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Abstract

A differential equation is stable if the roots of the-
characteristic polynonial are in the intefior of the left
hal f-plane. Likewise a difference equation is stable if the
roots of the characteristic polynomal are in the interior
of the unit circle. This paper concerns algorithnms which test
pol ynom als for these properties. Also of concern is the re-
| ati onship between the two problens. In particul ar special
nurmeri cal integration fornulae are devel oped which transform
a differential equation into a difference equation. These
formul ae are such that the differential eduation and the
correspondi ng difference equation are both stable or else

they are both unstabl e.
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Algorithns for Classical Stability Problens

1, Introduction, A classical stability problemrequires

testing a polynomal to see if all of its roots have negatiVe
real parts. Polynomals with this property are conmonly

termed Hurwitz polynom als and they correspond to stable sys-
tems. There are many ways in which they can arise but for

the sake of being definite we shall suppose that the pol yno-
mal is the characteristic polynomal of a linear differential
equation with éonstant éoefficients. .Thus all solutions of

the associ ated honmpbgeneous -equati on vanish at positive infinity
if and only if the characteristic polynomal is a Hurwitz

pol ynomi al .

From the point of view of pure mathematics the stability
of the differential equation is conpletely resolved by the
above criteria. However in applied nmathematics it often
happens that the differential equation is to be approxi nated
by a difference equation. It is quite possible that this
di fference equation may be unstable even though the differen-
tial equation is stable. |In any case it is inportant to know
the stability properties'of both the differential equation and
the difference equation.

The stability of a difference equation is also governed
by an associated characteristic polynonmal. Then the solutions
of a difference equation vanish at positive infinity if all
the roots of the characteristic polynonmial are in absolute
value smaller than unity. Pol ynom als of this type were studied

by Schur and for this reason we term them "Schur pol ynoni al s*'.




In what follows a sinple algorithmwi |l be given to test
polynom als for the Hurwitz property. Also a sinple algorithm
will be given to test polynomals for the Schur property.

QG her algorithns are to be found in the literature but many
of these are conplicated and ill suited for nunerical evalua-
tion.

A question of interest is the relationship between Hur-
witz polynom als and Schur pol ynom al s. It is found here that
there is a matrix r which transfornms the coefficients of Hur-
Wtz polynomals into the coefficients of Schur pol ynom al s.
This matrix is idenpotent (r2 = |) so conversely Schur coeffi-
cients are transforned into Hurwitz coefficients. It is quite
easy to eval uate r so this transformation is suited to nuneri-
cal use. For exanple a polynom al could be tested for the Hur-.
witz property by first transformng it by the matrix r and
then using the algorithm for the Schur property.

The approximation of a differential equation by a differ-
ence equation is often acconplished by enploying a nunerica
integration formula such as the trapezoidal rule or Sinpson's

rule. . In Section 8 a class of such rules is introduced

termed conservative integration fornulae. A conservative for-
nmul a has the property thaf t he dffferential equation and the
difference equation have the sanme stability properties. The
proof of this invariance is nmade to depend on a special con-
formal mappi ng.

Hurwi t z pol ynom al s and Schur pol ynom al s have had appli -

cation to a great range of problens both in pure and applied




mat hematics. Many authors have contributed to the devel op-
ment including Sturm Routh, Hurmdfz, Cauer, Foster, Nyqui st
Schur, Wall, Frank, Harden, and WIf. The main idéas inthis
paper may be regarded as a synthesis of the works of these
authors. Neverthel ess, many theorems given here are either
new or else have new proofs. In order not to interfere with
the train of ideas sone of the proofs are confined to an appen--
di x.

The witer wishes to thank Dr. Bruce Swanéon of the
Westi nghouse Research Laboratories for discussion concerning
the stability troubles encountered in practical nunerica

i ntegration.




2. The stability of a differential equation,

The following elementary differential equation is
probably the most commonly occurring differential equation

in all of applied mathematics.
n . m .
§ oa, b u(t) =1 b, 0 ow(r) .
0o J o J

Here D denotes d/dt and the coefficients aj and bj are constants,
This equation can be interpreted as characterizing a "filter"

in which wtt) is the input function and u(t) is the outﬁut
function. Assuming sufficient differentiability we see that

the right side uniquely determines a function v(t) and so the

equation takes on the still simpler form

(1) 5 oa. 0dou(e) = vee) .
0o J
This is the equation to be studied in this paper.

A stability question arising naturally is whether or not
an error in initial conditions at time t = 0 will die out as
t » +o, If the effect of the error disappears we shall say
that the equation is stable. A stable differential equation
corresponds to a filter with '"fading memory".

The stability of equation (1) is determined, of course,

by the corresponding homogeneous equation

(2) Zn a, D) ou(t) =0 .
0o J

The characteristic polynomial associated with this equation is
n

(3) £(z) = § a.zd .
o J

Then if f(z) = 0 there is a solution of the homogeneous cqua-




L

tion (2) of the form u(t) = eZt. Moreover if z is a root of

multiplicity d there is a solution of the form u(t) = zdeZt.
The‘general solution of (2) is a linear combination of such
solutions, Thus the following theorem holds.

Stability Criterion H. A linear differential equétion

with constant coefficients is stable if and only if all the

roots of the characteristic polynomial have negative real parts,

Polynomials with this property are termed Hurwitz polynomials
in the literature.

From the viewpoint of pure mathematics the above stability
requirement resolves the problem., However, in applied mathe-
matics there are further requirements. The first requirement
is an algorithm for identifying Hurwitz polynomials., We use
the wor&."aigorithm" to mean a rule for resolving a question
in a.preassigned number of rational steps. The algorithms
given in this paper have the following further properties:
(1) Each step is the same form as the first. (2) No memory
of preceding steps is retained. (3) The only decision is to

stop.




3. Tests for Hurwitz polynomials.

The following lemma proves one part of an algorithmic

test for Hurwitz polynomials.

Lemma 1. Let f(z) be a Hurwitz polynomial of degree n

precisely then

Re £10 4, (| Re[ f(n)(o) ] >0 .
£(0) (0)

are the roots of the polynomial

Proof. 1If Tiseeer T\

fr(z) _ " 1
£z 1 (2o
Thus f£'(0)/£(0) = -Z: 1/rj and since Re Ty < 0 the first
inequality is proved. By the well known Lucas lemma f'(z)
must also have all its roots in the convex region Re z < 0.
Thus the proof of the lemma is cbmpleted by induction.
It will be seen that this lemma proves condition (I) and
condition (I') in the following tests,
Algorithm H;. Let f(z) be a polynomial

f(z) =ao + alz + 3222 + 3323 + a4z4 d+oo~

of degree n # 0 and with real coefficients. Let fl(z) be the

"reduced" polynomial defined as

_ 2 3
£1(2) = aja; + (ajay-apaz)z + ajazz™ + (ajag-agag)z” + -«

and of degree n - 1, Then f(z) is a Hurwitz polynomial if and
only if:
(I) aga; > 0 .

(11) fl(z) is a llurwitz polynomial.

If desired the condition (I) may be replaced by the more restric-




tive condition
(1" a@.l >0 j o»,...,n
As an exanpl e of this algorithmlet us test the pol ynom al
f(z) =1+ 2z + 4z% + 523 + 4z* + 9z° .
Since all coefficients are positive we mnust test
fo(z) =4 + 3z + 10.22‘ - z3 + 18z*% .

5 is negative it follows that fj~z)

Since the coefficient of z
is not Hurwitzian and hence f(z) is not Hurwitzian. As another .

exanpl e consi der

F(z) =1+ 2z + 4z% + 423 + 2z* + 2°
Fe(z) = 4 + 4z + 8z% + 3z° + 2z°
Fo(z) = 16 + 20z + 12z° +.82°

F3-(Z) = 400 + 48z + 16022

Hence F(z) is a Hurwitz pol ynom al,

A pol ynoni al whose roots have negative real parts is terned
a " Hﬂrvvitz polynom al™ in this paper even though the coefficients
are not real. Hurwitz, hinself, did not give a test for this
| case. The follow ng algorithm applies for conplex coefficients.

AlgorithmH,. Let f(z) be a polynom al

'f(z) = Ag + Az + Az? 4.+ Az"
+ i [Blz + Bzzz toout ann]
of degree n f O where the coefficients A and B. are real.

! j

Let fl(z) be the reduced pol ynoni al defined as

fX(Z) = ﬁz + (A]_Az- AOA3)Z + A1A322 + (A”- AQANZ® +. ..
. : ' 2 3
+ 1 [(Alﬁ_l-AoBz) + Alez + (AlB3-AOB4)z + A1B4z Foue
of degree n - 1. Then f(z) is a Hurwitz polynomal if and

onl i f




(1) AN >0

(1) f4(z) is a Hurwtz polynon al

If desired the condition (I) can be replaced by the nore
stringent condition

O R B e
Thi's condifion is easily deduced from Lemma 1. The proof of
condition Il follows from Theorem 3 of Appendix A when the
‘paraneter K is taken to be zero.

In this algorithmthe polynomial f(z) is required to have
a real constant term However, the constant termof the re-
duced polynom al f-j(z) may not be real. In the follow ng
modi fied algorithm the reduced polynom al has a real constant

term

ALgQLLLhm H+v Let f(z) he_a _polynonial

EN -A + AT+ A 72+ 1a7ll

* i 2 11
i [Ei.z + Bz?z +...+ an ]

of degree nf 0 where the coefficient s' A.J and B.J are real. Let

f,(z) be the reduced polynom al defined as

f-.(z) = pA, + (pPAo - QAT + rBy)z
1 1

L o L
pAsz? + (PAs - gAs + rB,)z® +...
+ i [pB,z + (pB, - gB. - rAJ)z2 +
pB&zs+ (pBﬁ - qﬁd - rASc)z4 +...
where p = A, q =AQa and r = AgB, - M % o Thenf(z) isa
Hurwitz polynomial if and only if:

(1) AoA; >0

(I1) f-7z) is a Hurwitz polynonial.

The proof of this algorithmfollows from Theorem 3 by taking

H 2 A Aq B
the paraneter K to satisfy KA., ="n"? " "1°1 .




4. The stability of a difference equation.

The algoritHnB just given serve to determine the stabifity
of the differential equation (1). However applied mathenatics
introduces an additional question which should be answered
This comes about because in numerical work the differential
equation (1) is replaced by an approximating difference equa-
tion. But it may happen that.the difference equation is un-
stable even though the differential equation is stable. Con-
sequently it is seen necessary to analyze the stability of
the difference equation as well as the stability of the differ-
‘ential equation.

There are various procedures for arriving at an approxi-
mat i ng difference equation. Before considering refined
methods it is instructive to | ook at the crude approxi mation
in which the differential operator D is replaced by the differ-
ence operator (T - |)/h. Here T is the forward translation
operafor defined as
(4) TU(t) = Wt * h)
and h is the spacing of the grid poinfs. Then"the differentia
equation (2) is replaced by the difference equation

n -1y
anj(Thl) U= 0

Seek a solution of this equation of the formU =W . Then

(T- I)W =wW (W- 1) and the condition for a solution is

52&;-(”;1)’?0, wos
1

Suppose the differential equation is stable and let z be a root
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of the characteristic equation £(z) « 0, Wite z » -A +iB-
where A > 0 and Bis real. Then w « 1 + h(-Ae* iB). In
order for the difference equation to be stable it is necessary
that |w<l and so 1 > (1-hAj)2 + (hBJ.)z. Hence if the nunmeri-

cal solution is to be stable

h < mr1-ﬁ&-m

- AT+B*
where the minimzation is over the roots of f(z).
Anot her crude approximation is to replace D by (1-T"1)/h.
By anal ogous consideratibns the condition for stability is
found to be

h > max —:=2%
AN+

Thus the difference equation is stable whenever the differen-
tial equation is. But this inequality shows that it is
possible for the difference equation to be stable even thdugh
the differential equation is unstable.

VW now turn to nore refined nethods for obtaining an
approxi mating difference equation. W shall enploy the nethod
of nunerical integration fornulae such as the trapezoidal
rule, Sinpson’s rule, etc. They involve approxfnations of

the type
kt+rh P
(5) —u(x)ydx 2f IV ou(t*mh)

Jt Om
where h is the distance between grid points and r may be
termed terngg the degreé of the approximation. The real
constants k are chosen so that for certain functions the

integration fornmula (5) is exact. For exanple if it is
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required that it be exact for u(t) a constant then

T
(6) Zo k, = rh.
In many applications the symmetry condition
(7) Ko om = kp m=20,1, ..., T

seems natural, It is worth noting that (6) and (7) together
insure that the integration formula is exact for all linear
functions,

Let T again denote the operator giving a forward trénsla-
tion of amount h. - Then the integration formula ﬁS) may be

expressed in operational form as

(8) T -1 ¥ k™ .
0

Repeated operation with this formula gives

. T A
(9) (rf - 1 = k™I D
0

r
Now apply the operator (] kam)n to differential equation (1)
0

n n .
and obtain ] a; (I kam)n DI u(t) = V(t) where
0 0

(10) V(t) = (zr kT v(t) .
0

Next make use of the approximation (9) to obtain
n

n . . .
(11) T oa. (I k. ™™ (7 - 1)7 ut) = v(r)
o J 4y m .
where U(t) is taken to be an approximation to u(t). Carrying
out the indicated multiplication in (11) gives the difference
equation

N
(12) T ¢ T u(t) = v(t)
o 4
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where N = n + r. In this equation we stipulate that t is to;
be restricted to the grid points 0, + h, + 2h, etc. Interme-
diate values of t are not considered.

Equation (12) is the equation which gives the numerical
solution of the problem. It is, of course, a linear difference
equation and the stability properties are the same as those

of the corresponding homogeneous equation
N

(13) 20 °q ™ U(t) =0 .

In other words (12) is stable if and only if all solutions

of (13) vanish as t + +~ along the sequence of grid points.
Let w be a non-zero complex number and seek a solution

of (13) such that U has the values wo, wl , w? ,*°* at the

grid points 0, 1, 2,*+*+ ., Then it follows from (13) that
N

(14) gw) =) c wl=0,
o 4

We term g the characteristic polynomial (associated with

forward translations). If g has a d-fold zero there is a
solution of the form U(mh) = mdw‘m. As is well known the
general solution of equation (13) is a linear c;mbination of
such special solutions. This leads to the following statement.

Stability Criterion S, A linear difference equation with

constant coefficients is stable if and only if all the

roots of the characteristic polynomial are inside the unit

circle,

Of course the characteristic polynomial corresponding to
backward translations could have been used instead. However

for the present analysis the forward translation results in

notational convenience.
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5. A test for Schur polynomials.

The stability of a difference equation is assured if the
characteristic polynomial g(w) is such that g(w) = 0 implies

|w| < 1. We shall term g(w) a Schur polynomial because Schur

made an extensive study of such functions.

A testing algorithm for Schur polynomials will now be
stated. In appearance it is somewhat simpler than the testing
algorithm for Hurwitz polynomials. In using this test it must
be kept in mind that zeros at the origin do not generate solu-
tions of the difference equations and so are not significant.

Algorithm S. Let g(w) be the polynomial

glw) = Co *+ CW + c2w2 +oeet cnwn

- where cO#O, cn#O, and n#0, Let gl(w) be the reduced polynomial
i g1 (W) = (che-coch 1) *+ (chcy=coeh )w +eee (che -coch)w"

of degree n - 1. Then g(w) is a Schur polynomial if and only if:
(M gl < Icgl.

(11) gl(w) is a Schur polynomial.

If desired the condition (I) can be replaced by -the more

restrictive condition

(el > (rjl) lcol j =1, 2, eee, n .
As an example of the use of the algorithm let
glw) =1 + 2w + w2 - w3 + .'Sw4
gl(w) =7 + 2w - 5w2 + 8w3
. gz(w) = 51 - 54w + 15w2

Since 51 > 15 it follows that g is not a Schur polynomial.

>

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY
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Proof of Algorithm S. First suppose g(w is a Schur

pol ynom al . Then if the roots are "i f*>"," have cq® *°,"i nr'j.
Si nce |r.J| <1 r_elation (I) is proved. (Relation (Il)_follovvs
by a simlar argunent by conparing c'hr(WLrj) with co(l+w)".)

Now let Gw « wh gr(w'l) and so

wg (W) ¢ g(W - co QW

On the circle |W * 1 it is seen that

lcq 9wl > feg g(W| = Jcog*(w*)| - [cq GW].
Thus by Rouche's theorem V\g.l(vxb and eg g(w) have the sane nunber
of zerds for |W < 1. Then g,l(vv) has n-1 zeros for |wW < 1
and since g’:(vv) is a polynom al of degree n-1 there are no
ot her zeros. Thus g—li(V\) is a Schur pol ynonial .

Next suppose that (1) and (Il) are true. Then Rouche's
theorem can again be applied and it follows that g(w) has n

zeros inside the unit circle and the proof is conplete.
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6. Relating Schur polynonmials and Hurwitz polynom als.

It is natural to ask if Schur polynomals can be related
to Hurwitz polynonmials in sone direct way. To answer this

Question consi‘der the follow ng Mtbius mapping

Lt «y and 1IMNIL - Z
z -1 w- 1

This is a one to one mapping of the open region Re z < 0

in the z-plane and the open region |w < 1 in the w-plane.

The imaginary axis, Re z » 0, maps one to one on the circle
[w =1 with point w® 1 deleted. This mapping leads to the
follow ng relation between polynom al s.

Lemma 2. Let f(z) be a polynom al of degree n in z. Then

(15) g(w = 2""2(w- 1) f(£4-F)

is a polynomal of degree n In w and

z + 1

(z - D" g2 -
For short we wite these relations as g(w = rf(z) and f(z) -

(16) f(z) = 2

and term them gama transforns.

Proof. 1£f(z) = 1J a** then clearly

(17) g(w - 2"" 21 atw-1) ! (wel) = 1 g
Here the coefficients cy are defined by carrying out the bi-
nom al products. Then

M2z gD =GP oL pi@d L i

2'" X3 a,(22)" (2)™' = f(z)

and (16) is verified.
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1 -4 6 -4 1 _
1 5 0 -2 1 algorithm:
bys.| = 1 0 -2 1 asb+c+d
1] 1 2 0 5 1 where
1 4 6 1 c d
a b

It is of some interest to note that
(21) det (vi;) = £22(A*1)/2

The correct sign here is left to the curiosity of some reader.

Lenma 4. A polynomal is a Schur polynom al of degree

precisely nif and only if the garma transformis a Hurwitz

pol ynom al of degree precisely n.

Proof. If g(w is a Schur polynomal then formula (16)
of Lemma 2 shows that f (z) cannot vanish if Re z > O but z/ 1
because |(z+l)/(z-1) | ~ 1 and (z-1)"f 0. Mreover formila (16)
gives f(l) = on’2 cn/ 0 so f(z) is a Hurwitz polynom al.
Conversely suppose f(z) is a Hurwitz polynomal then
formul a (.15) shows that if |w ~ 1 but wf 1 then g(w f O.
However g(l) = 2 a, " 0so this conpletes the proof.

These | emmas prove the follow ng theorem

Theorem | a. The sequence co,c.I,...'fcnwith cn’? 0 are

Schur_coefficients if and only if the seguence {aJ = ):3 C{.IJ}

are Hurwitz coefficients and a, f O.

By the idenpotent property this can also be stated as
Theorem I'b.  The sequence a,a,...,a wtha f 0 are

. . . . . n
[lurwitz coefficients if and only if the sequence {c.J = Z,J aiT”}

are Schur coefficients and cnf 0.
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7. The trapezoidal integration fornula

W have just seen that there is a corresp'ondence set up
between Hurwitz polynom als and Schur polynomals by a con-
formal mapping of Mobi us type. This raises the follow ng
question. Is there a nunerical integration scheme such. t hat
the sane correspondence exists between the differential equa-
tion and the approximating difference equation?

To investigate this question consider the trapezoidal

integration fornula

Jhu(x) ax & U(j) + Uu(0) h m
70 2

This is a special case of the nunerical integration formula (5)
where r * 1, kg = h/2, and k* = h/2. The operational formis

| (T-1)3 ¥ (h/2)7 (r+1)) DI
Then the differential equation fj a.J D'u = 0 is transformed
into the difference equation

maj(waj(nn“J(rniu-o.
The associated characteristic polynomal is
g(w =13 2"M2N, (wh)™ (wh)]

where A = 2”/2(h/2)11"-"-an_.3. Then g(w) is a gamm transform
of F(z) = £8 AJ Z’. Obviously, however, f(z) » ~ a:’z"' S

a Hurwitz polynomal if and only if F(z) is because

F(z) = 2"2z" f(h/2z) and h > 0.

Corollary 1. Suppose that the trapezoidal integration

formula is used. Then the resulting difference operator is

stable and of order precisely n if and only if the differential

operator is stable and of order precisely n.
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Proof. According to Lemma 4 the characteristic poly-
nomial g(w) is a Schur polynomial of degree precisely n if

and only if F(z) is a Hurwitz polynomial of degree precisely n.

n/2

But F(z) = 2 z™ f(h/2z) where f is the characteristic

polynomial of the differential operator. Clearly F(z) is
a Hurwitz polynomial of degree precisely n if and only if
f(z) is a Hurwitz polynomial of degree precisely n. This
completes the proof.

As an example of the above process let

2 3 4

f(z) = 2 + 3z + 8z + 4z7 + 4z ,

Taking h = 2 and neglecting constant multipliers gives

F(z) = 4 + 4z + 822 + 323 + Zz4 .

Using the y matrix tabulated above for n = 4 gives
g(w) = 7 - 6w + 20w - 1ow> + 21w" .

Both f and g are seen to be stable.
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8. Conservative integration formulae.

It has just been shown that the trapezoidal integration
formula preserves stability, This raises the question of
whether or not there are other integration formulae with the
same property. This question will now be treated by employing
a generalization of the MBbius conformal mapping.

Definition. Consider the integ;ation formula

+rh r
fx f(t)dt ¥ Zo k, f(x+mh)
X

and suppose that the associated polynomial p(w) = Zg kmwm
satisfies:

(1) If w' = 1 then p(w) is real and p(w) > 0.

(I1) 2p'(1) - rp(l) > 0.

Then the integration formula is termed ''semi-conservative'.

However, if (II) is an equality it is termed ''conservative'",

For example the trapezoidal formula corresponds to p(w) = (w+l)h/2.
So p(1) = h > 0 and 2p'(1) - rp(l) = 0 and it follows that the
trapezoidal formula is conservative. It is also of interest

to note that conservative formulae satisfy the symmetry con-
dition (7). The proof of this will be omitted.

Theorem 2a. If a stable differential equation is con-

verted to a difference equation by a semi-conservative

integration formula then the difference equation is stable.

Proof. Let the differential equation have characteristic

. n j . . .
function f(z) = ZO asz. Then the characteristic function of
the difference equation is

(21) gw) = 10 a. pw 1™ T,

J
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Lemma 5. If the hypotheses of Theorem 2 hold and

g(wl) = 0 then w{ - 14#0 and p(wl) # 0.
Proof., If w{ - 1 =20 then ao[p(wl)]n = ()., Since
£f(0) # 0 it follows that a, # 0 and hence p(wl) = 0 this
contradicts (I) so wi - 13# 0. On the other hand if p(wl) =0
T n _ r _ =
then an(w1 - 1)" = 0. But a, # 0 so Wy 1 0 and we have
just shown that this is impossible.

Now write g(w) in the form

(22) gw) = [p01" [ a; [;—%}]J -
By virtue of Lemma 5 it follows that if g(w1)= 0 then f(zl) = 9
where .
(23) z) = wp-1
B

moreover 2z, # 0. Now according to Theorem 4 of Appendix B

if |w1| > 1 then Re zil > 0. Thus Re zy > 0 which is a contra-
diction because the differential equation is aésumed to be
stable.

Theorem 2b. Suppose that a differential equation is

converted to a difference equation by a conservative integra-

tion formula with at least three non-zero coefficients., Then

the difference equation is stable if and only if the differen-

tial equation is stable.

Proof. If the differential equation is stable Theorem 2a
shows that the difference equation is stable. Thus suppose
the differential equation is unstable. Then f(zl) = 0 for
a z; such that Re zy 2 0. Then seek a w to satisfy the equa-

tion
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(24) zy p(W - W + 1 = 0,
By hypothesis there are three values of m for which km f 0,
Thus the above equation can be witten as
(25) (Zl kr nOA A HHe kI Zj ksWS +u#+(zi kO + 1) s 0
where kg~ 0 and r > s > 0. Thus this equation is at |east
of degree é > 0 so there is at least one solution, say w,,
It follows by (1)+(24) that p(m&) f 0. Thus divide (24)
by p to obtain (23). It now follows from Theorem 4 that
1M1 i * because Re 211 > °* Thus the difference equation
is unstable and the proof is conplete.

The following is an exanple of a conservative integra-

tion formula of degree 2.

h"* 1 f(t)dt =¥1.21 £(0) - .42 f(h) + 1.21 f(2h)
o' ¢

The associated polynomal is
h"t y(w) « 1.21 - .42w + 1.21 W
It is seen that conditions (1) and (I1) hold because p(l) > 0
and p(-1) > 0. Since 3TV/2 = 4.7 %2 (.21)"' one sees that the
formula is exact for a function of the form
f(t) =a+ bt +c cos (4.7t/h) + d sin(4.7t/h).

Thus the class of exact functions is not independent of the
mesh constant h. This appears undesirable froma practica
poi nt of viexv.

Simpson's formula is of degree 2 and lias the associated
pol ynom al p(w) = (1 + 4w + mF)h/3 however p(-1) < 0 so
condition (1) is violated. Thus Sinpson's rule is not con-

servative. Consequently a conservative formula of degree 2
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cannot be exact for quadratic functions.

The conservative integration fornulae of higher degree
are certainly of interest froma theoretical point of view
However, the two exanples just considered cast doubt on their
practical advantage over the trapezoidal formula. There are,
of course, various other nmethods for converting differential
equations into difference equations such as the Runge-Kutta
nmet hod and the Adans nethod. The choice of a nmethod for a
gi ven probl em depends on several factors but in any case

stability is one of the factors to be considered.
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Appendi x A. A characterization of Hurwitz pol yhom’ als.

The follow ng reduction theorem justifies the Al gorithnms
H: H,, and Hj.

Theorem 3, Let f(z) be a non-constant polynom al such
that f(0) >0, Let

h(Z) ' ££5'1 +(J+ |KZ) *<*\ *-g * N

z 2z2*
Then f(z) is a Hurwitz polynomal if and only if
(1) R ff(0) > 0
(rn h(z) is a Hurwitz polynomial when J Re f'(0) + f(0) - 0

and K is a real constant.

Proof. The proof will be based on the follow ng
modi fication of Rouche*s theorem

Lemma 5. Let F(z,X) be an analytic function of the conplex

variable z and a continuous function of the real variable X

Suppose that for 0 <" X < 1 the function F(z,X) does not vanish

on a finite contour C.  Then F(z,0) and F(z,1) have the same

nunber of zeros inside r.

Proof. Let N(X) be the number of zeros. Then

L}
N(A) = e fc_‘;,_ dz .

Clearly the right side is a continuous function of A hence
N(O) - N(I).

Lemma 6. Let f(z) be analytic on the immginary axis and

| et

Hz) - f(z) + (J + iKe)[£(2) - f*(-2)]/2z

where J and K are real constants. Let y be real but y 1 0
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then H(iy) = 0 if and only if f(iy) - O.

Proof, Let f(iy) =u + iv so f*(-iy) » u - iv and
H(iy) « U+ +ivwhere mis real. Thus Hiy) =0 if
and only if ues 0 and v ® 0.

Lerma 7. Let f(z) be a polynomial such that f(0) > 0

and Re f7(0) > 0. Let

A(J+iKz) [£(z) '_f*('z)]
z 2z*

where J Re ff(0) + f(0) » 0 and Kis real. Then there is

a positive constant e such that for 0 <" | z| <" e and for

Re z > 0and for 0 < X< 1the function h(z,A) f 0. Moreover

h(0,1) is finite.
Proof. Let us wite
f(z) = A+ (AL + iB)z + (A + iBy)z? +eee
where the A.J and B.J denote real constants. Thus
[f(z) - f*(-2)1/2z= A + iBoz + A3z? + iByz> +ees
Hence we have
h(z,X) = (Ap + XJA)z"* + (AL + i XIB; + i XK + iBl)

+ (A + XJAs - XK3, + jBanz t##x
For short let h(z,X) = h’\"z"1 + hg + h,z +eee . By hypothesis
Ap + XJIA, M 0. Thus

Re h(z, X) >" A + ReChj Z +ee+)
The coefficients h.J are uniformy bounded for 0 <* X < 1. Thus

Re h(z,X) A + 0]z

The proof clearly follows fromthis inequality.

Lemma 8. If h(z,X) is defined as in Lemma 7 then there

is an Rsuch that for h(z, X f O for_| z| >_Rand 0 <" X <M 1.
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Proof. Let a, be the leading coefficient of f(z) so:

*

a
AP 1 vk s (D™ 2]+ 0™h.

Z n
an

The constant term on the right may be written
1+ irK [1 + et®)
where eie= (-1)n a*n/an and 8 is real. Thus if this term
vanishes we have
1 + cos 8 =20 and 1 - \K sin 6 = 0,

Clearly these equations are contradictory for any value of A,
This shows that the constant term is bounded away from zero.
The remaining term can be made uniformly small by making R
large and the proof is complete,

Returning to the proof of Theorem 4 we first suppose that
f(z) is a Hurwitz polynomial. Then by Lemma 1 it follows
that Re £'(0) > 0 and so (I) holds. Thus J can be chosen to
satisfy J Re f'(0) + f(0) = 0 and conditions for Lemmas 6, 7,
and 8 hold. To apply the Lemma 5 take the contour C to be
the two semi-circles |z| = R and |z| = ¢ for Re z > 0
together with the segments of the imaginary axig'(ie,iR) and
(-ie,-iR). It follows from Lemmas 6, 7, and 8 that h(z,A)
does not vanish on the contour C. |

Lemma 5 now states that h(z) and f(z)/z have the same
number of zeros in C. Since € can be arbitrarily small and
and since R can be made arbitrarily large it follows that
h(z) has no zeros for Re z > 0, |z|] # 0. loreover the proof
of Lemma 7 shows that h(0) # 0. Thus h(z) is a llurwitz

polynomial.
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To prove the second part of the theorem suppose that
conditions (I) and (II) hold, then the conditions for
Lemmas 6, 7, and 8 are again in force and Lemma 5 applies
toAthe contour C just defined. Thus h(z) and f(z)/z have
the same number of zeros in C. Thus f(z) has no zeros in C
and since f(0) > 0 the proof that f(z) is a Hurwitz polynomial
is complete.

It is worth noting that the algorithm defined by Theorem 3
makes sense for transforming a power series f(z) into a
"reduced" power series h(z). Thus it may be possible to
extend Theorem 3 to hold for entire functions of zero type
as well as for polynomials,

To prove Algorithms Hl, “2’ and H3 the coefficients of
the series of h(z) must be evaluated. It is seen that h(z)
is the sum of three series:

. . . 2
(A1+1B1) + (A2+1B2)z + (A3+1Bs)z *eoo

. . 2
1J‘B2 + J Az z + iJ B4z +oes
. - . 2
lK A]. - K Bz Z + 1}\ ASZ “eoee
Separating real and imaginary parts gives
- - L2
h(z) = Al + (A2+JA3 KBZ)z + Alz toue
. 2
1[(B1+JB2+KA1) + Bzz+(B3+JB4+KA3)z +oue

Here J = 'AO/AI‘ Letting K = 0 and f1 = Alh give algorithm Hy
and Hz. Letting

, _ i 2
K = -(By*JB,)/A; = (AyB,-A B )/A]

]

and fl = Ai h gives Algorithm Hy .
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Appendix B. A conformal mapping related to numerical integration.

A mapping of the circle into the half-plane is given here
which is a generalization of the MBbius mapping.

Theorem 4. Let z = Q(w) be a mapping of the w-plane

into the z-plane where

Q(w) = Rl
wi-1

where p is a polynomial of degree r > 1 such that:

(D) If w' = 1 then p(w) is real and p(w) > 0.
(I1) 2p'(1) - rp(1)

0.

RY%

Then

(a) Rez >0 fw| > 1

if
(b) Re z > 0 if |w| = 1 and wh #1 .

Moreover if (II) is an equality then

() Rez =0 if |w| = 1 but w* # 1

(d) Re z < 0 lw|] <1 .

] e
Hh

Proof. Let w (s+1)/(s-1) and let q(s) = Q(w) so

(s-D pl(s*1)/(s-1)]
(s+1)T - (s-1)T

q(s) =

The denominator here is a polynomial of degree r-1. The
denominator vanishes when

_ w+l r _
s = o T and w =1 but w# 1.

Let these vanishing points be S1» SpseeesSy_q- They are
distinct and pure imaginary. The numerator of q(s) is a
polynomial of degree r. Thus by the Lagrange interpolation

formula we can write




r-1 C,
a(s) - As + B+ J_ - .
J

It is seen that A is defined by the limt
' A=1limqg(s)/s as s **s « .

But as s ¢*e °° we see that w+ 1 so
= 13 (w) f[w-11 _ p(1)
.A. llmh(m R:—f—b 0 -

Li kewi se we see.that B is defined by the limt
3=1lim[q(s) + q(-8)]/2 as s *>» .
Cearly q(-s) = p(wh/(w'-1) so
B = l|im2Xvs -Abr\X/\ s ow » 1.
2(w-1)
Applying L' Hopital's rule gives

B = 2p' (1) - rp(l) n 0
2r -

The residue CJ is defined as
Q » lira (s-s,) q(s) as s > s,
J J r J
(s-sj)(s-ll p
(s+1)T- (s-1)F

C =1lim
3

_A-shpw) el iBpow)

8 2r 2r

Since (w,)" =1 it follows that G > 0.
J J

The coefficients A, B, and CJ in the Lagrange formula
are non-negative and the poles are on the inaginary axis.
It follows that

Re g(s) >0 if RRs >0
(In the term nology of electrical network theory gq(s) is a

"positive real function®.)
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Since the coefficient Ais positive
Re gq(s) >0 if Res > 0.

But |w > 1 inplies Re s > 0 so statenment (a) is seen to
be proved. If |W « 1 but w” 1 then Re s « 0 and
statenent (b) follows.

If (Il1) is an equality then clearly

Regq(s) = 0 if R s =0 and s + sj
This is seen to prove (c). Again if (Il1) is an equality
Re q(s) <0 if R s <O0.

But Re s <0 if |wW < 1 so statenent (d) follows and the
proof is conplete.

The book by Kaplan in the following list of references
treats Iinear systens and their stability. The book by
Harden gives a survey of the general problem of root | ocati on
of polynom als. The book by Wall relates root Iocafion to
continued fractions. The book by Hazony rel ates polynom als
to network theory. The paper [1] treats the characteristic
pol ynom al of systens of differential equations and also the
characteristic pol ynom al of systens of difference equations.
The paper [2] treats filters for tine series and the under-
l'yi ng di fferential equati‘on and difference equation. The paper
[5] relates root location to determinants. |In paper [10] tfilf
applies a theorem of Schur to the stability to several integra-
tion methods. He indicates how the stability criteria have
approximate validity even for differential equations which

have variable coefficients or which are nonlinear.
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