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| nt r oducti on.

Suppose that a naterial has been subjected to a known
deformation and entropy history in the past so that energy has
been stored in it. Suppose too that sonme anmount H say, of
heat is available and that we subsequently take the nateri al
through a closed cycle in strain and entropy space in such a
way that the heat absorbed is precisely H This paper is

concerned with deternihing how much nechani cal work can be

recovered fromthe two sources of energy, the energy stored
in the material in the past and the heat absorbed, by taking
the material around a closed cycle and with finding those
cycl es which nmaxi mze the nmechanical work. In fact we wll
not admit to conpetition all the closed cycles which absorb
heat H Instead we suppose that two working tenperatures
6", 8 with 0< 0" < 9 are assigned and consider only

t hose closed cycles for which the tenperature |ies always
bet ween the assi gned wor ki ng tenperatures.

Thi s probl emhas, of course, been discussed in a great
many papers and texts on thernodynam cs since the work of
CARNOT [2]. The content of these works appears to me to be
the claimthat the maxi mumrecoverabl e nmechani cal work has

L

the value ( Z*rY—) H and that this amount of work can be

obtained only in Carnot cycles perforned 'quasi-statically* .
In this paper I showthat, nodul o a condition of regUIar-
ity on the material, the maxi mumrecoverabl e nmechani cal work

i s never less than the classical amount ( 3—3;“——)H and t hat

if the given strain and entropy histories are constant then
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t he maxi mum recover abl e mechani cal work does indeed have this
preci se value. Also the maxi numwork has this value for hyper--
elastic materials. However, | give an exanple of a materi al
with nmenory in which the maxi numwork exceeds the cl assical

val ue except for certain very special histories, for which it
has the classical value. Furthernore | construct two one-
paraneter famlies of closed cycles depending on a paraneter
A>0; the first famly ultimately éxtracts precisely the

g™ g:)H of mechanical work as A -« 0 and has

anount (
the interesti'ng feature that these cycles are traversed nore
and nore rapidly as A -« O rather than nore and nore slowy
or 'quasi-statically'. The second fam |y ultinmately extracts
all the recoverable nechani cal work and has the feature that
parts of the cycle are traversed nore and nore rapidly and

other parts nore and nore slowy as A -» O.




1. Preliminaries.

Throughout this paper the real numbers will be denoted by
R, the non-negative reals by R+ and the strictly positive
reals by R™*. on occasion, and where the context permits, we
speak of 'the time t' instead of 'the real number t'. The
derivatives of functions whose domain is an open subset of R
will be indicated by a superposed dot *. The symbol X stands
for a real finite dimensional inner product space, L(X) for
the associated inner product space of all endomorphisms of X

with inner product
T
4°'m = trace 4im (1.1)

and U € L(X) is an open subset. For the applications we
have in mind two examples are important. In the first, X is
the translation space of euclidean point space and U 1is the
set of all endomorphisms of X with positive determinant.
Any endomorphism in L(X) is a Eensof and endomorphisms in U
are to be thought of as deformation gradient tensors. The
second example arises in one-dimensional situations where we
identify X and L(X) with R and -U with R++.

We suppose that we have at our disposal a collection C

of pairs (¢,¥) of continuous and piecewise smooth functions

Q: rR" - U, ¢: R" - R with the properties

Cl constant functions are in C: if wueU and reR are arbi-

trary and (u*,r*) are the constant functions on RT  with

values u, r respectively then (u¥*,r*)eC,
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C2 C is closed under connection; if (¢,y)eC and the con-

tinuous and piecewise smooth functions ¢': R - U, P': rRT- R

have the property that there is a number 7T > O with

o' (t) = o(t-1) and P'(t) = P(t-1) for each t > T then
(o',9') eC.

A pair (¢,y¥)eC is called a history. If the conditions in

C2 hold we say that the history (¢',y') is a connectiOn of

the history (¢,¥) and we call it a closed connection of

(p,9) 1if the additional requirements ¢!'(0) = ¢(0),
P' (0) = $(0) are met. A particularly important example of

a closed connection of (¢,y) is its constant continuation

by amount T which is the history (@T,¢T) defined by set-
ting @T(t) = @o(t-T1), ¢T(t) = P(t-1) for t > T and
o, (t) = 0 (), o (t) = @(0) for 0Lt T.

If o is any function whose domain is R and teR is
any number we define the function at on R+ by at(s)= a(t-s)
and call a® the history of o up to t. Any pair of func-
tions (f£,n) with f: R~ U, m: R - R and such that (ft,nt)ec
for every teR will be called a process and we interpret £

and 7N as describing the evolution with time of the deforma-

tion gradient and the entropy, respectively, at a material

particle. For our purposes it suffices to define a material
as an ordered triple (E,S,® of functions E: C - R,

S: C - L(X) and ®: C - R with the property that, for each
process (£,m), the functions e: R - R, s: R - L(X), 6: R - R

with values

e(t) = E(£5,1%), s(t) =s(£5,05), 6(t) = @(5,05H (1.2)
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are continuous and piecewi se snmooth. The interpretation of
the functions e,s,9 is that they describe the evolution with

time of the internal eneraqgy, Pi ol a- Ki rchho'ff' stress and the

tenperature at the particle in the process (fAMf?) and the

functions E,S,© are the response functions for these quan-

tities. A very special exanple of a class of materials is

provi ded by the hyperelastic materials: a material (ES(9)
t _ 2

Is hyperelastic' if thereis aclass C function TI: UXR -« R

£
withpartial derivatives D TT: UXR-» L(X) and

[ﬂr: UXR— R such that, for each history (<p,0)€C
E<p,0) = 7((p(Q ,0(0)) , S(<p,0) =0~("(0),0(0)) , B0 =D,TT(<(0 , 0(0)) .
(1.3)

We say that the material has the energy relaxation Qrogertv' if,

given any history (cp, 00€C E(<p,0 )1_ -*E(cp(Q *, 0(0) *) as
r ->00, where (<9 1(j) ) is the constant continuation of (<, 0)
by amount r, defined previously, and (cp(0) *,0(0 *) 1is the
constant history with value (<p(O,0(Q) . Fromhere on, and
wi t hout further nention, we confine attention to processes with
6 > 0.

The (real-valued) _heat ﬂ_ux_': h: R- R needed to support

a process (f., 72 is given by the energy bal ance equation

h=2¢- s.f (1.4)

and the corresponding internal dissipation a: R-¢« R by

T The word Thyperelastic' is used here in a sense differing
fromthat of the treatise of TRUESDELL and NOLL [9].

¥

" O course the heat flux is given by h =div g+ r, where
is the heat flux vector and r the heat supply but we do not
use this expression. :




a=r1 -| . (1.9)

The definitions (1.4) and (1.5 are, of course, neaningful only

where the derivatives e, f, it exist. W make the convention

that if any of the derivatives e, f,, 77 does not exist at t€R

then we define e(t) =0, f(t) =0, rAt) =0, h(t) =0, a(t) =0.

The material wll pe assunmed conpatible with thernodynamcs in
the sense that a 5; O for every process (f,?? . Various
aut hors (see COLEMAN [ 3], COLEMAN and M ZEL [4], GURTIN [8];,
WANG and BOAEN [10]) have shown that the inequality or >A 0
follows fromthe C ausius-Duheminequality for extensive classes
of materials and in [7] | have shown how, for a broad class of
materials, this inequality may be deduced froma work axi om
Hyperel astic materials, as defined here, are trivially com
patible with thernmbdynam cs since for themthe internal dissi-
pation is identically zero.

Equations (1.4) and (1.5) tell us that if the material
is conpatible with thernmodynamcs and if f(t) =0 and rj(t) =0
at sone t€R then

é(t) = -6(t)cr(t) < O.

It follows that if (cp$€C is any history and
(<p"0r) is its constant continuation by anount

r t hen

Elo,$) > Elpp,¥,)

and thus, if the energy relaxation property hol ds,
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E(p,9) 2 E(9(0)*,9(0)*) (1.6)

i.e. among all histories ending with a given value (¢(0), $(0),

the constant histoxry (o (0)*, $(0)*) has the least

internal energy. This result and its proof are due to COLEMAN

[3].

For any process (f,7) and any closed interval [a,b]C€ R

we introduce the measurable sets

=" (a,b) = (te[a,b]|h(t) > O} v (1.7)
Z7(a,b) = {tela,b]|h(t) < 0O} (1.8)
Z(a,b) = {tela,b]|n(t) = 0}. (1.9)

If teZ(a,b) then equation (1.5) and the assumption of compat-

ibility with thermodynamics imply that h(t) = -8(t)o(t) <O
and so teXZ (a,b). 1In other words
Z(a,b) © Z "7 (a,b). (1.10)

We say that heat is absorbed on E+(a,b), heat is emitted on

L (a,b) and heat is emitted at constantT entropy on X(a,b).

The number

H(a,b) = | h > 0. (1.11)
=¥ (a,p)

will be called the heat absorbed on [a,b].

fOf course, the set Z(a,b) 1is not in general connected and
the restriction of 7 to ZXZ(a,b) need not, in fact, be constant.




2. Carnot Cycles. Reqular Materials. The Main Resul t,

Let (<p,0)eC be any given history ending with the final
value (<P(0), 0(0)), let 8%, 8" be any nunbers with 0 < 8" < 87,

call ed the upper working tenperature and the | ower working

tenperature, respectively, and let H> 0 be any positive

nunber. W consider processes (f,7?) for which the history
of (f,y) uptotime O coincideswith (g if)), which assunes
the value (9(0), 0(0)) again at sone later time r >0, for
whi ch the tenperature on [0, T] lies between the assigned

wor ki ng tenperatures and such that the heat absorbed on [0, T]
is H Mre precisely, the process (f*T]) is a (6 *¥8", 6 H)-
adni ssi bl e closed cycle for the history (g 0) oi the interval
[0, T] if (D (f,T) = (<p,0), (2 (F(D,r2Ar)) = (cp(0),<)(0)),
(3) for each te[Or], 9" < 8(t) < 9% and (4 HO,r) =H

O course, for a given history (<*0) and a given triple
(8 ,8",H there may be no admissible closed cycles. This hap-
pens, trivially, for exanple if we choose an upper worKking
| tenperature 6 < 8(0) = @(<$ or a lower working tenper-
ature 8" > 8(0) . |

If (f,T)) is an adnissible closed cycle on [0, T] the
mechani cal work done by the material in this cycle is - J s»f
G ven the history (g 0) and the triple (8+,8~_,I-9 ve ©wish
to determ ne the maxi mum val ue taken by the mechanical work in
adm ssible closed cycles and to find those closed cycles which
maxi m ze the mechanical work. = Wth these ains in mnd we

define the maxi mum nechani cal work recoverable fromthe hi st ory




- 4
{p,9) in (9+,9 ,H) - adm ssible closed cycles' to be

W(<p,0,0%, 0~H) = sup[-JTs-f' | (ET) is a (6%, 0'"H)-admissible
° closed cycle for (<p,j)) on some

interval [O,T]f1 s

(2.1)

whenever the set appearing on the right side of (2,1 is not
enpty.

It is convenient to introduce, for each (8f o~ H -
adm ssi bl e closed.cycle on [0, T] the, possibly enpty, neas-

urabl e sets

ir'(Qr) = {t€[QT | 6(t) =97}, 1TTM(0T) = {t€[Or]|6(t)= 6}
(2.2)

on which the working tenperatures are attained. In ternms of
these sets we define an inportant subclass of the adm ssible
cl osed cycles - the Carnot cycles. A (9 TO~"_,FD- adm ssi bl e

cl osed cycle for (g 0) on the interval [0,r] is a Carnot

cycle if

(1) heat is absorbed only at the upper working tenperature i.e.
S'(Or) cir*(Or), (2.3)

(2) heat is emtted either at the | ower working tenperature or

at constant entropy i.e.

27(0, T) ¢ 7r"(Qr)U s(o, 1) . (2.4)

T The terninology *maxi mum recoverable work! was introduced in
a purely mechani cal context by BREUER and ONAT [1]. See also
DAY [5] , [6] and [7] .
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Before stating our main result we introduce a particular
class of materials, the regular materials. To motivate the
definition we note that for a hyperelastic material the final
value e(T) of the internal energy at the end of a closed
cycle on [0,T] coincides with the starting value e(0). 1In
addition the internal dissipation o0 = O and so ITG = 0.
Regular materials are materials close to being elasgic in the
following special sense: a material (E,S,®) is reqular if
it is compatible with thermodynamics and if, given any history
(0,¥) C, given any pair (9+,6_) with 67 < 6(0) =69(¢,¢)§_6+,
given any H > O and given any € > O there is a (9+,9“,H)-
admissible Carnot cycle fér (p,¥) on some interval [O,T]
such that e(7) < e(0) + ¢ and JTG < €. For hyperelastic
materials regularity is equivalentoto the existence of at
least one (6+,9—,H)- admissible Carnot cycle for each history

(p,¥) . An example of a regular material which is not elastic

is discussed in section 3. We turn to proving our main result.

Theorem. Let (E,S,®) be a reqular material. f (0,0) eC

is any history and (6+,9_,H) is any triple with 0 < 87< @(p,y) < M

and H > O then the maximum recoverable mechanical work has

the lower bound

ot_ o~

Wip,,0%,07,m) > ( = )H. (2.5)

The inequality sign in (2.5) can be replaced by equality if

the material has the energy relaxation property and if (o, )

is a constant history.




Proof. If (£,7n)

for the history

(0, ¥)

~-11-

on some interval [O,T]

is any (9+,9—,H)— admissible closed cycle

then the

energy balance equation (1.4) and the observation that

= (0,7) U Z7(0,T) =

- £

s

o

Now

and substituting for

[ n

Z"(0,T)

[n

Z (0,7

e (0) -

e (0) -

o

Z(o,T)

5=

[0,T] together imply

e(r) + J‘h+ Ih
=t (,r) Z (0,7

e(t) + H + f h
Z(o,7)

(2.6)

[ @-ev/en+0 | nse
(0,7 Z"(0,T1)

-6/0n -6 [o 40
Z (o,7)

In a similar way we can also deduce that

a- [

= (o0, 1)

which implies

[ 7

Z (o,1)

[a-even-06" [0

Zf*'(o,'r)

=¥ (0, 1)

+ 176F j(l _ot/e)n +
z (o, T)

h/6 from equation (l1.5) gives

) f n . (2.7)
Z (0,7)

+ 6F I n

=t (0, 1)

Jo. e
=t (0, 1)
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Substituting for J“T3c fromequation (2.8 into (2.7) and
s(am
then substituting for J h from (2.7) into (2.6) produces
E~(O, T)
the key identity

T + - .'r
Jsf = (~23H+e(0)- e(T)- B~\ a
(0] 0]

oj
- (2.9)
i J(L-97e)h+ J(1- 8/8h,
Y 2T(0,T) S"(0, T)
whi ch hol ds for all (8+, 8~, H)- adm ssible closed cycles on
[ T]. In the particular case of a Carnot cycle 8=6" on

L*(o, T) and L"(O, T) = (TT~(O,T) n L"(03r)) UL(O, r) where
8 s 8" on ir"(Qr) nE"(O,r) and f; s 0 on 2(0,T) and

the identity (2.9) reduces to the identity

st = (et Hee(0)- o(T)- 8'J« - Jda
© o [O, T]"E(O, T) £(0,T)
(2.10)

Gven any e > 0 the regularity of the material enabl e? us
' [
to choose a Carnot cycle with e(r) <e(0) + e and J a < e.

0
For this Carnot cycle

™

T
0<8 j a + J8& < (8 +8)Ja< (8 +8)e,
[0, TNL(O, T) Z(0,T) °

and the identity (2.10) inplies that

T -
_J‘ gef > (‘% H- (1 + 87 + 9+)'<-: ,
o
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fromwhi ch we deduce, since e >0 is arbitrary, that

V\(<p!<M+16'1H) Z (9 !g)H'

To prove the remainder of the theoremwe return to the
identity (2.9) . On the set £*(0,T) we have h > 0, by
definition, and so (1 - 3h <0 on Z%Qr) . In the sane
way (1 - -"g-) h<~0 on E-—~(0T) . Onnoting in addition that
a>" 0, since conpatibility with theinnodynamcs is assuned, we

deduce from (2.9) that

T + -
[ s-f < (*—~23H + e(0) - e(r), (2.11)
Jo 6"

for all (9+,9~,H)- adm ssible closed cycles on [O,r]. In

the case where the material has the energy relaxation property
and (g, ij)) 1is aconstant history the history (f ,77) ends
with the value ((p(0), 0(0)) and thus the inequality (1.6)
inplies that e(r) > e(0). It follows from (2.11) that

+ ot _ 9~
W<p|016 ,E',H) 5 (""'"'é'_'!'_'""_)H-

If the material is also regular the first part of the theorem

appl i es and consequently

W(p, <), e, 9" H < (—QtHQ'H. QE. D,
. 9

HUNT  LIBRARY
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It should be recorded too that equality holds in (2.5)

for reqular hyperelastic naterials. To see that this is so

note that the inequality (2.11) and the assunption of hyper-
‘elasticity, which inplies e(r) = e(0), together yield

+ _

w(cp, <M, e-, H < 9 H
€
The assunption of regularity tells us that the first part of

the theoremis applicable and the result followse
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3. An Exanple of <a Reqular Material,

This section is devoted to discussing a sinple exanple of
a one-di nensional regular material which is not elastic and for
whi ch the maxi num nechani cal work recoverable froma history
can be conputed explicitly.

Since we are dealing with the one-di nensi onal case we
identify X and L(X) wth R and identify U with R,
As the class of histories C we take the collection of all
pairs (u*)) wth cp B -» R’ any continuous piecew se snpoth

function with L e~'<p(u)du < oo and with 0: R -» R any con-

0
ti nuous and piecewi se snooth function. Then the conditions

C and C2 on C hold. The material with which we are con-

cerned is the triple of response functions (E*S'<9 ) defined

by
~00
Ep, ) = 2(el0) - joe'éb(u) du? +>%(0)$(0) + 2 cp(0)?]
0
S{p,¥) = <Pp(0) - J e"“cp(u)du + kO(O) >(3.1)
o} .
@((D,!.U) = k<p(OQ + c (0), )
where k,c > 0 are constants. 1In other words if (f,?7) is a
process and we define the function £ R —R by witing
.t
E(t) = f(t) - e e'f(u)du (3.2)
-0

then the evolution with time t of the internal energy, stress

and tenperature is given by
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e(t) = 2 E(B)% + kE(E) N(t) + 5 en(b)? (3.3)
s(t) = £(t) + kn(t) (3.4)
B(t) = KE(t) + en(t). (3.5)

As before, we restrict attention to processes with 6 > 0. We

prove the following propesition:

Proposition. The material defined by equations (3.1) is

reqular and it has the energy relaxation property. If the

history (¢,9)eC and the working temperatures 6',9+ satisfy

the inequalities

@
6" <k min(w(O),J e_uw(u)du) + cy(0)
o

6t > x P -u
> k max(0(0),] e Vo(u)du) + cy(0)
(@]

then the maximum mechanical work recoverable from the history

(p,¥) - in (9+,6—,H)— admissible closed cycles is

+ - oo -
+ - 6 -6 1 -
Wie,$,6%,07,m = = + e -] eTo@an?
o

Proof. A straightforward computation using equations (1.4),
(1.5),(3.3),(3.4) and (3.5) shows that the internal dissipa-
tion 00 is given by 60 = §2 and so compatibility with thermo-
dynamics is assured.

We establish regularity in the following way. For each A
H 1,0 2 1/2
(z - g H Y2,
the one-parameter family of processes (fx,n%) on the interval

in 0 < A < 4Hc?/(x61)2 set a(n) = Define

(-00,5N] Dby setting (fi,ni) = (p,¥) , which defines (fk’nk)
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on (-00,0], by setting

® t
£ (t) = joe pla)du + & (£) + foﬁ)\(u)du (3.6)
where
© _u -t 1+ 1 -t
(000 - [ e pmian e ™+ £(6"- B, 1516, o<tz
(o)
+
L 6O+ %—% a a(?x)tang—(%%_-)-(t-%)
_%-kg.l- —k , A<t <2
1 - E'l(T) (&, () + %kg )taucl‘:;l‘) (t-1)
£y (t) =# (3.7)
§, (2N e 5 2672 N E-ePh , 22 < t < 3
g, 3N (5, - £ (2 E @Y , 3 <t < 4
6, (4N e C L(@(p,9) - 0731 , 4N S £S5
and by setting
(«b(O) , 0<t<A
1l o+
o (07 k£, (t)) » A<t <2
n, (£) = <.11>\(2?\) , 2r <t < 3n  (3.8)
T 7, (20 (4A-t) + & p(0) (t-30) , 3 <t < 4
ktb(o) , 4N < t < 5

It should be noted that equation (3.6) results on solving the




-18-

equation
-t t u
£, (t) = £ (t)- e Loe £, (u)du.

subject to the condition fi = ¢. It should be noted too that
there is a uniform bound K with |£x(t)l < K for all t in
0 <t < 5N and for all suitably small A.

Straightforward but tedious computations elicit the fol-
lowing facts about the family (fx’"x)' First of all the

corresponding temperature is piecewise linear on [0,5A] and

has the values

(%@(w,:b) (A-t) + A6t » 05t <A
gt , A<t <2
6, (t) = ﬁ% 6% (3n-t) + 3 67 (t-22) , 22 < t < 3N (3.9)
9- , 3N < t < 4
\-i- (e, P) (t-40) + = 67 (5h-t) , 4N <t < 5.

Thus 67 < 6, < 6t on [0,5\] and 6, (50) =@(o,¥) = 6, (0).

Since nx(SK)

P(0) = nx(o), equation (3.5) tells us that
fk(Sx) = fk(o) = ¢(0) i.e. the process (f%,nk) is closed
on [0,5\]. Secondly the heat flux h, = e%hk - gxz is

found to have the values
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ANCE L 0<t <A
IA+H A<t < 2A
hy (t)=< NCE L 2A<t < 3A (3.10)

1 |
F®©) - n, (2A) - l;,\(t)Z . 3A <t < 4A

' 2
-6, () , 4N < t < BA

Thirdly, as A-*0+,

M

§M) ~ @) - e “cp(u)du + £(0° -$>(<p,0)) (3.11)
0
rOO_u I + ) .

S L 90 - be pudsc@ -ap® e O
p00

£, (5N} - <p(0) - | e~'<p(u)du = §, (0). (3.13)

0

It now follows from (3.6), (3.11) and (3.12) that

2N
?\(u)du-o - as A - O+,

fo(2A)- fa(A) = & (20 - & (\) +J e

A

and, since 7™ (A =ijHO and 0" (A = 97\(2A)
(3.5 inplies

6%, equation

T2 = 12%(A)- | (Ta(28)- £,(0)) = p(O)+ ‘;+ >0(Qsg as A- 0+,

Thus, for small enough A 77,A(2A) > j>(0) and the expression
(3.10) for the heat flux tells us that h* <0 on [3A 4A].

On exam ning (3.10) we see that in t he process (f-v.fk), with
A A
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A suitably small, heat is absorbed on the set £+'(0, 5A) =(A 270,
emtted on the set ZT(0,5A) =[0,A U[2A 5A] and emtted at
constant entropy on the set £(0,5A) =[0, A]U 2A, 3A] U[ 4A 5A] .
Furthernore the heat absorbed is H(0,5A) = ;FfAr:, = H and

the working tenperatures are attained on the sets

TT'(O,5A) =[A, 2A] and T (Q 5A) =[3A,4A] . The conditions

£°(Q 5?0<= 17*(0,5A) and 2T(Q 5A) ¢ T7-(Q 5A) U §(0,5.) are net

and so, for snmall val ues of A. each of the processes (f..sIK)
A A
is a (6+, 0", H) - admi ssible Carnot cycle for the history

{o,9)eC on the interval [O,5A].
For this famly of Carnot cycles equation (3.13) tells
us that £.,(54) -* €\ (°) ancx sox fromequation (3.3), the

i nternal energy e, Mnust satisfy
e) (54) —2e(0) = 4(<p(0) - § e-Y(p(u)du) 2 + ko (0) $(Or+ 3 cp(0) 2,

as A-» 0+. Thus to establish regularity it suffices to prove

that the integral of the internal dissipation

) a. -40 , as A —0+.

o) A

Since 9" 5 6, < 9 on [05A] and q. :i;?—AAﬂZ it is

sufficient just to show

ro\ 2

o £* 20, as A-—»0+.

& A
and this is clearly the case since (~(t) | <K for all
te[0,5A] and all suitably small A,

Bef or e proceedi ng further we pause to observe that the

identity (2.10) and the regularity of the material inply that
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Ao,
-15 s?\f - (—=—)H, as A~ O+, (3.14)
o

that is to say the famly of Carnot cycles (f. hr\;\A ultimately
extracts the classical anmount of nmechani cal work and these
cycles are traversed nore and nore rapidly as A -> 0+.

The verification that the material has the energy rel ax-
ation property is trivial and so we turn® finally® to show ng
that the maxi num recoverabl e mechani cal work does indeed have
the val ue stated provided the working tenperatures neet the

required conditions. To do this we construct Carnot cycles
4 -
8" 9

g

al so the nmechani cal work stored in the history (< 0) . Con-

extracting not just the classical amunt ( )H but

sider the famly of processes (f, ;\ rji!',) defined by setting

(£, (¢) , -co <t < 5A

= @(0) (6A-t)+ f( | e"p(u)du) (t-54) , B5A<t < 6A

£ (t) = 0
A © . .
J e~"<p(u)du , BA <t L 6A+ Y
Q
1 lan] .
\ M (0) (£-67-) + MI e"Y<p(u) du) ( 6- K+*-t),
o i
1 2
6 + iy <t < 6A+ n
and
n}\(t) , -CO <t < 5A
n, (t) = ,,
U o) ., BASt <6A+E»

wher e (f’;\’?7}\) are as defined previously. Cearly f'?\(GA + rg =
0
<P(O, ~(6A+].) =0(0) and the heat flux h"= -(9?\57\2 S




2
A

[GA/6A + r-] . Also the stated conditions on the“work*ng tem
peratures<«and equation (3.5) inply that 0" <9 ;<6 on

A AA
[6X,6A + r-] and so the processes (fJ*TjJ) forma famly of

(9. , 8".,H - admi ssi ble Carnot cycles for the history (tpgty) on

_ 2
the interval [06A + r-] , for small enough A. It can be
A
verified too that
J.6A+| . I67\+-?-2\- ,
- sif = - (§, + kp(0)) £
sn M A 5A A
6A+2
= _J‘ )\ eff'
) ATA

(o (0) fe o) du) ( fﬁ}\e?\ - xfmﬁe?\)

6A&r-

- %{@(0) = J°é~“<p(u)du)2, as A - O+. (3.15)
0]

Conbi ni ng equations (3.14) and (3.15) tells us that

2
GAk +  g- @
O g s (=8 4 Lip (o) - Fe-Yp(u)du) 2
o ) o
and so
+ - =
Wip,b,0%,07,m > E=2" ; e+ (< 0)- . Je-Yplnyaw?. (3.16)

Howeverj the converse inequality to (3.16) also holds and for
the followng reason. Let (f.,77) be any (9 f9""_Jﬁ- adm ssi bl e
cl osed cycle for {<p,ij)) onsoneinterval. For the materi al

consi dered. here

O
e(0>-e(r) =] €% 2EM? < 4; (02 = | 0O - [ ey () dup?
(o]
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and so the inequality (2.11) tells us that

QO

+ -
W(p, 9,607,070 < (i-?rﬁ-)H + %(w(O)- j e % (u) du) %, (3.17)

(o)

which, together with (3.16), implies the required result. Q.E.D.
As mentioned in the introduction, the family of Carnot
cycles (fx,nk) on [0,5A] 1is traversed faster and faster
as A - O+ whilst the family (fi,ni) is traversed faster
and faster on [0,6A] and more and more slowly on
[61, 6M+3] .
It would clearly be of considerable interest if, for a
large class of materials with memory, regularity could be
established, the maximum recoverable mechanical work evalu-

ated explicitly and cycles maximizing the mechanical work

constructed.
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