MINIMUM GIRTH OF SPHERES

Juan Jorge Schäffer

Report 69-1

```
(this report supersedes Report 68-40,
'11 Bounds for the Girth of Spheres }\mp@subsup{}{}{\mathrm{ ft }}\mathrm{ )
```

January, 1969

MINIMUM GIRTH OF SPHERES

Juan Jorge Schäffer

Let X be a real normed linear space with norm || \|, and let $£$ be its unit ball, with the boundary $d £$. Assume dim $\mathrm{X} \wedge$ 2. These notations and assumptions will be maintained throughout the paper. In [1] we defined the girth of $£$ to be $2 m(X)$, where $m(X)=\inf \{6(-p, p): p \in d S\}$ and 6 denotes the inner metric of $d £$ induced by the norm, or, equivalently, $m(X)=\inf \{t(c): c$ a rectifiable curve in $d £$ with antipodal endpoints\}. If $\operatorname{dim} \mathrm{X} \ll$, then these infima are attained,
 paper is to sharpen this inequality and to determine the best lower bound for all spaces of a given finite dimension.

The conclusion is best stated in terms of $m^{\wedge} .(n)=$ $\min \{m(X): \operatorname{dim} X=n\}, n=2,3, \ldots, a$ sequence of numbers introduced (and shown to exist) in [1].

In [2] it was shown that, if $\operatorname{dim} X=n$ and $£$ is a parallelotope (i.e., X is congruent to $l T_{n}$), then $m(X)=$ $2\left(1+(n-1)^{\mathbf{- 1}}\right)$; it was further shovn that, if n is odd, there is a subspace Y of co-dimension 1 such that $m(Y)$ is still $2\left(1+(n-1) \sim^{1}\right)$. (We remark that exactly the same results obtain if X is taken to be congruent to I^{1} instead of to $\mathbb{*}^{\circ \circ}$, but n n we omit the proof.) From this and from the elementary fact that the sequence $\left(m^{\wedge} .(n)\right)$ is non-increasing we obtain

9

1. Theorem $\left(\left[2\right.\right.$; Theorem 7]). $m^{*}(2 n+1)<£_{ \pm} m^{\wedge}(2 n)<J 2+n "^{1}$, $\mathrm{n}=1,2$, . . •

We propose to show that equality holds for all n, thus giving an affirmative answer to the query at the end of [2]. The fact that $m^{\wedge} .(3)=3$ was proved independently in [3].
2. Theorem. If $\operatorname{dim} X=n$ is an odd integer, then $m: \geq 2 n(n-1) \sim^{1}$.

Proof. Consider any given rectifiable curve in $d E$ with antipodal endpoints; let I be its length and $g:[0,1]-,\partial \Sigma$ its parametrization in terms of arc-length. Let $\mathrm{p}_{\mathbf{k}}=\mathrm{g}\left(\mathrm{kn} \sim_{I}\right)$, $\mathrm{k}=0, \ldots, \mathrm{n}$, so that $\mathrm{p}_{\mathrm{Q}}=-\mathrm{p}_{\mathrm{n}}$. Let A be a non-zero n -linear form on X (unique up to multiplication by a non-zero scalar) and define $¢ p:[0,1]-R$ by $\left.<p(t)=A\left(g\left((l-t) n^{1 \wedge}\right), g^{\wedge}-t\right)^{\wedge}{ }^{1} *,\right), \ldots$, $\left.g\left((n-t) n^{\prime \prime} \|^{I}\right)\right)$. Now $t p$ is continuous, and, since n is odd, $p(1)=A\left(p_{0}, p_{1}, \ldots, p_{n-1}\right)=A\left(-p_{n}, p_{1}, \ldots, p_{n-1}\right)=-A\left(p_{1}, p_{2}, \ldots, p_{n}\right)=-\langle p(0)$. Therefore $<p(s)=0$ for some $s ., 0<£ s \leqslant £ 1$. Set $q_{k}=q\left((k-s) n^{\prime \prime} \|^{\mathbf{l}} I\right)$, $\mathrm{k}=1, \ldots, \mathrm{n}$. Then $0=\left\langle p(s)=\right.$ Atq^^^. . . , q_{n}), so the $\mathrm{q}_{\mathrm{fc}} \mathrm{k}=1, \ldots$, n, are linearly dependent.

$$
\text { Set } q_{Q}=-q_{n}, \quad \text { and } \wedge=q_{f c}-q_{k-1}, k=1, \ldots, n \text {. Then }
$$

$$
\begin{align*}
& \frac{\mathrm{H} \underset{1}{\dot{j}} \wedge}{1}+\S_{j+}^{\wedge} 1!-1-2 q \cdot \frac{11}{j} \ll 2 r \quad j=0, \ldots, n \tag{1}\\
&\left.n^{-1} \ell\right)-g(0)\|+\| g(\ell)-g\left((n-s) n^{-1} \ell\right) \| \leqq
\end{align*}
$$

$$
\begin{equation*}
\left(1-s j n^{\prime} \wedge+\sin -\wedge n^{\prime 1}{ }^{1 \wedge} .\right. \tag{2}
\end{equation*}
$$

Further, the $\mathbf{x}_{\mathbf{k}^{\prime}} \mathrm{k}=\mathrm{l}, \ldots, \mathrm{n}$, are linearly dependent; i.e., there exist real numbers $a^{\wedge}, k=1, \ldots, n$ not all 0 , such that

$$
T_{1 \underset{\mathrm{KK}}{\mathrm{n}}}^{\mathrm{n}}=0 .
$$

We may assume without loss that

$$
\begin{equation*}
\max _{k}\left|a_{k}\right|=1 \tag{4}
\end{equation*}
$$

$21 e_{\hat{n}^{\prime}}^{\prime} I=2$. Setting $j=h-1$ or $j=h$ and replacing every $a_{\boldsymbol{k}}$ by $<\mathrm{x}_{\boldsymbol{k}}$ if necessary, we may consequently assume, without invalidating (2), (3), that

$$
\begin{equation*}
\left.\stackrel{j}{-D_{1}} \text { ot }_{v}+\underset{j+1}{E} a_{1,-}\right) \quad 1 \quad \text { for some } j, \quad 0 £ j £ n . \tag{5}
\end{equation*}
$$

Combining (1) for that value of j with (3), (4), (2), (5), we obtain
 $(n-1) n^{-1} \ell$.
Thus $I \geq 2 n(n-1) \|^{1}$; since the curve in 92 with antipodal endpoints was arbitrary, the conclusion follows.

Remark. Part of this theorem is a refinement of [4; Theorem 3.2]. For even dimension n, a similar proof (using the fact that any $n+1$ points are linearly dependent) shows that $m(X) \geq 2 n \sim l_{(n+1) \text {, }}$,
but this will follow from Theorems 1 and 2.
We can now give the exact value of $m^{\wedge}(n)$ for every $n \wedge 2$:
3. Theorem. $m^{\wedge} \cdot(2 n+1)=m^{\wedge} \cdot(2 n)=2+n \sim^{1}, n=1,2, \ldots$.

Proof. By Theorem 2g $\mathrm{m}^{\wedge}(2 \mathrm{n}+\mathrm{l}) \geq 2+\mathrm{n}^{\boldsymbol{l}}$; the conclusion
follows from Theorem 1.

References,

1. Schäffer, J. J. : Inner diameter, perimeter, and girth of spheres. Math. Ann. 173, (1967) 59-79.
2. \qquad : Addendum: Inner diameter, perimeter, and girth of spheres. Math. Ann. 173, (1967) 79-82.
3. \qquad : Symmetric curves, hexagons, and the girth of spheres in dimension 3. Israel J. Math.
4. \qquad and K. Sundaresan: Reflexivity and the girth of spheres.
