CHARACTERISTIC VALUES ASSOCIATED WITH A CLASS OF NON-LINEAR BOUNDARY VALUE PROBLEMS

Charles $V_{\#}$ Coffman

Report 68-27

August, 1968

This research was supported by NSF GP-7662.

CHARACTERISTIC VALUES ASSOCIATED WITH A CLASS OF NON-LINEAR BOUNDARY VALUE PROBLEMS

by

Charles V, Coffman

This note is a sequel to [1] and provides the answer to a question left open there. Let P(x),F(t),x) be real valued functions, continuous on [0,1] and $TT_{T}x[0,1]$ respectively, and assume that for some e > 0, F satisfies, for each xe[0,1],

(1.1)
$$0 < n^{A^{e}F}(ti_{19}x) < T72^{e}F(7)_{2}, x), \quad 0 < ri_{1} < r_{2}.$$

Let

MAR 2¹

$$(1.2) \quad G(r_{x}) = J \quad F(s,x)ds, \quad o < r < 00, \quad 0 \le x \le 1,$$

o
and for $yeC[O,l]$ let,

(1.3)
$$H(y) = J_{o}^{1}[y^{2}(x)F(y^{2}(x),x) - G(y^{2}(x),x)] dx.$$

A function y is <u>admissible</u> if it belongs to $C_0^2[0,1] = (UGC^2[0,1]|u(0) = u(1) = 0$, does not vanish identically, and satisfies,

(1.4)
$$\int_{0}^{1} y^{2}(x) [P(x) + F(y^{2}(x), x)] dx \ge \int_{0}^{1} (y^{2}(x))^{2} dx.$$

An <u>admissible set</u> is a subset of $C_0^2[0,1]$ consisting entirely of admissible functions. We denote by ∂_{α} the class of subsets of $C_0^2[0,1]$ which are compact, symmetric, and admissible and have genus (see def. in [1]), \geq . m. Then, as defined in [1], the <u>characteristic values</u> of the boundary value problem,

> HUNT LIBRARY CARNEGIE-MELLON UNIVERSITY

(1.5)
$$y' * + P(x)y + yF(y^2, x) = 0, \quad y(0) = y(1) = 0$$

are the numbers,

(1.6)
$$A = \inf_{\mathbf{m}} \max_{\mathbf{H}(\mathbf{y})} \bullet_{\mathbf{Belfi}^{\prime} \mathbf{yeB}}$$

The purpose of this note is to show that the characteristic numbers for (1.5) defined by (1.6) are the same as those defined in [2]. Assuming the results of [1], it amounts to the same thing to show that to each non-vanishing characteristic number " $_{\rm m}^{\rm X}$ there corresponds a non-trivial solution y of (1.5) which has precisely m - 1 zeros in [0,1] and for which,

$$(1.7)$$
 $H(y) = X_m$.

For $yeC_{\mathbf{0}}(\mathbf{0},1]$, let $n_m = M_m(y)$ denote the <u>mth</u> eigenvalue of the linear problem,

(1.8)
$$v \gg + /iv(P(x) + F(y^2(x), x) = 0, \quad v(0) = v(1) = 0.$$

Lemma 1. Let yeC [0,1] and assume that,

(1.9)
$$M_m(y) \le i$$
,

then

$$(1.10) \qquad \qquad H(y) \geq A_m.$$

As Theorem 4 of [1] we proved the special case of the above assertion in which y is a solution of (1.5) with precisely m - 1 zeros in (0,1). Exactly the same argument works if we assume only (1.9) •

Lemma 2. Let $Be_{n}^{(2)}$, then there is at least one point $y \in B$ for which (1.9) holds.

<u>Proof</u>. We observe first that the eigenvalues of (1.8)depend continuously on $yeC_{Q}[0,1]$. Secondly, if we define,

$$v_k = v_k(\cdot, y)$$
,

to be the kth eigenfunction of (1.8) normalized by

$$|v_{k}^{2}(x,y)(P(x) + F(y^{2}(x),x))dx = 1, vf(0,y) > 0, o$$

then y "* v, (*,y) is continuous as a map of $C_0^2[0,1\dot{P}\setminus\{0\})$ into itself. The Fourier coefficients a_k of y with respect to $\{{}^{v}i,(sy)\}^{are}$ computed by,

(1.11)
$$a_k = J y(x)v_k(x,y) (P(x) + F(y^2(x),x)) dx,$$

and if a_{k} vanishes for k = 1, ..., m - 1, then (1.12) $\int_{0}^{1} y^{2}(x)(P(x) + F(y^{2}(x), x)dx \leq (y)) = \frac{1}{2} (y'(x))^{2} dx.$

Consider the mapping from B to R^{m-1} given by,

$$y \rightarrow (a_1, ..., a_{m-1}),$$

where the a_k are given by (1.11). This mapping is odd and continuous, thus since $Be_{T_m}^{(2)}$, there exists a $y \in B$ for which $a_i = \ldots = a_{m-i} = 0$, and for which consequently (1.12) holds. Together (1.4) and (1.12) imply (1.9), and this completes the proof.

Theorem. If. m is a positive integer and if
$$X_m > 0$$

then there exists a solution $y = y$ Δf (1.5) with precisely
m - 1 zeros in (0,1) and such that

H(v) = X.

<u>Proof</u>. The proof of Theorem 2 of [1] shows that there exists a set $Be\sqrt{\hat{k}_m}$ such that,

$$(1.12) \qquad \max_{y \in B} H(y) = X_{m'}$$

and with the additional property that $H(y) = \sqrt{m}$ for y^B only if y is a solution of (1.5). (Indeed, in the notation of [1], take $B = O(O(N^{*}))$, $c = X^{*}$). By Lemma 2, there is a yeB for which (1.9) holds, and by Lemma 1 and (1.12), H(y) = Xm, so that y is a solution of (1.5). Since the non-zero characteristic values are simple, (Theorem 3 of [1]), we have $Xm+\mu > Xm$, and thus by Lemma 1, with m replaced by m + 1, we have $\setminus im(y) = 1$, and y has precisely m - 1 zeros in (0,1).

Corollary. The characteristic values of (1.5), as[defined by (1.6), are the same as those defined in [2].

<u>Proof</u>. See the Corollary to Theorem 4 in [1].

References

- C. V. Coffman, A minimum-maximum principle for a class of non-linear integral equations, Carnegie-Mellon University Report 68-26.
- Z. Nehari, Characteristic values associated with a class of nonlinear second order differential equations, Acta Math. <u>105</u>. (1961), 141-175.