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In a previous note [1] the authors considered the problem of

approximating a prescribed temperature state in a body, at time

t, by adjusting the boundary temperature over a preceding interval

of time. There, L2-approximations were discussed, but we wish

now to obtain analogous results for the C - topology. More

precisely the following result was established. Let R be a

bounded open subset of Rn with piecewise-smooth boundary 3R

having finite (n-1)-dimensional volume. For -1 < a < b < 0,

let

Bab = 3 R X ( a' b ) #

Let u be a continuous function in B , and let U(x, t;\I) denote

the solution of the problem.

Ufc = ZflJ in R X (-1,0]

U(x,-1) = 0, x e R
(1)

U(x,t) = u(x,t) for (x,t) G B a b

U(x,t) = 0 for (x,t) e(5R X [0,1]) - B .
3.D

Theorem 1 . Suppose f € I«2(R) and € > 0 are given. Then

for any a and b, -1 < a < b < 0 there exists a_ function "u,

continuous in B , , such that

| | ! L

In the present work we will show that it is also possible

to obtain uniform approximations to the function f provided
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that it is sufficiently smooth. We show in fact that if f is

k-times differentiable in R then it and all its derivatives

up to order k can be approximated uniformly in R.

In the present application we will have to discuss derivatives

of functions up to and including the boundary. Hence it is

necessary to put some smoothness conditions on dR. In order not

to have to concern ourselves with precise conditions in various

situations we make the following hypothesis:

(A.I) dR is a C°° surface.

Next we point out that if a function f is to be uniformly

approximated by functions of the form U(x,t;u) it is necessary that

it satisfy certain compatability conditions on dR. Note first

that any function of the form U(x,t;u) is identically zero for

x e dR and t near zero. Hence we must have

u(x,t;u) s o for x e dR, t = 1, k = 0,1,2,...
—
dtK

But then it follows from the first of equations (1) that

(2) AkU(x,t;u) s o for x e dR, t = 1 k = 0,1,2,...

Suppose now that f e C M(R)* and that f together with all

derivatives up to order M can be uniformly approximated on R"

by functions of the form U(x,t?u). Then it follows from (2)

that f must satisfy the conditions,

(A. 2) A3f s 0 for x € dR, j = 0,1, [l£]

(*) That is f € C (R) and the derivatives of f up to order M
are all uniformly continuous in R.
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Our main result is that &11 functions f which satisfy

conditions (A,2) can be uniformly approximated in the sense

desired.

Theorem 2: Let R be â  domain in P satisfying (A. 1) . Let

f e C (R) and suppose that f satisfies (A.2). Let € > O

be given. Then for any a and b, -1 < a < b < 0, there

exists a function u continuous in B - such that
_ _ _-___-_-___-_____---. — ĝ  _ . _____

(3) I f- UI M
 =

XGR

Here we use the standard notation in which a is a vector

(ou,...,a ) with non-negative integer entries,

I-ot | = a^ + .... + a
and

We shall prove theorem 2 presently. First, however, we

wish to point out that we can modify our result so that it

gives uniform approximations to general k-times differentiable

functions. To accomplish this we must, of course, give up the

requirement that the boundary functions u should vanish near

t = 0. For -1 < c < 0 let us denote by B the set

B c = 3R X (c,0] .



Now define U(x,t;u) as in (1) but with B replacing B . .
c ajD

Then we have the following result.

Theorem 3: Let R be a domain satisfying (A.I). Let f € C {~R) .

Then for any cs -1 < c < 0, there exists <a ii continuous in

B such that if £(x) = f(x) - U(x,O;u) then £ € CM(R) and £

satisfies (A.2).

Once we have theorems 2 and 3 we can approximate an arbitrary

f € C (R) by an expression of the form U(x, tru-j+u^) where u.

has support in B . and u 2 has support in B 9 a,b,c arbitrary.

The proof of theorem 3 is easy and we give it here. Suppose

that for the given function f we have,

A3f = <p.j for x e dR j = 0,1, . . . [j] .

Let u be a function defined on B such that
c

(4) lim d-^X't) = <p (X) x G R, j = 0 , l , [y] ,
tto

and consider the function U(x,t;u). We have then

U(x,t;u) = u(x,t) (x,t) € BQ,

hence by (4)

( ) aZH(x,tm) m ( x ) x € ^ m 0 1 A ,
ttO htp 3 2

On the other hand, U(x,t;u) is a solution of the heat equation ;

hence,



ADU(X,O;U) = -2-r U(x,O;U) = <p.(x),

X € R, j = 0,1,...[j]9

by (5).

Proof of Theorem ^. For each integer m, let H~ denote the

Hilbert space composed of functions on R having 2m strong
in L (R)

derivatives,Aand let A . denote the closed subspace of

H2 which is generated by those functions in C m(R) satisfying,

(6) A^f = 0 for x € dR and j £ m-1.

[That is, A A is generated by functions all of whose normal
m, Di

derivatives of even order < 2m-2 are zero.] Now on A A

^ m, A
the bilinear form (•,•) A defined by

m, £s

. _ x , x f A m A m -

(7) (u'v)m A
 = J U A V

R
defines a norm || || which is equivalent to the Ho -norm

m, A ^ m

defined by

ii2 ,
L (R).

That is, one has the following result.

Lemma 1. There exists a. constant K depending only on m and

R such that for any u e A K,
*- m, A

Proof: To see that || |j . is a norm, notice that if



f € C2m(R) satisf ies (6) and in addition ||f|| = 0 then,

in particular, we have

& f = A(A f) s 0 in R, A f = 0 for x € dR.

Thus it follows that Am~ f = 0 in R. Proceeding successively

we deduce from (6) that f a-o in R. Moreover, for any

f€ C^CR) which satisfies f = O for x e 9R one has ([2],

page 195)

where C depends only on R and r. Hence beginning with

r = 2m and proceeding successively, we deduce that for all

f e C2m(R) which satisfy (6) one has

( 9 ) | ! f ! ! 2 m ^ c ! | A f | | 2 m _ 2 < ; c . | l A 2 f | | 2 m _ 4 ^ . . . r K | ! A m f ! ! o - .

where K depends only on m and R. This concludes the

argument.

Now recall that, according to Sobolev's lemma, if 2m > M + -jr

then the following inequality holds for all functions in EL ,

where the norm on the left is the C -norm defined in (3) and

where C depends only on M,m and R. Thus lemma 1 yields the

following result.

Corollary. JEf u e A A and 2m > M + ~ then
m, A z



(ID lulM^
CNm,A'

where C depends only on M,m and R.

The proof of theorem 2 now rests on the following two lemmas,

Lemma 2 For any a and b the functions U(x,0;u), for u

continuous in B . 3 are dense in A 9 ,A.
3.D w— m £x

Lemma 3 Let M b£ given and let m be; any integer with

m > M + [j] • Let f € CM(R) and satisfy (A.2) and let e > O
« . . .

be given. Then there exists an f, e C m(R) which satisfies (6)

and is such that lf"filM ^ €*

With these two lemmas in hand the proof of theorem 2 is

immediate. Given f e C (R) and the numbers a,b and e > 09

lemma (3) states that we can find, for any m > M + [̂ ] > an

f., e C m(R) satisfying (6) and such that | f—f-. | < -|-. Then by

lemma (2) we, can find a function \I continuous in B . such that

||f (.) « U(-50;u)|!m < G/2C.

Since f, and U(-,«,u) are both in C (R) and satisfy (6) it

follows then by (11) that

If^.) - U(.,0»)|M < f ;

hence

f(-) - U(.,o;u)|
M
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Proof of Lemma 2.

Let us now outline the proof of lemma 2.

This closely parallels that of [1] and proceeds as follows.

The functions U(x,t;u) at t = 0 can be written in the form,

(12) U(x,O;u) = J J u(y,r)Gt/(x,y,-r)dr
-1

Here G(x,y,t-r) is the Green's function for the heat equation

in R and G denotes the normal derivative with respect to the

variable y. For (y, r) e B , it is easy to see that G (#,y,-T),

considered as a function of x, belongs to C m(R) and satis-

fies (6), for any m. In [1] we exploited the fact that these

functions spanned L^fR)* The key here is that they also span

Lemma 4 . The functions f G. (« «y, ~r)) for (y, r) e B. , span the

space A ..

We assume the validity of lemma 4 for the moment and

complete the proof of lemma 2 . The f of lemma 2 belongs to

A A. Hence given any e we can find points (y.. 9 r-i) * • • • (y 9r )

in B , and numbers c-,.#,c such that,
a ID j. n

llf(-) -

Now the function G (x,y,-r) has derivatives of all orders

which are continuous in y and r. Hence given any e f > 0

we can find 6 such that



(14) |AmGi/(x,y,-T) - A
mGi;(x,yi,-Ti)| <e«

for x e R and |y-y.| < 6, |T-T.J < 6. Let us choose functions

0^(Y>T), with supports in |y-y^ < 6,J T-r^l < 6 respectively

such that

(15) I J 9i
-13R

and consider the function

U(x,t;

We have by (14) and (15)

(16) lA'WjO; l£ c ie i) - lfciA
mGi;(x,yi,-Ti) J° J B

- 1 R

= l £ c i f S ei(y,r)[AmGJ,(x,y,-T)-AmGi;(x,y,-ri)]|
1 - l d R

n
£ e' T\c±\.

If we choose e' according to the inequality,

e1 <:(E I c J ) " 1 A'1 /2e/2
1 X

where A denotes the n-volume of R then it follows from (15), (16)

and Schwarz's inequality that,
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Thus the proof of lemma 2 is reduced to that of lemma 4 .

In order to prove lemma 4 we need to make use of the

eigenfunctions of the Laplacian for R. These are functions, a,

satisfying the conditions,

(17) Aa k = -Akak, ak = 0 on BR, H ^ H ^ = 1

The a, fs form an orthonormal basis for L2(R). The (̂ -u)

are positive and if we let {fi.) be the distinct A^-values,

. 2
ordered by increasing magnitude, then [\x ./j } is bounded away

from 0 and <».

Lemma 5 • The functions {A-, a., } form an orthonormal basis for

Proof; It follows from (A.I) that the a, are infinitely differ-

entiable in R (see [2]pp. 190,201) . By (17) we see that A^av = o
o ____

on 3R for any j. Hence A" a e C (R) fl A A. We have,by (17),
K. K! m , £JL

t -. — m -m

a k a

<t)m,A

£*-

= (
R

\ma -m

Hence the set [A7 av} is orthonormal. Suppose o e C m(I*) D A
K ^ m, A

is orthogonal to A.Tma, for all k. Then

R

= ± j a./fco dx

R



11

Since the {ak} span L2(R), it follows that Am^ = ° in R

and this together with £pcp = 0 on 3R, j = 0,1,.*..m-l

implies that <p = O.

We can now complete the proof of lemma 2. Suppose the

span of to = [GtJ (• ,y,-r) : (y>T) € B., } were not dense in A A.i/ 3D m, &

We could then find a non-zero <p e ft ; that is a function <p e A

such that

(18) 0 = (<p,G (-,y,-r))m A for each v.

We can expand <r> in the form

Hence (18) becomes

(19) 0 = T Pk rk(y,r)

where Fk(y, T) denotes the k-th Fourier coefficient of
k

expansion

with respect to {A, afc}. Now G(x,y,-r) has the

V
G(x,y,-«r) = L ak(x)ak(y)e

It follows that

Amak(x)bk(y)e
 k T = Ty -Ak)

 mak(x)bk(y) e
 k

where bv(y) = -rrriy) • Hence we have
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and equation (19) becomes,

(20) 0 = X * k £ k

Now the series (20) converges absolutely and uniformly for
2 2

(y,r) € B . . To see this note that the inequalities £k < Ak < Lk

imply the existence of a constant J such that Afc e £ Je k

Akb/2
Thus (20) is majorized by the series £|pjJ lb

k (y)'
e f o r

Akb/4

(y,T) € B .. This converges uniformly in y since bk(y)e

are the Fourier coefficients of G (-,y,-b/4) for the set {ak}
and the functions Gfi(-,y,-x)

 a r e uniformly bounded in L2(R),
v A.b/2 A b/4

thus ensuring that |bk(y)|e ̂  ^ Ce for some fixed C.

This provides a convergent series dominating (20) since the (3k

are the coefficients of V in the set (Ak a k).

The remainder of the pro©f is exactly as in [1]. We collect

terms in (20) in which the eigenvalues are the same. Thus, if

{ll.} are the distinct eigenvalues, (20) yields

(21) O = S j y j e
: j a ^ r ^ b < 0

where

(22) i w

Here K. = [k: X, = u.} (note that each K. is finite). From

(21) we obtain (see [1])

0 = ^ceK Pkbk(y) f o r
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But then F* P-i,aT,(y) has both Dirichlet and Neumann data
k€ K • K K

zero. Hence it is identically zero (see [1]) and by the

independence of (av) ^ follows that the p, fs are all zero*
Proof of Lemma 3.

— —
Finally we give a proof of lemma 3, . Let

f € CM(R) and satisfy £pf = 0 on dR for j = 0,1, •..[!£]. Now

we can find a function <£ satisfying the conditions

(23) A 2 m$ = 0 in R

(24) AD<J> = 0 on dR, j £ m - 1

k k

(25) -M& = -^4 on aR for k odd and k ̂  M,

where v denotes the normal to dR. Conditions (24) and (25)

constitute a part of the Dirichlet data for equation (23).

The remaining part is a set of values of normal derivatives for

<£ of orders greater than or equal to M and less than or equal

to 2m. These latter can be specified arbitrarily as C°°

functions and 0 thus determined as a function in C m(R) c C (R) .
14

Let F = f~<J>. Then F e C (R) and moreover we have

AjF = 0 on dR j ̂  [j],

= 0 on dR for k odd and k <̂  M.

From these conditions it is easy to see that F e CM(R) ; that

is, F and all its derivatives up to order M vanish on

Hence if we write f = <N-F we see that lemma 3 will be proved

if we can show that it is possible to approximate functions in

HUNT LIBRARY
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^ by functions in C m(R) which satisfy (6). We establish,

in fact, the stronger result that the set C°°(R) (C°°

functions of compact support)is dense in CQ.

Lemma 6 . C°°(R) is a dense subset of C ( R
• ' •' • • o — — — — — — — — . — —

Proof: The smoothness assumption on BR implies that for each

dR there exists a ball N X containing

(a) the center z of N X lies in R

x e dR there exists a ball N X containing x which is such that

(b) none of the segments z^y, y € N D SR, is tangent to

(i.e., supports) SR at y.

Hence,by compactness of dR there exists a finite collection
Xi[N i = 1, ...,p) covering SR and there is some 9 e (0,ir/2)

such that the segments

x.
z* y (y e N xnaD, i = i,...,p>
xi

all make an angle with dR at y exceeding Q . Moreover,
P x. °

for some e > 0 the set U N contains the closed €-neigh-
1

borhood G of dR. Let R = R-G . Then the sets

form an open covering for R. Let {<p.} . denote a corres-

ponding C°° partition of unity for R:

x.
(27) supp <pQ c R£, supp <pi c N

 x i = 1, ...,p,

P _
(28) S <p^(x) s i , x e R.

j=0 J
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Given an f e C (R) (extended as zero outside R) let

6 > 0 be prescribed and examine the functions f. defined by

(29) f_. = fcDj j = 0, ...,p.

Now f is in C (R) and has its support in R£9 hence inside

R. It follows ([3],p* 1642) that fQ gan be approximated arbitrarily

closely in the norm | | M by functions belonging to C°°(R).

Select f satisfying

(30) IV?O'M< ?

Next we observe that by (27)

M x-i -
f± € C^(N OR) i = 1,...,p.

Define the family of functions (f.}, t e (I,00.), by

(31) fUx) = f (tx + (l-t)z ) for t 6 (1,»).
1 JL J\, •

X.

It follows by our construction of the {N -*} that the functions

{f^} satisfy

(32) fj e CM(R) for t € (1,»).

Moreover it is easily verified that

(33) l fi- fil M-*
0 as fc - 1' i=l,...,P-

Hence there exist numbers t. e (1>°°) such that

(34) \fiL-f±\M <
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In addition, for t e (I,00) f. has its support inside R and
t. X

hence as above each f.1 can be approximated arbitrarily

closely in the norm | | by functions belonging to C°°(R).

Select ff-^i/v sucl1 that

(35) | f
i
i - £

i l M < 6/2
±+2, t± € £

By construction, the function f defined by

r*j P /v>

(36) f = F f•
j=0 3

belongs to C°°(R) and by equations (33), (34), (35) and (36) we have

Since 6 > 0 was chosen arbitrarily, this concludes the argument.
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