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Abstract

A differential equation is stable if the roots of the

characteristic polynomial are in the interior of the left

half-plane. Likewise a difference equation is stable if the

roots of the characteristic polynomial are in the interior

of the unit circle. This paper concerns algorithms which test

polynomials for these properties. Also of concern is the re-

lationship between the two problems. In particular special

numerical integration formulae are developed which transform

a differential equation into a difference equation. These

formulae are such that the differential equation and the

corresponding difference equation are both stable or else

they are both unstable.
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Algorithms for Classical Stability Problems

1, Introduction, A classical stability problem requires

testing a polynomial to see if all of its roots have negative

real parts. Polynomials with this property are commonly

termed Hurwitz polynomials and they correspond to stable sys-

tems. There are many ways in which they can arise but for

the sake of being definite we shall suppose that the polyno-

mial is the characteristic polynomial of a linear differential

equation with constant coefficients. Thus all solutions of

the associated homogeneous equation vanish at positive infinity

if and only if the characteristic polynomial is a Hurwitz

polynomial.

From the point of view of pure mathematics the stability

of the differential equation is completely resolved by the

above criteria. However in applied mathematics it often

happens that the differential equation is to be approximated

by a difference equation. It is quite possible that this

difference equation may be unstable even though the differen-

tial equation is stable. In any case it is important to know

the stability properties of both the differential equation and

the difference equation.

The stability of a difference equation is also governed

by an associated characteristic polynomial. Then the solutions

of a difference equation vanish at positive infinity if all

the roots of the characteristic polynomial are in absolute

value smaller than unity. Polynomials of this type were studied

by Schur and for this reason we term them "Schur polynomials11.



In what follows a simple algorithm will be given to test

polynomials for the Hurwitz property. Also a simple algorithm

will be given to test polynomials for the Schur property.

Other algorithms are to be found in the literature but many

of these are complicated and ill suited for numerical evalua-

tion.

A question of interest is the relationship between Hur-

witz polynomials and Schur polynomials. It is found here that

there is a matrix r which transforms the coefficients of Hur-

witz polynomials into the coefficients of Schur polynomials.

This matrix is idempotent (r - I) so conversely Schur coeffi-

cients are transformed into Hurwitz coefficients. It is quite

easy to evaluate r so this transformation is suited to numeri-

cal use. For example a polynomial could be tested for the Hur-

witz property by first transforming it by the matrix r and

then using the algorithm for the Schur property.

The approximation of a differential equation by a differ-

ence equation is often accomplished by employing a numerical

integration formula such as the trapezoidal rule or Simpson's

rule. In Section 8 a class of such rules is introduced

termed conservative integration formulae. A conservative for-

mula has the property that the differential equation and the

difference equation have the same stability properties. The

proof of this invariance is made to depend on a special con-

formal mapping.

Hurwitz polynomials and Schur polynomials have had appli-

cation to a great range of problems both in pure and applied



mathematics. Many authors have contributed to the develop-

ment including Sturm, Routh, Hurwitz, Cauer, Foster, Nyquist,

Schur, Wall, Frank, Harden, and Wilf. The main ideas in this

paper may be regarded as a synthesis of the works of these

authors. Nevertheless, many theorems given here are either

new or else have new proofs. In order not to interfere with

the train of ideas some of the proofs are confined to an appen-

dix.

The writer wishes to thank Dr. Bruce Swanson of the

Westinghouse Research Laboratories for discussion concerning

the stability troubles encountered in practical numerical

integration.



2. The stability of a differential equation.

The following elementary differential equation is

probably the most commonly occurring differential equation

in all of applied mathematics.

£ n a. D* u(t) = I b D^ w(t) .
0 3 0 J

Here D denotes d/dt and the coefficients a. and b. are constants.

This equation can be interpreted as characterizing a "filter11

in which w(t) is the input function and u(t) is the output

function. Assuming sufficient differentiability we see that

the right side uniquely determines a function v(t) and so the

equation takes on the still simpler form

(1) I a. D^ u(t) = v(t) .

0 J

This is the equation to be studied in this paper.

A stability question arising naturally is whether or not

an error in initial conditions at time t = 0 will die out as

t •* +«. If the effect of the error disappears we shall say

that the equation is stable. A stable differential equation

corresponds to a filter with "fading memory11.

The stability of equation (1) is determined, of course,

by the corresponding homogeneous equation

(2) I a IP u(t) = 0 .
0 J

The characteristic polynomial associated with this equation is

(3) f(z) = f a.zj .
0 3

Then if f(z) = 0 there is a solution of the homogeneous equa-



tion (2) of the form u(t) * ez . Moreover if z is a root of

multiplicity d there is a solution of the form u(t) • z ez .

The general solution of (2) is a linear combination of such

solutions. Thus the following theorem holds.

Stability Criterion H. A linear differential equation

with constant coefficients is stable if and only if all the

roots of the characteristic polynomial have negative real parts.

Polynomials with this property are termed Hurwitz polynomials

in the literature.

From the viewpoint of pure mathematics the above stability

requirement resolves the problem. However, in applied mathe-

matics there are further requirements. The first requirement

is an algorithm for identifying Hurwitz polynomials. We use

the word "algorithm11 to mean a rule for resolving a question

in a. preassigned number of rational steps. The algorithms

given in this paper have the following further properties:

(1) Each step is the same form as the first. (2) No memory

of preceding steps is retained. (3) The only decision is to

stop.



3. Tests for Hurwitz polynomials.

The following lemma proves one part of an algorithmic

test for Hurwitz polynomials.

Lemma 1. Let f(z) be a Hurwitz polynomial of degree n

precisely then

L] [ f^
£(0) J L£tn-U(0)

>0 .

Proof. If r, r., are the roots of the polynomial

f(z) 1 (z-r.)

n
Thus ff(O)/f(O) = -T 1/r. and since Re r. < 0 the first

1 J 3

inequality is proved. By the well known Lucas lemma ff(z)

must also have all its roots in the convex region Re z < 0.

Thus the proof of the lemma is completed by induction.

It will be seen that this lemma proves condition (I) and

condition (If) in the following tests.

Algorithm H-. . Let f(z) be a polynomial

f ( z ) - - a + a z + a z 2 + a z 3 + a z 4 + • • •

of degree n 4 0 and with real coefficients. Let £Az) be the

"reduced" polynomial defined as

£ (z) - a a + (a a -a a )z + a a z2 + fa a -a a )z3 +

and of degree n - 1. Then f(z) is a Hurwitz polynomial if and

only if:

(I) aQa1 > 0 .

(II) f^(z) is a Hurwitz polynomial.

If desired the condition (I) may be replaced by the more restric-



tive condition

(If) aQa.. > 0 j » l,...,n.

As an example of this algorithm let us test the polynomial

f(z) = 1 + 2z + 4z2 + 5z3 + 4z4 + 9z5 .

Since all coefficients are positive we must test

fx(z) = 4 + 3z + 10z
2 - z3 + 18z4 .

Since the coefficient of z is negative it follows that fj^z)

is not Hurwitzian and hence f(z) is not Hurwitzian. As another

example consider

F(z) = 1 + 2z + 4z2 + 4z3 + 2z4 + z5

Fx(z) = 4 + 4z + 8z
2 + 3z3 + 2z4

F2(z) = 16 + 20z + 12z
2 + 8z3

F3(z) = 400 + 48z + 160z
2 .

Hence F(z) is a Hurwitz polynomial,

A polynomial whose roots have negative real parts is termed

a "Hurwitz polynomial" in this paper even though the coefficients

are not real. Hurwitz, himself, did not give a test for this

case. The following algorithm applies for complex coefficients.

Algorithm H2. Let f(z) be a polynomial

f(z) = AQ + Axz + A 2z
2 +...+ A nz

n

of degree n f 0 where the coefficients A. and B. are real.
-j j .

Let f,(z) be the reduced polynomial defined as

fx(z) = A
2 + (A1A2-A0A3)z + A 1A 3z

2 + ( A ^ - A Q A ^ Z 3 +...

of degree n - 1. Then f(z) is a Hurwitz polynomial if and

only if



(I) A ^ > 0

(II) f1(z) is a Hurwitz polynomial .

If desired the condition (I) can be replaced by the more

stringent condition

(if) AjAj+i + BjBj+i > ^ o>i>--->n-

This condition is easily deduced from Lemma 1. The proof of

condition II follows from Theorem 3 of Appendix A when the

parameter K is taken to be zero.

In this algorithm the polynomial f(z) is required to have

a real constant term. However, the constant term of the re-

duced polynomial f-i(z) may not be real. In the following

modified algorithm the reduced polynomial has a real constant

term.

Algorithm H~. Let f(z) be a polynomial

£(7\ - A + A 7 + A 7 + + A 7 1 1

* i [ B . z + B ? z 2 + . . . + B z 1 1 ]1 z n

of degree nf 0 where the coefficients A. and B. are real. Let

f.(z) be the reduced polynomial defined as

f- , (z) = pA, + (pAo - qAT + r B o ) z
1 1 L O L

P A 3 z 2 + (pA4 - qA5 + r B 4 ) z 3 + . . .

+ i [pB,z + (pB, - qB. - r A , ) z +

3 4pB-z + (pB c - qBA - r A c ) z + . . .4 D O 5

where p = A1 , q = AQAJ and r = A QB 2 -
 AiBi • Then f(z) is a

Hurwitz polynomial if and only if:

(I) AQA1 > 0

(II) f-^z) is a Hurwitz polynomial.

The proof of this algorithm follows from Theorem 3 by taking
2

the parameter K to satisfy KA.. = An^? " A1B1 •



4. The stability of a difference equation.

The algorithms just given serve to determine the stability

of the differential equation (1). However applied mathematics

introduces an additional question which should be answered.

This comes about because in numerical work the differential

equation (1) is replaced by an approximating difference equa-

tion. But it may happen that the difference equation is un-

stable even though the differential equation is stable. Con-

sequently it is seen necessary to analyze the stability of

the difference equation as well as the stability of the differ-

ential equation.

There are various procedures for arriving at an approxi-

mating difference equation. Before considering refined

methods it is instructive to look at the crude approximation

in which the differential operator D is replaced by the differ-

ence operator (T - l)/h. Here T is the forward translation

operator defined as

(4) TU(t) = U(t + h)

and h is the spacing of the grid points. Then the differential

equation (2) is replaced by the difference equation

Seek a solution of this equation of the form U = Wt . Then

(T - l)Wt = Wt (Wh- 1) and the condition for a solution is

Suppose the differential equation is stable and let z be a root
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of the characteristic equation £(z) « 0, Write z » -A +iB

where A > 0 and B is real. Then w • 1 + h(-A • iB). In

order for the difference equation to be stable it is necessary

that |w|<l and so 1 > (1-hA.)2 + (hB.)2. Hence if the numeri-

cal solution is to be stable

h < min M A M
A z+B z

where the minimization is over the roots of f(z).

Another crude approximation is to replace D by (1-T" )/h.

By analogous considerations the condition for stability is

found to be

h > max ; 2 % .
A^+B^

Thus the difference equation is stable whenever the differen-

tial equation is. But this inequality shows that it is

possible for the difference equation to be stable even though

the differential equation is unstable.

We now turn to more refined methods for obtaining an

approximating difference equation. We shall employ the method

of numerical integration formulae such as the trapezoidal

rule, Simpson1s rule, etc. They involve approximations of

the type
«t+rh r

(5) u(x)dx 2f I V u(t*mh)

J t 0 m

where h is the distance between grid points and r may be

termed termed the degree of the approximation. The real

constants k are chosen so that for certain functions the

integration formula (5) is exact. For example if it is
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required that it be exact for u(t) a constant then

(6) I* km - rh.

In many applications the symmetry condition

(7) k r - m = km m - 0f 1, ...., r

seems natural. It is worth noting that (6) and (7) together

insure that the integration formula is exact for all linear

functions.

Let T again denote the operator giving a forward transla-

tion of amount h. Then the integration formula (5) may be

expressed in operational form as

(8) (Tr - 1) - f k TmD .

0

Repeated operation with this formula gives

(9) (Tr - 1)J 2f if k j V D* .
0

Now apply the operator (£ k T m ) n to differential equation (1)
0

n n »
and obtain £ a. (£ k T m ) n DJ u(t) = V(t) where

0 3 0 m

(10). V(t) = (^ k m T
m ) n v(t) .

Next make use of the approximation (9) to obtain

(11) f a . ^ k Tm)n"J (Tr - 1)J U(t) - V(t)
0 3 o m

where U(t) is taken to be an approximation to u(t). Carrying

out the indicated multiplication in (11) gives the difference

equation
N

(12) I c T^ U(t) - V(t)
0 q
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where N * il + r. In this equation we stipulate that t is to

be restricted to the grid points 0, +_ h, ^ 2h, etc. Interme-

diate values of t are not considered.

Equation (12) is the equation which gives the numerical

solution of the problem. It is, of course, a linear difference

equation and the stability properties are the same as those

of the corresponding homogeneous equation

N

(13) I cq T
q U(t) = 0 .

In other words (12) is stable if and only if all solutions

of (13) vanish as t'+ •• along the sequence of grid points.

Let w be a non-zero complex number and seek a solution

0 l 2
of (13) such that U has the values w , w , w* ,••• at the

grid points 0, 1, 29*** . Then it follows from (13) that

N
(14) g(w) - J cq w

q = 0 .

We term g the characteristic polynomial (associated with

forward translations). If g has a d-fold zero there is a

solution of the form U(mh) = m w" . As is well known the

general solution of equation (13) is a linear combination of

such special solutions. This leads to the following statement.

Stability Criterion S. A linear difference equation with

constant coefficients is stable if and only if all the

roots of the characteristic polynomial are inside the unit

circle.

Of course the characteristic polynomial corresponding to

backward translations could have been used instead. However

for the present analysis the forward translation results in

notational convenience.
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5. A test for Schur polynomials.

The stability of a difference equation is assured if the

characteristic polynomial g(w) is such that g(w) s 0 implies

IwI < 1. We shall term g(w) a Schur polynomial because Schur

made an extensive study of such functions,

A testing algorithm for Schur polynomials will now be

stated. In appearance it is somewhat simpler than the testing

algorithm for Hurwitz polynomials. In using this test it must

be kept in mind that zeros at the origin do not generate solu-

tions of the difference equations and so are not significant.

Algorithm S. Let g(w) be the polynomial

g(w) = CQ + c^w + c2w +...+ cnw
n

where cQ^0f c ^0, and n^O. Let gi(w) be the reduced polynomial

gl(v0 - Ccfo-Coc*.!) + (c*c2-coc*.2)w +...+ (cjc^cocj)*11-1

of degree n - 1. Then g(w) is a Schur polynomial if and only if:

CD |co| < |cn|.

(II) gi(w) is a Schur polynomial.

If desired the condition (I) can be replaced by the more

restrictive condition

(I') |Cj| > (*) |cQ| j - 1, 2, ..., n .

As an example of the use of the algorithm let

g(w) = 1 + 2w + w - w + 3w

2 ^
g^fw) = 7 + 2w - Sw + 8w

g2(w) = 51 - 54w + 15w
2

Since 51 > 15 it follows that g is not a Schur polynomial.

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY
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Proof of Algorithm S. First suppose g(w) is a Schur

polynomial. Then if the roots are r i f * > r
n
 we have cQ

 s ±c
n
7ri

Since |r.| < 1 relation (I) is proved. (Relation (I1) follows

by a similar argument by comparing cir(w-r.) with cn(l+w)
n.)

Now let G(w) « w11 g*(w" ) and so

) • c* g(w) - cQ G(w) .

On the circle |w| * 1 it is seen that

|c* g(w)| > |cg g(w)| = |cog*(w*)| - |cQ G(w)|.

Thus by Rouchefs theorem wg..(w) and eg g(w) have the same number

of zeros for |w| < 1. Then g,(w) has n-1 zeros for |w| < 1

and since g^(w) is a polynomial of degree n-1 there are no

other zeros. Thus g-i(w) is a Schur polynomial.

Next suppose that (I) and (II) are true. Then Rouchefs

theorem can again be applied and it follows that g(w) has n

zeros inside the unit circle and the proof is complete.
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6. Relating Schur polynomials and Hurwitz polynomials.

It is natural to ask if Schur polynomials can be related

to Hurwitz polynomials in some direct way. To answer this

Question consider the following Mttbius mapping

*JL± « w and ii^JL - z .
z - 1 w - 1

This is a one to one mapping of the open region Re z < 0

in the z-plane and the open region |w| < 1 in the w-plane.

The imaginary axis, Re z » 0, maps one to one on the circle

|w| = 1 with point w s 1 deleted. This mapping leads to the

following relation between polynomials.

Lemma 2. Let f(z) be a polynomial of degree n in z. Then

(15) g(w) = 2"n/2(w - l) n f(£4-T)

is a polynomial of degree n In w and

For short we write these relations as g(w) = rf(z) and f(z) • rg(w)

and term them gamma transforms.

Proof. I£ f(z) = IJ a ^ 1 then clearly

(17) g(w) - 2"n/2 IJ a^w-l) 1 (w-l)11"1 = In cjWJ .

Here the coefficients c. are defined by carrying out the bi-

nomial products. Then

= 2"n XJ a.(2z)i (2)n"i = f(z)

and (16) is verified.
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algorithm:
a • b + c + d

where
c d
a b

det(Yij)

1J

It is of some interest to note that

(21)

The correct sign here is left to the curiosity of some reader.

Lemma 4. A polynomial is a Schur polynomial of degree

precisely n if and only if the gamma transform is a Hurwitz

polynomial of degree precisely n.

Proof. If g(w) is a Schur polynomial then formula (16)

of Lemma 2 shows that f (z) cannot vanish if Re z >_ 0 but z / 1

because |(z+l)/(z-l) | ^ 1 and (z-l)n f 0. Moreover formula (16)

gives f(l) = 2n' c / 0 so f(z) is a Hurwitz polynomial.

Conversely suppose f(z) is a Hurwitz polynomial then

formula (15) shows that if |w| ^ 1 but w f 1 then g(w) f 0.

However g(l) = 2 n' a ^ 0 so this completes the proof.

These lemmas prove the following theorem.

Theorem la. The sequence co,c..,...fc with c ? 0 are

Schur coefficients if and only if the sequence {a. =

are Hurwitz coefficients and an f 0.

By the idempotent property this can also be stated as

Theorem lb. The sequence an,a,...,a with a f 0 are

cr..}

Ilurwitz coefficients if and only if the sequence {c.

are Schur coefficients and c f 0.

a.T..}
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7. The trapezoidal integration formula.

We have just seen that there is a correspondence set up

between Hurwitz polynomials and Schur polynomials by a con-

formal mapping of Mbbius type. This raises the following

question. Is there a numerical integration scheme such that

the same correspondence exists between the differential equa-

tion and the approximating difference equation?

To investigate this question consider the trapezoidal

integration formula

J h
 u(x) dx 2f u(h) + u(0) h m

J 0 2

This is a special case of the numerical integration formula (5)

where r * 1, kQ = h/2, and k^ = h/2. The operational form is

Then the differential equation £jj a. D^u = 0 is transformed

into the difference equation

Eg a. (h/2)J (T+l)
n"J (T-l)J U - 0 .

The associated characteristic polynomial is

g(w) = IJ 2"n/2 \. (w-l)n"J (wl)J

where A. - 2n (h/2)11"-'a .. Then g(w) is a gamma transform

of F(z) = £Q A . Z J . Obviously, however, f(z) » ^ a.z^ is

a Hurwitz polynomial if and only if F(z) is because

F(z) = 2 n / 2z n f(h/2z) and h > 0.

Corollary 1. Suppose that the trapezoidal integration

formula is used. Then the resulting difference operator is

stable and of order precisely n if and only if the differential

operator is stable and of order precisely n.
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Proof. According to Lemma 4 the characteristic poly-

nomial g(w) is a Schur polynomial of degree precisely n if

and only if F(z) is a Hurwitz polynomial of degree precisely n,

But F(z) = 2n>/2 zn f(h/2z) where f is the characteristic

polynomial of the differential operator. Clearly F(z) is

a Hurwitz polynomial of degree precisely n if and only if

f(z) is a Hurwitz polynomial of degree precisely n. This

completes the proof.

As an example of the above process let

f(z) = 2 + 3z + 8z2 + 4z3 + 4z4 .

Taking h = 2 and neglecting constant multipliers gives

F(z) = 4 + 4z + 8z2 + 3z3 + 2z4 .

Using the y matrix tabulated above for n = 4 gives

g(w) = 7 - 6w + 20w - lOw + 21w

Both f and g are seen to be stable.
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8. Conservative integration formulae.

It has just been shown that the trapezoidal integration

formula preserves stability. This raises the question of

whether or not there are other integration formulae with the

same property. This question will now be treated by employing

a generalization of the Mbbius conformal mapping.

Definition. Consider the integration formula

j £(t)dt * lrQ k m f(x+mh)

and suppose that the associated polynomial p(w) = £Q ̂ m*™

satisfies:

(I) If wr = 1 then p(w) is real and p(w) > 0.

(II) 2p'(l) - rp(l) L 0.

Then the integration formula is termed "semi-conservative".

However, if (II) is an equality it is termed "conservative".

For example the trapezoidal formula corresponds to p(w) « (w+l)h/2,

So p(l) = h > 0 and 2pf (1) - rp(l) = 0 and it follows that the

trapezoidal formula is conservative. It is also of interest

to note that conservative formulae satisfy the symmetry con-

dition (7). The proof of this will be omitted.

Theorem 2a. If a stable differential equation is con-

verted to a difference equation by a semi-conservative

integration formula then the difference equation is stable.

Proof. Let the differential equation have characteristic

function f(z) = lQ a.z
J. Then the characteristic function of

the difference equation is

(21) g(w) = Zj a. n j r 3
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Lemma 5, If the hypotheses of Theorem 2 hold and

gCwĵ ) s 0 then w£ - 1 f 0 and pCwj) f 0.

Proof, If wj - 1 - 0 then a()[p(w]L)]
n = 0. Since

f(0) ^ 0 it follows that aQ f 0 and hence pC*^) » 0 this

contradicts (I) so wF - 1 t 0. On the other hand if pCv^) • 0

then an(w[ - l)
n = 0. But an + 0 so w£ - 1 - 0 and we have

just shown that this is impossible.

Now write g(w) in the form

(22) g(w) = [p(W)]
n To aj \0[\ •

By virtue of Lemma 5 it follows that if g(w ) « 0 then f(z^) - 0

where

(23) z-. = wl " 1 ,

moreover z. f 0, Now according to Theorem 4 of Appendix B

if Iŵ jl >_ 1 then Re z^ >̂  0. Thus Re z, >_ 0 which is a contra

diction because the differential equation is assumed to be

stable.

Theorem 2b. Suppose that a differential equation is

converted to a difference equation by a conservative integra-

tion formula with at least three non-zero coefficients. Then

the difference equation is stable if and only if the differen-

tial equation is stable.

Proof. If the differential equation is stable Theorem 2a

shows that the difference equation is stable. Thus suppose

the differential equation is unstable. Then f(z^) = 0 for

a z-̂  such that Re z. >_ 0. Then seek a w to satisfy the equa

tion
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(24) zx p(w) - w
r + 1 = 0.

By hypothesis there are three values of m for which k f 0,

Thus the above equation can be written as

(25) (zlk
r " ^ ^ +##**1" z i k

s
w S + " # +( zi ko + 1) s 0

where k ^ 0 and r > s > 0. Thus this equation is at least

of degree s > 0 so there is at least one solution, say w,,

It follows by (I)+(24) that p(wx) f 0. Thus divide (24)

by p to obtain (23). It now follows from Theorem 4 that

lwll i * because Re zT >_ °* Thus the difference equation

is unstable and the proof is complete.

The following is an example of a conservative integra-

tion formula of degree 2.

h"1 f(t)dt = 1.21 f(0) - .42 f(h) + 1.21 f(2h) .
J 0

The associated polynomial is

h"1
 Y(w) • 1.21 - .42w + 1.21 w

2 .

It is seen that conditions (I) and (II) hold because p(l) > 0

and p(-l) > 0. Since 3TT/2 = 4.7 = (.21)"1 one sees that the

formula is exact for a function of the form

f(t) = a + bt + c cos (4.7t/h) + d sin(4.7t/h).

Thus the class of exact functions is not independent of the

mesh constant h. This appears undesirable from a practical

point of viexv.

Simpson's formula is of degree 2 and lias the associated
2

polynomial p(w) = (1 + 4w + w )h/3 however p(-l) < 0 so

condition (I) is violated. Thus Simpson's rule is not con-

servative. Consequently a conservative formula of degree 2
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cannot be exact for quadratic functions.

The conservative integration formulae of higher degree

are certainly of interest from a theoretical point of view.

However, the two examples just considered cast doubt on their

practical advantage over the trapezoidal formula. There are,

of course, various other methods for converting differential

equations into difference equations such as the Runge-Kutta

method and the Adams method. The choice of a method for a

given problem depends on several factors but in any case

stability is one of the factors to be considered.
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Appendix A. A characterization of Hurwitz polynomials.

The following reduction theorem justifies the Algorithms

Hlf H2, and Hj.

Theorem 3, Let f(z) be a non-constant polynomial such

that f(0) > 0, Let

h(z) . £ £ 5 1 +(J+ i K z ) *<*> - * < - ' > .
z 2z*

Then f(z) is a Hurwitz polynomial if and only if

(I) Re ff(0) > 0

(II) h(z) is a Hurwitz polynomial when J Re ff(0) + f(0) - 0

and K is a real constant.

Proof. The proof will be based on the following

modification of Rouche*s theorem.

Lemma 5. Let F(z,X) be an analytic function of the complex

variable z and a continuous function of the real variable X.

Suppose that for 0 <^ X <^ 1 the function F(z,X) does not vanish

on a finite contour C. Then F(z,0) and F(z,l) have the same

number of zeros inside r.

Proof. Let N(X) be the number of zeros. Then

Clearly the right side is a continuous function of A hence

N(0) - N(l).

Lemma 6. Let f(z) be analytic on the imaginary axis and

let

H(z) - f(z) + (J + iKz)[£(z) - f*(-z)]/2z

where J and K are real constants. Let y be real but y 1 0
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then H(iy) = 0 if and only if f(iy) - 0.

Proof, Let f(iy) = u + iv so f*(-iy) » u - iv and

H(iy) • u + mv + iv where m is real. Thus H(iy) = 0 if

and only if u • 0 and v s 0.

Lemma 7. Let f(z) be a polynomial such that f(0) > 0

and Re ff(0) > 0.

z 2zz

where J Re ff(0) + f(0) » 0 and K is real. Then there is

a positive constant e such that for 0 <^ | z | <^ e and for

Re z >_ 0 and for 0 <_ X <_ 1 the function h(z,A) f 0. Moreover

h(0,l) is finite.

Proof. Let us write

f(z) = AQ + (A1 + iB1)z + (A2 + iB2)z
2 +•••

where the A. and B. denote real constants. Thus

[f(z) - f*(-z)]/2z= A1 + iB2z + A 3z
2 + iB4z

3 +•••

Hence we have

h(z,X) = (AQ + XJA1)z"
1 + (A1 + iXJB2 + iXKAĵ  + iB.)

+ (A2 + XJA3 - XK32 + i
B2^z +##*

For short let h(z,X) = h^^z" + hQ + h,z +••• . By hypothesis

AQ + XJA1 ^ 0. Thus

Re h(z,X) >^ A. + ReChjZ +•••)

The coefficients h. are uniformly bounded for 0 <^ X <_ 1. Thus

Re h(z,X) ^ A1 + 0|z|

The proof clearly follows from this inequality.

Lemma 8. Îf h(z,X) is defined as in Lemma 7 then there

is an R such that for h(z, X) f 0 for | z | >_ R and 0 <^ X <^ 1.
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Proof. Let a be the leading coefficient of f(z) so

"1h ^ ' i ) - 1 + ixK [1 + (-l)n —2- ] + OCz"1).

The constant term on the right may be written

1 + ixK [1 + eie]

where ei8= (-l)n a*n/*n and e is real. Thus if this term

vanishes we have

1 + cos 9 = 0 and 1 - XK sin 6 = 0 .

Clearly these equations are contradictory for any value of X,

This shows that the constant term is bounded away from zero.

The remaining term can be made uniformly small by making R

large and the proof is complete.

Returning to the proof of Theorem 4 we first suppose that

f(z) is a Hurwitz polynomial. Then by Lemma 1 it follows

that Re ff(0) > 0 and so (I) holds. Thus J can be chosen to

satisfy J Re f'(0) + f(0) = 0 and conditions for Lemmas 6, 7,

and 8 hold. To apply the Lemma 5 take the contour C to be

the two semi-circles |z| « R and |z| = e for Re z >̂  0

together with the segments of the imaginary axis (ie,iR) and

(-ie,-iR). It follows from Lemmas 6, 7, and 8 that h(z,X)

does not vanish on the contour C.

Lemma 5 now states that h(z) and f(z)/z have the same

number of zeros in C. Since e can be arbitrarily small and

and since R can be made arbitrarily large it follows that

h(z) has no zeros for Re z >̂  0, |z| ^ 0 . Moreover the proof

of Lemma 7 shows that h(0) + 0. Thus h(z) is a Hurwitz

polynomial.
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To prove the second part of the theorem suppose that

conditions (I) and (II) hold, then the conditions for

Lemmas 6, 7, and 8 are again in force and Lemma 5 applies

to the contour C just defined. Thus h(z) and f(z)/z have

the same number of zeros in C. Thus f(z) has no zeros in C

and since f(0) > 0 the proof that f(z) is a Hurwitz polynomial

is complete.

It is worth noting that the algorithm defined by Theorem 3

makes sense for transforming a power series f(z) into a

"reduced" power series h(z). Thus it may be possible to

extend Theorem 3 to hold for entire functions of zero type

as well as for polynomials.

To prove Algorithms H,, H2, and H~ the coefficients of

the series of h(z) must be evaluated. It is seen that h(z)

is the sum of three series:

(A^iB^ + (A2+iB2)z + (A3+iB3)z
2 +...

iJ B2 + J A3 z + iJ B.z + ...

iK A1 - K B2 z + iK A 3z
2 -...

Separating real and imaginary parts gives

h(z) = A1 + (A2+JA3-KB2)z + A ^
2 +...

i[(B1+JB2+KA1) + B2z+(B3+JB4+KA3)z
2 +...

Here J = -AQ/A1. Letting K = 0 and ^ = A^i give algorithm H1

and H2. Letting

K = -(B1+JB2)/A1 = ( A ^ - A j B 2

and f, « A., h gives Algorithm H^
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Appendix B. A conformal mapping related to numerical integration.

A mapping of the circle into the half-plane is given here

which is a generalization of the MBbius mapping.

Theorem 4. Let z • Q(w) be a mapping of the w-plane

into the z-plane where

Q(w) = Z&L
wr-l

where p is a polynomial of degree r >_ 1 such that:

(I) Lf w r = 1 then p(w) is real and p(w) > 0.

(II) 2P'(1) - rp(l) >_ 0.

Then

(a) Re z > 0 if |w| > 1

(b) Re z > 0 if |w| = 1 and w r ^ 1 .

Moreover if (II) is an equality then

(c) Re z = 0 if |w| » 1 but wr f 1

(d) Re z < 0 if |w| < 1 .

Proof. Let w - (s+l)/(s-l) and let q(s) = Q(w) so

q(s) = Cs-

The denominator here is a polynomial of degree r-1. The

denominator vanishes when

s = —j and wr = 1 but w / 1 ,

Let these vanishing points be s ^ s2,...,s ... They are

distinct and pure imaginary. The numerator of q(s) is a

polynomial of degree r. Thus by the Lagrange interpolation

formula we can write
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r-1 C.
q(s) - As + B + Jj_ j^f-

It is seen that A is defined by the limit

A = lim q(s)/s as s •*• «

But as s •*• °° we see that w + 1 so

Likewise we see that B is defined by the limit

3 = lim [q(s) + q(-s)]/2 as s •> »

Clearly q(-s) = p(w" )/(w"r-l) so

B = lim p ( w> - ^ P C W ) a s w

2(wr-l)

Applying L'Hopital's rule gives

- rp(l) „
2r

The residue C is defined as

C. » lira (s-s.) q(s) as s ->. s.
J J J

C. = lim
3

C
33 2r 2r

Since (w.)r = 1 it follows that C > 0.
J J

The coefficients A, B, and C. in the Lagrange formula

are non-negative and the poles are on the imaginary axis.

It follows that

Re q(s) > 0 if Re s > 0 .

(In the terminology of electrical network theory q(s) is a

"positive real function11.)
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Since the coefficient A is positive

Re q(s) > 0 if Re s > 0.

But |w| > 1 implies Re s > 0 so statement (a) is seen to

be proved. If |w| « 1 but w ^ 1 then Re s • 0 and

statement (b) follows.

If (II) is an equality then clearly

Re q(s) - 0 if Re s = 0 and s + s. .

This is seen to prove (c). Again if (II) is an equality

Re q(s) < 0 if Re s < 0 .

But Re s < 0 if |w| < 1 so statement (d) follows and the

proof is complete.

The book by Kaplan in the following list of references

treats linear systems and their stability. The book by

Harden gives a survey of the general problem of root location

of polynomials. The book by Wall relates root location to

continued fractions. The book by Hazony relates polynomials

to network theory. The paper [1] treats the characteristic

polynomial of systems of differential equations and also the

characteristic polynomial of systems of difference equations.

The paper [2] treats filters for time series and the under-

lying differential equation and difference equation. The paper

[5] relates root location to determinants. In paper [10] tfilf

applies a theorem of Schur to the stability to several integra-

tion methods. He indicates how the stability criteria have

approximate validity even for differential equations which

have variable coefficients or which are nonlinear.
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