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the set of coefficients of a function of S, but this is not

necessarily helpful if it is desired to obtain specific informa-

tion about a given coefficient, or a given finite set of coefficients.

The best-known example for this state of affairs is the Bieberbach

conjecture |a | < n which, in addition to the elementary case

n = 2, has so far been shown to be accessible via the Grunsky

inequalities only for n = 4,6. For n = 4, this result is due

to Charzynski and Schiffer [1] (the original proof of |a4| <̂  4,

by Garabedian and Schiffer [2], had used much more difficult

considerations), and the case n = 6 has been settled in a

recent paper by R. N. Pederson [13].

Although the inequalities (1.3) are sharp for every n,

they can be strengthened to

OD n « n I

as was shown by Milin [11], Jenkins [8], ana Pommerenke [14]; an

inequality equivalent to (1.4) had previously been obtained by

Golusin [5,9]. (The fact that (1.4) contains (1.3) becomes

apparent if it is noted that

n n n n lo/l I -K.

Another generalization of the Grunsky inequalities was given in

a recent paper by Garabedian and Schiffer [4] who discovered a

set of inequalities of a type similar to (1.3) which characterizes

the coefficients of functions belonging to the subclass S, of
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S, consisting of those functions of S which do not take the

value d in |z| < 1. While in [4] these inequalities are

obtained with the help of Schiffer»s variational method, a later

paper by Hairanel and Schiffer [7] gives an elementary derivation

based on Jenkinsf version [8] of the classical area principle.

In the present paper we shall show that this set of inequali-

ties by Schiffer and Garabedian is but one example of a whole

class of ?Grunsky-type inequalities? which hold for functions

of S, of Sd, and of other subclasses of S. Our proofs will

be based on procedures which are closely related to the area

principle and, indeed, are equivalent to the ldtter if the analytic

functions involved are single-valued. While it is possible to

formulate these procedures in terms of properly generalized

notions of area even if the functions in question are not single-

valued, this is neither natural nor helpful, and we shall therefore

refrain from doing so.

The following notations will be used throughout this paper.

D will denote the image of the conformal mapping z—*f(z), feS.

D« will stand for the image of |z| < S (0 < S < 1) under the

same mapping, and C will denote the boundary of D̂  (i.e.,

the image of |z| = $) . D* and F, are the complements of the

domains in question with respect to the extended plane. The

statement that a real function 0(w) is continuous, or subharmonic

near the point w = oo will mean that the function ^(w) = 0 (w )

possesses these properties near the point w = 0.
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2. In this section, we derive some lemmas which will be

used repeatedly later on.

Lemma 2•1. Let R b£ ja bounded simply-connected domain in the

w-plane whose boundary (~ J^ a. closed analytic curve, and let R

denote the complement of R with respect to the extended plane.

Let <£ (w) be analytic in R with the possible exception of a_

finite number of points, and let |<^(w)| be single-valued and

continuous in R. Then,

(2.1) Re{̂  Ja^d^w) } < o,
r

if r is positively oriented with respect to R.

Lemma 2.2. Let /T be ja closed analytic Jordan curve whose

interior R, contains the curve H .of Lemma 2.1. Let <&(w)
' JL ' """"" ' ——— — — — — — — mm-—.—.

satisfy the same assumptions as in Lemma 2.1, except that I* is

now taken to be the complement of R with respect to R1 + /*-.

Then

(2.2) Re{j- j tf(^)d<r(w) } < Re{-i f (T(w)

where both f and /"I are positively oriented with respect to

their interiors.

If <T(w) is single-valued in R, these results are immediate

consequences of Green's formula. Indeed, if R is defined as

in Lemma 2.2, we have

(2.3) -hi**** - 2i
r ri
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where dA is the area element, and this establishes (2.2), If

/T = {w: |wj = r), where r is sufficiently large, (2.1) follows

from (2.3) on letting r—> oo and using the fact that w = oo

is necessarily a regular point of <f*.

If (f is not single-valued in R, we cut R along a non-

self intersecting chain L> of smooth arcs which passes through
\ l Qg/ 6 _ '

all singularities otSstf in R and has a point in common with the

boundary of R. Since R - Y is simply-connected, the harmonic

conjugate arg <Z of log |tf| is single-valued in this region, and

we may therefore use Green's formula. From the single-valuedness

of log |<r| in R we infer that, on a section i* of is between

two singularities cqfo , the values of arg ̂  on opposite edges of

I* differ by a constant. Hence, the contribution of both edges
of V to

d(arg<()

is zero. But d(ar«/) = Re{-i d^-}, and it follows therefore that

Re 7 S v

J

By Green's formula, this is equal to3$J \d}\ dA over R - 1* and

this establishes (2.2) . If <̂T is regular at w = 00, (2.1)

follows as before, If w = 00 is a singular point of tf, we



necessarily have xf (w) = w c (w) , where c is regular at infinity

and X is real. If we assume (as we may) that 7Z(oo) / 0, the

continuity of |<?| requires that A < 0 . Using this in the compu-

tation of the right-hand integral in (2.2) over a large circle

|w| = r, we obtain (2.1) for r —* oo .

Lemmas 2.1 and 2.2 may also be expressed in terms of real

functions, since, by the Cauchy-Riemann equations,

- ± j | <f\ 2d(arg <f2)Re[ ^

r r r

rr r
where ds = |dw| and d/dn denotes differentiation in the direction

of the outwards pointing normal. We shall now show that, in this

formulation, the conclusions of Lemmas 2.1 and 2.2 do not depend

at all on the assumption that \<f\ is the square of the modulus

of an analytic function; all that is required is the assumption

that this function be subharmonic.

Lemma 2.3. Let /*", R and H have the same meaning as in Lemma

2.1> and let Q(w) be ja non-constant subharmonic function in R

which is continuously differentiable on l~ . Then

(2.5)

r _
with equality only if Q Ĵ s harmonic in R.
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Lemma 2.4. ĵ f /"", R tl and FF are defined as in Lemma 2.2, and

if Q(w) jus subharmonic in "R and continuously differenti-

able on /"and /T, then
— — — — JL •

r 'i
with equality only if Q is harmonic in R.

If it were known that the harmonic function u in R whose

boundary values coincide with those of Q has a continuous normal

derivative on these curves, (2.6) would follow very easily.

Indeed, we have Q <. u in R, and the derivatives are taken in

the direction which points away from the interiors of these curves,

Hence, if w is a point on f~ and w, a nearby point of H

on the normal at w, we have

Q(wJ - Q(w) u(w.) - u(w)

- w||wx - w| - |

and thus SQ/Sn <, Su/Sn on f~~. Similary. dQ/dn >̂  Su/Sn on /"-.

Since

f^ds= I IS-.
r 'i

it follows that

i r \ \

and (2.6) is proved.

In order to avoid the use of du/Bn, we map I* conformally

onto an annulus S^ < |z| < ^2, and we note that, because of

the analyticity of the arcs /"and f7, the mapping function
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w = p(z) is analytic in -S\ <̂  | z | <_ A 2 • Since the mapping is

conformal on the boundary of R, the normal direction on /~

and fZ is transformed into the radial direction on |z| = J*

and |z| = j>2. If we write Q(w) = T(z), |z| = r, we thus have

and therefore, because of ds = |pf (z) |r d©,

(2.7) j§£ ds = r J^ /T(reie)de, r - /
r °

and a similar expression for we l^ . The function T(z) is sub-

harmonic in J\ <, |z| <. jf2 • Hence, by a classical result [10],

the function

(2.8) M(r) = ± /T(reie)d0

is a convex function of log r for £- £ r £ fL . This implies

o log r ' _£+ — a log r1 =^-

Because of (2.7) and (2.8), this establishes (2.6).

To prove (2.5), we apply (2.6) to the case in which P

is a circumference |w| = r with r sufficiently large, and

we obtain

(2.io) (|£ds<Mf£L_
Jdn ~ o log ry

where M(r) is the mean value (2.8) (with Q instead of T) .

If the right-hand side of (2.10) were positive for any value
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of r, it would follow from the convexity of M(r) (as a function

of log r) that M(r) —*a> for r —¥ oo . Since this would violate

the hypotheses of Lemma 2.3, the right-hand side of (2.10) cannot

be positive. This proves (2.5) .

If there is equality in (2.6), the same is true in (2.9).

Because of the convexity of M(r) as a function of log r this

implies that M(r) s c log r (f̂  £ r < £ ) , where c is a con-

stant. If u(z) is the harmonic function in jf, < |z| < J %

whose values on |z| = jf, and |z| = £*~ coincide with those of

T(z), the function T - u is also subharmonic and the mean value

(2.11) Mu(r) = ̂  /[T(reie) -u(reie)]d0

o

vanishes for r = .£, and r = ±~. By the argument just used,

we have M (r) = c,log r. Since now, evidently, c.. = 0, we find

that M (r) 3S0. On the other hand, T(z) - u(z) £ 0 throughout

£i £. lzl —^2' ancl ^2 •11^ shows that a contradiction with

M (r) S O can be avoided only if T(z) s u(z) . This establishes

the statement regarding equality in Lemma 2.4 (and, similarly,

in Lemma 2.3).

It may be noted that equality in (2.5) and (2.6) is excluded

if the subharmonic function Q is the modulus of an analytic

function, since the latter, for elementary reasons, cannot be

harmonic unless it reduces to a constant.

On the other hand, there may be equality in (2.5) and

(2.6) (and also in (2.1) and (2.2)) if the conditions imposed
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on /"" are relaxed. For instance, if f~ is allowed to consist

of a finite number of analytic arcs, equality will hold if R

is a slit-domain and f~. (in Lemmas 2.2 and 2.4) is the f outer

boundaryf of R. That this is indeed the case becomes evident

if it is observed that the contributions of the two edges of

each slit to the integrals on the right-hand sides of (2.2)

and (2.6) cancel each other. Similarly, there will be equality

in (2.1) and (2.5) if R is bounded by analytic slits (and, thus,

R has zero area).

In our applications of these lemmas, f will be identified

with a level curve C , and the desired result will then be obtained

by letting S~> 1. This detour is necessary since C is subject

to no smoothness assumptions, and the lemmas may not be appli-

cable to the case /""= C. In all these cases, it is evident that,

in the inequalities obtained in this way, the sign of equality is

possible only if the complement of C (with respect to the

extended plane or with respect to R + /T, as the case may be)

has zero area. If C is bounded by analytic arcs (or, at least,

piecewise differentiable arcs) there will indeed be equality in

these cases. If C is subject to no smoothness assumptions, the

question of equality becomes more subtle. To avoid difficulties

we shall therefore, in the formulation of our results, confine

ourselves to the statement that, in the inequalities under consid-

eration, equality is possible only if the complement of D has

zero area.
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We add here a restatement of Lemma 2.3 in a form which is

particularly well suited to applications involving univalent

functions.

Lemma 2.5. Iff. f eS and Q(w) is, subharmonic in IT, then the

function

(2.12) H(r) s ^ XQ[f(rex^)]de

is non-increasing on (JT, 1) .

To see that this is equivalent to Lemma 2.3 we only have to

note that H(r) is essentially identical with the function

M(r) defined in (2.8) (with f(z) playing the part of the function

p(z) used in the definition of T(z)) and that, by (2.7), (2.5)

expresses the fact that H(r) is non-increasing.

1 2
To illustrate the use of Lemma 2.5, we set Q(w) = |E(W" ) | ,

where P(t) is a polynomial of degree n. If

i) v
y=-n

the function H(r) of (2.12) is found to be of the form

H(r) = X. Wv\
2

Hence,
1 °° 2
-±- lim H« (r) = .31 V|cJ < 0,
r—9 1 /=_n

and this is equivalent to the "strong1 Grunsky inequalities (1.4)

[11].
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3. In this section,, we show that the » strongf Grunsky inequali-

ties (1.4) are a special case of a general set of inequalities

which depend on a parameter 6e[0,l]. For 6 = 0 , this set reduces

to (1.4). To formulate our result, we associate with the function

f(z) a set of polynomials P^6'(t), n = 1,2,...,P^6'(0) = 0,

which reduce to the classical Faber polynomials for 6 = 0 .

P (t) is defined by the requirement that the Laurent expansion

of the function [z~ f(z)] P [f (z)] should contain no negative

powers of z except for the term z" , i.e.,

3 D r 1 p r 1 L + ^ b z

I3'1' [ z J Pn [ f ( z ) J " z n f
y t 5 vn z '

The polynomials P ' are easily computed. We have

(3.2) p[6) (t) = t, P2
(6) (t) = t2 + (2 - 6)a2t,

etc., where the a. are the coefficients of the expansion (1.1).

There is a simple relation between P and the ordinary

Faber polynomial F of the function f. Since, by the defini-

tion of F , the function F [l/f(z)J - z"n remains bounded near

z = 0, it follows from (3.1) that

and thus

p(<3) r 1 i r Z ,6 r_i_i
Pn lf(z)] - ifJzT1 V f ( z ) ]

If z = g (w) is the function inverse to w = f(z), this may be

written
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n w "" *• w n wJ *

where 0(1) now denotes terms which are bounded near w = 0.

p' ' (w~ ) is thus found to be the meromorphic part of

near w = 0, where F is the Faber polynomial and z = g (w)

is the inverse of w = f(z) .

We now state our result.

Theorem 3.1. Let feS, let 0 < 5 < 1 and let P ^ (t) be the

polynomial of degree n defined by P (0) = O aid the expan-
ĵ  —

sion (3 .1) . ij£ ^ , ,^L , . . • ,Q£ are arbitrary complex numbers

and the b t are the coefficients appear ing in (3.1). thenvn

(3.3) X(V+ 6) | J b O4J2 < :£- 2

V=0 ^=i r r ^=i

Equality in (3.3) is possible only if D has zero area.

For 6 = 0 , (3.3) reduces to (1.4). Indeed, P^°^ (t) is

the Eaber polynomial F (t) and, in this case, ^ = -*. Zy. 9

where the 0LVj^ are given by the generating function (1.2) [16].

If the arbitrary constants <^4i in (3.3) are replaced by M-~ Of 3

(3.3) becomes identical with (1.4).

We also note that, for n = 1, (3.3) yields the inequality

(3.4) jr („+ 6) |bv, |
2 < 1 - 6,

V =0 V L

where, by (3.1) and (3.2), the b̂ ^̂  are the coefficients of

the expansion

HUNT LIBRARV
CARNEGIE-MELLON UNiVERSitf
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^ - 1 = i + 1 bvl«**
1.

Z y=0 V 1

(3.4) is the well-known inequality of Prawitz [15], which is thus

found to be but the first of a countable set of related inequalities

It may also be of interest to point out that for 5 = -j

the inequalities (3.3) are equivalent to the ordinary Grunsky

inequalities for the odd univalent function yf(z ) , which have

been used to such good effect in [1], [3], [13]. Since the

Bieberbach inequalities for n = 4,6 are accessible via these

^bdd1 inequalities, but apparently not via the ordinary Grunsky

inequalities, it may perhaps be rewarding to study the possible

contributions of the general inequalities (3.3) to the coeffi-

cient problem.

To prove Theorem 3.1, we consider the function

(3.5)

where &(•.,... s o( are arbitrary complex constants. In

CL (0 < £ < 1) , |<̂ (w) I is single-valued and continuous, and we

may therefore apply Lemma 2.1. With w = f(z) we have, by

(3.5) and (3.1) ,

n ot oo n

/ r / n
Hence, with the abbreviation yv = X
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i * , .£ , 7^

=0

f 5 Jv oo 7 n

? x ̂ z / c - r
z|=i w= r

= - z(«-»)i«<.i2*282/'*
>=1 If

Using (2.1) and letting £ - * 1, we obtain (3.3). essentially

It is also possible to obtain a set of inequalitiesVequivalent

to (3.3) via a generating function. We define the coefficients

by means of the expansion

- «*
fy(z) ^ = 1 ^=yc /

which will converge if |Jj| is small enough so that max |f(£)| <

min If (z) I (0 < i < r < 1) . We then have the following result.
|z|=r

Theorem 3.2. Il f (z) eS, 0 < 6 < 1, .and the coefficients c w

are defined by the expansion (3.6)^ then

oo n 2

(3.7) ^1 (V+ 6) | Zc */J < 0
y=-n v̂ = l / /

where ^ , . . . , oi are arbitrary complex constants .and c . = 0
"̂̂ o n /

for v < - I* .



16

The result follows again from Lemma 2.1, but this time we set

r f
(3.8) <T(w) = AJ { [w -

where

(3.9) dm(jr) =

and £ i s small enough so that |f(&)| < j f (z)| for all

and |z| = 1 . To show that Lemma 2.1 is applicable, we choose

a number r in (-f, 1) and join a point on C with w = oo by an

analytic curve y in D . We then extend > by adding an

analytic arc V, which joins w = f(%) and the endpoint of Jf

on C and, except for the latter point, is contained in D f) 5L

The function p (w) = [w - f(S)] - w is single-valued in the

domain obtained by cutting the w-plane along i> + I*. and, if

p (wQ) , p*
2' (WQ) (wQe>) denote the values taken by p (w) if

(1\
w approaches w from opposite sides of fa we have p (w ) =

e2rri* (1) ( j ( o r p(2) (w } = ^ 2 ^ ( 1 ) ( w } f depending on the

identification of the two edges of y ) . Since this is true for

all values of £ on |i| = j£, the function <3~(w) defined by

(3.8) and (3.9) has the same behavior. Hence, |<f(w)| is single-

valued in D. Since |tf*(w) | is also continuous in D, we may

apply Lemma 2.1. If we set w = f(z) we have, by (3.6), (3.8)

and (3.9) ,

oo n
/{(-w) = 5* ( T C o/i-)

v=-n ̂ =1 r <

and thus, for r < s < 1,
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oo n ~
~y* (W + <5) y C * Q/J

V=-n *=1 /" /
s

The inequality (3.7) now follows by using (2.1) and letting s -> 1

4. We now turn to the consideration of certain subclasses

of S, beginning with the class S., of functions f(z)eS for

which f (z) / d in |z| < 1. We shall show that there exists a

one-parameter family of sets of Grunsky-type inequalities for

functions of this class. Like in the case discussed in the

preceding section, the sets of inequalities depend on a parameter

6e[0,l]. The inequalities obtained by Garabedian and Schiffer

[4] (and^by a simpler method, by Hummel and*Schiffer [7]) will

be contained in our result for the case 6 = TT.

The case 6 = — presents some particular features which

make it possible to treat it in a much simpler manner than the

case of general 6. We shall therefore denote this section to

a separate treatment of this case, leaving the general case for

the following section.

Theorem 4.1. Let f^s^^ and av be, the coefficients defined

by (1.2) and let b b£ given by the expansion

(4.1) log[^/fOO - d + \lf&) - d] =

where in both cases the same branch of the radical is taken. Let

^ — a r b i t r a rV complex constants, let o£ b£ real,
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and set C = a^ - 2b . Then

n CD n 9 n

(4.2) 24 Re{ JC <) + Z>| ̂ C. < T < Z

Equality in (4.2) jjsi possible only if I) has zero area.

In our notation, the result of Garabedian and Schiffer [4]

referred to above is equivalent to

n Kl 2

(4.3) Re{ z: C ^o/ } < X - T — •

While these inequalities are sharp, they are weaker than (4.2).

Indeed, if we denote the left-hand and right-hand sides of (4.3)

by A and B, respectively, and we write 2C for the first term

on the left-hand side of (4.2), we have

n n

[ ;zv l :§rc V I O/.J 2 ] 1 / 2 B 1 / 2

l / A

Hence, by (4.2),

A < C + (B - 2C) 1 / 2B 1 / 2 = C + p - C ) 2 - C2] 1 / 2

£ C + B - C = B ,

and this is inequality (4.3). Incidentally, this also shows that
n

equality in (4.3) is possible only if 2 Cv oL = 0 for V = n + 1,
n /*=0 '

n -f 2, . . ., and C = 0, i.e., W Re{ 3Z C^c*£.) = 0.
° =̂0 7" ̂



19

To prove Theorem 4.1, we utilize the function

(4.4) <c(w) » log ̂ r 7 7 ^ ~ ̂ r Z ^ ~ , 111
5 (a - f(j) /a:

If |j:| < $ < 1, the function u (w) = Re{tfl(w)) is harmonic and

single-valued on the two-sheeted surface ^^ obtained by removing

from the Riemann surface of ^d - w the parts covering the domain

D . If u, (w) and u 2 (w) are the two branches of u (w) in ET^, we

evidently have u,(w) = -u2(w), and this property extends to the

harmonic function U(w) defined by

(4.5) U(w) = Re{tf(w) } = J u(w)dm(j) = Re(
Ul |

where dm(^) is the real differential

n n r ' ^ n
(4.6) ^ I x ^ o

A*= l J' i* = x r

and 0 < r < f < 1.
2

Since U,(w) = -U2(w), the function U (w) is single-valued

in Dj and, as the square of a harmonic function, it is sub-

harmonic. It therefore follows from Lemma 2.3 that

(4.7) ( w )^iL ds < Q>
n on —
ci

To express the left-hand side of (4.7) in terms of the

coefficients of f we note that, with w = f(z), (4.4) may be

written in the form
= log f(Z^ I l{i) - 2 logfjd - f(J) + fd - f(z)]

+ log(l - —) + log zz
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To prove Theorem 4.1, we utilize the function

d - f(V) - \ld - w
(4.4) <T(w) = ,

5 (d - f(Jr) + \fii - w

If |j:| < ,£ < 1, the function u (w) = Re{<T! (w) } is harmonic and

single-valued on the two-sheeted surface <&* obtained by removing

from the Riemann surface of ^d - w the parts covering the domain

D . If u, (w) and u 2 (w) are the two branches of u (w) in D̂ ,, we

evidently have u, (w) = -u2 (w) , and this property extends to the

harmonic function U(w) defined by

(4.5) U(w) = Re[tf(w)} = J u(w)dm(j) = Ref J

where dm()j) is the real differential

(4.6) dm(jr) = 27lf X-T^- + <^o + 2T ̂ f > \X\ = r, ̂ real,

A^=l -J' i* = 1 r*

and O < r < / < 1 .

Since l^ (w) = -U2(w)9 the function U (w) is single-valued

in Dj and, as the square of a harmonic function, it is sub-

harmonic. It therefore follows from Lemma 2.3 that

(4.7) /uwSgM. ds < o.
ci

To express the left-hand side of (4.7) in terms of the

coefficients of f we note that, with w = f(z), (4.4) may be

written in the form

« log f(Z^ I f(*? - 2 log[Jd - f (J) + fd - f(z)]

+ log(l - «f) + log z
Z
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and thus, by (1.2) and (4.1),

oo co
h *• log z,

where the series converge uniformly for |z| = f and |$| = r.

Hence, by (4.5) and (4.6) ,

(4.8) U[f(z)] = Re{X IX U ^ - 21y )r/^]Z
V - X ~^£\ + -o

m Re{H(z) } + cs/olog|z| .

If U* is the harmonic conjugate of U, the left-hand side of

(4.7) may be written J UdU*. If H(z) • .H, + iH_, where

H,,H2 are real and H(z) is defined in (4.8), (4.7) is therefore

equivalent to

X (H., + ©4 log*) (dH2 + <ol d8) < 0.
\z\=3

Since H2 is single-valued, it follows that

J H1dH2 + o/o S H ^ e + 2TT0tolog^ < 0 ,
| z | = j |z|=S

or, equivalently,

(4.9) Re{^- / HdH +<^2 J* H ̂ r) + 2*iL2logJ < 0.
2 1 |z|-i X |z|=f 2

Computing this by means of the Laurent expansion (4.8) of H

and, in the result, letting firstj-frl and then r -* 1, we obtain

(4.2).

We note here an interesting special case of (4.2). If

= 1 and all the other ̂  are zero, (4.2) reduces to



21

oo „

where C O Q = -log(4d) and

- 2 log hi + Jl -
oo w

(4.10) 2TCvoz = log z

2
/a + i.w + M a2 , a2 , 3 2

" ia2 + 2d'Z + *°3 ~ 2 2d + ., ,2' z +'" '

lba

This leads to the following strengthened version of the Koebe

^•-theorem.

Theorem 4.2. j[f f€S and f jt d jln |z| < 1, then

1 1 °° 2

v=i

where the C t are the coefficients of the function (4.10).

Utilizing only the first of these coefficients, we obtain

li . 1 i2

In [7], inequality (4.3) is formulated as a result for the

class B of Bieberbach-Eilenberg functions, i.e., univalent

functions in |z| < 1 for which f(z..)f(z2) ^ 1 for | zJ < 1,

|z | < 1, and f(0) = 0 . It is easy to see that, for any

the function

is in B and, vice versa, for any geB, the function
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(4.12) f = ™? 2 ((4d)'1 = g< (0))
d+g)

is in S d [7] . Since C = a - 2b^ , where a and b

were defined by the expansion (1.2) and (4.1), respectively,

the CV/4, have the generating function

oo
W t it

= log (z-J)

= log fd - £($) - Vd - f(z)

In view of (4.12), this is equivalent to

iA ir>\ -? /* J\h - i^n q(z) - q(fr)
( • } v?^oT ' (^ni-g(z)g(i)] '

which is the generating function used by Hummel and Schiffer

[7]. Theorem 4.1 may therefore also be formulated as a result

for Bieberbach-Eilenberg functions: If geB and the Cv

are defined by (4.13), then (4.2) holds.

In [7], it is also shown that the coefficients of a

function g of B satisfy the additional set of inequalities

n n

where the d are given by the generating function

(4.15) 0(z,j) = log h(Z)-qtf)]U-qP)q(Z)l . ^ ,

However, (4.14) is only a restatement of the classical Grunsky
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inequalities (1.3) for a function ^eS^' Indeed, if g and f

are related by (4.12), we have

log f tz)-f(*) = log 4d - 2 log[l + g(z)] - 2 log[l +
Z — 5

and a comparison of (1.2) and (4.15) shows that d = a for

Vj u. < !• Hence, (1.3) and (4.14) are equivalent.

5. We now turn to the discussion of the generalization of

Theorem 4.1 mentioned at the beginning of Section 4. As in a

similar case in Section 3, the desired Grunsky-type inequalities

can be obtained via two different routes, either by way of

suitable generalized Faber polynomials or through the use of a

generating function. We shall see that the proof of these

inequalities lies on two different levels of difficulty, according

as--in the language of Theorem 4.1--O^ = 0 or ^ ft o in (4.2) ,

If ^ = 0 , the result can be obtained very easily by the use of

generalized Faber polynomials. If d ft o, more subtle con-

siderations are required.

We first treat the elementary case.

Theorem 5.1. Let f eS,, 6e [0,1] , and let P^t) be the poly-

nomial of degree u. defined by the Laurent expansion

(5.D [i - ^ V t ^ i --k-*Jr<y.'
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and the condition Pyu(O) = 0. Then

co n 2 n
(5-2) X llC,A|2 < 2.

w=i *=i r r ^=i

where the Cv are the coefficients appearing in (5.1), and

-,* • • • ,*£^ are arbitrary complex numbers. Equality in (5.2)

is possible only if I) has zero area.

It may be noted that, because of

n n ~ n n - n \<aU \

i2(icro/wr< xvisc ^rx
tf=i^=i r r * i^i ^=1 ^ 7 * v = 1

(5.2) contains the weaker inequality

< 21
V=

The polynomials Pî (t) are easily computed from the condition

that the Laurent expansion (5.1) should contain no negative

'. Thus, P1(t) = t, P 2^^
 = t +powers of z except for z'. Thus, P1(t) = t, P 2^^
 = t

(2a2 + 6d~ )t, etc. The computation of P^tt) is particularly

easy if the ordinary Faber polynomial F^(t) of f is known.

Since, by (5.1),

where 0(1) denotes terms which are bounded near f = 0, we have

i.e., P^t) is the meromorphic part of

near t = 0.
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For /c = 1, (5.2) yields the inequality

oo
r

oo
~=r- xi I t

'VI1(5.4) X V |C,,, |2 < 1,

where the c . are given by the expansion

f(z) " d +
 yX 2 ( - l ) <W> dv - 2 " ^ <V1Z •

Since -CL1 = a2 - a3 - 6(1 - 6 ) (2d 2 ) - 1 , (5.4) contains the

inequality

(5.5) \a2
2 - a3 - ^ " / ) | < 1,

z 2d

where d is any value omitted by f in |z| < 1, and 6e[O,l].

Because of f jt co, this contains the classical inquality | a^ -

if the latter inequality is combined with (5.5), we obtain

6(1 - 6) (2|d|2)"1 < 2, i.e., for 6 = \, |d| > \.

Theorem 5.1 is a direct consequence of Lemma 2.1. Indeed,

if we set

tf(w) = [1 -%& X<P,j£],
>v = 1 ' I

Id'(w) | is single-valued and continuous in D . Thus, by (2.1)^

w) } < 0.

Passing to the z-plane and substituting the expansions (5.1)

for the terms of [f(z)], we obtain (5.2) on letting S~* 1 after

the integration has been carried out.

It is not difficult to see that, for 6 = y, Theorem 5.1

is equivalent to the special case oC = 0 of Theorem 4.1. To
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obtain a result which corresponds to the case <^ ^ 0, we have

to use a function <fj (w) which contains a logarithmic term (and

reduces to (4.4) for 6 = TJ-) • It: will be sufficient to consider

the case ^ = 0; the general case can then be treated by com-

bining our result with the procedure leading to Theorem 5.1.

In the proof we shall assume that w = d ana w = oo are actual

boundary points of D (and not only points of D) y once the

result is obtained, this restriction can be removed.

We consider the function

(5.6) <f(w) = J (1 - -|r5 -^ , 0 < 6 < 1,

where the integration path (which may be assumed to be an analytic

curve) remains within the domain ^ ^ obtained by removing from TL

a curve consisting of an analytic arc j/ joining w = d and

w = <3D , and of the linear segment > connecting w = d with

the point of C^ nearest to it. Any particular branch of the

integrand in (5.6) is single-valued in -Ay + fa and, if

Rl^wo^' R2 ̂ wo^ d e n o t e t h e limits of the integrand for w-*w

we have R^ (WQ) = R2 (WQ) e
 Trl (if the two sides of

have been properly identified) . In J&g 3 <^(w) is likewise single-

valued and, since the integration starts at w = oo , we again

have O, (w ) = <Jl(w )e irl for the values taken by <? on opposite

sides of the slit. As a result, the contributions of the two

edges of V to the integral

J <F(w) d<f(w)
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cancel out. To evaluate the contributions of the two edges of

to this integral, we note that ^ ( w ^ = <?2 (WQ) + c, where c

is a constant and 6^, (f2 are the limits of ^ if w approaches

a point w of >y from the two different sides P+ and

of J/g . This contribution is therefore

is ¥i h Iff
- c

Accordingly, we have

(5.7) \Zd<S = - jf^d<5- + c[<T2]
c *
cs

where the orientation of C^ is positive with respect to D

Hence, by Green's formula,

5' | 2dA = -^[ftfdrf - jr- /tfdd - c[<f2]
C h

The function <^2(
w) is continuous at w = d and, since de&D,

will be contained in an arbitrarily small neighborhood of d if £

is sufficiently close to 1. It follows that [<f2] —^0 for

S—?1^ and, therefore^

(5.8) lim »7 f?d<f = - S$ |^t|2dA < 0,
D

with equality if D has zero area.

We now set w = f(z) and we note that, by (5.6) the function

f [f(z)] is regular in |z| < 1 except for a logarithmic pole of
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residue 1 at z = O. Accordingly, if we set <^[f(z)] =

U(z) + iV(z), U(z) is single-valued in |z| < 1, and we have

s VdU

= i[UV] + i J [UdV - VdU]

= -jtUV] + Re[jr / <7(f)d<f(f)

The two terms in the last line depend, of course, on the point z

on |z| =S at which the integration starts and terminates. If

we determine z^ by the requirement that lo'(w) | should assume its

minimum on Cg for w = f (z ) , we have

[UV] = 2TTU(W ) = 27rRe(</(w )}

and this tends to zero as ̂ -^1 since w = oo is a boundary point

of D and <7(w)-*0 for w~»oo. Hence, by (5.8) and (5.9),

(5.10) lim J U§^s < o,
|| 6n

with equality if the complement of D has zero area.

To express the left-hand side of (5.10) in terms of the

coefficients of f, we write (5.6) in the form



t.. -6 dt
OD O

W
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d

— - Jt(l - -5) - 1 ] — + log
O

(5.11) +
 Q

00 , , . 1

Sit - u~6f - Sid -
1 o

Choosing the branch of ( ) for which 1 = 1 and noting that

°C (t 1} "̂  — = TT

~ t "" sin ir6 *
we obtain

U(z) = Re{^[f(z)]} = -J((S) - log|d| +

f (z)
(5.12) + Re{ J [(1 - ̂ ) " - 1]—} + log

o

ss Re{H(z) } + log|z| ,

where

(5.13) y(6) = TT cot TT6 + j'td - t ) " 6 - 1 ] ^
o

1 £r A 1 x= -

6 f^

The last line in (5.12) is of the same form as the last linein (4.8) (with oZ = 1). Since the integral in (4.7) was found

to have the value (4.9), we may thus conclude that (5.10) is

equivalent to
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(5.14) lim Re{-^r S HdH + -v- J H~} + 2y log_f < 0,
tf-yl *x \z\=S | z | = ?

where H is defined in (5.12). If the coefficients c Q are

defined by

(5.15) -M6) - log|d| + log - ^ - + / [(1 - |) "6 - 1 ] ^ = ̂  c z",
0 o i/=0

(5.14) is equivalent to

l °° 9
(5*16) ^ l V | c ! < / ( § ) + log|d|.

l/=l (I

This inequality was obtained under the assumption that w = d

and w = co are actual boundary points of D, but is is now easy

to see that it remains valid if it is only assumed that these

two points are in D. Indeed, if (5.16) is true for a sequence

of functions which converge uniformly to f in |z| < r for

any re(0,1), it is also true for f. Now it is well known

that any feS can be approximated in this manner by a sequence

of functions each of which maps |z| < 1 onto a domain bounded

by an analytic slit T extending to w = GO . If deD and d^T

we add to T a rectilinear «spike1 T., which connects d with

one of the points of T which are nearest to d. The complement

of T + T d is also simply-connected, and the functions mapping

|z| < 1 onto these domains evidently also converge to f. Since

all these functions are subject to the restriction under which

(5.16) was proved, the result follows (after a trivial modification

which allows for the fact that the approximating functions f (z)
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do not necessarily satisfy f^(°) = 1)•

This proves the following result.

Theorem 5.2. Let f^sd and let 6€[0,l]. If the c^Q are

defined by the expansion (5.15), and V(b) is the constant (5.13),

then (5.16) holds. Equality in (5.16) is possible only if D

has zero area.

It may be noted that, for 6 = -j, the expression (5.13)

has the value log 4, and (5.16) reduces to (4.11).

The procedure leading to Theorem 5.2 can be generalized so

as to lead to a result of the type of Theorem 4.1, in which the

coefficients appearing in the inequalities are defined by a

generating function. However, it is much easier to obtain and

state an equivalent result in which these coefficients are defined

by means of generalized Faber polynomials.

Theorem 5.3. Let feS and let 6€[0,l]. If the coefficients

are defined by the expansions (5.15) (where X (6) is the
- 0

constant (5.13)) and (5.1), then

n oo n n
(5.17) 2oCRe{ -r c, <U) + 2 V | Ic

=i r ~ r=i ^=i r
where Ot is real and o^, ,..., <^ are arbitrary complex constants,

Equality in (5.17) is possible only if *D has zero area.

The proof is essentially identical with that of Theorem 5.2,

the main difference being that we now use the function
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(5 .18) tf (w) = oL Kf (w) +

where & (w) i s t h e f u n c t i o n ( 5 . 6 ) , i . e . ,

o J
oo

and

(5.20) <£<w) - (1 - ̂ )

where the P^(t) are the generalized Faber polynomials defined

in (5.1). It is easily verified that (5.18) has all the properties

of the function (5.6) which were utilized in the proof of Theorem

5.2. Accordingly, the steps leading to inequality (5.14) will

result in the analogous inequality

(5.21) lim Re{yr- / UdH + -r2 J H ~r) + 2 W l o g f < 0,
J~*I 2 l | z | = l . X | z |=^ z °

where H is now defined by

H(z) = 0

and <T is the function (5.18). Using (5.18), (5.19), (5.20) and

the expansions (5.15), (5.1) of the functions &.{z), we find that

n ^ GO n v

H(Z) = 5L -A- X
^=1 AVzr i/=i

Using this expansion of H in (5.21) and letting S—?l in the

result, we obtain (5.17).

It may be noted that (5.17) contains the weaker inequality

oo n |o/J22 ^w< n
V,M.=O r - r v=i K

as is shown by the procedure used to obtain (4.3) from (4.2).
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6. The procedures which led to the inequalities of the pre-

ceding section can be generalized so as to apply to functions of S

which leave out more than one given value. While this is very

easily accomplished in the case of Theorem 5.1, the arguments

required to establish the corresponding generalizations of

Theorems 5.2 and 5.3 are lengthy and laborious. We therefore

content ourselves with the generalization of Theorem 5.1.

We first state our result for the case in which the function

f is known to omit a finite number of given values.

Theorem 6.1. Let feS, and let f(z) f^oL3 k = l,..;,xn for

Izl < 1. Let 6, > 0, and let 6, + . . .+ 6 < 1. Let P^Jt)

be the polynomial of degree Aw defined by PL-(O) = 0 and the

_ i p.
requirement that

m r: * x 6, , , oo v,

should contain no negative powers of z except for z/ . Then.

(6.2) l ^ l l a /5 | 2 < XM,|A*|2,
v=i ^=i r\r f=i v

where the aWJ. are the coefficients of the expansion (6.1) ,VA
and A-.^...^A are arbitrary complex numbers. Equality in

(6.2) is possible only if "5" has zero area.

The proof of this result is identical with that of Theorem

5,1, once it is observed that the function
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is single-valued and continuous in D.

As an example for the use of Theorem 6.1, we consider

the case u.= 1. Since P, (t) s t, (6.1) and (6.2) show thatr

i f

(6.

t h e

.3)

where

(6. .4)

I

v=i

are given by the expansion

°B v i A V

In particular, | ĉ ^ | <. 1, i.e., by (6.3),

which is the generalization of (5 .5) to the case in which the

function f is known to omit the values ̂ ^,...,06 .

Thoerem 6.1 is easily generalized so as to apply to the case

in which f (z) is known to omit a continuum of values. Suppose

f(z) jt oi(s) for |z| < 1, where s varies in the real interval

[0,1], and o£(s) is a complex-valued continuous function of s.

If the real function p(s) is non-decreasing in [0,1] and

0 £ t < t < . . .< t < 1, we may set c*\ =<^(t, ) and

k = l,...^n) and apply Theorem 6.1. As

(6.3) shows (in the case Â  = 1), the coefficients a ^ in (6.1)

are polynomials in the numbers iv defined in (6.4) (and, of

course, in the coefficients of f) . If p(l) - p(0) </ 1, it is
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therefore permissible to let n~->oo, and we are led to the

following result.

Theorem 6.2. Let feS and let f (z) ̂  o£(s) for | z| < 1, where

o£(s) Ĵ s a. continuous complex-valued function on [0,1] . Let the

real function p(s) be non-decreasing on [0,1] and such that

(6.5) / dp(s) < 1.
o

Let 0(z) be the analytic function defined by

(6.6) 0(z) = exp{ i'logtl - ̂ |fj- ] dp(s) ),

and let P^(t) be the polynomial of degree Ms defined by

r /
PAI(O) = 0 aad the requirement that the Laurent expansionr
(6.7) 0 ( z )p l ^ '

should contain no negative powers of z except for z ' . Then

oo m <> m 9
(6.8) 2 V | S a, '

V=l ^ = 1 r

where the a ^ are given by the expansion (6.7) , and A -,, . . ., fi

are arbitrary complex parameters.

By suitable choices of the function p(s)y Theorem 6.2 can

be made to yield a large variety of inequalities. Moreover, it

is possible to choose p(s) in such a way that the resulting

coefficient inequalities are valid for all functions of S (i.e.,

without reference to values omitted by f). We shall illustrate

this procedure by two examples. In both cases we replace the
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function f(z) of Theorem (6.2) by F(z) = r~ f(rz), where

0 < r < 1, and we set OC(s) = F(e 7rls) . our first choice of

dp(s) is

where y = e lrXS, 0 < ]/ <. 1* and the complex parameters

9 ...9 b are subject to the condition

n • ike-(6.10) >^ + 2Re{ X ^ ke
l k e} > 0, 0€[0,2TT] .

0° k=l

This condition ensures that dp(s) >̂  0, and, because of

condition (6.5) is satisfied.

To compute the function (6.6), we note that

(6.11) log[l - f||f] = log *^ g" JW - log ̂  + log(l - |)

If |z| < 1 and a are the Grunsky coefficients given by

we thus have

In view of (6.9) and the residue theorem, this leads to

CD n

y = l it=0 r U(

Applying Theorem 6.2 to the function F(z) and letting, in the
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resulting inequalities (6.8), r —->1, we obtain the following

result.

Theorem 6.3. Let feS, let fii>mm9>fim
 b e arbitrary complex

parameters, let yQe(O,l], and let K , . . . ,> be complex para-

meters subject to the condition (6.10) . Let a ^ be defined

by the generating function (1.2), and let 0(z) be the analytic

function
oo n T~ y

0(z) = exp{ X ( 2 atfV[/v - tf-) z } .^ >v=l k=0

Let P^(t) be the polynomial of degree yuc defined by P^fp) = O

and the requirement that the Laurent expansion

oo „

should contain no negative powers of z except for z '. Then

oo m 2 . m

For L. - ^ 0 , the inequalities (6.12) reduce to the classical

Grunsky inequalities. If S/ G ( 0 ^ 1 ] ^ the parameters /t'~[>m**9p'

which enter into (6.12) give additional flexibility to these

inequalities. Conceivably, this may be of help in the treatment

of specific coefficient problems such as the verification of

the Bieberbach inequality.

In our second application of Theorem 6.2 we use the differential

where

(6.14) o < I <
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It is easily verified that dp(s) >_ O. Moreover, since

1 ,1
(dp(s) = 2j.|H(l + |y|) , (6.14) shows that condition (6.5)
o
is satisfied. Taking into account the identity (6.11) (and the

fact that Od(s) = F(e2iris) = Ffr)), it follows from (6.13) that

Jflog[l -J^-]dp(s) = ̂ [log F<z>z : y
j> - l o g ^ - + log(l -

Applying Theorem 6.2, and letting r—*1, we obtain the following

result.

Theorem 6.4. Let feS, let |J| < 1, and let b satisfy (6.14)

Let P.. (t) be the n-th degree polynomial (with P-tO) = 0)A ~~ r
determined by the expansion

„ r 1 if(z) - m

Then,

(6.16) X V | Z * v A | 2 < X

where the b,. are the coefficients given by (6.15) .

For >—* 0, the inequalities (6.16) again reduce to the

classical Grunsky inequalities.

7. In this section we show how the inequalities of the pre-

ceding sections can be sharpened it if is known that the univalent

function f(z) is also bounded in |z| < 1, i.e., if |f(z)| £ M,

1 < M < oo. As is customary, we shall renormalize these functions
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by dividing them by M. Accordingly, we consider univalent

functions

oo
(7.1) f(z) = 2 a nz

n

n=l

for which |f(z)| <̂  1 in |z| < 1. Evidently, the coefficient a,

in (7.1) satisfies the inequality 0 < a^ £ 1, and 3.^=1 is

possible only if f(z) s z. This class of bounded univalent

functions will be denoted by S, .

Although the indicated sharpening of the preceding inequalities

is possible in all cases, we shall confine ourselves to the dis-

cussion of a few examples in which the requisite computations are

particularly simple.

It was shown in [12] that the coefficients of a function of

S, can be characterized in the following manner: If a and

bv^ are defined by the generating functions

and

(7.3)

where

(7.4)

-log[l

feS,, then

n

1 X
vr=l

r Y f*

oo

f

n n

=1 >/

for arbitrary complex o^-,...,ot. Conversely, if (7.4) holds

for all natural numbers n, then feS,.

We shall now derive a strengthened version of the necessary

conditions (7.4). This result will be stronger than (7.4) in
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two respects: first, its relation to (7.4) will be similar to

the relation of the strong1 Grunsky inequalities (1.4) to the

»weakT inequalities (1.3); and, second, it contains, rather sur

prisingly, an additional arbitrary real parameter.

Theorem 7.1. Let feS.^ and let a and hy^ be. defined by

(7.2) and (7.3), respectively. If o/ is real and c^,,...,
^ Q J_

are complex, then

,7.5,

Equality in (7.5) is possible only if the complement of D with

respect to the unit disk has zero area.

In the proof of Theorem 7.1 we shall assume that f(z) is

regular for |z| <. 1. As shown repeatedly in similar situations,

this is sufficient for our purposes. We consider the function

(7.6) u (w) = logj W "ftl, 7 = £(.$), |S| = r < 1,
* 1 - f w c

which is harmonic and single-valued in the complement 15* of D

with respect to the closed unit disk, and has the value 0 on

|w| = 1 . The same statements are also true of the function

(7.7) U(w) = J u^(w)dm(Jf),

where dm(£) is the real differential
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n r' ̂ /K n

By Green's formula, we have therefore

= - JJ (grad U)2dA + Jds = - JJ (grad U) dA +
C uU D* | w | = l d n

= - iX (grad u)2dA .

Hence,

(7.9) JU I 2 ds < 0,dn -c dn

with equality only if D* has zero area.

To express the left-hand side of (7.9)' in terms of the

coefficients of f we note that, with w = f(z), (7.6) may be

written in the form

ujf(z)] = Re{log *W " ̂ w / - log[l - f(j)f(z) + log(l --)+log z]
3 z - I z

Substituting this in (7.7), and using (7.8) and the generating

functions (7.2) and (7.3), we obtain

oo n A n _ v n oLr^
Ulflzll.-Rel^Za.r^+jb^r^Jz - X ^—f) + ̂

(7.10)

= Re{H(z)} + c/olog|z| = Re{H(z))

(the last equality following from |z| = 1) . If we use this

expression in (7.9) and employ the procedure which led from

(4.7) to (4.9), we find that (7.9) is equivalent to
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Replacing H be its Laurent expansion (7.10) and letting r —* 1,

we obtain (7 .5) .

To show that (7.5) implies (7.4), we employ the procedure

used to show that (4.3) follows from (4.2) . This leads to

n n n \o/\2

J Z 1? *

Since, by (7.3), hv = h7^ , the second sum on the left-hand side

is a Hermitian form. In [12], it was shown that this form is

positive-definite• The last inequality may therefore also be

written in the form

" , n , n

Re{ 2 a I I

If we set o^ = 0 and multiply the Cy£, by a suitably chosen

number of modulus 1, we obtain (7.4).

We note here the special case

(7.1D 2Re(aoo) + ^ |atfo|
2 < 0

obtained by setting o/ =...= ^ ==0 in (7.5) . If F is a

function of S for which |p(z) | £ M, and we set f = M~ F, we

have ^
,": v Flz)
^ a

v o
Z = l o g z > aoo = " l o g M>
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and (7.11) is therefore equivalent to the following result.

Let FeS, and let |F| < M i£ |Z| < 1. If

oo 2

V=l
< 2 log M.

Our next result is the S,-version of Theorem 3.1.

n k

Theorem 7.2. Let feS^ let 6 > 0, and let P(t) = ^L Akt ,

where the An are arbitrary complex constants. If the
j£ -

coefficients b t are defined by the expansion
y

OO

5 1 -̂  v
f (Z) V^~-n V

then
oo n

(7.14) X ( V + 6 ) | b | 2 + X (k - 6) | A j 2 < O.

y=-n k=l K

Equality in (7.14) i^ possible only if the intersection of I)

and |w| < 1 has zero area.

To prove this result, we set
(w) = w P(-)

and apply Lemma 2.2. If V = C, and f~ is the circumference

Iwl = 1, we obtain

iw6P(^)d(w6p(i)(7.15) Ref^r JwuP§d(wup(i))
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On |w| = 1, we may replace w~ by v7, and the integral on the

right-hand side has therefore the value

( * n k n

J vT6( S ) ( 51k (k - 6)-^)w
0

|w|=l k=l K k=l w K

n 2

i.e., - Z (k - 6) | A, | . To compute the left-hand side of (7.15),
k=l K

we set w = f(z) and transfer the integral to the z-plane. In

view of (7.13) we obtain

< -21 (k -.6) |Ak|
2.

k=l K

Computing the integral and letting $ —^ 1, we obtain (7.14).

It may be noted that in the preceding result 6 may be any

positive number, while in Theorem 3.1 this number had to be

restricted to the interval (0,1) in order to ensure the continuity

of Id'(w) I at w = 00 .

Our final result generalizes Theorem 4.1 to functions of

the class S,.

Theorem 7.3. Let feS,, and let f(z) ft d jLn |z| < 1, where

Idl < 1. Let the coefficients a. and hVAt be defined by the^ /"

generating functions

(7.16, log * < • ) « ( *
(z -f) [P(z) + Pii)}2 *p=0 7
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4?
where

(7.18) P(Z) = y y _ g f {zy

and the same branch of the square root is t̂o b>e taken in P (z)

and P(^) . Then,

n oo n

iv =0 ft I / / = 1 A =0 /

<

(7 .19 ) 2 ^ R e { X (a ^ + b £ ) } + Z V | Z ( a ^ + b <

for any real o^ and complex ^/. ,..., ̂ < . Equality in (7•19)_*- Q 2. n

is possible only if the intersection of D and the unit disk

has zero area.

The proof of this result is very similar to that of Theorem

4.1, and it is therefore sufficient to call attention to those

details in which the two proofs differ. The function (4.4) is

now replaced by

(7.20)
1 - R(j)R(w)

where

(7.21) R(w) = / - ^ 2 .
f 1 - dw

Clearly, the function u(w) = Re{<w (w)} vanishes on |w| = 1

If *&*$ is the intersection of ]D (0 < | £| < jT < 1) and |w| < 1

and y is an arc in *^$ which joins w = d and a point on
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|w| = 1, then u(w) is single-valued in -^jg -y , and the two

values it takes at a point of V have the sum zero. These

properties are therefore shared by the function U(w) defined

by (4.5) and (4.6) (where <T^ (w) is now the function (7.20)).
2

Accordingly, the function U (w) is single-valued and subharmonic

in <&g and vanishes on |w| = 1. The rest of the proof is

identical with that of Theorem 4.1, except that now we use Lemma

2.4 rather than Lemma 2.3 (and the fact that U(w) = 0 for

|w| = 1 is taken into account).

We note that (7.19) implies the weaker (but still sharp)

inequality
oo oo n | Jj2

<

as can be seen by applying the procedure which led from (4.2)

to (4.3).

For O^ =...=<^ = 0 , (7,19) yields the special inequality

2 Re(aoo + boo} + ̂  lavo + Vo' 2 ̂ °«

By (7.16) and (7.17), this is equivalent to the following statement,

Let feSj^ and f ̂  d (|d| < 1) . Jlf the coefficients c

are defined by

( 7 . 2 2 ) l o g 1 M + I o g d . 2 l o g «1 - df(z) + h - d^f(z)
Z /^T ^rr /_\ . 1 ja I .HI j - 1- df (z) + |d| ill - d"xf (z)

oo

v =0
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then

(7.23) | X V |c,|2 < log

In particular, this shows that 4|d| >_ |a |(1 + |d|) , i.e.,

Equivalently, if FeS and |F| <. M, then a value y not taken by

F must satisfy

M

More generally, (7.23) shows that

l d| > p. .... 2 ,
(1 + fl - B)

where
-, OD

B =

8. We conclude this paper with a few remarks concerning

the precise relation between the contour integration method (used

by Grunsky in his original derivation of the inequalities (1.3))

on the one hand, and the area method and its various extensions

and generalizations, on the other hand. In order not to be led

too far afield, we shall confine our remarks to the case in which

the functions involved are single-valued.
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Stripped to its essentials, the main assertion of the

contour integration method can be summed up in the following

statement [12].

Let D be a, domain in the w-plane which is bounded by one

or more analytic curves C. Let S (w) b£ a. real function which

is single-valued and harmonic in the w-plane except at ja finite

number of points of D, and let p(w) be ja function which vanishes

on C and is such that h(w) = S (w) - p(w) jjs harmonic in D. Then

(8.1) Jh J£ ds < 0.

The proof of (8.1) is very simple. If D is the complement

of D with respect to the extended plane, and if (0,0)o denotes

the Dirichlet integral of the function 0 over the region R

we have, by Green's formula,

(8.2) -(S,S)- = J S |f ds,

and

Since

it follows that

(8.3) J h ̂  ds = -(S,S)D - (h,h)D.

Because of the non-negativity of the Dirichlet integrals, this

establishes (8.1) .

n ds = JS(Tr--^r) ds

c ~n
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The area principle ana its various generalizations, on the

other hand, are expressed by the inequality

(8.4)

C

which is a consequence of the identity (8.2) . Since, by (8.2)

and (8.3) ,

(8.5) Jh t£ ds = J S ̂ | ds - (h,h)n,

it is clear that (8.4) implies (8.1). Hence, (8.4) is the stronger

inequality, i.e., the inequalities obtained by means of the con-

tour integration method are always contained in those deduced

from the area principle (if the same singularity function S(w)

is used in both cases).

Nevertheless, there are two aspects in which the contour

integration method is superior. The first of these is its

applicability to coefficient problems for univalent functions

defined in multiply-connected domains, which is due to the fact

that the integral in (8.1) can be evaluated by the residue theorem.

Indeed, if <f and *£* are the analytic functions for which

S = Re{tf}, p = Re{c"}, it follows from p(w) = 0 (weC) that

ds - T ar'

and (8.1) may therefore be replaced by

{y J (<f-T) dt).
11 C

On the other hand, inequality (8.4) (as shown in Section 2)

is equivalent to
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y Jcr d<T) < 0.
C

This expression is easily evaluated in terms of the coefficients

of f if D is simply-connected, but it becomes completely

unmanageable if D is of higher connectivity. It may be added

that these remarks apply only if it is desired to obtain informa-

tion involving the Taylor coefficients of the function. Inequalities

for the coefficients of certain other expansions are accessible

via the area method [8].

The other aspect which makes the contour integration method

valuable is the information it provides concerning the cases in

which there is equality in (8.1). If we relax the assumptions

on C and permit C to consist of a finite number of analytic

arcs, it is clear from (8.2) that there will be equality in (8.4)

whenever D* has the area zero, i.e., D is a slit-domain. This,

of course, is also necessary in order to have equality in (8.1)

but, as shown by (8.5), we now have the additional condition

(h,h) = 0. Since D cannot have zero area, this will happen

whenever h is constant in D. Because of S - p = h = > ^ = const.,

this means that S 3 p + V . Since p is characterized by its

singularities and by the fact that p = 0 on C, we finally

reach the conclusion that there will be equality in (8.1) if, and

only if, the boundary C of D consists of arcs along which the

singularity function S (w) takes constant values. This also shows,

incidentally, that, regardless of the choice of S(w), (8.1) is
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always a sharp inequality, even though it is weaker than (8.4) .

For example, the Grunsky inequality (1.3) is obtained from (8.1)

by taking S = Re{P(w~ )}, where P(t) is a suitable polynomial

of degree n. There will therefore be equality in (1.3) if, and

only if, the function f(z) maps |z| < 1 onto a domain bounded

by slits along which Re{p(w~ )} = const. Conceivably, this

additional information may be of help in the treatment of the

coefficient problem.
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