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This note is a sequel to [1] and provides the answer to a

question left open there. Let P(x),F(t),x) be real valued

functions, continuous on [0,1] and TTx[O,l] respectively, and

assume that for some e > 0, F satisfies, for each xe[0,l],

(1.1) 0 < n^eF(ti19x) < T72€F(7)2,x), o < ri1 < r\2.

Let
r?

(1.2) G(r},x) = J F(s,x)ds, o < r\ < oo, O < x < 1,
o

and for yeC[O,l] l e t ,

(1.3) H(y) = J [y2(x)F(y2(x) ,x) - G (y2 (x) ,x) ] dx.
o

2
A function y is admissible if it belongs to C [0,1] =

2
(UGC [0,l]|u(0) = u(l) = 0}, does not vanish identically, and

satisfies,

(1.4) J y2(x) [P(x) + F(y2(x),x)]dx> J (y» (x))2dx.

2
An admissible set is a subset of C [0,1] consisting entirely of

admissible functions. We denote by (Q the class of subsets
2of C [0,1] which are compact, symmetric, and admissible and

have genus (see def. in [1]), >. m. Then, as defined in [1], the

characteristic values of the boundary value problem,
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(1.5) y! * + P(x)y + yF(y2,x) = O, y(0) = y(l) = O,

are the numbers,

(1.6) A = inf max H(y) •

Belfi^ yeB

The purpose of this note is to show that the characteristic

numbers for (1.5) defined by (1.6) are the same as those defined

in [2]. Assuming the results of [1] , it amounts to the same

thing to show that to each non-vanishing characteristic number

"X there corresponds a non-trivial solution y of (1.5) which
m

has precisely m - 1 zeros in [0,1] and for which,

(1.7) H(y) = Xm.

For yeC^tO,l], let nm = Mm(y) denote the mth eigenvalue

of the linear problem,

(1.8) v» » + /iv(P(x) + F(y2(x),x) = 0, v(0) = v(l) = 0.

o

Lemma 1. Let yeC [0,1] and assume that,

(1.9) Mm(y) < i,

then

(1.10) H(y) > Am.

As Theorem 4 of [1] we proved the special case of the

above assertion in which y is a solution of (1.5) with

precisely m - 1 zeros in (0,1). Exactly the same argument

works if we assume only (1.9) •



3

Lemma 2. Let Be%) , then there is at least one point

y€B for which (1.9) holds.

Proof. We observe first that the eigenvalues of (1.8)

2
depend continuously on yeCQ[O,l]. Secondly, if we define,

to be the kth eigenfunction of (1.8) normalized by

| v2(x,y)(P(x) + F(y2(x),x))dx = 1, v£(O,y) > 0,

then y "* v, (*,y) is continuous as a map of C [O,1P\{O) into

itself. The Fourier coefficients a, of y with respect to

{vi,(sy)} a r e computed by,

(1.11) ak = J y(x)vk(x,y) (P (x) + F (y
2 (x) ,x)) dx,

and if a, vanishes for k = l,...,m - 1, then

(1.12) J y2(x)(P(x) + F(y2(x),x)dx < ^ ( y ) ) " 1 / (y'(x))2dx.

Consider the mapping from B to R given by,

where the a, are given by (1.11). This mapping is odd and

continuous, thus since B e y . there exists a y€B for which

a. =...= a , = 0, and for which consequently (1.12) holds.

Together (1.4) and (1.12) imply (1.9), and this completes the

proof.
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Theorem. If. m is. a positive integer and if Xm > 0

then there exists a solution y = y <Df (1.5) with precisely
— — — — • — — — — — • m

m - 1 zeros in (0,1) and such that

H(v) = X .mm

Proof. The proof of Theorem 2 of [1] shows that there

exists a set Be\& such that,

(1.12) max H(y) = X ,
yeB

and with the additional property that H(y) = V for y^B

only if y is a solution of (1.5). (Indeed, in the notation

of [1], take B = 0(0(N^)), c = X^) . By Lemma 2, there is a

yeB for which (1.9) holds, and by Lemma 1 and (1.12), H(y) = X ,

so that y is a solution of (1.5). Since the non-zero character-

istic values are simple, (Theorem 3 of [1]), we have X , > X ,

and thus by Lemma 1, with m replaced by m + 1, we have \i (y) = 1,

and y has precisely m - 1 zeros in (0,1).

Corollary. The characteristic values of (1.5) , as[ defined

by (1.6), are the same as those defined in [2].

Proof. See the Corollary to Theorem 4 in [1].
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