame directions. There is a different sensor frame
for each sensor.

6.2.6 The Wheel Frame

This frame is positioned at the center of the wheel, on the axle. At times it may be convenient to
define this frame at the wheel contact point and it may be useful to have it rotate with the wheel.
Each wheel has its own frame.

6.3 The RPY Transform
For the purpose of kinematic modelling, any of the former frames can be considered to be
embedded in a rigid body. It turns out that the attitude of a rigid body can be expressed in many
different ways. It is usually most convenient to express vehicle attitude in terms of three special
angles called roll, pitch, and yaw. Luckily, most pan/tilt mechanisms are kinematically formed
from a yaw rotation followed by a pitch with no roll, so they are a degenerate form of a more
general transform.

These considerations imply that a general homogeneous transform, called the RPY transform, can
be formed which is similar in principle to the DH matrix, except that it has three rotations, and
which can serve to transform between the body frame and all others. There are six degrees of
freedom involved, three translations and three rotations, and each can be either a parameter or a
variable.

Let two general frames be defined as 'a' and 'b' and consider the moving axis operations which
transform frame 'a' into coincidence with frame 'b'. In order, these are:

• translate along the (x,y,z) axes of frame 'a' by (u,v,w) until its origin coincides with that
of frame 'b'

• rotate about the new z axis by an angle \\f called yaw
• rotate about the new x axis by an angle 9 called pitch
• rotate about the new y axis by an angle (|) called roll

Angles are measured counterclockwise positive according to the right hand rule. These operations
are indicated below for the case of transforming the navigation frame into the body frame.
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The forward kinematic transform that represents this sequence of operations is, according to our
rules for forward kinematics:
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This matrix has the following two interpretations4:

• its columns represent the axes and origin of frame 'b' expressed in frame 'a' coordinates
• it converts coordinates from frame 'b' to frame 'a'

The matrix can be considered to be the conversion from a pose vector of the form

to a coordinate frame.

4. This transform applies to the Litton INS on the HMMWV, the Stagget stable platform, and the ROS pan/
tilt head.
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6.4 Frame Parameters for Wheeled Vehicles
Using the RPY transform, it is now possible to specify the parameters and variables which permit
coordinate transformation from anywhere on a vehicle to anywhere else. This is accomplished by
specifying the six degrees of freedom in a table. In the table, var indicates a variable and fixed
indicates a fixed parameter:

Table 20: Frame Parameters for Wheeled Vehicles

Transform

Tn

T b

•yh
s

nnb
p

•yb
w

u

var

fixed

fixed

fixed

fixed

V

var

fixed

fixed

fixed

fixed

w

var

fixed

fixed

fixed

fixed

V

var

var

fixed

fixed

fixed

e
var

var

fixed

fixed

var

var

fixed

fixed

fixed

fixed

6.5 Inverse Kinematics for the RPY Transform
The inverse kinematic solution to the RPY transform has at least two uses:

• it gives the angles to which to drive a sensor head, or a directional antenna given the
direction cosines of the goal frame

• it gives the attitude of the vehicle given the body frame axes, which often correspond to
the local tangent plane to the terrain over which it moves

This solution can be considered to be the procedure for extracting a pose from a coordinate frame.
There are many different ways to get the solution from different elements of the RPY transform.
The one used here is useful for modelling terrain following of a vehicle. Proceeding as for a
mechanism, the elements of the transform are assumed to be known:

T b a =

r l l

r21

r31
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The premultiplication set of equations will be used. The first equation is:
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The translational elements are trivial. From the (1,2) and (2,2) elements:

\|/ = atan2(r22,-rl2)

This implies that yaw can be determined from a vector which is known to be aligned with the body
y axis. The second equation is:
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which generates nothing new. The next equation is:
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From the (3,3) and (3,2) elements:

0 =
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Which implies that pitch can also be determined from a vector known to be aligned with the body
y axis. A good solution for (|) is available from the (1,1) and (1,3) elements. However, for reasons
of convenience, the solution will be delayed until the next equation. The next equation is:

[Rotx (0) ] -1 [Rotz (\|f) ] -1 [Trans (u, v, w) ] ~lT* = Roty (()))
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From the (1,1) and (3,1) elements:

This implies that roll can be derived from a vector known to be aligned with the body x axis.

6.6 Angular Velocity
The roll, pitch, and yaw angles are, as we have defined them, measured about moving axes.
Therefore, they are a sequence of Euler angles, specifically, the z-x-y sequence5. The Euler angle
definition of vehicle attitude has the disadvantage that the roll, pitch, and yaw angles are not the
quantities that are actually indicated by strapped-down vehicle-mounted sensors such as gyros.

The relationship between the rates of the Euler angles and the angular velocity vector is nonlinear.
The angles are measured neither about the body axes nor about the navigation frame axes. It is
important to know the exact relationship between the two because it provides the basis for
determining vehicle attitude from angular rate measurements.

5. The sequence depends on the convention for assigning the directions of the linear axes.
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In order to determine the angular velocity, consider that the total angular velocity is the sum of
three components, each measured about one of the intermediate axes in the chain of rotations which
bring the navigation frame into coincidence with the body frame. Using the fundamental
transforms, each of the three rotation rates are transformed into the body frame by the remaining
rotations in the sequence to give the result in the body frame.

0

0

rot(y,<)>) • rot (y, <|>) rot (x, 6)
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ccj)9 - sc()c8\j/

<j> + s0\j/
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6

This result gives the vehicle angular velocity expressed in the body frame in terms of the Euler
angle rates. Notice that when the vehicle is level, the x and y components are zero and the z
component is just the yaw rate as expected.

This relationship is also very useful in its inverted form. One can verify by substitution that:
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Section 7: Actuator Kinematics

For wheeled vehicles, the transformation from the angles of the steerable wheels and their
velocities onto path curvatures, or equivalently angular velocities, can be very complicated. One
reason for this is that there can be more degrees of freedom of steer than are necessary. In this case,
the equations which relate curvature to steer angle are overdetermined. In one particular case,
however, the steering mechanism is designed such that this will not be the case. This mechanism
is used on most conventional automobiles and is called Ackerman steering.

TX The Bicvcle Model
It is useful to approximate the kinematics of the Ackerman steering mechanism by assuming that
the two front wheels turn slightly differentially so that the instantaneous center of rotation of the
vehicle can be determined purely by kinematic means. This amounts to assuming that the steering
mechanism is the same as that of a bicycle. Let the angular velocity vector directed along the body
z axis be called p.

Using the bicycle model approximation, the path curvature K, radius of curvature R, and steer
angle a are related by the wheelbase L.

1 _ toe _ 4* ^
R " L " Is ^ ^

R

L

n ^
M

Where tOC denotes the tangent of OC. Rotation rate is obtained from the speed V as:

Thus, the steer angle OC is an indirect measurement of the ratio of (3 to velocity through the
function:

a = atan\ —f = atari (KL)

Although it is common to think of these equations in kinematic terms, this is only possible when
the dependence on time is avoided. In fact, this steering mechanism is modelled by a very
complicated nonlinear differential equation thus:
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Chapter 2: Imaging Kinematics

A simple, general kinematic theory is presented which encompasses the kinematics transforms for
all existing laser rangefinders and ideal cameras. Many sensors used on robot vehicles are of the
imaging variety. For this class of sensors, the process of image formation must be modelled. Image
coordinates are identified by the letter i. Typically, these transformations are not linear, and hence
cannot be modelled by homogeneous transforms. This section provides the transforms necessary
for modelling such sensors. These transforms include projection, reflection, and polar coordinates.
These results are used extensively in the RANGER navigator and provide useful relationships for
reference purposes.

Section 1: Optical Kinematics

The kinematics of reflecting a laser beam from a mirror are central to the operation of the current
generation of laser rangefinders. This section will outline a general technique for modelling such
rangefinders.

1.1 The Reflection Operator

From SnelPs law for reflection of a ray:

• The incident ray, the normal to the surface, and the reflected ray, all lie in the same plane.
• The angle of incidence equals the angle of reflection.

From these two rules, a very useful matrix operator can be formulated to reflect a vector off of any
surface, given the unit normal to the surface. Consider a vector • . , not necessarily a unit vector,
which impinges on a reflecting surface at a point where the unit normal to the surface is n. Unless
they are parallel, the incident and normal vector define a plane, which will be called the reflection
plane. Drawing both vectors in this plane, it is clear that Snell's law can be written in many forms:

1

L\\\\V\\\\\\1

vr = V2(V

vr = Vj - 2 (fi ®

vr = Ref(n)Vi

n)n

en

n)Vi

Ref(fi) =

Ref(fi) =

• I - 2 ( n <8> n )

1 ~ 2 n x n x ~ 2 n x n
y ~2nxnz

-2nynx l - 2 n y n y -2nynz

Where the outer product ( ® ) of the normal with itself was used in forming the matrix equivalent.

The result is expressed in the same coordinates in which both the normal and the incident ray were
expressed. This can be used to model the "optical" kinematics of laser rangefinders. Notice that a
reflection is equivalent to a rotation of twice the angle of incidence about the normal to the
reflection plane. A similar matrix refraction operator can be defined.
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In order to model rangefinders, the laser beam will be modelled by a unit vector since the length of
the beam is immaterial. The unit vector is operated upon by the reflection operator - one reflection
for each mirror. The ultimate result of all reflections will be expressed in the original coordinate
system.

The basic idea is that, since the mirrors are flat, the reorientation of the beam is independent of
exactly where it hits the mirror. This is justified because Snell's law states that the direction of any
reflected beam depends only on the direction of the normal to any mirror and the direction of the
incident beam.

The results of such an analysis give the orientation of the laser beam as a function of the actuated
mirror angles, but it says nothing about where the beam is positioned in space. The precise position
of the beam is not difficult to calculate and is important in the sizing of mirrors. From the point of
view of computing kinematics, beam position is irrelevant, so it will be ignored here.

1.2 The Vector Projection Operator
The projection of one vector onto another is trivially given by the dot product. Consider a vector
$., not necessarily a unit vector, which is to be projected onto a unit vector n. The projection rule
can be written in many forms:
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1,3 The Plane Projection Operator
The projection of a vector into a plane is a simple matter. The basic operation is to remove the
component of the vector along the normal to the plane. Consider a vector ^, not necessarily a unit
vector, which is to be projected on a surface at a point where the unit normal to the surface is n.
This plane will be called the projection plane. The operator can be written in many ways:
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An Approach to the High-Speed Cross-Country Autonomous Navigation Problem page 386.



The expression involving the vector cross product was generated by noting that • is oriented
along the vector fix (n x ^.) and has magnitude v.sinQ. The result is expressed in the same
coordinates in which both the normal and the incident ray were expressed. It is useful for
determining the kinematics of parallel laser beams when they are transformed by the scanning
mechanism.

1.4 Rate Relationships
Consider now the problem of predicting the angular velocity of the reflected ray when the incident
ray is reflected off a mirror that is rotating. This is, after all, exactly how a scanning mechanism
works. Let the mirror rotate about a general axis in space. Its angular velocity is denoted by G$n.
This rotation of the mirror gives rise to a rotation c5f of the reflected beam. In the completely
general case, the incident beam may rotate as well with velocity 5^. However, since it is clear that
the angular velocity of the normal with respect to the incident beam is the quantity that matters, v^
can be considered to be fixed with the understanding that its angular velocity must be added to that
of the normal when it is not fixed.

This problem can be solved using concepts of moving reference frames. Consider an observer fixed
in the reflection plane. The observer is not fixed in the frame of the mirror because the reflection
plane may rotate about the mirror normal. Let the angular velocity of the moving observer in the
frame fixed to the sensor housing be c5. Angular velocities are true vectors which add in the usual
way. Hence, the angular velocity of the output beam in the fixed frame is just the sum of what the
moving observer sees and the motion of the moving observer:

moving

Establish a coordinate system fixed to the projection plane consisting of the mirror normal n, the
normal to the projection plane 6, and the cross product of these two a. This system is shown in
the following figure:

*^>fy\ r (v. xfi)
i NOTF- O points out nf

(VjXfi)! the paper

(fix 6)

Now, from the point of the moving observer, the motion of the reflected beam is given by the rate
of change of 0 and, as a vector, it is directed normal to the reflection plane:

= 96
moving

Note there is no factor of two in the moving frame since the mirror normal vector is fixed in the
moving frame. Now 0 is the projection of the angular velocity of t&n onto the normal to the
reflection plane:

lImoving
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The angular velocity of the reflection plane is equal to that of the mirror minus the component
which is oriented along the mirror normal, since rotation around the mirror normal does not rotate
the projection plane. This is, of course, the projection into the plane of the mirror itself:

Hence, the complete result is:

This result is intuitively correct because it contains two times the 6 component of t&n, one times
the a component of C&n, and zero times the n component of cbn. This can be written in terms of
the operators given so far as follows:

5r = [2Projv(6) +Projv(a)] t5n

In words, the angular velocity of the reflected beam is twice the projection of the mirror angular
velocity onto the reflection plane normal plus the projection onto the axis normal to both the
reflection plane normal and the mirror normal1.

1.5 Mirror Gain
Define the mirror gain KM in terms of the angular velocity of the beam cof and the angular
velocity of the mirror con as follows:

The mirror gain can vary from 0 to 2 depending on the orientation of the input beam, the mirror
normal, and the mirror angular velocity. The above result explains why the beam enters the
polygonal mirror from the side in the ERIM scanner - because there is a gain of 2 in only that
direction. In the Hurricane scanner, the beam enters along a axis, so the gain is 1. Note also, that
a two-axis scanner requires two separate mirrors in order to get a gain of 2 in both axes.

This gain can be a very significant factor in the design of a rangefinder since the angular velocity
of mirrors is a major limiting factor. Throughput can be doubled by appropriate scanning
mechanism design.

1. See Optics by Hecht for a verification of this surprising result.
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1.6 Composition of Translation and Reflection
Consider now the issues involved with using two parallel laser transmitters. Peculiar things can
happen when two parallel beams enter a system of mirrors. In the ERIM scanner for instance, if
two beams enter the mirrors spaced along the z axis, they leave spaced along the x axis, if they
enter spaced along the y axis, they leave spaced along the z axis, and finally if they enter spaced
along the x axis, they are coincident, and can be considered to leave spaced along the y axis.

This behavior is explained in the following figure. Consider two parallel incident beams • j . and
^2 i which are separated by a perpendicular translation vector tj. The perpendicular translation is
used since beams are themselves lines and otherwise have no unique relative translation.

Many conclusions can be drawn from this result:

• The translation vector itself is reflected as if it was a beam entering through the back of
the mirror.

• Since the reflection operator preserves the length of the incident vector, the relative per-
pendicular translation of the two beams is preserved as well. Note however that while the
perpendicular distance is preserved, the projection of the distance between the two
beams onto any surface changes.

• If a component of the translation vector exists out of the reflection plane, it is left
unchanged, so the above expression is completely general.

• As a convenient mnemonic, whenever the translation vector has a component along the
mirror normal, that component is flipped by the reflection operation, and the two beams
switch places along the normal direction.
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1.7 Composition of Rotation and Reflection
A basic property of plane mirrors is the formation of an image behind the mirror. This property
arises from the conservation of the relative angles between rays emanating from a point source.
This behavior is explained in the following figure. Consider two incident beams Vj. and v2 i which
are separated by an angle 0. Since both beams are unit vectors, their dot product is a direct measure
of the angle between them.

V2i ft
v vVlr V2r

lr

v2r =

= v l i -2(v l i -n)n

= v2 i-2(v2 i-n)n

v2i - 4 (vH • n) (fi • v2i) + 4 (v2i • n) (n

v v - v vVlr V2r - V l i V2i

Thus the angle between the reflected beams is equal to the angle between the incident beams. This
means that a point source reflected by a mirror forms an image behind the mirror. The laser
transmitter of a rangefinder can be modelled as a point source. The implication is that the
projection of the laser spot on the groundplane is just the intersection of a cone surrounding the
beam and the groundplane.
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1.8 Intersection of a Line and a Plane

The intersection of a line and a plane is the basis for a complete ray tracing simulation of the
internal kinematics of rangefinders. This permits computation of the precise spot pattern of the
rangefinder, and the required size of the mirrors. Let a line be defined by a vector v to which it is
parallel and a point K which lies on the line. Let a plane be defined by a vector fi normal to the
plane and a point £p which lies on the plane. The general solution to the problem is given in the
following figure by a matrix equation.

v Plane: n x ( x - x p ) + n y ( y - y p ) + n z ( z - z p ) = 0

Line: x - xT Z-ZT

nxx + nyy + nzz = nxxp

v y x-v x y = v y x L -v x y L

v z y-v y z = v z y L -v y z L

nyyp

y y
y x

nz
0

0 V —V
z yj

n

."VLJ
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Section 2: Kinematics of the Azimuth Scanner

The azimuth scanner is a generic name for a class of laser rangefinders with equivalent
kinematics. In this scanner, the laser beam undergoes the azimuth rotation/reflection first and the
elevation rotation/reflection second. Both the ERIM scanner and the Perceptron fall into this
category. Both scanners are 2D scanning laser rangefinders employing a "polygonal" azimuth
mirror and a flat "nodding" elevation mirror. The mirrors move as shown below:

Figure 127 - Azimuth Scanner

2.1 Forward Kinematics
A coordinate system called the "s" system is fixed to the sensor with y pointing out the front of the
sensor and x pointing out the right side. The beam enters along the xs axis. It reflects off the
polygonal mirror which rotates about the ys axis. It then reflects off the nodding mirror, to leave
the housing roughly aligned with the yc axis.

s
First, the beam is reflected from the laser diode about the normal to the polygonal mirror.
Computation of the output of the polygonal mirror can be done by inspection - noting that the beam
rotates by twice the angle of the mirror because it is a reflection operation. The z-x plane contains
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both the incident and normal vectors. The datum position of the mirror should correspond to a
perfectly vertical beam, so the datum for the mirror rotation angle is chosen appropriately. Consider
an input beam vm along the xg axis and reflect it about the mirror by inspection:

Figure 128 - Polygonal Reflection

Notice that this vector is contained within the xs-zs plane. Now this result must be reflected about
the nodding mirror. Notice that, at this point, v cannot be simply rotated around the x axis since
the axis of rotation which is equivalent to a reflection is normal to both v and n n . Since v is not
always in the ys-zs plane, the xs axis is not always the axis of rotation. Which is the requiredresult.

v
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a n 6
put 2 = 4 ~ 2
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C\|/

+ 2c\|/c|
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a
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Figure 129 - Nodding Reflection
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This result is summarized in the following figure:

R V^ s yc

V =
- s

Xs

ys

z s

=
Rs\|/

Rc0cy
-Rs0c\|/

Figure 130 - Azimuth Kinematics

Thus, the kinematics of the azimuth scanner are equivalent to a rotation around the x axis
followed by a rotation around the new z axis. By a theorem of 3D rotations, this is also equivalent
to two rotations in the opposite order about fixed axes.

2J2 Forward Imaging Jacobian
The imaging Jacobian provides the relationship between the differential quantities in the sensor
frame and the associated position change in the image. The Jacobian is:

V. =

R
v = ys

s
= Rs\|/

Rc0c\(/
-Rs9c\|/

.s _ 8v _
1 ~ ? ~

3R

3R

id

d\\f 30

d\\f 30

3\|/ 30

s\|/ Rx\|/ 0
c0c\(/ -Rc0s\(/ -Rs9c\|;
-s0c\|/ Rs9s\|/ -Rc0c\|/
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2,2 Projection Table
The directions of the rays through each pixel of an imaging sensor are fixed with respect to the
sensor frame. The trigonometric overhead of computing this information can be severe in some
applications, so it is possible and worthwhile to compute it and store it in tables. These tables can
be useful both in real-time perception applications and in off-line ray tracing simulation. This
section provides the equations necessary to map (row,column) coordinates onto the direction
cosines of the ray through those coordinates.

For the azimuth scanner, the unit vector is simply:

- [s\|/ c0c\|/ -s0c\|/J

In this case, the pixel coordinates are directly proportional to the angles so that:

= (col - cols/2)
cols

9 = (row-rows/2)
rows
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2,4 Inverse Kinematics
The forward transform is easily inverted.

R

V
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/ 2 2 2
>V S ^ S S

atan[x/Jy* + z*j

atan (-z /y )

2.5 Inverse Imaging Jacobian
The imaging Jacobian provides the relationship between the differential quantities in the sensor
frame and the associated position change in the image. The Jacobian is:
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2.6 Analytic Range Image of Flat Terrain

Given the basic kinematic transform, many analyses can be performed. The first is to compute an
analytic expression for the range image of a perfectly flat piece of terrain. Let the sensor fixed "s"

coordinate system be mounted at a height h and tilted forward by a tilt angle of (3. Then, the
transform from sensor coordinates to global coordinates is:

If the kinematics are substituted into this, the transform from the polar sensor coordinates to global
coordinates is obtained:

xg = Rs\|/
y = (Rc6ci|f)cp- (Rs9c\|/)sp =

zg = (-Rc8c\|/)sp- (Rs6c\|f) cp + h = h-Rs0pc\)/

Now by setting z = 0 and solving for R, the expression for R as a function of the beam angles
\|/ and 0 for flat terrain is obtained. This is an analytic expression for the range image of flat terrain
under the azimuth transform.

R = h/(c\|/s9P)
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Notice that when R is large sGp = h / R . This is the perception ratio defined earlier. As a check
on the range image formula, the resulting range image is shown below for h = 2.5 , {3 = 16.5°,
a HFOV of 140°, a VFOV of 30°, and an IFOV of 5 mrads. It has 490 columns and 105 rows. The
edges correspond to contours of constant range of 20 meters, 40 meters, 60 meters, etc.

Figure 131 - Azimuth Range Image

The curvature of the contours of range is intrinsic to the sensor kinematics and is independent of
the sensor tilt. Substituting this back into the coordinate transform, the coordinates where each ray
intersects the groundplane are:

Notice that the y coordinate is independent of \|/ and hence, lines of constant elevation in the image
are straight lines along the y-axis on flat terrain.

2,7 Field of View
Of basic interest is the region on the groundplane illuminated by the sensor. This can be computed
in closed form as follows. From the previous result, it can be verified by substitution and some
algebra that:

Thus lines of constant azimuth are hyperbolas on the groundplane.

Let the two extreme columns of the image be given by the polar azimuth angles of ±*F. Then, for
the two extreme columns of the image given by V|/ = ±*F, the asymptotes of the hyperbola are of
the form:

Let the two extreme rows of the image be given by the polar elevation angles of ± 0 . Then the
proximal and distal lines of the field of view are given by:

y =
©
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However, for most sensor tilt angles, the distal bound is far outside the sensor maximum range.
Hence, the true limit of data is given by the intersection of a sphere centered at the sensor and the
groundplane. By inspection, this sphere is given by:

x2 + y2 + h2 = R2

max

The shape of the field of view of a single image is given below:

Range Image

e

- 0

0

2 . V2 _ D 2
max

yg = xg/t4<

Figure 132 - Azimuth Field of View

2,8 Resolution
The Jacobian of the groundplane transform has many uses. Most important of all, it provides a
measure of sensor resolution on the ground plane. Differentiating the previous result:

The determinant of the Jacobian relates differential areas:
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Notice that when R is large and \|/ = 0, the Jacobian norm can be approximated by:

which is the same result given earlier.The scanning density is proportional to the cube of the range.

2.9 Azimuth Scanning Pattern
The scanning pattern is shown in the following figure with a 10 m grid superimposed for reference
purposes. Only every fifth pixel is shown in azimuth to avoid clutter.
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2,10 Azimuth Spot Pattern
The spot pattern is obtained by intersecting the ground plane with the beam. Spots are shown at
one-tenth density in elevation and one-seventh density in azimuth:
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Section 3: Kinematics of the Elevation Scanner

The elevation scanner is a generic name for a class of laser rangefinders with equivalent
kinematics. In this scanner, the laser beam undergoes the elevation rotation/reflection first and the
azimuth rotation/reflection second. It is the kinematic dual of the azimuth scanner. The Hurricane
scanner falls into this category. While the Hurricane uses a single mirror actuated in two directions,
equivalent kinematics can be generated in a dual mirror system in such a manner as to reduce by
half the rotational speed of the mirrors. Consider a representative elevation scanner which is
constructed by reconfiguring the ERIM scanner. Like the ERIM, this scanner is a 2D scanning laser
rangefinder employing a "polygonal" mirror and a flat "nodding" mirror. Compared to the ERIM,
the roles of the mirrors are reversed, and the order in which the beam encounters them is reversed.
The mirrors move as shown below:

nqddmg
mirror

on

£l0

ys

Figure 135 - Elevation Scanner

3,1 Forward Kinematics
A coordinate system called the "s" system is fixed to the sensor with y pointing out the front of the
sensor and x pointing out the right side. The beam enters along the z§ axis. It reflects off the
nodding mirror which rotates about the ys axis. It then reflects off the polygonal mirror, which
rotates about the zs axis, to leave the housing roughly aligned with the ys axis.

First, the beam is reflected from the laser diode about the normal to the nodding mirror.
Computation of the output of the nodding mirror can be done by inspection - noting that the beam
rotates by twice the angle of the mirror because it is a reflection operation. The z-x plane contains
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both the incident and normal vectors. The datum position of the mirror must correspond to a
perfectly horizontal output beam, so the datum for the mirror rotation angle is chosen appropriately.
Consider an input beam v along the zg axis and reflect it about the mirror by inspection:

z s i
x s y£l m̂ = [0 0 .]

^ V ^ ^ J n ^n = Ref (K
\ ^ v x n̂ = [-ce

Figure 136 - Nodding Reflection

0

T

) v m

-se]T

Notice that this vector is contained within the xs-zs plane. Now this result must be reflected about
the polygonal mirror. Notice that, at this point, vn cannot simply be rotated around the z axis since
the axis of rotation which is equivalent to a reflection is normal to both vfl and n . Since vn is not
always in the xs-ys plane, the zs axis is not always the axis of rotation. Which is tne required result.
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Figure 137 - Polygonal Reflection
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Which is the required result. This result is summarized in the following figure:

Figure 138 - Elevation Kinematics

In comparison to the azimuth scanner, the kinematics of the elevation scanner are equivalent to the
same rotations taken in the opposite order. First, a rotation around the z axis followed by a rotation
around the new x§ axis. By a theorem of 3D rotations, this is also equivalent to two rotations in the
opposite order about fixed axes2.

3«2 Forward Imaging Jacobian
The imaging Jacobian provides the relationship between the differential quantities in the sensor
frame and the associated position change in the image. The Jacobian is:
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- 1

s avs

J i = ^Z[ =

R

V
e

ax
a~R
ay
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2. It is clear that there are only two possibilities for the order in which two rotations can take place about two
orthogonal axes. Hence, there are only two canonical forms that the 2D laser rangefinder can take.
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3,3 Projection Table
The directions of the rays through each pixel of an imaging sensor are fixed with respect to the
sensor frame. The trigonometric overhead of computing this information can be severe in some
applications, so it is possible and worthwhile to compute it and store it in tables. These tables can
be useful both in real-time perception applications and in off-line ray tracing simulation. This
section provides the equations necessary to map (row,column) coordinates onto the direction
cosines of the ray through those coordinates.

For the elevation scanner, the unit vector is simply:

fl = [c6s\|f c9c\|/ -so]

In this case, the pixel coordinates are directly proportional to the angles so that:

= ( c o l - c o l s / 2 ) H F O V

cols

9 = (row-rows/2)

rows
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3.4 Inverse Kinematics
This forward transform is easily inverted.
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3.5 Inverse Imaging Jacobian
The imaging Jacobian provides the relationship between the differential quantities in the sensor
frame and the associated position change in the image. The Jacobian is:
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3.6 Analytic Range Image of Flat Terrain
Given the basic kinematic transform, many analyses can be performed. The first is to compute an
analytic expression for the range image of a perfectly flat piece of terrain. Let the sensor fixed "s"

coordinate system be mounted at a height h. In the azimuth scanner, the sensor was tilted forward
by an angle (3. This was done to increase generality and to cover the ERIM scanner as actually used
on the HMMWV. It was easy to do because the elevation rotation was last in the azimuth scanner,
so tilting the whole sensor was equivalent to tilting the nodding mirror a little more. In this case,
the situation is reversed. While the mathematics of rolling the sensor are easy, they are of little use
and the mathematics of pitching the sensor obscure the issues. Hence, for this scanner, a trivial
transform from sensor coordinates to global coordinates is considered:

However, a bias angle of p will be introduced into the nodding mirror. This will be the actual
elevation angle of the center scanline of the image. Substituting the kinematics into this, the
transform from the polar sensor coordinates to global coordinates is obtained:

x = RcGpsy

y 8 =

z = h-Rsep

Now by setting z = 0 and solving for R, the expression for R as a function of the beam angles
\|/ and 0 for flat terrain is obtained. This is an analytic expression for the range image of flat terrain
under the elevation transform.

R = h/s6p
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Notice that in this case, s0(3 = h / R . This is the perception ratio defined earlier. As a check on
the range image formula, the resulting range image is shown below for h = 2.5, (3 = 16.5°, a
HFOV of 140°, a VFOV of 30°, and an IFOV of 5 mrad. It has 490 columns and 105 rows.

Figure 139 - Elevation Range Image

The edges correspond to contours of constant range of 20 meters, 40 meters, 60 meters, etc. Notice
that the contours do not approach the lower corners as they did in the azimuth scanner. This is
partly because the tilt P was introduced directly into the elevation scanning mirror as bias. If the
sensor z axis was physically tilted, this would not be the case. Substituting this back into the
coordinate transform gives the coordinates where each ray intersects the groundplane:

x g

y g

z g

= hs\|//t0J3

= hc\|//tep

= 0

Notice that the ratio x/y is ht\|/, which is independent of 0. Hence, lines of constant azimuth in the
image are straight radial lines on flat terrain.

Field of View

Of basic interest is the region on the groundplane illuminated by the sensor. This can be computed
in closed form as follows. From the previous result, it can be verified by substitution and some
algebra that:

Thus lines of constant azimuth are circles on the groundplane.

Let the two extreme columns of the image be given by the polar azimuth angles of ±*F. Then the
equations of the two lines which bound the field of view are:
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Let the two extreme rows of the image be given by the polar elevation angles of ±0 + p. Then the
radii to the proximal and distal circles of the field of view are given by:

R =

If this distal bound is far outside the sensor maximum range, then the maximum range is the radius
of the far circle. In this case, the true limit of data is given by the intersection of a sphere centered
at the sensor and the groundplane. By inspection, this sphere is given by:

= R 2
max

The shape of the field of view of a single image is given below:

Range Image

- 0

R = h/tan (0 +

2 , V 2 _ D 2-I- y - i s .
max

Figure 140 - Elevation Field of View

3.8 Resolution
The Jacobian of the groundplane transform has many uses. Most important of all, it provides a
measure of sensor resolution on the ground plane. Differentiating the previous result:
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The determinant of the Jacobian relates differential areas:

which is identical to the azimuth Jacobian norm except that the denominator is a tangent instead of
a sine. Notice that when R is large or small and y = 0, the Jacobian norm is:

which is the same result given earlier. Scanning density is cubic in range.

3.9 Elevation Scanning Pattern
The scanning pattern is shown in the following figure with a 10 m grid superimposed for reference
purposes. Only every fifth pixel is shown in azimuth to avoid clutter.
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Figure 141 - Elevation Scanning Pattern
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3.10 Elevation Spot Pattern
The spot pattern is obtained by intersecting the ground plane with the beam. Spots are shown at
one-tenth density in elevation and one-seventh density in azimuth:

30

| 20
te

in
rd

in
a

8 10

r\
U

-30

N

N

\

-20

\

V

y

\

\

1

i

• * « *

n
V

i

-10 0 10
X Coordinate in Meters

Figure 142 - Elevation Spot Pattern

20 30

An Approach to the High-Speed Cross-Country Autonomous Navigation Problem page 411.



Section 4: Kinematics of the Stereo Range Image

In a manner analogous the laser rangefinders discussed thus far in this appendix, it is possible to
describe the stereo range image in similar terms. Stereo range images are represented in the
coordinates of one of the cameras used - hence, stereo range images have perspective kinematics.
Stereo images are generated from the principle of triangulation - noting that the relative shift of an
object viewed from two different directions is inversely proportional to its distance measured
normal to the image plane. In the simplest case, the two cameras exhibit epipolar geometry, that
is, the translation vector from one camera to the other is aligned with either the x or z axis of the
camera.

4.1 Perspective Projection
In the case of passive imaging systems, a system of lenses forms an image on an array of sensitive
elements called a CCD. These systems include traditional video cameras and infrared cameras. The
transformation from the sensor frame to the image plane row and column coordinates is the
standard perspective projection. This type of transform is unique in two ways:

• it reduces the dimension of the input vector by 1 and hence it discards information
• it requires a post normalization step where the output is divided by the scale factor in

order to re-establish a unity scale factor

It is simplest to place the origin of the sensor coordinate system at the lens focal point. This
transformation can be derived by similar triangles.

x i =
X s f Xs z s

zi =

y. = 0

Z s f Zs

V
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f

0
0

0

0
1

0
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0
0
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1

f 0 0 0
0 0 f 0
0 1 0 0

Figure 143 - Perspective Homogeneous Transform

Note that all projections are not invertible because they are basically nonsquare matrices. This, of
course, is the ultimate source of the difficulty of measuring scene geometry with a single camera.
Therefore, the transform is identified by the special capital letter P.
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4.2 Stereo Triangulation
The basic stereo triangulation formula for perfectly aligned cameras of epipolar geometry is quoted
below for reference purposes. It can be derived simply from the principle of similar triangles.
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Once stereo matching is performed, the y coordinate can be determined from the disparity of each
pixel. Then the x and z coordinates come from the known unit vector through each pixel which is
given by the camera kinematic model. In order to remain consistent with the treatment of
rangefinders, azimuth and elevation angles will be defined analogously but note that the (row,col)
coordinates of a pixel are proportional to the tangents of these angles for perspective geometry.
For rangefinders, the (row,col) coordinates are directly proportional to these angles.

It will be useful at times to define disparity as the tangent of an angle thus:

~ d b
5 = f = Y

because this hides the dependence of disparity on focal length of the lens.
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4*3 Forward Kinematics
Unlike the case for rangefinders, it is natural to consider the y coordinate known instead of the true
3D range to an object. This should be clear from the following figure - the vector R is not adjacent
to either the azimuth or elevation angle. The image plane is the x-z plane:

Z S J

/

>^X
IS

? V

V' ' '

Figure 145-

- s

x s

Zs.

r i

Y

L f J

Yt\|/

Y
-Yte

Perspective Kinematics

In comparison to the azimuth and elevation scanners, the kinematics of the perspective image is
not based on rotations - rather, pixel coordinates are the tangents of the direction cosines of the ray
measured from the y axis.

4.4 Forward Imaging Jacobian
The imaging Jacobian provides the relationship between the differential quantities in the sensor
frame and the associated position change in the image. The Jacobian is:
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4.5 Projection Table
The directions of the rays through each pixel of an imaging sensor are fixed with respect to the
sensor frame. The trigonometric overhead of computing this information can be severe in some
applications, so it is possible and worthwhile to compute it and store it in tables. These tables can
be useful both in real-time perception applications and in off-line ray tracing simulation. This
section provides the equations necessary to map (row,column) coordinates onto the direction
cosines of the ray through those coordinates.

Let the width of the image plane be W and the height be H as shown in the figure. Let the
horizontal and vertical field of view be H F O V and V F O V.

A vector from the sensor frame origin to the image plane at the pixel is:

A unit vector in this direction is:

1 h i i

Which can be written as:
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The tangents scale linearly with distance along the image plane. Therefore, these are functions of
the pixel coordinates as follows:

_ ( co l - co l s /2 )
x _ . yy

1 cols

_ ( rows /2 - row)
i rows

H

Dividing by the focus distance.:

= ( co l - co l s /2 ) W
cols f

~ (row - rows/2) H
tw = —

rows f

This can be written in terms of the field of view as follows:

( co l - co l s /2 )
cols

te =
rows

When the field of view is small enough to satisfy a small angle assumption, then the focus distance
and image plane size can be ignored and their ratios can be approximated as follows:

tan (HFOV) - HFOV tan (VFOV) « VFOV
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4.6 Inverse Kinematics
The forward transform is easily inverted.
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4.7 Inverse Imaging Jacobian
The imaging Jacobian provides the relationship between the differential quantities in the sensor
frame and the associated position change in the image. The Jacobian is:
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4.8 Analytic Range Image of Flat Terrain
Given the basic kinematic transform, many analyses can be performed. The first is to compute an
analytic expression for the range image of a perfectly flat piece of terrain. Let the sensor fixed "s"

coordinate system be mounted at a height h and tilted forward by a tilt angle of p. Then, the
transform from sensor coordinates to global coordinates is:

If the kinematics are substituted into this, the transform from the polar sensor coordinates to global
coordinates is obtained:

yg =

zg = (-Y)

(Y)

sP-

cp-(Yte)

(YtG)cp +

sP

h =

= Yt\|/

= Y(cp-tGsp)

h-Y(sp + t9c|

= Ycep/ce

3) = h-Ys8p/c0

Now by setting z = 0 and solving for Y, the expression for Y as a function of the beam angles
\|/ and 0 for flat terrain is obtained. This is an analytic expression for the range image of flat terrain
under the perspective transform.

Y = hc0/(s6p)
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Notice that when Y is large s6(3 = h / R . This is the perception ratio defined earlier. As a check
on the range image formula, the resulting range image is shown below for h = 2.5, p = 16.5°,
a HFOV of 140°, a VFOV of 30°, and an IFOV of 5 mrad. It has 490 columns and 105 rows.

Figure 146 - Perspective Range Image

The edges correspond to contours of constant range of 20 meters, 40 meters, 60 meters, etc. The
true 3D range is shown, not the y coordinate. The y coordinate image is similar to the elevation
scanner image - with contours of constant range appearing as horizontal lines. Substituting this
back into the coordinate transform gives the coordinates where each ray intersects the groundplane:

x g

y g

g

= htv|/c9/sep
= h/tep
= 0

Notice that the y coordinate is independent of \|/ and hence, lines of constant elevation in the image
are straight lines along the y-axis on flat terrain.

4.9 Disparity Image of Flat Terrain
The disparity image of flat terrain is immediate from the range image3:

The disparity image corresponding to the above range image is shown below. A baseline of 0.25
meters was chosen to give 11 integer disparity levels so that the bands of disparity would be
obvious.

Figure 147 - Disparity Image

3. This expression is undefined above the horizon because it is based on substituting flat terrain into the sensor
kinematics.
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The disparity curve for every column is identical in this example. It is plotted below:
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4,10 Disparity Gradient of Flat Terrain
The behavior of the disparity gradient is a central concern in stereo correlation. Differentiating the
above expression:

Noting that the VFOV is usually small, and that sensor tilt is normally a small angle, this
expression is basically the constant b/h. This is the normalized baseline defined earlier. The
disparity gradient can be interpreted in units of radians of disparity per radian of depression angle
of a pixel, or in the case of square pixels, it can be interpreted in units of pixels per row. The
disparity gradient places limits on the height of the stereo correlation window. When it exceeds one
pixel over the height of the window, the two regions imaged by each camera are misaligned by one
pixel - and they will not match unless the local scene spatial frequencies are low enough.
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4.11 Field of View
Of basic interest is the region on the groundplane illuminated by the sensor. This can be computed
in closed form as follows. From the previous result, it can be verified by substitution and some
algebra that:

Thus (when the VFOV is small, c29 « 1) lines of constant azimuth are hyperbolas on the
groundplane.

Let the two extreme columns of the image be given by the polar azimuth angles of ±*F. Then, for
the two extreme columns of the image given by V|/ = ±*F, the asymptotes of the hyperbola are of
the form:

= ±y

Let the two extreme rows of the image be given by the polar elevation angles of ± 0 . Then the
proximal and distal lines of the field of view are given by:

y = h/fon(±0+fi)
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However, for most sensor tilt angles, the distal bound is far outside the sensor maximum range.
Hence, the true limit of data is given by the intersection of a plane, parallel to the image plane, and
a fixed maximum distance Y m a x away, and the groundplane. The shape of the field of view of a
single image is given below:

Range Image

I -V

Te

-0

e

y =

ys • V™

max

Figure 149 - Perspective Field of View

4.12 Resolution
The Jacobian of the groundplane transform has many uses. Most important of all, it provides a
measure of sensor resolution on the ground plane. Differentiating the previous result:

d x g

K =
hce (sec\\f)2

sep

0

-hcet\|/cep ( -
(sep)2

h

(sep)2

hsetJ
s6p X d\|/

The determinant of the Jacobian relates differential areas:

= WcB (secy)*]
« g L (sep)3 J
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Notice that when R is large, 6 is small, and\|/ = 0, the Jacobian norm can be approximated by:

which is the same result given earlier. The scanning density is proportional to the cube of the range.

4.13 Perspective Scanning Pattern
The scanning pattern is shown in the following figure with a 10 m grid superimposed for reference
purposes. Only every fifth pixel is shown in azimuth to avoid clutter. The result is very similar to
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Figure 150 - Perspective Scanning Pattern
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the azimuth scanner - as would be expected when the vertical field of view is small.
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4.14 Perspective Spot Pattern
The spot pattern is obtained by intersecting the ground plane with the "beam" emanating from the
image plane for each pixel. Spots are shown at one-tenth density in elevation and one-seventh
density in azimuth:
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Chapter 3: The State Space Kalman Filter

Section 1: Random Processes

Before looking into the Kalman filter itself, it is necessary to understand the error models upon
which it is based. This section presents a very abbreviated discussion of the aspects of the theory
of random signals which are applicable to the appendix.

Noise sources in the Kalman filter are modelled as random processes. The random process can be
considered to be a collection of functions of time called an ensemble, any one of which may be
observed in a particular experiment. Exactly which one occurs is a random variable, and therefore
the value of the chosen function at any time across all experiments is a random variable. Usually,
the statistical variation of the ensemble of functions at any time is known.

1,1 Random Constant
Consider for example a random constant process. How can a "process" be constant and random at
the same time? Well, consider a bin which contains alot of gyroscopes, and suppose that the
manufacturer has said that the bias torques of all gyroscopes manufactured follow some sort of
distribution. To be sure, the bias torque for any particular gyroscope could be plotted on, say, an
oscilloscope and it would produce the following time signal:

Nothing random about that. Suppose, however, that alot of people reach into the bin at the same
time and pick out a gyroscope, wait ten seconds, and record the bias value. The values of the bias
torques at t = 10 seconds could be plotted in a histogram to produce something like.
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This distribution is the probability distribution of the random constant process at t = 10 seconds.
Thus, while any member of the ensemble of functions is deterministic in time, the choice of the
function is random. In general, there may be a family of related functions of time where some
important parameter varies randomly - a family of sinusoids of random amplitude, for instance.
Even though there is no way to predict which function will be chosen, it may be known that all
functions are related by a single random parameter and from this knowledge, it is possible to
compute the distribution for the process as a function of time.

1.2 Bias, Stationaritv. Ergodicitv and Whiteness
A random process is unbiased if its expected (i.e. average) value is zero for all time. A random
process is said to be stationary if the distribution of values of the functions in the ensemble is not
varying with time. Conceptually, a movie of the histograms above for the gyroscopes for each
second of time would look like a still picture. An ergodic random process is one where time
averaging is equivalent to ensemble averaging - which is to say that everything about the process
can be discovered by watching a single function for all time, or by watching all signals at a single
instant. A white signal is one which contains all frequencies.

It is clear that fluency with these concepts requires the ability to think about a random process in
three different ways:

• in terms of its probability distribution
• in terms of it evolution over time
• in terms of its frequency content.

These different views of the same process will be discussed in the next sections, as well as methods
for converting back and forth between them.

1.3 Correlation Functions
Correlation is a way of thinking about both the probability distributions of a random process and
its time evolution. The autocorrelation function for a random process x(t) is defined as:

R x x ( t p t 2 ) = E [x ( t j ) x ( t 2 ) ]

so it's just the expected value of the product of two random numbers - each of which can be
considered to be functions of time. The result is a function of both times. Let:

then the autocorrelation function is, by definition of expectation:

l 'V = J Jx1x2f(xpx2)dx1dx2

where f(XpX2) is the joint probability distribution. The autocorrelation function gives the
"tendency" of a function to have the same sign and magnitude (i.e. to be correlated) at two
different times.
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For smooth functions it is expected that the autocorrelation function would be highest when the
two times are close because the smooth function has little time to change. This idea can be
expressed formally in terms of the frequency content of the signal, and conversely, the
autocorrelation function says a lot about how smooth a function is. Equivalently, the
autocorrelation function specifies how fast a function can change, which is equivalent to saying
something about the magnitude of the coefficients in its Taylor series, or its Fourier series, or its
Fourier transform. All of these things are linked.

The crosscorrelation function relates two different random processes in an analogous way:

For a stationary process the correlation function is dependent only on the difference
x = tx - U .When the processes involved are unbiased, the correlation functions give the variance
and covariance of the indicated random variables. This is easy to see by considering the general
formula for variance and setting the mean to zero.

Thus, for stationary unbiased processes, the correlation functions are the variances and
covariances expressed as a function of the time difference:

Also, for stationary unbiased processes:

1.4 Power Spectral Density
The power spectral density is just the Fourier transform of the autocorrelation function, thus:

Sxx(jco) = 3 [ R x x ( t ) ] =

The power spectral density is a direct measure of the frequency content of a signal, and hence, of
its power content. Of course, the inverse Fourier transform yields the autocorrelation back again.

Similarly, the cross power spectral density function is:

Sxy(jco) = 3 [ R x y ( x ) ] =
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1.5 White Noise

White noise is defined as a stationary random process whose power spectral density function is
constant. That is, it contains all frequencies of equal amplitude. If the constant spectral amplitude
is A, then the corresponding autocorrelation function is given by the inverse Fourier transform of
a constant, which is the Dirac delta.

|S(jco)| jL
CO

R(x) = A5

R(x)

( t )

Thus, knowing the value of a white noise signal at some instant of time says absolutely nothing
about its value at any other time, and this is because it is possible for it to jump around at infinite
frequency.

1,6 Kalman Filter Noise Model
With these preliminaries, it is possible to define and understand the noise model of the Kalman
filter. The noises modelled in a Kalman filter must be:

• unbiased (have zero mean for all time)
• Gaussian (have a Gaussian distribution for all time)
• white (contain all frequencies)

This model is a mathematical idealization since white noise cannot occur in nature because it
requires infinite energy. The formulas of the previous section permit mapping these white noise
processes onto variances and covariances which are easier to think about.

1.6.1 White Noise Process Covariance

Specifically, let the white unbiased Gaussian random process x (t) have power spectral density
S . Then the variance is:

J>

= s
P

Thus the variance of a white noise process is its spectral amplitude. This one is easy.

1.6.2 Random Walk Process Covariance

Now suppose that the white noise process represents the time derivative of the real variable of
interest. Thus:
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The question to be answered is what is o x x , o x x and a x x . These can be derived from first
principles. Consider that the value of x at any time must be, by definition, the integral of x as
follows:

2 (x2) = E
rt

Lo
(u)

t

dujx
0

(v)

- i

dv

-

this can be written easily as a double integral since the variables of integration are independent
thus:

2
G = E

rt t

Loo
(u) x(v) dudv

-

interchanging the order of expectation and integration:

= JjE[x(u)x(v)]dudv

but now the integrand is just the autocorrelation function, which, for white noise is the Dirac delta,
so:

Thus the variance of the integral of white noise grows linearly with time. Also, the standard
deviation grows with the square root of time. The process x (t) is called a random walk.

1.6.3 Integrated Random Walk Process Covariance

If the second derivative of x (t) with respect to time is a white process, then the variance in x (t)
is:

6 ( u - v ) 8 ( s - t ) d u d v d s d t

Thus the variance grows with the square of time and the standard deviation with time. This is called
an integrated random walk. This technique can be used in general to compute the elements of a
covariance matrix given the spectral amplitudes of the noises.
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1.7 Scalar Uncertainty Propagation
It is useful to know the following rough rule for the propagation of error in a sum of scalar random
variables with identical statistics:

Thus, the variance in the sum is the sum of the variances of the individual terms of the sum. When
they are equal, the variance grows linearly with the number of elements in the sum. In practical
use, the expression gives the development of the standard deviation versus time because:

in a discrete time system. In this simple model, uncertainty expressed as a standard deviation grows
with the square root of time. The net result of this is that uncertainty apparently grows rapidly and
then levels off as time evolves. This simply arises from the fact that truly random errors tend to
cancel each other if enough of them are added.

1.8 Combined Observations of a Random Constant
Suppose several redundant measurements of a constant are obtained and that they all have identical
statistics. Then the true value can be approximated as the mean of the observations. Under these
circumstances, the uncertainty in this mean is:

n

i =

X. I2

ay i =

1 1 2

1 '

_ n ^ a 2 =
y

1 . 2
X

Thus, the variance in the mean decreases with increasing numbers of measurements. Under the
assumptions, the standard deviation decreases with the square root of time. Experimenters use this
every time they take multiple observations and average. This idea that taking and merging multiple
observations reduces the uncertainty of the combined result is the basic idea of the Kalman filter.
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Section 2: Fundamentals of the Discrete Kalman Filter

The Kalman filter was invented by R.E. Kalman and first published in about 1960 [37]. It is a
method of estimating the state of a system based on recursive measurement of noisy data. The filter
comes in many forms, including continuous and discrete time variants and linear and nonlinear
variants. The Kalman filter was recognized immediately by engineers in the navigation industry as
a solution to many formerly intractable problems, and it continues to be used throughout the
navigation industry today.

The practical utility of the filter stems from its ability to estimate, say vehicle position, based on a
number of measurements which are [19]:

• incomplete: related to some but not all of the variables of interest
• indirect: related indirectly to the quantities of interest
• intermittent: available at irregularly-spaced instants of time
• inexact: corrupted by many forms of error

A central idea in the Kalman filter is to model the system of interest as a linear dynamic system
which is excited by noise and whose sensors are also excited by noise. By knowing something
about the nature of the noise (its first order statistics), it is possible to construct an optimal estimate
of the system state even though the sensors are inexact. This is the fundamental idea of estimation
theory. Without knowing the errors themselves, knowledge of their statistics allows construction
of useful estimators based solely on that information.
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2.1 The State Model of a Random Process
2.1.1 Continuous Model

In the linear systems model, or state model of a random process, if time is considered to be
continuous, the process is described in the following form:

x = Fx + Gw

z = Hx + v

"state" or "process" model

'measurement" or "observation" model

2.1.2 Discrete Model

If time is considered to be discrete, the process is described in the following form:

x k + l = ° k x k + r k w k "state" or "process" model

zk = Hk%k + vk "measurement" or "observation" model

There is, of course, a way to transfer from one form to the other, which will be given shortly. In the
discrete model, the names and sizes of the vectors and matrices are:

X, is the (n X 1) system state vector at time t

<!>, is the (n X n) transition matrix which relates X, to X, - in the absence of a
forcing function

Fk is the (n X n) process noise distribution matrix which transforms the wk vector into
the coordinates of xk

w, is a (n X 1) white disturbance sequence or process noise sequence with known
covariance structure.

z, i s a ( m X l ) measurement at time t

£L is a (m X n) measurement matrix or observation matrix relating X, to z, in the
absence of measurement noise

The state vector for a dynamic system is any set of quantities sufficient to completely describe the
unforced motion of the system. Given the state at any point in time, the state at any future time can
be determined from the control inputs and the system model. Intuitively, a state vector contains
values for all variables in the system up to one order less than the highest order derivative
represented in the model. This is, of course, the exact number of initial conditions required to solve
a differential equation.

The system model is basically a matrix linear differential equation. Such a model considers the
process to be the result of passing white noise through a system with linear dynamics. The
covariance matrices for the white sequences are:

where 8.. is the Kronecker delta.
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2.2 A Word on the Transition Matrix
Often, the differential equations of a system in their time continuous form are known. However, a
Kalman filter is generally implemented in discrete time in a computer cycling at a finite rate. In the
theory of linear systems, this matter is discussed in some detail, and the transition matrix O figures
prominently. In order to implement the Kalman filter, much of what is known about the transition
matrix is unnecessary. It suffices to know that the time continuous matrix differential equation:

x = Fx

can always be transformed into:

The only question is how hard it is to do. When the F matrix is constant in time and the equation
is linear (no elements of x occur inside F), then the transition matrix is a function only of the time
step At and it is given by the matrix exponential:

In practice, the transition matrix can often be written by inspection. When this is not possible,
writing a few terms of the above series often generates recognizable series in each element of the
matrix partial sum, and the general form for each term can be generated by inspection. Other times,
higher powers of F conveniently vanish anyway. When At is much smaller than the dominant time
constants in the system, just the two-term approximation:

Ok = eF A t = I + FAt

is sufficient.

2.3 Low Dynamics Assumption
When F depends on time, so does O and it satisfies the matrix version of the same differential
equation as the state vector thus:

If F is assumed to be slowly varying relative to At, then the matrix exponential can still be used.
This will be called the low dynamics assumption. It is a big assumption as the time step gets
larger1.

1. The matrix exponential arises simply because the system model is a differential equation. When F is con-
stant, it is the exact solution and it is possible to approximate the known solution by a Taylor series. When
F is time-dependent, the matrix exponential is no longer the right answer. Then the approach is to approxi-
mate the differential equation itself by assuming that F is constant to get an exact solution to an approximate
differential equation.
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2.4 Discrete Filter Equations
The Kalman filter propagates both the state and its covariance forward in time, given an initial
estimate of the state. At any point in time, the state estimate prior to incorporation of any new
measurements will be denoted by X , where the hat denotes an estimate and the super minus
denotes the estimate prior to incorporation of the measurements (running one iteration of the filter
equations).

The Kalman filter equations for the system model are as follows:

K k

*k

p k

pk

LINEAR KALMAN FILTER (DISCRETE TIME)

= PkHk |^HkPkHk + RjJ compute Kalman gain

- xk + is.k |^zk - rij^Xjj update state estimate

= ^ k k^ k update its covariance

project ahead

The proof that these equations constitute an optimal filter is remarkably straightforward for an
algorithm that is only thirty years old. It is provided in [9]. The equations are not run all at once.
The last two run at high frequency and the first three are run when measurements are available. For
the first three, the process is started by entering the prior estimate X, and its covariance P, . For
each cycle of the system model, the state transition matrix O, , and the disturbance covariance Q,
must be known. For each cycle of the Kalman filter equations, the measurement matrix t L , and
the sequence covariance R* must be known a priori or computed based on the measurements and
partial prior knowledge.

While there are several roughly equivalent forms of the Kalman filter equations and several
different forms of system model, the one adopted here is in common use in the navigation industry
since it avoids certain numerical problems with the matrix Rk . Another advantage of this
formulation is that it requires inversions of matrices of order m (number of measurements) which
is usually less than n (the number of states). Indeed, it is possible to, under assumptions necessary
for other reasons, set m to 1 and avoid matrix inversion completely.
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2.5 Time and Updates
In thinking about the operation of the filter, it is important to distinguish the time element from the
arrival of measurements. Conceptually, the projection of the system state forward in time proceeds
based solely on a measurement of time. That is, by the definition of state, it is possible to propagate
the state indefinitely forward in time based only on the initial conditions, and the forcing function,
if there is one. The formulation used here assumes no forcing function.

Measurements are conceptualized as indirect measurements of state, and they arrive intermittently.
When they arrive, they are incorporated into the state estimate through the Kalman gain but they
are not strictly necessary. The number of measurements m, may be greater or less than n, and they
may be redundant measurements of the same quantity.

This conceptualization of the filter is represented in the figure below. The state equations cycle
forever, and whenever a measurement is available, the switch closes after the state has been
predicted for that cycle by the system model, and the filter proper is executed.

Kalman Filter

ik
*—

System Model

x ' = < D x

T

\

This situation has a perfect analog in control theory. If the system model is perfect in a feedback
loop, then there is no need of feedback, and the control law can run "open loop". Sensors are
incorporated to provide feedback as a pragmatic answer to the problem that the model is never
perfect. Similarly, the Kalman filter is the feedback element here, which is necessary in practice,
but it is important to recognize that it is completely independent of the system dynamics.
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2.6 Measurement Model
Notice that the model presents how the measurements are derived from the state, that is, the
operation of the sensor itself. Often, in other applications, the process which converts a
measurement into a state estimate is considered. That is, the problem of perception. However, this
model is the simpler reverse process of sensing itself.

This is important to keep in mind because the filter is able to use underdetermined measurements
of state for this reason. For example, if a single range measurement is available, the filter can use
it to attempt to estimate two position coordinates or even more. This situation cannot persist for too
long a period of time but single underdetermined measurements of multidimensional state vectors
are quite legal.

2J_ Observability
In general, situations may arise, however, where there are not enough measurements in the entire
sensor suite to predict the system state over the long term. These are called observability problems
and they can be detected when diagonal elements of P, are diverging with time.

Observability problems can be fixed by reducing the number of state variables (i.e by incorporating
the assumption that some are not too relevant) or by adding additional sensors. Observability is a
property of the entire model including both the system and the measurement model, so it changes
every time the sensors change.

Formally, a system is observable if the initial state can be determined by observing the output
for some finite period of time. Generalizing from Gelb [27], consider the discrete, nth order,
constant coefficient linear system:

for which there are m noise free measurements:

zk ~ H x k k = 0, m - 1

where each H is an m X n matrix. The sequence of the first n measurements can be written as:

zo =
z l =

Z2 =

Z n-1

HxQ

Hxj =

Hx2 =

= Hxt

H

H

i -

0>x0

(<D)

1 =

2xx0

This can be rewritten as the augmented set of equations:

T T T

Z = S xQ or Z = xQ:
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If the initial state x0 is to be determined from this sequence of measurements then, the matrix:

H = [ H T O T H T . . .

must have rank2 n.

2.8 Uncertainty Transformation
If z is an arbitrary measurement of the vector x through some nonlinear relationship:

Z = f(X)

Then it can be easily shown using a Taylor series approximation and the definition of the
covariance matrix that:

Cov(Az) = Exp[AzAzT] = HExp [AxAxT] HT = HCov(Ax)HT

where H is the Jacobian of f. This relationship is responsible for the terms involving the
measurement matrix H, the transition matrix O, and the T matrix in the Kalman filter equations.

2.9 Sequential Measurement Processing
In situations where the errors in individual measurements are uncorrelated, it can be shown that
processing them one at a time gives the same result as processing them as one large block3. That
is, the measurement matrix can be reduced to individual rows or any logical group of submatrices
and presented to the filter as such.

This has extreme advantages in real-time systems with intermittent asynchronous sensor suites. It
allows fairly modular software implementations which adapt in real time to the presence or
absence of measurements at any particular time step.

Thus, the software complication involved in restructuring the matrices to accommodate presence
or absence of measurements can be completely avoided. The technique has computational
advantages as well since inverting two matrices of order n/2 is much cheaper than inverting one of
order n.

2.10 The Uncertainty Matrices
It is important to distinguish the different roles of the three covariance matrices in the equations.
The Qk matrix models the uncertainty which corrupts the system model. The Rk matrix models
the uncertainty associated with the measurement, and its elements are expressed in the coordinate
systems and units of the measurements, not the states they measure. For example, the element to

2. Recall that the rank of a matrix is the size of the largest nonzero determinant that can be formed from it.
The rank of an m X n matrix can be no larger than the smaller of m and n. A square n X n matrix of rank n is
called nonsingular. The rank of the product of matrices is never larger than the smallest rank of the matrices
forming the product.
3. See [7] pp. 264-265.
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be entered into Rk for a potentiometer is related to the number of counts of noise on the pot output.
Finally, the Pk matrix is largely managed by the filter itself, and it gives the total uncertainty of the
state estimate as a function of time.

2.11 Connection to Navigation Theory
Notice that the fourth and fifth filter equations can be used to estimate the state between
measurements by integrating over themselves only until a new measurement is obtained. This is
the basic mechanism of augmenting dead reckoning by a position fix. The system model, whose
solution is the second last equation of the filter, can be identified with the process of dead reckoning
in navigation theory.

The measurement model can be identified with both the process of measuring velocity and attitude
for dead reckoning purposes, or with any mechanism for generating a position fix. The distinction
rests on whether the measurements project directly onto the position through the H matrix
(triangulation) or indirectly through the O matrix (dead reckoning).

In particular, when the measurements are the positions of landmarks, the H matrix can be identified
with the process which transforms landmark position measurements into vehicle position
measurements. Indeed, the "measurement matrix" FL is also the Jacobian in nonlinear problems
and its norm is the well-known GDOP or geometric dilution of precision from triangulation
theory.

2.12 Connection to Smith and Cheeseman
The Kalman filter equations are generalized versions of the "merging" operation discussed in the
robotics literature [75] and the state propagation equations are the "compounding" operations of
dead reckoning.
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Section 3: Linearization of Nonlinear Problems

The filter formulation presented earlier is based on a linear systems model and it is therefore not
applicable in situations when either the system model or the measurement relationships are
nonlinear. Consider an exact nonlinear model of a system as follows:

X = f(x,t) +g(t)W(t)

z = h(x, t) +v( t )

Where f and h are vector nonlinear functions and w and v are white noise processes with zero
crosscorrelation. Let the actual trajectory of the system be written in terms of an approximate
trajectory x* (t) and an error trajectory Ax (t) as follows:

x(t) = + Ax(t)

By substituting this back into the model and approximating f and h by their Jacobians evaluated
at the reference trajectory:

Ax

z-h

=

(x

df(

*.t)

>
*

Y tA , L

- ^

JAx-

h( _*

•-g

>

>

(t)

jAx

w

3.1 Linearized Kalman Filter
It is clear that this linearized system model can be used to implement a linearized Kalman filter
because the error dynamics and error measurement relationships are linear. The deviation from the
reference trajectory is the state vector and the measurements are the true measurements less that
predicted by the nominal trajectory in the absence of noise. The linearized filter is used in a
feedforward configuration as shown below:

system
model

measurements

x ^~N

h(x*)

V
zR-h(x*)

Kalman
filter

*
Ax
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In this form, the nominal trajectory is not updated to reflect the error estimates computed by the
filter. One of the primary advantages of the linearized filter is that, because it operates exclusively
on errors, the unfiltered system model output provides high-fidelity response in the presence of
high dynamics. Such a filter is difficult to use for extended missions because, after a time, the
reference trajectory may diverge to the point where the linear assumption is no longer valid across
the variation in the state vector.

The feedforward model can be used to integrate an INS, or inertial navigation system, with a
number of navigation aids. The INS is considered to be the system model and its outputs are
regarded as the reference trajectory. Measurement aids are used to compute errors and they are
applied to the reference to generate the combined output.

3.2 Extended Kalman Filter

In the extended Kalman filter, the trajectory error estimates are used to update the reference
trajectory as time evolves. This has the advantage that it is more applicable to extended missions.
The jprecise distinction between the two forms of filter is based on the measurement function
h[x j, that is, whether it is updated based on the corrected (extended filter) or the nominal
(linearized filter) trajectory.

The extended filter can be visualized in a feedback configuration as shown below:

1 ^»
system
model

measurements
* \

h(x*)

z k-h(x*)

Kalman
filter

*

• (

*
Ax

In the case of the extended Kalman filter, it is possible to formulate the filter in terms of the state
variables themselves rather than the error states. This can be seen as follows. The linearized
measurement relationships are:

so that the left-hand side is the "measurement" presented to the filter. The discrete time state update
equation for this measurement is:
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Now, associating the last two terms in the brackets rather than the first two, define the predictive
measurement to be the sum of the ideal measurement of the reference state and the deviation given
by the Jacobian of h (x, t) .

= h x, + H, Ax, = h x

Then the measurement residual is the difference between the predictive measurement and the
actual measurement:

Under this substitution, the state update equation can be written as:

The discrete time extended Kalman filter equations for the system model are now as follows:

EXTENDED KALMAN FILTER (DISCRETE TIME)

X = f(x, t) + g(t)w(t) system model E [ w k w k J = ^k

z = h (x, t) + v (t) measurement model E(^ vkvk J = Rk

JJ dh (^ - \ compute measurement
k " 9xVXky Jacobian

F df (*- ^ compute system
k " 3xvXky Jacobian

Kk = P^Hj^ L^k^k^k + ^kj compute Kalman gain

^k = *k + ^k Lzk ~ *\ ̂ k ) \ update state estimate

f*k = ^ ~ ^k^k-l ^k update its covariance

x k + 1 = (|)kxk see section 3.4.3
project ahead

where the usual conversion to the discrete time model has been performed.
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3,3 Taylor Remainder Theorem
One of the most useful approximation tools in all of calculus is the Taylor remainder theorem. It
quantifies the cost of truncating a power series in terms of lost accuracy of the approximation. For
reference, the theorem is:

Notice that, although the series is not infinite, the equality is strict if the remainder is evaluated at
some point x* between x and x + Ax. The practical significance of this extraordinarily useful
result is that [ x - x J is bounded, and the derivative is also bounded, so even though x is not
known precisely, it is possible to compute the maximum value of the truncation remainder. This is
the formal basis of all linearization.

This means that it is perfectly legitimate to invoke the low dynamics assumption, and an estimate
of the highest value of the first neglected derivative estimates the modelling error incurred by the
assumption. The low dynamics assumption will be used to estimate the system model of a
nonlinear plant and the remainder theorem will be used to estimate the error involved in doing this.

3,4 Forms of Linearization
It is very important to distinguish linearization across time and linearization across the states in any
form of linearized Kalman filter. One leads to the transition matrix and the other to the system
Jacobian. Four totally different cases of the linear assumption have been encountered thus far.

3.4.1 First Order Statistics

The Kalman filter itself is derived based on the assumption that the noises are Gaussian white
sequences/The Gaussian assumption amounts to assuming that higher moments of the probability
distributions are all zero. For this reason, the algorithm uses a covariance matrix model of
uncertainty. In reality this amounts to approximating the probability distributions.

3.4.2 Low Dynamics Assumption

The low dynamics assumption amounts to assuming that the dynamics matrix F (t) is constant.
This is a trivial kind of linearization across time where a zeroth order Taylor series approximation
of the true answer is used. The true answer is:

F( t + At) = F(t) + F ( t ) A t +

Assuming the dynamics matrix F to be constant is linearizing in time. It is often the case in
practice that the mere conversion from time-continuous to time-discrete form involves this
approximation, although there are ways to avoid it.
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3.4.3 Quasilinearization of a Differential Equation

Notice that the transition matrix is, strictly speaking, not defined at all when the system model is
nonlinear in the states. In this context, the transition matrix can be thought of as an expression of
whatever technique is used to solve the original nonlinear system differential equation, which is a
subject in itself, outside of estimation theory. See the linear systems literature, for example, [7] for
what little is known about this matter. For a nonlinear plant, this amounts to approximating the
system model.

3.4.4 Linearized Filters

A separate matter dealt with in estimation theory is the propagation of uncertainty when the plant
is nonlinear. Thus the linearized and extended Kalman filters incorporate an assumption of
linearization across states and, ultimately, the transition matrix and the system Jacobian both
appear in the formulation.

The linearized and extended Kalman filters are first order filters, thus:

The higher order filter is a generalization of the EKF where a higher order Taylor series is used
to approximate the nonlinearities. All of these filters are approximations, so it is pointless to argue
their merits without getting quantitative about neglected terms.

When the whole list of approximations used in a particular real model are tallied, it is clear that the
Kalman filter is a mathematical idealization, which happens to be useful in practice, but which can
only be used in practice after some strong assumptions are made.
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3.5 State Transition for Nonlinear Problems
When the system differential equation is nonlinear:

i = f (x ( t ) , t )

the state propagation equation is written as:

the transition matrix comes from time linearization because:

Therefore, the transition matrix can be written by inspection as an identity matrix with linear and
angular velocity cross terms added which are multiplied by At.

3.6 System Jacobian for Nonlinear Problems
The system Jacobian for the EKF comes from state space linearization:

3.7 Uncertainty Propagation for Nonlinear Problems
In the nonlinear case, the uncertainty propagation equation is:

The matrix Op is the transition matrix associated with the system Jacobian. It can be computed
from time linearization of the continuous time uncertainty propagation equation for a nonlinear
problem:

P = FP + PFT + GQGT

The last term can be ignored for now. Then, in discrete time, the first two terms can be written as:

Pk + l = Pk + F P A t

Define:
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Then, notice that the following expression is correct to first order:

So the following equations are correct to first order and may be used in implementation:

3.8 Other Kalman Filter Algorithms
It is worth noting briefly that there are other forms of the Kalman filter. Two such forms may be
applicable in special cases. The correlated measurement and process noise filter incorporates a
model of the correlation between disturbances and measurement noise. It is also possible to readily
model deterministic inputs in a Kalman filter. These often correspond to the command signals in
automatic control applications.

3.9 The Measurement Conceptualization in the EKF
It is important to recognize that the measurement process itself is used in the extended Kalman
filter, and the computation of the deviation from predicted to actual measurement is automatic in
the formalism. More specifically, the state update equation is:

update state estimate

and this contains the computation of the predicted measurement hi xk J already. The predicted
measurement is computed inside the filter itself.
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Section 4: State Vector Augmentation

One of the secrets to high performance navigation systems is the mechanism by which they utilize
the Kalman filter to identify4 themselves in real time. In the language of estimation theory, the
mechanism is known as state vector augmentation. It is intimately related to the idea that,
although the Kalman filter requires white noise processes, unknown system parameters and
nonwhite noise sources can be modelled as the result of passing a white noise process through a
system with linear dynamics.

The Kalman filter is very sensitive to the exact form of the model chosen. In particular, it requires
that the errors and disturbances be precisely zero mean, Gaussian, white sequences. More often
than not, the driving functions are not white and they must be modelled by differential equations
which relate them to fictitious white noise processes. This process of creating additional state
variables allows the filter to account for measurement noise and disturbances that are not white.

While vendors often like to quote the number of states in their filter algorithms, it is often the
choice of states that matters, and not their number. Indeed, filter performance often degrades in
practice when too many states are used. For example, very much is known about the propagation
of errors in inertial navigation systems, and intimate knowledge of the system dynamics, and the
likely sources of error, and their dynamics is necessary for optimal filter performance.

In situations when disturbances and measurement errors are changing very slowly relative to the
system state or measurements, the error sources themselves can be estimated and added to the
system state vector. In this way, the filter estimates the system parameters as well as state. This is
known as state vector augmentation. Additional states are assumed to follow a correlation
model which is based upon knowledge of the underlying physics of the system.

4A Principle
Suppose the measurement noise v in the continuous time model:

x = Fx + Gw

z = Hx + v

is correlated. Oftentimes it is possible to consider that the correlated measurement noise arises
through passing uncorrelated white noise w1 through a system with linear dynamics (i.e by
filtering it5) thus:

4. In linear system theory, "identification" is the term used for calibration of system parameters.
5. A first order differential equation is also the defining equation of a first order filter. There is a direct equiv-
alence between the "memory" of a dynamic system which arises from its expression as a differential equation,
and its ability to operate as a filter. They are the same animal under two different names.
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Using this model, the correlated component of noise can be considered to constitute a random
element in the state vector. This element is added to the existing states to form the augmented state
vector:

d
dt

X

V
=

F 0
0 E

X

V

G 0

0 I

w

Then the measurement equation becomes:

z = [H i] X

V

With this reformulation, the measurement noise has disappeared completely because it has been
absorbed into the system model. Under these circumstances, the Kalman filter equations used in
this document are necessary to address the singularity of the Rk matrix.

It is also just as easy to model deterministic new state variables with the technique and these can
be used to calibrate a system. For example, the random constant model described in the next section
can be used to define an unknown constant, provided the measurement matrix H is updated to
reflect the new state. The basic operation of the filter is to project the measurement residual onto
the states, so it will determine a value for this constant and even allow it to vary slowly with time.

4.2 Correlation Models
Some important correlation models are as follows:

4.2.1 Random Walk

The random walk is also known as the Weiner process or Brownian motion. Essentially, this is
the integral of a random Gaussian noise signal. That is to say, the position of a drunk when each
new step is of random size either forward or backward. The state differential equation is:

x. = w

where w is a random signal.

4.2.2 Random Constant

Also called random bias. It is a constant value which varies randomly from one experiment to the
next, but which is both constant over time and unknown for any particular experiment. It is
important for modelling system biases. The state differential equation is:
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4.2.3 Random Harmonic

This is a sinusoid of random amplitude and phase. The state differential equation is:

4.2.4 Random Ramp

This is a process which grows linearly with time but has a random initial value and slope. It is
important for modelling system scale errors. The state differential equation is:

4.2.5 Gauss Markov Process

The Gauss Markov process, or first order Markov process, is one which has an exponentially
decreasing autocorrelation function. In practical terms, this amounts to an assumption that the
process exhibits little correlation between values which are sufficiently well separated in time. It is
often used to represent errors about which little is known other than that they are bandlimited. The
state differential equation is:

X. = - a x + W

When the estimation period is much smaller than the time constant of this process, it is well
approximated by the random walk.

The random walk, constant, and ramp can be modelled together by only two state variables. The
number of states for any correlation model depends on the order of the underlying differential
equation and not on the number of parameters.
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Glossary

The author makes no representation that these definitions are accepted broadly.
These are, however, the meanings of the terms as they are used in this document.

Numerics

2-1/2 D world assumption - the assumption that a vertical line aligned with gravity
passes through the terrain only once. Trees and overhangs can violate this assump-
tion.

absolute observations - any sensor observations which are inherently expressed
relative to the navigation coordinate system.
accuracy - a measure of how close a measurement is to the true value of the quan-
tity measured.
Ackerman steering - a steering mechanism, typical of automobiles, where the two
front wheels turn together.
actuation space - an abstract space consisting of all independent control inputs to
a system. For an automobile, this space is spanned by steering, brake, and throttle.
actuator contention problem - a specific problem of the behavioral approach to
autonomy where independent agents contend for control of actuators. More gener-
ally, the contention of software modules for the control of actuators.
acuity - a fancy word for resolution. Often used in the context of visual angular res-
olution.
acuity adaptive planning - any planning mechanism which adapts to measured or
predicted acuity of available measurements.
acuity adaptive scan - a mechanism which adjusts the resolution of image data in
order to control groundplane resolution.
acuity problem - the problem of maintaining adequate resolution in computations
and sensing.
acuity ratios - nondimensional ratios of world model resolution and an appropriate
dimension of the vehicle.
adaptive lookahead - any mechanism which adapts sensory lookahead to the speed
and response of the vehicle.
adaptive perception - an algorithm based on a focus of attention and a resolution
transform which adapts to vehicle speed and response to provide minimum
throughput and uniform minimum resolution of perceptual processing.
adaptive regard - an algorithm based on a focus of attention and a resolution trans-
form which adapts to vehicle speed and response to provide minimum throughput
and uniform minimum resolution of planning processing.
adaptive scan - an algorithm which attempts to make perceptual groundplane res-
olution homogeneous and isotropic.
adaptive sweep - an algorithm which projects a focus of attention on the ground-
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plane into image space.
AHRS - a device which measures vehicle attitude and heading.
Arbiter - a software module which arbitrates the actuator commands of several
agents.
attitude acuity rule - a rule for determining the required angular resolution of atti-
tude and heading measurements.
autocorrelation function - a signal processing technique for measuring how alike
two signals are.
azimuth - the rotation of something about a vertical axis.
azimuth scanner - the configuration of a laser scanner where azimuth is the first
rotation of the beam.

B

bandwidth-conceptualization gap - the difficulty in communication that occurs
between strategic and control layers of the standard model because of different time
scales and conceptualizations of the world.
beam dispersion - the angular width of a laser beam.
benign terrain assumption - the assumption that the terrain is not rough.
bias - constant (with respect to input) error in any measuring device.
bias stability - a measure of how constant bias is over time.
braking angle - the angle travelled while the brakes are actuated before coming to
a stop.
braking coefficient - the nondimensional ratio of braking distance to reaction dis-
tance.
braking distance - the distance travelled while the brake is actuated before coining
to a stop.
braking reaction time - the time it takes from image acquisition until the brakes
are engaged.
Brownian motion - the motion that results from integrating a white noise velocity.

cell aging feature - a feature of the terrain map interface routines that renders old
data invisible instead of physically copying memory.
characteristic time - a measure of the delay associated with a system from input to
output.
clothoid - a linear polynomial for curvature expressed in terms of arc length. The
trajectory corresponding to this polynomial.
clothoid generation problem - the problem of determining the curvature com-
mands to issue to a vehicle to cause it to follow a given spatial trajectory.
coefficient of lateral acceleration - the ratio of lateral acceleration and gravitation-
al acceleration. Equal to the later acceleration in units of g's.
command following problem - the problem of causing a servo-controlled device
to follow its commands acceptably well.
Command Generator - the part of the Tactical Controller that generates command
alternatives.

Glossary



command vector - the vector which contains all command inputs to the vehicle or
its controller.
communication latency - the latency associated with communications.
communications load - the rate at which information must be transmitted.
complete subsampling - an approach to adaptive scan for stereo vision that homog-
enizes resolution in all stereo processing.
completeness - the property of a planning algorithm of finding a solution if it exists.
computational spiral effect - the notion that response depends on throughput in a
software system.
configuration space - any abstract space of variables which completely determines
the positions of all points on a vehicle or mechanism.
constant flux - a property of a sensor of scanning a fixed solid angle at a fixed rate.
constant scan - a property of a sensor of scanning at fixed angular resolution.
continuity assumption - the assumption that important variables can be predicted
in the immediate future based on their current or most recent values.
control laws - the essential mathematics of that part of the navigator concerned
with the control of the vehicle.
control layer - a conceptual layer in a software hierarchy characterized by high
bandwidth and implemented servo control laws.
control time - the time scale on which the control layer operates.
controllability - the property of a system of being able to reach a desired state in
finite time.
Controller - the software module responsible for vehicle control.
coordinate frame - an entity popular in robotics and computer graphics for repre-
senting the position and attitude of rigid bodies.
correlated - the property of two quantities to vary in a somewhat or completely de-
pendent way.
correlated disparity assumption - the assumption that disparity is constant across
the correlation window in stereo vision.
correlated measurement and process noise - a Kalman filter formulation which
permits measurement and process noise correlation.
correlation curve - in stereo vision, the correlation scores for a particular pixel as
a function of disparity.
correlation model - in estimation, a model of the dynamics of a noise source.
correlation tensor - in stereo vision, the complete 3 dimensional table of correla-
tion scores for an image.
correspondence problem - the problem of establishing the correspondence be-
tween points in two images taken from different vantage points.
cross power spectral density - the Fourier transform of the autocorrelation func-
tion of a signal.
crossrange - the horizontal direction transverse to the sensor optical axis.
crosstrack vector - the vector from the end of the lookahead vector to the goal
point in path following.
C-space - see configuration space.
curvature - the derivative of heading with respect to distance travelled.
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D

data flow diagram - a software engineering diagramming technique that emphasiz-
es the transformations performed on data instead of the logical sequence of opera-
tions.
data logger - any tool for recording test data. Here, the software data logger inte-
grated with the navigator.
dead reckoning - any navigation technique which computes position from mea-
surements of speed or higher derivatives, and heading and attitude.
dead zone - that region of the local environment which a vehicle is committed to
travelling at any particular time.
deduced reckoning - see dead reckoning.
degrees of freedom - the number of independent variables in a system.
deliberation - the act anticipating the future consequences of current actions.
deliberative - possessing the capacity to deliberate.
depression - the angle of a line in space measured downward from the horizontal.
detection zone - the region of the local environment for which time is almost up to
react to hazards.
detection zone tracker - a regulator for sensor azimuth based on maintaining the
detection zone in the center of the image.
deterministic inputs - deliberately or otherwise known inputs to a dynamic system.
deviation - the error induced in a compass by the vehicle residual magnetic field.
differential observations - observations of how something has moved or changed
instead of where it is in an absolute sense.
disparity / correlation coupling - the notion that the correlation score computed at
a pixel in stereo vision depends on the disparity gradient as well as the disparity
while disparity itself depends on correlation.
disparity - the difference in the position of two corresponding points in a pair of
images.
disparity gradient - the rate of change of disparity with position in the image plane.
disparity image - an image whose intensity values correspond to disparity values.
disparity window - a range of disparities defined by a maximum and a minimum
value.
disturbance sequence - a discrete time random signal which excites the system
model in a Kalman filter.
downrange - the horizontal direction aligned with the sensor optical axis.
dynamic braking coefficient - see braking coefficient.
dynamic braking regime - the speed regime for which the braking coefficient ex-
ceeds unity.
dynamic steering limit - the limit imposed on steer angle or curvature by a given
speed and lateral acceleration limit.
dynamic turning coefficient - the ratio of lateral acceleration to lateral acceleration
limit.
dynamic turning regime - the speed regime for which the dynamic turning coeffi-
cient exceeds unity.
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dynamically feasible - the property of a spatial trajectory of satisfying the dynamic
model of the vehicle.
dynamics constraint - the constraints imposed on a spatial trajectory by the dy-
namic model of the vehicle.
dynamics matrix - the matrix of coefficients which relates the state vector time de-
rivative to the state vector.
dynamics reaction time - the reaction time of the actuators and the vehicle body.

elevation - the rotation of something about a horizontal axis
elevation angle window - a range of elevation angles defined by some maximum
and minimum value.
elevation scanner - the configuration of a laser scanner where elevation is the first
rotation of the beam
ensemble - a related family of functions of time.
epipolar geometry - a property of images pairs where the epipolar lines corre-
sponding to a pixel in the first image are aligned with the rows or columns of a sec-
ond image.
epipolar geometry assumption - the assumption that an image pair exhibits epipo-
lar geometry.
epipolar geometry constraint - the constraint that relates any pixel in one image
to a line in a second image.
ergodic - a property of a random process where time averaging is equivalent to en-
semble averaging.
Euler angles - a set of three angles used to fix the attitude of a rigid body.
execution monitoring - a planning technique of monitoring that a plan is being ex-
ecuted correctly.
extended Kalman filter - the linear Kalman filter formulation that results from lin-
earizing a nonlinear system about a reference trajectory.

feasible set - in optimization, the set of values of the independent variables which
satisfy the constraints.
feature based - a designation for an image processing algorithm which concen-
trates on discrete interesting points instead of all pixels, see iconic.
feedback - the process of measuring the system output and using it in the control of
a system.
feedback control - see feedback.
feedforward - the process of predicting system response in the future in order to
modify the command inputs of the moment.
fidelity - a fancy word for accuracy. Often used in the context of sound reproduction
or dynamic simulation.
fidelity adaptive planning - the technique of adapting planning decisions based on
knowledge of system command following and position estimation errors.
fidelity problem - the problem of maintaining adequate fidelity in computations
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and measurements.
fidelity ratio - the ratio of actual or predicted system error to some allowable
threshold of error.
filter - any frequency sensitive transformation from an input signal to an output sig-
nal.
first order filters - those filters which can be characterized by a first-order differ-
ential equation.
fix - any technique of navigation which generates a direct measurement of position
and not one of position derivatives such as speed.
flat world assumption - the assumption that the vehicle operates in extremely be-
nign terrain.
focal length - the distance behind a lens of an image of an object at infinity. An in-
direct measure of field of view.
focus of attention - in perception and planning, a region of space to which compu-
tations which be confined.
forward model - a model of a dynamic system which is of the form state = function
of state and command, see inverse model.
forward modelling - the use of forward models.
frame - short for coordinate frame.
free zones - regions of the local environment that the vehicle cannot reach within
some time horizon.
Fresnel Integrals - the two dimensional equations of dead reckoning.
fundamental tradeoff - the tradeoff of speed for resolution that occurs in any sys-
tem with a throughput limit.

G

Gauss Markov process - a random process with an exponentially decreasing auto-
correlation function.
Gaussian filtering - the convolution of any signal with a Gaussian operator.
GDOP - the degradation of precision that results from a nonlinear measurement re-
lationship.
generate and test - a problem solving paradigm which generates potential solu-
tions in a straightforward way and then test if they are the solution.
geometric decorrelation - the reduction in correlation of two identical signals due
to warping of one or both of them.
geometric dilution of precision - see GDOP.
geometric efficiency - an overall measure of the degree of over or under sampling
of a sensor.
goal vector - the vector from the vehicle control point to the goal point in path fol-
lowing.
guaranteed detection - the policy of ensuring adequate resolution in computations,
sensing, and actuation.
guaranteed localization - the policy of ensuring adequate accuracy in computa-
tions, sensing, and actuation.
guaranteed response - the policy of ensuring adequate response time.
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guaranteed safety - the policy of guaranteeing vehicle survival.
guaranteed throughput - the policy of ensuring adequate system throughput.

H

halo effect - the artificial increase in the size of an object due to poor angular reso-
lution in stereo vision.
hardware reaction time - the total reaction time of all hardware components.
hazard space - an abstract space for which every point represents the safety of the
vehicle in terms of multiple hazardous conditions.
hazard vector - a point in hazard space.
Heeling error - the error induced in some compasses when the device is oriented
vertically.
high throughput assumption - the assumption that sensors and processors have
adequate throughput capabilities.
higher order filter - a Kalman filter based on second or higher order propagation
of uncertainty.
hill occlusion rule - a relationship between vehicle configuration parameters that
must be satisfied to see behind a small hill.
hole occlusion rule - a relationship between vehicle configuration parameters that
must be satisfied to see inside a small hole.
homogeneous coordinates - a representation of a space of dimension n in terms of
n+1 variables and a convention to project an n+1 vector onto an n vector.

I

iconic - a designation for an image processing algorithm which processes all pixels
in a region, see feature-based.
identify - the process of calibrating system parameters in control theory.
image registration problem - the problem that redundant measurements of the
same geometry do not agree.
imaging density - a measure of the number of images which contain the same point
in the environment.
impulse turn - a turn from zero curvature to the maximum.
impulse turn maneuver - see impulse turn.
impulse turning distance - the distance measured along the original straight trajec-
tory consumed in an impulse turn.
incremental lookahead angle - the angular width of the region of planner looka-
head.
incremental lookahead distance - the linear width of the region of planner looka-
head.
inertial navigation system - a system which uses inertial principles to determine
its position in space.
instantaneous field of view - the solid angle subtended by a single range measure-
ment.
integrated random walk - the integral of a random walk signal.
intelligent autonomous mobility - the act, problem, or capacity of a robot vehicle

Glossary



to drive itself.
intensity crosstalk - the effect of intensity of a measurement on an indicated quan-
tity that is not dependent on intensity.
interpolation - the process of providing values for a signal between actual mea-
surements.
inverse model - a model of a dynamic system which is of the form command =
function of state, see forward model.

Jacobian - a first order derivative of a vector with respect to a vector.

K

Kalman gain - the mapping from the measurement residual onto the required
change in the state estimate.
kinematic braking coefficient - the proportion of the stopping distance consumed
in deciding to brake.
kinematic braking regime - the speed regime for which the braking coefficient
does not exceed unity.
kinematic steering limit - the kinematic limits on steer angle or curvature imposed
by the steering mechanism.
kinematic turning coefficient - see turning coefficient.
kinematic turning regime - the speed regime for which turns of the minimum ra-
dius are safe.

landmark Jacobian - the measurement matrix in a Kalman filter associated with a
visual landmark.
latency problem - the problem of latencies that are too large for the current speed
or sensory lookahead.
lateral occlusion problem - the problem of subtention of a large portion of the hor-
izontal field of view by an object.
linearized Kalman filter - a feedforward Kalman filter generated from linearizing
a nonlinear process.
linearized system model - the linearized form of a nonlinear system model.
local correlation maximum problem - the problem of mistaking a local extremum
of the correlation curve for a global one.
local planning problem - the problem of deciding where to go based only on what
can be seen at the moment.
localization - the process of locating objects or the vehicle.
locally-planar terrain assumption - the assumption that the terrain is flat enough
that all four wheels remain in contact with the terrain.
logistic layer - another name for control layer.
longitudinal aspect ratio - the ratio of sensor height to wheelbase.
lookahead - the process of looking at or computing future positions of the vehicle.
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lookahead angle - the amount of angular lookahead.
lookahead distance - the amount of linear lookahead.
lookahead ratio - the inverse of the number of system cycles of lookahead being
used.
lookahead vector - in path following, the vector from the vehicle control point to
the point directly forward at the lookahead distance.
low dynamics assumption - the assumption that velocity can be considered con-
stant over a single cycle of any algorithm.
low latency assumption - the assumption that latencies are small enough to be ne-
glected for any particular speed and sensory lookahead.

M

main event loop - the highest level loop in the navigator.
Map Manager - the part of the navigator responsible for building the world model
from range imagery.
map matching - the process of fitting range images together based on vehicle mo-
tion between frames and/or some measure of best fit.
map resolution - the horizontal spatial resolution of the terrain map.
mapping - the process of generating a map of any kind.
maximal visual similarity assumption - the assumption that two image regions
that look the same actually are images of the same physical point.
maximum acuity - the highest resolution that should be needed.
maximum acuity rule - a rule for determining sensor angular resolution.
maximum fidelity - the highest accuracy level that should be needed.
maximum fidelity ratio - the fidelity ratio corresponding to the maximum fidelity
criterion. The ratio of obstacle clearance to map resolution.
maximum fidelity rule - the condition that the maximum fidelity ratio not exceed
unity.
maximum sensor acuity rule - the condition that the maximum acuity ratio not ex-
ceed one-half.
measurement - the quantity actually indicated by a sensor.
measurement gradient - the gradient of a scalar measurement with respect to the
state vector.
measurement matrix - the matrix of all measurement gradients.
measurement noise sequence - the random signal that corrupts measurements in a
Kalman filter measurement model.
measurement residual - the difference between the actual measurement and the
predicted one in a Kalman filter.
mechanism model - a kinematic model of a mechanism.
minimum acuity - the minimum resolution that should be needed.
minimum acuity rule - the condition that the minimum acuity ratio not exceed one-
half.
minimum fidelity rule - the lowest accuracy level that can be tolerated.
minimum potential energy principle - the principle of modelling physical sys-
tems with an energy minimization process.
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minimum sensor acuity rule - a rule for determining sensor angular resolution.
minimum significant delay - the smallest unmodelled delay that affects the fidelity
of a model.
mission analysis - the human process of analyzing a robot mission.
modelling - the process of generating a model.
modelling problem - the problem of model generation.
monotone arc length assumption - the assumption in path tracking that the vehicle
never fails so badly as to go in the wrong direction.
monotone range assumption - the perception assumption that range is monotone
in elevation in the image plane.
motion distortion problem - the distortion of the world model due to unmodelled
delays or unmodelled motion.
multivariable state space system - a differential equation model of a system with
more than one state variable.
myopia problem - the problem of inadequate sensory lookahead.

N

negative obstacle - holes and depressions in the terrain.
nonholonomic - the property of a differential constraint that it cannot be integrated.
nonhonolomy problem - the problem of path generation for a nonholonomic sys-
tem.
normalized baseline - the ratio of stereo baseline to sensor height.
normalized correlation - the correlation of two signals normalized to the interval
of minus unity to unity.
normalized disparity - the angular measure of disparity formed by dividing dispar-
ity by the focal length.
normalized incremental lookahead distance - the ratio of lookahead distance to
reaction distance.
normalized map resolution - the ratio of map resolution to range.
normalized range difference - the ratio of the width of a range window to its range.
normalized time constant - the ratio of a characteristic time to a temporal planning
horizon.
normalized undercarriage clearance - the ratio of undercarriage clearance to
range.
normalized wheel radius - the ratio of wheel radius to range.
normalized wheelbase - the ratio of wheelbase to range.
Nyquist rate - the minimum sampling rate required to recover a signal from its
samples.

O

objective function - the quantity being optimized in an optimization process.
observability - the property of a measurement process of being able to recover the
state of a system from available measurements.
observability problem - the problem of achieving observability.
observation matrix - the matrix of coefficients relating system state to measure-
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ments.
obstacle sparsity assumption - the assumption that obstacles are not dense in the
environment.
occlusion constraint - the constraint on stereo range images which prevents them
from ranging geometry that can only be seen in one image.
occlusion problem - the problem of missing parts in a world model because radia-
tion reflects from the first reflecting surface only.
on demand interpolation - the process of interpolating only when immediately
needed.
onto - the property of a mathematical mapping from one space to another that an
inverse mapping exists.
operator - a matrix that is interpreted to move a point in a fixed coordinate system.
optimality - the property of generating the best possible answer in an optimization
problem.
output vector - the vector of outputs in a dynamic system.
oversampling - the process of sampling beyond the Nyquist rate.
oversampling factor - the ratio of actual resolution to the minimum required.

panic stop - the obstacle avoidance maneuver of slamming on the brakes.
panic stop maneuver - see panic stop.
partial subsampling - an approach to adaptive scan for stereo vision that homoge-
nizes resolution in only the stereo processing stages from disparity on.
path features - distinctive features in a path such as points of high curvature.
path replanning - the processing of replanning on a regular basis or because some
error has occurred.
Perception - the component of the navigator responsible for interpreting imagery.
perception ratio - the ratio of sensor height to measured range. Equal to the tangent
of the range pixel incidence angle for flat terrain.
perceptual software efficiency - the inverse of the number of floating point oper-
ations used to process an average pixel.
perspective - the imaging projection typical of video cameras.
piloting mission - a simple mission of getting safely from one point to another.
pitch - the degree to which the vehicle forward axis is not level.
pitch regulator - an algorithm for keeping the region of interest centered in the im-
age by driving the sensor tilt.
planning angle - the angle through which the vehicle turns in the reaction distance.
planning window - the focus of perceptual attention expressed in terms of the point
of actuation.
plant dynamics - the dynamics of the plant being controlled.
policy layer - the highest level entity in the standard architectural model of robotic
architectures.
pose - position and orientation treated as a unit.
Position Estimator - the part of the navigator responsible for determining where
the vehicle is.
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positive obstacle - a hill or rise in the terrain.
potential field - any scalar field which is a potential for a generalized force.
power spectral density - the Fourier transform of the autocorrelation function of
any signal.
predictive measurement - a prediction of a measurement used to generate a resid-
ual in a Kalman filter.
principle motion assumption - the assumption that the vehicle rotates only about
the vertical and translates only in the forward direction.
principle of characteristic times - the notion that required bandwidth is correlated
with the lookahead horizon of any level in the standard model.
principle of optimality - the notion that the optimum solution to the overall prob-
lem is composed of optimum solutions to its component problems.
process noise distribution matrix - the matrix of coefficients which weights the
influence of the process noise sequence on the state vector in a Kalman filter.
process noise sequence - the random sequence which excites the system model in
a Kalman filter.
processing reaction time - the total response time of the software components of
the system.
processing latency - the time it takes for an algorithm to transform its inputs into
its outputs
processor load - the number of floating point operations used to process an average
pixel.
projection plane - the plane off of which an incident reflects in geometric optics.
pure pursuit - an algorithm for tracking paths characterized by steering towards a
point on the path at a distance in front of the vehicle.

R

random bias - a constant random process.
random process - a family of time signals of which one is selected randomly.
random walk - see Brownian motion.
range gating - a technique of range imaging where all pixels of a particular range
window or gate are acquired simultaneously.
range image - an image whose intensity values correspond to the range to the first
reflecting surface in the environment.
range rate - the time derivative of range.
range ratio - the ratio of maximum and minimum range.
range window - a region of interest specified in terms of a maximum and a mini-
mum range.
range window tracker - an algorithm for stabilizing a sensor in the tilt axis by
keeping the range window centered in the image.
reaction distance - the product of vehicle speed and some appropriate reaction
time.
reaction time - the time it takes for inputs to be transformed into outputs in any sys-
tem.
reactive - a designation for planning systems which emphasizes quick reflexes and
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an absence of sophisticated world modelling.
reactive ratio - the proportion of reaction time caused by software.
real time kernel - the real-time component of the navigator.
real-time - a designation for any problem where reaction time and/or throughput
are important considerations.
real-time approach - an approach to problem solving that emphasizes response
and throughput requirements.
redundancy - a designation for a mechanism where the inverse kinematic solution
is many-valued.
reference points - distinguished points on the vehicle body.
reflection plane - the plane formed by the incident and reflected ray of a specular
reflection in geometric optics.
region of interest - in image processing, a small region where computations will be
confined.
relative accuracy - a measure of the accuracy of the difference of two measure-
ments.
relative crosstrack error - in roadfollowing, the difference between how far off the
path the system is and how far off it thinks it is.
repetitive texture problem - a well-known failure mode in stereo vision where re-
petitive texture is incorrectly assumed to correspond physically.
resolution - the smallest difference that a system can resolve.
response adapted lookahead rule - a condition on lookahead distance which en-
sures that guaranteed response is maintained.
response adapted speed - the speed computed in response adaptive speed.
response adaptive lookahead - any planning mechanism which adapts lookahead
distance to ensure guaranteed response.
response adaptive speed - any planning mechanism which adapts speed to ensure
guaranteed response.
response problem - the problem of maintaining adequate response time.
response ratio - the ratio of reaction distance to sensory lookahead.
reverse turn - a turn from one curvature extreme to the other.
rigid suspension assumption - the assumption that vehicle suspension does not de-
flect at all.
rigid terrain assumption - the assumption that the terrain does not deflect at all.
roll - the degree to which the vehicle forward sideways axis is not level.

safe terrain assumption - the assumption that there are no obstacles in the envi-
ronment.
sampling problem - the problem that the mapping of resolution is not uniform.
sampling property - a mathematical property of the delta function of sampling a
signal.
sampling theorem - a famous theorem of signal processing that a single must be
sampled at twice its highest component frequency in order to recover it from its
samples.
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scale factor - the slope of a calibration curve which relates the reading to the quan-
tity indicated.
scanning density - a measure of the average degree of oversampling of the terrain
map in a single image.
scatter matrix - a nonnormalized covariance matrix.
selection problem - in perception, the problem of extracting the region of interest
from an image.
sensing reaction time - the component of total system reaction time due to sensory
hardware.
sensitivity problem - a high degree of sensitivity of one parameter with respect to
another.
sensor dwell - the amount of time it takes to acquire a measurement.
sensor flux - the solid angle scanned per unit time by a sensor.
sensor throughput - the sensor measurement rate in range pixels per second.
sign correlation - a stereo technique which reduces the normalized image to a bi-
nary or trinary one before correlation.
singularity - loss of rank in a Jacobian matrix.
small incidence angle assumption - the assumption that the perception ratio is
small.
small pitch assumption - in inverse kinematics, the assumption that the vehicle
pitch is small.
soundness - in planning, the property of guaranteeing that the constraints are satis-
fied.
spectral amplitude - the amplitude of a frequency spectrum.
stability - the property of a system of generating a bounded output for a bounded
input.
stability problem - the problem of maintaining stability.
stabilization problem - the problem of stabilization of sensors.
stacking - a state vector augmentation technique in Kalman filters.
standard model - an architectural model of robotics control software.
state model - a state space model.
state space - an abstract space of all variables of a system necessary to define its
response to inputs.
state space model - a model based on a state space representation.
state space simulator - a simulation of dynamics based on a state space model.
state vector - a point in state space.
state vector augmentation - a technique used in Kalman filters to increase the in-
formation provided or the accuracy.
static stability margin - the angle remaining before the vehicle tips over.
stationary - having statistics that do not vary with time.
stationary process - a random process that is stationary.
steady-state regime - the regime of operations where the system output is not
changing in a material way.
steering regulator - an algorithm for controlling sensor pan to track the steering
mechanism.
stereoscopy - stereo vision.
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stopping angle - the angle through which a vehicle turns while executing a turning
stop.
stopping distance - the sum of reaction distance and braking distance.
stopping region - the region in front of the vehicle which includes all possible stop-
ping trajectories.
Strategic Controller - the part of the navigator responsible for goal-seeking.
strategic goal - the goal trajectory of the strategic controller.
strategic layer - in the standard model, the layer responsible for strategic planning.
strategic planning problem - the problem of deciding what a robot should do in
order to achieve its goals.
strategic time - the time scale on which the strategic planner operates.
subpixel disparity estimation - a method for generating the highest possible range
resolution in stereo vision.
sum of absolute differences - a measure of match between two correlation win-
dows in stereo vision.
sum of squared differences - a measure of match between two correlation win-
dows in stereo vision.
survey point - in position estimation, a point whose position is known in navigation
coordinates.
sweep rate - the angular elevation rate of scanning of a range sensor.
sweep rate rule - a design rule for determining sweep rate for a given vehicle speed.
system reaction time - the total reaction time of the vehicle from image acquisition
to executed response.

tactical control - in the standard model, the layer responsible for dynamics feed-
forward, obstacle avoidance, and goal-seeking.
Tactical Controller - the part of the navigator responsible for obstacle avoidance.
tactical goal - the goal of the tactical controller, usually this is to avoid obstacles.
tactical layer - see tactical control.
tactical time - the time scale on which tactical control operates.
task space - an abstract space in which tasks can be easily expressed, usually this
is the world coordinate system.
Taylor remainder theorem - a famous theorem of calculus which bounds the error
incurred in using an interpolating polynomial.
temporal planning horizon - the amount of time a system or subsystem looks
ahead.
terrain smoothness assumption - the assumption that the terrain is not rough.
test environment - a layer of the navigator which surrounds the real-time kernel
and connects it to the vehicle.
thrashing - excessive exception handling in a hierarchical software system.
throughput - a measure of amount of information processed per unit time.
throughput adapted speed - the speed computed in throughput adaptive speed.
throughput adapted sweep - the sweep computed in throughput adaptive sweep.
throughput adaptive speed - any planning mechanism which adapts speed to en-

Glossary xv.



sure guaranteed throughput.
throughput adaptive sweep - any planning mechanism which adapts sweep to en-
sure guaranteed throughput.
throughput performance limit - a limit on speed and reliability imposed by a sys-
tem throughput limit.
throughput problem - the problem of maintaining adequate throughput.
throughput ratio - the ratio of the area covered by the vehicle in one cycle to the
area measured by the sensor in the same time.
time constant - the coefficient of the first derivative in a first order system.
transient regime - the regime of operations where the system output is changing in
a material way.
transient turning coefficient - the proportion of time that the turning actuator is in
the transient regime in a given turn.
transition matrix - the matrix of coefficients which maps state onto state in a dis-
crete time linear differential equation.
triangulation - in navigation or ranging, any process which solves a partially
known triangle in order to measure something.
tunnel vision problem - the problem of inadequate horizontal field of view.
turning coefficient - see kinematic turning coefficient.
turning distance - the distance travelled in a turning maneuver.
turning fidelity ratio - the minimum fidelity ratio evaluated for a kinematic turning
model.
turning reaction time - the time it takes to execute a turn maneuver.
turning stop - a panic stop maneuver issued while in a turn.
turning stop maneuver - see turning stop.

U

unbiased - a property of an estimator where the estimated mean is equal to zero for
all time.
uncorrelated disparity assumption - the assumption that the range of a given pix-
el reveals nothing about the range of adjacent pixels.
uncorrelated measurement error assumption - the assumption that the errors of
two different sensors are uncorrelated, and hence that the measurement covariance
matrix is diagonal.
undercarriage tangent - the tangent of the angle from the center of the undercar-
riage to the bottom of a wheel.
undersampling - the process of sampling below the Nyquist rate.
unforced Kalman Filter - a Kalman filter formulation with no forcing function or
control inputs.
uniform scan assumption - the assumption that pixel resolution is inherently ade-
quate.
unknown hazard assumption - the pessimistic assumption that unknown areas of
the environment must not be traversed.
update rate - the rate at which an algorithm or hardware component updates its out-
put.
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variation - the degree to which the earth's magnetic field does not point to geo-
graphic north.
Vehicle - the component of the navigator concerned with modelling vehicle dynam-
ics and encapsulating state information.

W

wander azimuth - a designation for an inertial navigation system which avoids the
problems of navigating near the poles by particular mechanical or computational
means.
Weiner process - see Brownian motion.
wheel fraction - the ratio of wheel radius to wheelbase.
wheelbase - the length of the vehicle measured from back to front wheels.
white - a designation for a random signal which contains all frequencies.
wide depth of field assumption - the assumption that a sensor exhibits wide dy-
namic range.
workspace - the volume of space that a mechanism can reach.
world tree - a data structure which relates all significant components of the vehicle.

yaw - rotation about the vertical axis.
yaw rate - time derivative of yaw.

zup - short for zero velocity update - a mechanism for self calibration of a Kalman
filter, also called zupt.
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