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1. INTRODUCTION,

We are here concerned with the oscillatory behavior of

solutions of the following second order nonlinear differential

equation:

(l) y!! + yF(y2,x) = o,

where the function F(t,x) is continuous and non-negative for

te[0,oo), X€(0,oo).

It will be tacitly assumed here that every locally defined

solution of (1) is continuously extendable throughout the entire

non-negative real axis. This will be the case if for example one

requires that for fixed t, F(t,x) satisfies a uniform Lipschitz

condition in some neighborhood of every X€[0,oo). (See Hastings

[3], and Coffman and Ullrich [2].) Actually, this tacit assump-

tion can easily be removed, see the remarks at the end of the

paper. A nontrivial solution of (1) is said to be non-oscillatory

if for every a > 0, the number of its zeros in [a,oo) is finite,

and it is said to be oscillatory otherwise. Different from the

linear equation, when F(t,x) is independent of t, the nonlinear

equation may possess solutions of either kind. In view of this,
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one is led to consider the following types of oscillation and

non-oscillation conditions; namely, those which guarantee all

solutions of (1) oscillate and its converse, i.e. the existence

of one non-oscillatory solution, and those which guarantee all

solutions of (1) do not oscillate and its converse, i.e. the

existence of one oscillatory solution. The first type of

oscillation and non-oscillation conditions have been the centre

of considerable amount of research and there are a number of

results available for equation (1) or similar equations. For

an expository account on this subject, we refer the reader to

Wong [12], where other references may be found. An excellent

discussion on the nature of oscillatory and non-oscillatory solu-

tions may also be found in the papers by Moore and Nehari [9],

and Nehari [10]. The second type of oscillation and non-oscilla-

tion conditions have received little attention only until recently,

The prototype of equation (1) is the following generalized Emden-

Fowler equation:

(2) yi * + p(x)yy = 0,

where y >_ 1 is the quotient of two odd integers. For equation

(2), Jasny [4] and Kurzweil [7] have established the following

result on the existence of one oscillatory solution:

THEOREM A. Let y > 1. ijL x p(x) is non-decreasing in

x, then equation (2) has an oscillatory solution.
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Jasny and Kurzweil's result is complemented by the following

theorem of Kiguradze [5]:

THEOREM B. Xf x p (x) jls non-increasing in x, for

some € > 0 then equation (2) Jjs non-oscillatory, i.e. all solu-

tions are non-oscillatory.

Very recently, Nehari [11] obtained a result which is an improve-

ment of the result of Kiguradze [5], namely,

2+3
2

THEOREM C. lt^ (x log x) p(x) JLS non-increasing in x

for sufficiently large x, then equation (2) is, non-oscillatory.

In [11], Nehari also initiated the study of obtaining similar

results for the more general equation (1). Part of the difficulty

of such an extension lies in the fact that the proofs of Theorems

A, B, and C depend heavily on the form of the function F(t,x)

in that it is separable as a product of functions of t and x.

Using some ingenius differential identities and inequalities,

Nehari [11] obtained the following non-oscillation result for

equation (1) corresponding to Theorem B for equation (2).

THEOREM D. Let G(t,x) be defined by;

(3) G(t,x) = J F(s,x)ds.

If (i) for fixed x, F(t,x) jLs ja non-decreasing function of t

and (ii) for some positive e and all positive a, xG(ax €,x)
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is non-increasing for X€[a,oo) for some a > 0, then equation

(1) JL£ non-oscillatory.

Questions were open as to whether (a) a similar result for equation

(1) corresponding to Theorem A for equation (2) holds, and (b)

Theorem D may be improved to include Theorem C as a special case.

The purpose of the present work is to answer these questions in

the affirmative, thus completing the extension of Theorems A and

C to the more general equation (1). In fact, we prove a little

more than that stated above, and we refer the reader to the last

section where a discussion of these details will be given.

2. OSCILLATION THEOREM.

The desired extension of Theorem A to the nonlinear equation

(1) is the following result:

THEOREM 1. Let F(t,x) and G(t,x) be given as above.

Suppose that (i) there exist constants x ,M,c > 0 and K > 1
. "~~"~"——•"— — — — — — — — — — — — — — Q — — — — —

such that

2 1

(4) x F(ax,x) > •£ + c, . x >, X Q , a >_ M,

and

(5) G(t,x) < KtF(t,x) , x >, X Q , t < Mx,

and (ii) for every a > 0 the function xG(ax,x) is non-decreasing

in x for x > x . Then equation (1) has an oscillatory solution.
— — — — Q ————— -\ — — . _ — . — — — — —

The proof will be carried out in a series of three lemmas each

of which may be of interest in itself. In each of these, we



assume without explicit mention, that the hypotheses of the

above theorem hold.

Lemma It Let y(x) be a. non-oscillatory solution of (1) .

Then

(6) lim inf x2F(y2(x),x) < ^

x - oo

Proof• Suppose that (6) fails, then there must exist

a 6 > 0 and an x, > x such that for x > x-
JL — O — 1

x F(y (x) ,x) > - j - .

But then y(x) satisfies a linear equation:

(7) y' » + p(x)y = 0,

where p(x) :>—•*, for x >, x-• Since equation (7) is oscilla-
4z x

tory when p(x) = —zz3 the given solution y(x) must also be
4x

oscillatory by the Sturm Comparison Theorem. This contradicts

the assumption that y is non-oscillatory. Thus (6) must hold.

Lemma 2. Let y(x) be ja non-oscillatory solution of (1) .

Then there exists a. positive constant B, independent of the

initial values of y(x) and y» (x) such that

(8) lim sup |x1/2y« (x) - \ x"1/2y(x) | < B.

x -» oo

Proof. Let 0(x) = x1//2y' (x) - j? x~1//2y(x) . We note first

that, since y(x) is a solution of (1), we have,



(9) .aEjgi. = x - v *y (x) ( 1 . X 2 F (y2 (x) ̂  x))#

Now if we rewrite (1) as

yi ' + - ^ y = - ^ ( T - x2F(y2(x),x)),

and apply the variation of constants formula, we obtain

(10) y(x) - x 1 / 2 ( a + blog J ) + x 1 / 2 f* S - 3 / 2 l o g $ 4 - s 2 F (y2 (s) ,s)y(s)ds,
Xl s 4

2 ) + x
x/2 r* s-

xi J
X l

-1/2
where a * x ' y(x,) and b = 0(x ) . Assume that y is positive

for x >, x 1 and that

(11) y(x) < (Mx) 1 / 2,

when x = x-. By continuity then (11) holds on some interval

[x,,x2)9 and on that interval we obtain, using (11) in (10),

y(x) < x ̂  (a + b log J ) + -rM ' x ' | s ~ l o 9 f d s >
1 x
l xl

-1/2 1/2
or, using a = x ' y(x;.) < M

 /
 3

(12) y(x) < x 1 / 2(M 1 / 2 + b log $ + ~ M 1 / 2 (log - )2) ,
xl ° xl

for x̂ĵ  <. x < x2. If the logarithmic polynomial

P(£) = M 1 / 2 + b log £ + -| M1/2(log 4 ) 2

satisfies

M1^2 > P(£) > 0, for 1 < £ < A,

then, by (12), the inequality (11) will hold also when x = x2,

provided x 2 < Ax.. This last fact can be used to show that the
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validity of (12) extends to [x,,Ax..] . Now let A > 1 be given,

there exists then a B > 0, such that if -b > B the logarithmic

polynomial P(£) defined above satisfies

M1//2 > P(€) > 0 for 1 < 4 < A', P(A') = 0,

where A? = A1(b) < A; moreover B depends only on A and MU

The foregoing remarks show that if y is, as above9 positive

for x >_ x1 and satisfies (11) at x = x- then 0 ( X T ) > -B.

Since, in view of (4), the right hand side of (9) is negative

for y(x) >_ (Mx)1'2, it follows from (6) and (4) that 0(x) > -B

for all x > xn . Repeating the same argument, but !! going backwards

we see that if x is the last zero of the eventually positive

solution y, then for x, > Ax , and when (11) holds at x = x..

we must have 0(x,) < B. Using (4), (6), and (9) as before we

conclude that 0(x) < B for all large x. If y(x) < 0 for all

large x, then the above argument applied to the solution -y(x)

gives (8). This completes the proof.

Lemma 3. If y(x) JLJ=L JL solution of (1) , then the function

^(x) defined by

$(x) = x(y'2(x) + G(y2(x),x)) - y(x)y'(x)

is non-decreasing in x.

Proof, We give a proof for the case where F(t,x) is of

class C . For the general case, the result will follow by a

standard argument involving approximation of F(t,x) by C

functions. By a straightforward computation we have the identity
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d #(x) = (2xy« (x) - y(x))[y"(x) + y(x)F (y
2 (x) ,

dx

where Q(t,x) = G(t,x) + tF(t,x) + xG (t,x) . Note that the
x

function Q(t,x) satisfies

Q(t,x) = -^1

a = x

for arbitrary t, x > 0. Thus, in view of the nondecreasing

character of xG(ax,x) for a > 0, we have Q(t,x) >̂  0, and the

desired conclusion follows.

Proof of Theorem 1. Let y(x) be a solution of (1), vanishing

at x- > x , and let xo be some value of x > x1 for which
j. — o £ — i

(13) x P (v fv S x ) < — + d

so that in particular from (4) we have

(14) y (x2) <̂  Mx2.

Suppose that y(x9) > 0 and y1 (x0) > 0, then, by Lemma 3, it

follows

(15) x2fy
f2(x2) + G(y (x2),x2)] > C ,

where the constant C = x̂ -y1 (x1) . By (5), (13), and (14), we

have

2 2 2 1
(16) x2G(y (x2),x2) < Kx2y (x2)F(y (x2) ,x2) < KM(^ + c) .

Suppose that y(x) is any solution of (1) defined by the initial

values fx^ = 0 and x y^2(x ) >_B»2, where B'2 > 2B



+ j + (•£ + cjKM, then, it follows from (15) and (16) that for

arbitrary large x~ for which (13) is satisfied,

0(x2) = x£
/2y' (x2) -

x y f (X2) .

(B'2 - KM(^ + c) ) 1 / 2 - \ M 1 / 2 > B.

If such a solution y(x) is non-oscillatory then the above clearly

contradicts (8); hence y(x) is an oscillatory solution of (1).

3. NONOSCILLATION THEOREM.

We shall now prove a result which is the desired counterpart

of Theorem C for equation (2). The following result is also a

generalization of Theorem D.

THEOREM 2. Let F(t,x) and G(t,x) be given as before.

Suppose that there exists a^ constant x > 3, such that for

x > x , we have (i) F(to,x) < F (t- ,x) ,to < t, > and (ii) for
o ~—*" £. i z l

every a > 0, the function x log x G(ax log x^x) Jjs non-increasing

in x. Then equation (1) JLS non-oscillatory.

Before we prove Theorem 2, we need two preliminary lemmas

which also seem to have independent interest in themselves. In

the following, we restrict the independent variable x to the

half open interval [x ,00) without further mention.
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LEMMA 4. Let a. be a zero of y(x) satisfying (1), and

a2 > a, such that y(a2)y' (a2) = 0. Then,

a2
(17) a2log a2y»

2(a2) - a]Llog a ^ '
2 ^ ) < - J VM-V' <x> dx.

PROOF. Denote Q(t,x) = G(t,x) + tF(t,x) + xGv(t,x) as
X

before and observe that

(log

(18)

x) Q

3
a

( t

/
(

, x )

rr 1
(X 1

+

og

G

a

( t

G

,x)

ta
( :

+

lc
K ]

t F

Log

( t ,

a
X '

x)

a)) a >
= X

for arbitrary t, x > 0. Thus in view of the non-decreasing

character of (x log x)G(ax log x,x) for a > 0, the left hand

side of (18) is non-positive. Let y(x) be a non-trivial solution

of (1), and define #(x) by

= x(y»2(x) + G(y2(x),x)) - y(x)y»(x)

as in Lemma 3. An easy computation shows

(19) ^(log x *(x)) = log x Q(y2(x),x) + G(y2(x),x)

+ y l 2 ( x ) , Y(x)y»(x) ,m

x

Integrating (1S») between a, and a- and using the relation

a2 a2

J y'2(x)dx = J y2(x)F(y2(x),x)dx,
a a

we find

J
al al
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a2 , a2J e\ f* 0 0 0 0

^ ( l o g x tf(x))dx = J [log x Q(y ,x) + G (y ,x)+y F (y ,x)]dx
a 2

_ T y(x)y«(x) ^
J X 'a l

from which (17) readily follows.

Lemma 5. Let a be any zero of y(x) satisfying (1) and b

be the f i r s t zero of y1 (x) Jtg the right of a. Then there ex is ts

^ constant B > depending only on the f i r s t zero a jo£ y(x)

such that

(20) \ y | 2 (x )dx < B .

Proof. With no loss of generality, we may assume y(x) > 0

on (a,b) . For xe(a ,b) , we have

((x - a)y< - y) ' = (x - a ) y " = - (x - a)yF(y2,x) < 0

hence y' (x) (x - a) <_ y(x) . Using this estimate, we easily verify

the following inequalities:

J y'2(x)dx = j x"a+a y'2(x)dx
a a x

(21) Y(x)yt(x)
^ + a

x J a x

P 2*.

ax

(22) < / \A/ y \̂ / dx + a
x ax

Y<x)y.(x)
a Ja -a x-
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Combining (21) and (22), and using the fact that y (x) < y (a)

for xe(a,b), we obtain

(23) I y' 2(x)dx<2 r y(x)Y' (x)dx + a y 2 (a) .
Ja Ja x

Using (17) in (23), we have

I* 2 2 a o l o g ao y' 2 ( ao )

(24) yz(x)dx < 2a log a y ^ (a ) + -2 —2 2_j —• o o o log aa

< 3aolog aoy-
2(ao) = B Q.

Proof of Theorem 2. Assume that the assertion is false,

hence, there exists an oscillatory solution y(x) of (1)• Let

a ,a.,a2,...,a ,... be consecutive zeros of y(x) and

•̂  9^1 ̂ o ^ •••jb ,••• be zeros of y' (x) with a, « K. b, -. ̂  ̂ *wy

k = 1,2,3,... . Define a sequence of positive numbers {M^} by

(25) ^ = J y'2(x)dx = J y2(x)F(y2(x),x)dx.

For xe[a, ,b, ], we have by Schwarz»s inequality

(26) y2(x) < (x - a.) I* y»2(x)dx< /LX.

Using (26) in (25) and the non-decreasing character of F(t,x)

with respect to t, we have

bk bkk k
(27) 1 < f xF(/x,x,x)dx < f xF(B x,x)dx,

where B is given by (20) . Again by assumption (i) , we know



13

that G(t,x) is convex in t. Hence,

(28) G(j8x log x,x) - G(ax,x) > (p log x - a)xF(ax,x),

provided j8 log x - a >. 0, Let j3 = a(log x ) " , then (28)

may be rewritten as

Choose xn > x so that log x > 2 log x^ for x > x,. Now
JL — O O J.

(29) becomes for x >_ x^

log x v a log x
log xQ* ' — 2 log x

Pick k so that a, >. x- for k >. k • Using (30) in (27),

we observe

bk A 2 log x
xF(B x,x)dx < p •• v° G(B»xlog x,x)dxo """" v o J-Og x

(31) b,
2 r i

= ~f J j x ^°9 xG(B!x log x,x)dx,
a, x(log x)

where B* = B(log X Q ) " . Denote G Q = a, log a. G(B»a_ log a. ,a, )
o o o o o

Using assumption (ii), we obtain from (31) the following estimate

valid for k >_ k ,

2G
(32) 1 < -r^-

Letting k -• oo in (32), we obtain the desired contradiction.

HUNT LIBRARY
CMNEGIE-MELLON UNIVERSITY
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4. DISCUSSION.

Theorem 1 generalizes the result of Jasny and urzweil, i.e.

Theorem A, in several directions. First, as remarked before, the

function F(t,x) is not necessarily of the form of a product of

two function each of t and x alone. Next, the usual assump-

tion on F(t,x) that it be non-decreasing in t is weakened to

condition (5) which admits a much larger class of functions.

Finally, we would like to point out that in contrast to Theorem

A which is strictly a nonlinear result, our Theorem 1 also covers

the linear case as well. Consider equation (2) with y = 1.

Assumptions (i) and (ii) thus reduce to: there exist constants

xQ, c > 0 suctf that

(33) x2p(x) > \ + c, x > X Q

2
and that x p(x) is non-decreasing in x. We note that the

second condition may be waived in general. Consider a function

2 «• 2 1
p(x) defined for each x >_ x by x p(x) = inf s p(s) >. T + c-

° X<S<OD
— 2mm

Clearly p(x) >. p(x) and x p(x) is non-decreasing in x.

Applying our result to the linear equation y! ' + p(x)y = 0 and

making use of the Sturm Comparison Theorem, we obtain that the

linear equation yf> + p(x)y = 0 is oscillatory. In this way,

Theorem 1 recovers the well-known result of Kneser [6] for the

linear case, although it should be mentioned that in the proof

presented here we have already used this linear result of Kneser,

Cf. Lemma 1# However, alternative proof may be devised so as to
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avoid the explicit use of Kneser's result. Such a proof necessarily

involves longer arguments.

It is a simple matter to see that Theorem 2 includes the

two results of Nehari [11] as special cases. In contrast to

Theorem 1 whose proof is significantly different from that of

Theorem A, here we make use of some of the techniques developed

in [11] in establishing Theorems C and D. We remark that in both

Theorems B and C, Kiguradze [5] and Nehari [11] stated their

results only for equation (2) with y > 1, (in fact they assume

y = 2n - 1, where n is a positive integer > 1). It is clear

from Theorem 2 or a simple application of Sturm1s Comparison

Theorem that Theorems B and C remain valid for equation (2) in

case y = 1. Indeed, the proofs of Kiguradze [7] and Nehari

[11] made no explicit use of the fact that y > 1.

It should be mentioned that the proofs of both Theorems 1

and 2 can be made more transparent by transforming into an

auxiliary equation. For example in Theorem 1, let t = log x and

-1/2
x" / y(x) = u(t), then equation (1) is transformed into

(34) ^ % + ule^ieV^e
1) - h = 0.

Clearly equation (1) possesses an oscillatory solution if

and only if equation (34) does. Since this approach does not

shorten the presentation, we choose to use the present analysis

in order to conform with Nehari»s work. A similar comment applies

to Theorem 2. Here we use the change of variables: t = x log x

and (x log x)1//2y(x) = u(t).
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Previously it was tacitly assumed that every local solution

of (1) can be extended to [0,oo). Actually this assumption can

be omitted without essential modification of the statements or

proofs of Theorems 1 and 2, provided that we understand by a
2

solution of (1) a C solution defined on a right maximal inter-

val of existence [a..,co), a, >_ 0, co £ +oo • We shall call such a

solution oscillatory if it has infinitely many zeros in [x,,co); if

we adopt this definition then every solution y having a finite

right maximal interval of existence is oscillatory, see for

example [2]. Moreover, if ai < a 2 <...< co < oo, are the zeros

of the solution y then lim |y? (a ) | = co, and also lim sup|y(x) | =oo .
n-'ao x-*to

For Theorem 2 the assumption on the continuability of

solutions is superfluous, since for a given solution y(x),

y!(x) must remain bounded on its maximal interval of existence

because of (17). In fact, Nehari [11] has already noted that

every non-oscillatory solution is ipso facto continuable through-

out (a,oo). We also note that the continuability assumption is

superfluous in Theorem A, although the proofs of Jasny [ 4 ] and

Kurzweil [ 7 ] rely on Atkinson1s erroneous statement [l;p.643] that

all solutions of (2) can be extended indefinitely when p is

continuous and positive. A similar comment applies to the result

of Kiguradze. We note that in these cases the monotonicity of

x Pp(x), j8 > 0, implies that p(x) is locally of bounded variation,

and hence the continuability of solutions follows from a result

in [2].
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We would like to point out that results in this paper may

be stated in term of the more general equation:

y»» + f(y,x) = 0,

where f(y,x) satisfies a set of conditions similar to those we

impose on the function F(t,x). Such a generalization does not

seem to add much to the present knowledge of the problem, we

content ourselves with just a mention of such a possibility.

Finally, we note that in contrast to results which guaran-

tee oscillation of all solution or the existence of a non-oscillatory

solution, our conditions on the growth of the function G(t,x)

are not in terms of convergence or divergence of a certain

integral. In this sense, our results are not totally satisfactory.

For example, Atkinson [1] has established a necessary and suffi-

cient condition for equation (2), when y > 1, to be oscillatory,

namely

J x p (x)dx = oo .

(Extension of Atkinson!s result to more general equations similar

to (1) have been given by Macki and Wong [8].) It would be tempting

to conjecture that a necessary and sufficient condition for

equation (2) to be non-oscillatory is

J x?+1/2p(x)dx < oo.

Thus far, the validity of such a conjecture remains unsettled.
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