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Introduction.

Suppose that a material has been subjected to a known

deformation and entropy history in the past so that energy has

been stored in it. Suppose too that some amount H, say, of

heat is available and that we subsequently take the material

through a closed cycle in strain and entropy space in such a

way that the heat absorbed is precisely H. This paper is

concerned with determining how much mechanical work can be

recovered from the two sources of energy, the energy stored

in the material in the past and the heat absorbed, by taking

the material around a closed cycle and with finding those

cycles which maximize the mechanical work. In fact we will

not admit to competition all the closed cycles which absorb

heat H. Instead we suppose that two working temperatures

6", 8 with 0 < 0" < 9 are assigned and consider only

those closed cycles for which the temperature lies always

between the assigned working temperatures.

This problem has, of course, been discussed in a great

many papers and texts on thermodynamics since the work of

CARNOT [2]. The content of these works appears to me to be

the claim that the maximum recoverable mechanical work has

the value ( — z r — ) H and that this amount of work can be

obtained only in Carnot cycles performed !quasi-statically* .

In this paper I show that, modulo a condition of regular-

ity on the material, the maximum recoverable mechanical work

is never less than the classical amount ( — ^ - — )H and that

if the given strain and entropy histories are constant then
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the maximum recoverable mechanical work does indeed have this

precise value. Also the maximum work has this value for hyper-

elastic materials. However, I give an example of a material

with memory in which the maximum work exceeds the classical

value except for certain very special histories, for which it

has the classical value. Furthermore I construct two one-

parameter families of closed cycles depending on a parameter

A > 0 ; the first family ultimately extracts precisely the

8"*"- 9~
amount ( — )H of mechanical work as A -• 0 and has

?the interesting feature that these cycles are traversed more

and more rapidly as A -• 0 rather than more and more slowly

or !quasi-statically!. The second family ultimately extracts

all the recoverable mechanical work and has the feature that

parts of the cycle are traversed more and more rapidly and

other parts more and more slowly as A -» 0.
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1. Preliminaries .

Throughout this paper the real numbers will be denoted by

R, the non-negative reals by R and the strictly positive

reals by R . On occasion, and where the context permits, we

speak of !the time t» instead of !the real number t!. The

derivatives of functions whose domain is an open subset of R

will be indicated by a superposed dot • . The symbol X stands

for a real finite dimensional inner product space, L(X) for

the associated inner product space of all endomorphisms of X

with inner product

T
t*m = trace tm (1.1)

and U c L(X) is an open subset. For the applications we

have in mind two examples are important. In the first, X is

the translation space of euclidean point space and U is the

set of all endomorphisms of X with positive determinant.

Any endomorphism in L(X) is a tensor and endomorphisms in U

are to be thought of as deformation gradient tensors. The

second example arises in one-dimensional situations where we

identify X and L(X) with R and U with R++.

We suppose that we have at our disposal a collection C

of pairs (<p̂  0) of continuous and piecewise smooth functions

<p:R - U, 0: R -» R with the properties

Cl constant functions are in C: if ueU and xeR are arbi-

trary and (u*,r*) are the constant functions on R with

values u, r respectively then (u*,r*)GC,
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C2 C is closed under connection: if ((p^)eC and the con-

tinuous and piecewise smooth functions <p! : R -• U, 0* : R -• R

have the property that there is a number T > 0 with

<pt (t) = <p(t-r) and 0» (t) = 0(t-r) for each t >_ r then

(<PM|)')eC.

A pair (<p, 0) €C is called a history. If the conditions in

C2 hold we say that the history (<p!,*/)f) is a connection of

the history (cp, 0) and we call it a closed connection of

(<p_,$) if the additional requirements <p! (0) = <p(0) ,

0i(o) = 0(0) are met. A particularly important example of

a closed connection of (<p, 0) is its constant continuation

by amount T which is the history (<p , 0 ) defined by set-

ting <pr(t) = <p(t-T) ,, 0r(t) = 0(t-T) for t >_ r and

<PT(t) = <p(0), <pT(t) = cp(O) for 0 < t < T.

If a is any function whose domain is R and teR is

any number we define the function a on R by a (s)= a(t-s)

and call a the history of o. u£ to_ t. Any pair of func-

tions (f,v) with f: R - U, 77: R - R and such that (f^rj^eC

for every teR will be called a process and we interpret f

and 77 as describing the evolution with time of the deforma-

tion gradient and the entropy, respectively, at a material

particle. For our purposes it suffices to define a material

as an ordered triple (E,S,@) of functions E: C -• R,

S: C -* L(X) and (3): C -• R with the property that, for each

process (f,7?), the functions e: R -» R, s: R -> L (X) , 0: R -» R

with values

e(t) ^Eift,^), s(t) =8(^,1?*), 9(t) = ®{£*9rF) (1.2)
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are continuous and piecewise smooth. The interpretation of

the functions e,s,9 is that they describe the evolution with

time of the internal energy, Piola-Kirchhoff stress and the

temperature at the particle in the process (f̂ f?) and the

functions E,S,© are the response functions for these quan-

tities . A very special example of a class of materials is

provided by the hyperelastic materials: a material (E,S,(9>)

t 2

is hyperelastic' if there is a class C function TT: UXR -• R

with partial derivatives D,TT: UXR -» L(X) and

Dpir: UXR—*R such that, for each history (<p,0)€C,

E(<p,0) = 7f((p(O) ,0(0)) , S(<p,0) = 0^(^(0) ,0(0)) ,<3>(<p,0) = D2TT(<O(O) ,0(0))

(1.3)

We say that the material has the energy relaxation property if,

given any history (cp,0)€C, E(<pT,0 ) -* E (cp(O) *, 0 (0) *) as

r -> oo , where (<p , 0 ) is the constant continuation of (<p, 0)

by amount r, defined previously, and (cp (0) *,0(O) *) is the

constant history with value (<p(O),0(O)) . From here on, and

without further mention, we confine attention to processes with

6 > 0.

The (real-valued) heat flux' h: R - R needed to support

a process (f.,7?) is given by the energy balance equation

h = e - s.f (1.4)

and the corresponding internal dissipation a: R -• R by

' The word Thyperelasticf is used here in a sense differing
from that of the treatise of TRUESDELL and NOLL [9].

' Of course the heat flux is given by h = div q + r, where q
is the heat flux vector and r the heat supply but we do not
use this expression.
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a = rj - | . (1.5)

The definitions (1.4) and (1.5) are, of course, meaningful only

where the derivatives e, f, it exist. We make the convention
• • •

that if any of the derivatives e, f, 77 does not exist at t€R

then we define e(t) = 0, f (t) = 0, r?(t) = 0, h(t) = 0, a(t) = 0.

The material will be assumed compatible with thermodynamics in

the sense that a >_ 0 for every process (f,??) . Various

authors (see COLEMAN [3], COLEMAN and MIZEL [4], GURTIN [8];,

WANG and BOWEN [10]) have shown that the inequality or >^ 0

follows from the Clausius-Duhem inequality for extensive classes

of materials and in [7] I have shown how, for a broad class of

materials, this inequality may be deduced from a work axiom.

Hyperelastic materials, as defined here, are trivially com-

patible with thermodynamics since for them the internal dissi-

pation is identically zero.

Equations (1.4) and (1.5) tell us that if the material

is compatible with thermodynamics and if f (t) = 0 and rj(t) = 0

at some t€R then

e(t) = -6(t)cr(t) < 0.

It follows that if (cpj$)€C is any history and

(<pT^0T) is its constant continuation by amount

r then

and thus, if the energy relaxation property holds,
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E(<p,</)) > E (9(0)*, 0(0)*) (1.6)

i.e. among all histories ending with a. given value (<p (0) , #(0) ,

the constant history (<p(0)*, 0(0)*) has the least

internal energy. This result and its proof are due to COLEMAN

[3] .

For any process (f,r?) and any closed interval [a,b]c: R

we introduce the measurable sets

S+(a,b) = {t€[a,b]|h(t) > 0} (1.7)

2T(a,b) = (t€[a,b]|h(t) < 0} (1.8)

L(a,b) = {te[a,b] \rj(t) = 0 } . (1.9)

If teE(a,b) then equation (1.5) and the assumption of compat-

ibility with thermodynamics imply that h (t) = -8(t)a(t) <_ 0

and so t€£~(a,b) . In other words

L(a,b) c L"(a,b). (1.10)

We say that heat is absorbed on L (a,b), heat is emitted on

L""(a^b) and heat is emitted at constant' entropy on L(a,b) .

The number

H(a,b) = J h > 0. (1.11)
S+(a,b)

will be called the heat absorbed on [a,b].

' Of course, the set L(a,b) is not in general connected and
the restriction of rj to S(a,b) need not, in fact, be constant,
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2. Carnot Cycles. Regular Materials. The Main Result,

Let (<p,0)eC be any given history ending with the final

value (<P(0), 0(0)), let 8+, 8" be any numbers with 0 < 8" < 8+,

called the upper working temperature and the lower working

temperature, respectively, and let H > 0 be any positive

number. We consider processes (f,7?) for which the history

of (f,y) up to time 0 coincides with (<p, if)) , which assumes

the value (<p (0) , 0(0)) again at some later time r > 0, for

which the temperature on [0,T] lies between the assigned

working temperatures and such that the heat absorbed on [0,T]

is H. More precisely, the process (f̂ Tj) is a (6 ,8",H)-

admissible closed cycle for the history (<p, 0) ori the interval

[0,T] if (1) (f°,T?°) = (<p,0), (2) (f(T),r?(r)) = (cp(0),</)(0)),

(3) for each te[O,r], 9" < 8(t) < 9+, and (4) H(0,r) = H.

Of course, for a given history (<p*0) and a given triple

(8 ,8",H) there may be no admissible closed cycles. This hap-

pens, trivially, for example if we choose an upper working

temperature 6 < 8(0) = @ (<pj$) or a lower working temper-

ature 8" > 8 (0) .

If (f,T)) is an admissible closed cycle on [0,T] the

mechanical work done by the material in this cycle is - J s»f .

Given the history (<p, 0) and the triple (8 ,8~_,H) we wish

to determine the maximum value taken by the mechanical work in

admissible closed cycles and to find those closed cycles which

maximize the mechanical work. With these aims in mind we

define the maximum mechanical work recoverable from the history
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- admissible closed cycles ' to be

W(<p,0,0+, 0~,H) = sup f - J s - f | (£,T)) is a (6 + , O '^H)-admiss ible
° c losed cyc l e for (<p,ij)) on some

i n t e r v a l [O,T]h

(2.1)

whenever the set appearing on the right side of (2,1) is not

empty.

It is convenient to introduce, for each (8 , 0~,H) -

admissible closed cycle on [0,T] the, possibly empty, meas-

urable sets

ir+(O,r) = {t€[O,T] | 6(t) = 9+}, TT"(O,T) = {t€[O,r]|6(t)= 6-}

(2.2)

on which the working temperatures are attained. In terms of

these sets we define an important subclass of the admissible

closed cycles - the Carnot cycles. A (9 ,0~"_,H)- admissible

closed cycle for (<p, 0) on the interval [0,r] is a Carnot

cycle if

(1) heat is absorbed only at the upper working temperature i.e.

S+(O,r) c ir+(O,r), (2.3)

(2) heat is emitted either at the lower working temperature or

at constant entropy i.e.

2T(0,T) c 7r"(O,r)U S(O,T) . (2.4)

I The terminology *maximum recoverable work1 was introduced in
a purely mechanical context by BREUER and ONAT [1]. See also
DAY [5] , [6] and [7] .
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Before stating our main result we introduce a particular

class of materials, the regular materials. To motivate the

definition we note that for a hyperelastic material the final

value e(T) of the internal energy at the end of a closed

cycle on [0,r] coincides with the starting value e(0) . In

addition the internal dissipation a = 0 and so cr = 0.
Jo

Regular materials are materials close to being elastic in the

following special sense: a material (E,S,<9>) is regular if

it is compatible with thermodynamics and if^ given any history

(cp,0)eC, given any pair (0+,0~) with 9" < 9(0) =(3>((p, 0) < 0+,

given any H > 0 and given any e > 0 there is a (0 , 0",H)-

admissible Carnot cycle for (<p, 0) on some interval [0,r]

such that e(r) < e (0) + € and J a < e. For hyperelastic
o

materials regularity is equivalent to the existence of at

least one (0 , 0~jH)- admissible Carnot cycle for each history

(<p,0) . An example of a regular material which is not elastic

is discussed in section 3. We turn to proving our main result.

Theorem. Let (E,S,<8>) be a regular material. If (0,1b) eC

is any history and (0 ,8 ,H) iŝ  any triple with 0 < 0~< <9>(<p, 0) <_ 0

and H > 0 then the maximum recoverable mechanical work has

the lower bound

+ 9 9 (2.5)

The inequality sign in (2.5) can be replaced by equality if

the material has the energy relaxation property and if (<p, 0)

is c* constant history.
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Proof. If (f,T?) is any (0 ,8~,H)- admissible closed cycle

for the history (<p,0) on some interval [0,T] then the

energy balance equation (1.4) and the observation that

L +(O,T) U L"(O,T) = [0,T] together imply

-J s-f = e(0) - e(T) + J h + J h
° £+(0,T) 2T(O,T)

= e(0)- e(r) + H + J h . (2.6)

£"(0,r)

Now

Jh = J (1 - 6-/6) h + 9" J h/6
L"(O,r) S"(O,T) S"(O,T)

and substituting for h/8 from equation (1.5) gives

J h = | (1 - 6~/6)h - 6' J a + 6" J ̂  . (2.7)
L~(O,r) 2T(0,T) S"(O,r) S'(O,T)

In a similar way we can also deduce that

H = J h = J ( l - B+/6)h - 9+ J a + 6+ J ̂  ,
L+(O,r) 2^(0,7) S+(O,r) +

which implies

J * - J ̂ - J H
E"(0,T) ° L+(O,T)

= - H/e+ + i / e + J a - e + / e )h + J cr # ( 2 . 8 )
L+(0,T) L+(O,T)
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Substituting for J Tf from equation (2.8) into (2.7) and

S"(O,T)

then substituting for J h from (2.7) into (2.6) produces

E~(O,T)

the key identity

-J s-f = (6 - 9 )H + e(0)- e(T)- B~\ a
o 0 o

(2.9)

+ i_ J (1 - 9+/e)h + J (1 - 8-/8)h ,
y 2T(0,T) S"(O,T)

which holds for all (8 , 8~,H)- admissible closed cycles on

[OjT]. In the particular case of a Carnot cycle 8 = 6 on

L +(O,T) and L"(O,T) = (TT~(O,T) n L"(03r)) UL(O,r) where

8 s 8" on ir"(O,r) nE"(O,r) and f; s 0 on 2(0,T) and

the identity (2.9) reduces to the identity

-JTs.f = (6 ~+
6")H + e(0)- e(T)- 8"J<r - J da

[O,T]^E(O,T) £(0,T)

(2.10)

Given any e > 0 the regularity of the material enables us

rr

to choose a Carnot cycle with e(r) < e(0) + e and J a < e.
o

For this Carnot cycle

0 < 8" j cr + J 8cr < (8" + 8+) J a < (8" + 8+) e ,

[0,TNL(0,T) °

and the identity (2.10) implies that

(9 ~ e ) H -
e+
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from which we deduce, since e > 0 is arbitrary, that

W(<p,<M+,6-,H) > (9 ~,9 )H.

To prove the remainder of the theorem we return to the

identity (2.9) . On the set £ +(0,T) we have h > 0, by

definition, and so (1 - —) h < 0 on Z/"(O,r) . In the same

way (1 - -g-) h <̂  0 on E~~(O,T) . On noting in addition that

a >^ 0, since compatibility with theinnodynamics is assumed, we

deduce from (2.9) that

-[ s-f < (9 " 9 )H + e(0) - e(r), (2.11)
Jo "" 6+

for all (9 ,9~,H)- admissible closed cycles on [0,r]. In

the case where the material has the energy relaxation property

and (<p, ij)) is a constant history the history (f ,77 ) ends

with the value ((p (0) , 0(0)) and thus the inequality (1.6)

implies that e(r) > e(0). It follows from (2.11) that

W(<p,0,6+,e-,H) < ° 9

If the material is also regular the first part of the theorem

applies and consequently

W((p,</),e+,9",H) < (9 ~ 9 )H. Q.E.D.
9+

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY
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It should be recorded too that equality holds in (2.5)

for regular hyperelastic materials. To see that this is so

note that the inequality (2.11) and the assumption of hyper-

elasticity, which implies e(r) = e (0), together yield

w(cp,<M+,e-,H) < (e ",9 ) H .
e

The assumption of regularity tells us that the first part of

the theorem is applicable and the result follows•
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3. An Example of <a Regular Material,

This section is devoted to discussing a simple example of

a one-dimensional regular material which is not elastic and for

which the maximum mechanical work recoverable from a history

can be computed explicitly.

Since we are dealing with the one-dimensional case we

identify X and L(X) with R and identify U with R++.

As the class of histories C we take the collection of all

pairs (<p,*/)) with cp: R -» R any continuous piecewise smooth

function with I e~u<p(u)du < oo and with 0: R -» R any con-
o

tinuous and piecewise smooth function. Then the conditions

Cl and C2 on C hold. The material with which we are con-

cerned is the triple of response functions (E^S^<9 ) defined

by

- I e <p (u) du) + >
o

= <p(0) - J e"ucp(u)du + k0(O)

= k<p(O)

where k,c > 0 are constants. In other words if (f,?7) is a

process and we define the function £: R — R by writing

= f(t) - e^l euf(u)du (3.2)
-OO

then the evolution with time t of the internal energy, stress

and temperature is given by
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e(t) = \ i(t)2 + kf (t)rj(t) + | C7?(t)2 (3.3)

s(t) = £(t) + krj(t) (3.4)

9(t) = kf (t) + cr?(t) . (3.5)

As before, we restrict attention to processes with 9 > 0. We

prove the following proposition;

jPrbgositaon.. The material defined by equations (3.1) is

regular and it has the energy relaxation property. If the

history (<P,0)GC and the working temperatures Q~,d satisfy

the inequalities

9" < k min(cp(O) A e"u<p(u)du) + c0(O)
o

9 >_ k max(<p(O),J e"u<p(u)du) + c0(O)
o

then the maximum mechanical work recoverable from the history

(cp,0) iri (9 ,,9~jH) - admissible closed cycles is

+ „. e+- 9~ i r°°-u 2
w(<P^j>9 ^9 ^H) = ( T )H + — (<p(0)- e (p(u)du)

9+ 2 Jo

Proof. A straightforward computation using eguations (1.4)3

(1.5), (3.3), (3.4) and (3.5) shows that the internal dissipa-
2

tion a is given by 9or = £ and so compatibility with thermo-

dynamics is assured.

We establish regularity in the following way. For each A
2 i *\ TT 1 "î  or* o i / o

xn u ^. A ^ 4MC /(k9 ) set a(A) = (r- - rr( ) ) • Defxne
A 4 C

the one-parameter family of processes (f. ,77̂ ) on the interval

(-oOj5A] by setting (f̂ r̂j.) = (<p, if)) , which defines (f. ,77.)
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on (-oo,O], by setting

fA(t) = J e"
u<p(u)du J 4A(u)du (3.6)

where

r(<p(O)- J e-u<p(u)du)e"t+^(e+- ^))T-(l-e-t), O < t < A,

=

'2 c

^(27v)e2A-t+ ^

, A < t < 2A

(3.7)

, 2A < t < 3A

, 3A < t < 4A

, 4A < t < 5A

and by setting

0(0) , 0 < t < A

, A < t < 2A

7?A(t) = 7 T?A(2A) , 2A < t < 3A (3.8)

^ 7?A(2A) (4A-t) + j ij)(O) (t-3A) , 3A < t < 4A

0(0) > 4A < t < 5A

It should be noted that equation (3.6) results on solving the
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u

-oo
e"f^(u)du.

subject to the condition = <p. It should be noted too that

there is a uniform bound K with | £. (t) | < K for all t in

0 < t < 5A and for all suitably small A.

Straightforward but tedious computations elicit the fol-

lowing facts about the family (f. , Tk) . First of all the

corresponding temperature is piecewise linear on [0,5A] and

has the values

Si +
7$(<P,0) (A-t) + AS^t

e"1

i 6+(3A-t) + i 9"(t-2A)

(t-4A) + ̂  9"(5A-t)
A

, 0 < t < A

, A < t < 2A

, 2A < t < 3A (3.9)

, 3A < t < 4A

> 4A < t < 5A.

= 9 (0) .Thus 9" < 9A < 6
+ on [0,5A] and 9^ (5A) = 0{Q,

Since ^ (5A) =0(0) = f^ (0) , equation (3.5) tells us that

f^ (5A) = f^ (0) = <p(0) i.e. the process (f^,^,) is closed

on [0,5A] . Secondly the heat flux h, = 6 r)~ - 4. 2 is
A''A

found to have the values
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(t)=<

I HA H

(2A)

, 0 < t < A

, A < t < 2A

, 2A < t < 3A

(t) Z , 3A < t < 4A

Thirdly, as A-*0+,

e cp(u)du + ^(0 -$>(<p,0)
o K

r°° u i +
-» <p(0) - J e <p(u)du + ^-(9 - @(<p,

- <p(0) - | e~u<p(u)du =
o

It now follows from (3.6), (3.11) and (3.12) that

fx(2A)- fA(A) J
A .

(3.10)

(3.11)

- 2H. (3.12)

(3.13)

-^ + , as A
8

and, since 77̂  (A) = j/)(0) and 0^ (A) =

(3.5) implies

77A(2A) = r?A(A)- |(fA(2A)-

(2A) = 6+, equation

9
> 0 (O) 9 as A - 0+,

Thus, for small enough A, 77, (2A) > j/> (0) and the expression

(3.10) for the heat flux tells us that h^ < 0 on [3A,4A].

On examining (3.10) we see that in the process (f-v.fk), with
A A
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A suitably small, heat is absorbed on the set £ (0,5A)= (A,2A)

emitted on the set ZT (0,5A) = [0,A] U [2A, 5A] and emitted at

constant entropy on the set £(0,5A) = [0,A]U[2A,3A]U [4A,5A] .
p2A „

Furthermore the heat absorbed is H(0,5A) = r- = H and
JA A

the working temperatures are attained on the sets

TT+(O,5A) = [A,2A] and TT" (O, 5A) = [3A,4A] . The conditions

£+(O,5?0<= TT+(0,5A) and 2T (O, 5A) c TT~ (O, 5A) U S(0,5.) are met

and so. for small values of A. each of the processes (f..5TK )
A A

is a (6 ,0",H)- admissible Carnot cycle for the history

eC on the interval [O

For this family of Carnot cycles equation (3.13) tells

us that £.. (5A) -* €-\ (°) anc* so* from equation (3.3), the

internal energy e, must satisfy

e^ (5A)—^e(0)= 4(<p(0) - e~U(p(u)du)A 2 JQ

as A -» 0+. Thus to establish regularity it suffices to prove

that the integral of the internal dissipation

p5A
a. -40 , as A —>0+.

Jo A

Since 9" < 6. < 9+ on [0,5A] and cr. = -n— £ . 2 it is
"" A — A v ^A

A
sufficient just to show

r5\ 2
£ * —^0, as A —»0+.

«* _ A

and this is clearly the case since (^(t) | < K for all

te[0,5A] and all suitably small A,

Before proceeding further we pause to observe that the

identity (2.10) and the regularity of the material imply that
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-f I: as

e
(3.14)

that is to say the family of Carnot cycles (f. ,r\-A ultimately

extracts the classical amount of mechanical work and these

cycles are traversed more and more rapidly as A -> 0+.

The verification that the material has the energy relax-

ation property is trivial and so we turn^ finally^ to showing

that the maximum recoverable mechanical work does indeed have

the value stated provided the working temperatures meet the

required conditions. To do this we construct Carnot cycles

extracting not just the classical amount ( " 9

9
)H but

also the mechanical work stored in the history (<p, 0) . Con-
i i

sider the family of processes (f, ,rjj) defined by setting

, -co < t < 5A

(6A-t)+ f( e"U<p(u)du) (t-5A) , 5A < t < 6A

O

e~"<p(u)du , 6A < t < 6A

e"u<p(u)du) (6-K+^-t) ,

and

U(o)

, -co < t < 5A

5A < t < 6A + £-»

where (f-,?7-) are as defined previously. Clearly f' (6A + r-) =

<P(O) , ^(6A + |.) = 0(0) and the heat flux h^= -( < ° on
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2

[5A,6A + r-] . Also the stated conditions on the working tem-

peratures and equation (3.5) imply that 0"" < 9' ;< 6 on

[5X,6A + r-] and so the processes (fĴ TjJ) form a family of

(9. , 8"".,H) - admissible Carnot cycles for the history (tp9ty) on
2

the interval [0,6A + r-] , for small enough A. It can be
A

verified too that

6A+|-

5A

- J e
o

1
6A+r-

A

e~u<p(u)du)2, as A - 0+. (3.15)

Combining equations (3.14) and (3.15) tells us that

2

J

6A-
s'f'

pOO

o
- J e-U<p(u)du)

and so

3-(<p(0)- J e~U(p(u . (3.16)

Howeverj the converse inequality to (3.16) also holds and for

the following reason. Let (f.,77) be any (9 ,9""_,H)- admissible

closed cycle for {<p, ij)) on some interval. For the material

considered here

e(0>- e(r) = |€ < ±f- (0) 2 = | (u) du)



-23-

and so the inequality (2.11) tells us that

W(<p,<M+,e",H) < (9 ~+
e )H + ̂ (<p(0)- J e"u(p(u)du)2, (3.17)

9 o

which, together with (3.16), implies the required result. Q.E.D.

As mentioned in the introduction, the family of Carnot

cycles (£.,77.) on [0,5A] is traversed faster and faster

as 7\ -• 0+ whilst the family (f' 17*) is traversed faster

and faster on [0,6A] and more and more slowly on

It would clearly be of considerable interest if, for a

large class of materials with memory, regularity could be

established, the maximum recoverable mechanical work evalu-

ated explicitly and cycles maximizing the mechanical work

constructed.
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