# OBSERVATION AND PREDICTION FOR THE HEAT EQUATION <br> by <br> V. J. Mizel and T. I. Seidman <br> Report 68-32 

September, 1968
§1; Consider an insulated uniform rod with unknown temperature distribution. With proper normalization the temperature $u=u(t, x)$ satisfies
(1)

$$
\begin{aligned}
& u_{t}=u_{x x} \quad(t>0, \quad 0<x<1), \\
& u_{x}(t, 0)=u_{x}(t, l)=0
\end{aligned}
$$

Suppose it possible to observe $f(t)=u(t, 0)$ for $0<t<T$. We ask: Is it possible, given $f$, to determine $\mathrm{w}(\mathrm{x})=$ $u(T, x)$ for $0<x<1$ ? Assuming the answer to this first question is 'yes', is this a well-posed problem?

We may formulate the problem more precisely as follows. The boundary data $f$ must satisfy certain consistency conditions, i.e., must lie in a certain manifold to. We are then asking whether the operator $A$ : $f i-\gg$ is well-defined from to to $L^{2}(0,1)$ and whether it is continuous, topologizing to 2 by the $L$ norm on $(0, T)$ :

$$
\begin{aligned}
& \text { iiff }=\left.\left.J^{T^{\prime}}\right|_{f}(t)\right|^{2} d t . \\
& 0
\end{aligned}
$$

As is well known, we may write the solution of (1) as

$$
\begin{equation*}
u(t, x)=L^{\wedge} 。 c_{n} e^{n^{2} T^{2}} \wedge o s m r x \tag{2}
\end{equation*}
$$

with appropriate coefficients $\left\{c_{\mathbf{n}}: n=0,1, \ldots\right\}$ such that

$$
\Sigma_{n}\left|c_{n}\right|^{2} e^{-n^{2} \pi^{2} t}<\infty
$$

for $t>0$. With the substitution $s=e^{. .^{2}-}$, we have
for $0<t<T$ or $a=e^{-7 r}{ }_{T}^{2}<s<1$. Then

$$
\begin{aligned}
A f=w(x) & =E_{n} c_{n} a^{2} \cos m r x \\
& \left.=£_{n} K\right\rangle_{n}\left(\langle p) a^{n^{2}} \cos m r x\right.
\end{aligned}
$$

where each $I_{\mathbf{N}}(\mathrm{N}=0,1, \ldots)$ is the linear functional - assuming it is well-defined - such that

## Letting

$$
[A]=\operatorname{sp}\left\{\mathbf{s}^{\mathbf{n}^{2}}: n=0,1, \ldots\right\}
$$

we have, assuming each $\hat{\wedge}_{\mathrm{N}}$ is continuous on $\mathrm{M}=[\overline{\mathrm{A}} \mathrm{£} \mathrm{L} \hat{\boldsymbol{Q}}(\mathrm{a}, \mathrm{l})$,

$$
\begin{equation*}
1 \mid A\left\|_{L}^{2}<i r^{2} L_{n a}{ }^{2 n 2}\right\| t_{n} \|^{2} . \tag{3}
\end{equation*}
$$

What is needed, therefore, is a suitable estimate for IKMII • The Hahn-Banach Theorem assures us that if

$$
\begin{equation*}
s^{N}{ }^{2} \quad(K L)=i F\left\{s^{n^{2}}: n=0,1, \ldots, n^{\neq N}\right\} \tag{4}
\end{equation*}
$$

then $\hat{\mathbf{N}}$ exists as a continuous linear functional on [M] with

$$
\begin{equation*}
I M \sim 1=H^{\mathrm{sN} 2}-\left[\Lambda_{\mathrm{N}}\right] \|_{1} \tag{5}
\end{equation*}
$$

where $\|\cdot\|_{\perp}$ is the $L^{L}$ norm on $(a, l)$, so that

$$
\|A\|^{2} \leq 7 r^{2} L_{n} a^{2}{ }^{2} \| s^{2}-\left[\Lambda_{N} \|_{l}^{-2}\right.
$$

The problem is thus reduced to showing that (4) holds, so that
each $t_{\mathbf{N}}$ is well-defined, and obtaining a lower bound for (5). If we had $a=0$ then Hunt $z^{1}$ Theorem (for which see, egg.. [2]) assures (4) since En ${ }^{2}<00$. For $0<a<1$, a result due to Clarkson and Erdös [1] shows that [Ar is not dense in $L^{2}(a, l)$ but does not give (4), much less a lower bound for (5) . We shall obtain a sharpened form of the Clarkson-Erdös result, for a certain class of sequences including $\left\{n^{2}: n=0,1, \ldots\right\}$, showing that (4) holds if a is sufficiently close to zero (i.e., for large enough $T$ ) and that then $\left|\|_{\mathbf{N}} j\right|=\&(N \log N)$ so that the right hand side of (3) converges and $A$ is continuous.
\$2: Let $A=\left(A_{0}, A_{1}, \ldots\right)$ be a sequence of non-negative reals with $0 \leq A_{Q}<A_{\mathrm{x}}<\ldots$; let $\left.A^{\wedge}=A \backslash U_{N}\right)$. Let $[A]=$ $\operatorname{sp}\left\{s^{n}: 7_{n} e A, n=0,1, \ldots\right\}$. We assume that

$$
\begin{equation*}
\Sigma_{\Lambda} \lambda_{n}^{-l}<\infty \tag{6}
\end{equation*}
$$

and set

$$
{ }^{T} N=\left.E_{n>N} \quad\right|^{-1}
$$

It is convenient to introduce

$$
r_{n}^{N}=\left\{\begin{array}{ll}
\lambda_{n} / *_{N} & n<N \\
\lambda_{N} / \lambda_{n} & n>{ }_{N}
\end{array}, \quad r_{N}=\max _{n}\left\{r_{n}^{N}: n \neq N\right\}<1\right.
$$

and

$$
<p(r)=-\log \left[(1-r) /\left(1+\left(1+\lambda_{1}^{-1}\right) r\right)\right]
$$

If we set, for $n, N=0,1, \ldots$ with $n \wedge N$,
then

$$
\begin{equation*}
0 \ll p_{n}^{*} \leq<p\left(r_{n}^{*}\right) \tag{7}
\end{equation*}
$$

It is known (see, egg., [2]) that, for any sequence A,

$$
\left(8, \quad\left\|S N\left[A_{N}\right]\right\|^{2}=\frac{1}{1+2 \lambda_{N}} \quad(\sim \dot{2}\right.
$$

where $\|*\|$ denotes the $L^{\bullet}$ norm on (0,1). Thus, by (7),

$$
\text { ( } \left.\boldsymbol{B}^{\prime}\right) \quad \begin{aligned}
\| \mathbf{s}^{\lambda}-[\Lambda J \| & =\left(1+2 \lambda_{N}\right)^{-1 / 2} \exp \left[-\Sigma_{n} \varphi_{n}^{N}\right] \\
& \geq\left(1+2 X_{N}\right)^{1 / 2} \exp \left[-\Sigma_{n} \varphi\left(r_{n}^{N}\right)\right]
\end{aligned}
$$

Lemma 1: Let A, etc., be as above. Then
(9) $\quad \| B^{\lambda}-\left[A^{\wedge} \| H \geq\left(1+2 A_{N}\right)-{ }^{1 / 2} \exp \left[-N<p\left(r_{N}\right)-V \wedge\right]>0\right.$
where $\quad a^{\wedge}=\max \left\{<p^{\prime}(0),<p\left(r_{N}\right) / r_{N}\right)$.

Proof; We break up the sum on the right of (8') into $\mathrm{F}_{\mathrm{h}}<\mathrm{m}$ and $\Sigma_{n>N}$. Then $J^{\text {as }}<P \quad i^{\text {s an }}$ increasing function of $r$,

$$
\Sigma_{n<N} \varphi\left(r_{n}^{N}\right) \leq N \varphi\left(r_{N}\right)
$$

From the form of the function $<p$ we have

$$
q p(x) \leq \wedge x \quad\left(0<x<x_{N}\right)
$$

$$
\Sigma_{n>N} \star \wedge \wedge E_{n}>N V n \stackrel{N}{=}=\operatorname{NV}
$$

Combining these inequalities with (8') gives (9) . ||
Lemma ne; Let $\operatorname{Pe}\left[A^{\wedge}\right]$ so that ${\left(S^{\prime}\right.}_{\mathbf{A}_{\mathbf{N}}}-P)=S^{\wedge} s^{A_{n}}$ with all but finitely many $b^{n}$ zero and with ${ }_{\lambda} b_{N}=1$. Then

$$
\begin{equation*}
\left|\mathrm{b}_{\mathrm{n}}\right|<\|\mathrm{sV} \mathrm{P}\| /\left\|\mathrm{s}^{\mathrm{n}_{-}}[\mathrm{A}]\right\| . \quad(\mathrm{n}=0,1, \ldots) . \tag{10}
\end{equation*}
$$

Proof; Observe that (10) is immediate if $n=N$ or if $b_{n}=0$. Otherwise $\left(\mathrm{n} \wedge \mathrm{N}, \mathrm{b}_{1}^{\wedge} 0\right)$, note that

$$
\begin{gathered}
\left\|s^{\lambda_{N}}-p\right\|=\left\|\Sigma_{\nu} \nu_{\nu} s^{\lambda} \nu_{\|}=\left|b_{n}\right|\right\| s^{\lambda_{n}}-\Sigma_{\nu \neq n}\left(b_{\nu} / b_{n}\right) s^{\lambda^{2}} \| \\
=\left|b_{n}\right|\left\|s{ }^{\mid »}-p_{0}\right\|
\end{gathered}
$$

where $P_{Q}=\wedge\left(\wedge A \wedge{ }^{\wedge}{ }^{\wedge} e\left[A_{n}\right]\right.$. Thus,

$$
\left\|s s^{\lambda_{N}}-p\right\| \geq\left|b_{n}\right|\left\|s^{\lambda_{n}}-\left[\Lambda_{n}\right]\right\|
$$

which is just (10). ||

Note that by (6) the sequence $A$ satisfies:

$$
\begin{equation*}
T_{n} a^{A^{\wedge}}<0 D \quad \text { for } \quad 0<a<1 \tag{11}
\end{equation*}
$$

We add the assumption that $A$ satisfies the additional condition:
(12) $\quad E V_{N}+\left(N / A_{N}\right)\left(p\left(r_{N}\right)\right]-+O$ as $N-* 00$.

Lemma 3: Let $A$, etc., be as above with $A$ satisfying (12). Set

$$
\Gamma=\Sigma_{0}^{\infty} \alpha_{n}^{\lambda_{n}} \exp \left[n \varphi\left(r_{n}\right)+a_{n} \lambda_{n} \tau_{n}\right]
$$

Then, for $0<a<1$, the series $T$ converges and

$$
\begin{equation*}
\| \mathrm{B} V \mathrm{Pt} \leq \&{ }^{\mathrm{r}} \mathrm{Hs}^{\mathrm{AN}}-\mathrm{Pll} \tag{13}
\end{equation*}
$$

for $P €\left[A_{\mathbf{N}^{-}}\right.$, where $\|\cdot\|_{l}$ is the $L^{2}$ norm on $(0, a)$. Observe that $F-\wedge 0$ as $a-\gg 0$.

Proof: Let $a<a_{i}<1$. By. (12), for large enough $n$ we have

$$
{ }^{a} n^{T} n^{+}\left({ }^{n} A_{n}\right) V\left(r_{n}\right) \leq\left(\log \circ \rho_{1} / \boldsymbol{\alpha}\right)
$$

so that $\lambda$
and, by (11), the series converges. Observe, now, that

$$
\left\|s^{\lambda_{N}}-p\right\|_{0}=\left\|\Sigma_{0}^{\infty} b_{n} s^{\lambda} n_{\|} \leq \Sigma_{0}^{\infty}\left|b_{n}\right|\right\| s^{\lambda_{n}} \|_{0}
$$

Using (10) and then (9) and the evaluation

$$
\left\|s^{\lambda}\right\|_{0}^{2}=\alpha^{2 \lambda+1} /(2 \lambda+1)
$$

we obtain

$$
\begin{aligned}
\|\mathrm{SV} P\|_{o} & \leq \operatorname{ZP}_{\mathrm{O}}\left[\alpha^{2 \lambda_{n}+1} /\left(2 \lambda_{n}+1\right)\right]^{1 / 2}\left\|s^{\lambda_{N}}-P\right\| /\| \|^{\lambda_{n}}-\left[\Lambda_{n}\right] \| \\
& \leq \sqrt{\alpha}\left\|s^{\lambda_{N}}-P\right\| 2 \not \dot{\rho}^{\circ} a^{\lambda_{n}} \exp \left[n\left(p\left(r_{n}\right)+a_{n} \lambda_{n} \tau_{n}\right]\right.
\end{aligned}
$$

which is just (13) . \|

We are now ready, at last, to obtain the desired lower bound for $\| s^{-4}-\left[\Lambda_{N}\right]_{1}$.

Theorem 1; Let $A=\left(7 v_{0}, X_{1}, \ldots\right)$ be an increasing sequence ( $\left.0 \leq \mathrm{X}_{\mathrm{O}}<\right\rangle_{\mathbf{L}} u<\ldots \cdot$ ) of reals satisfying (6) and (12) and let $0<a<1$ such that $\left(1-o a^{-2}\right)=c^{2}>0$ (observe that $c=c(a)-1$ as $a-0)$. Then


$$
\geq \dot{c}\left(2 A_{\mathbb{N}}+1\right)--^{1 / 2} \exp \left[-N<p\left(r_{N}\right)-a_{N} \lambda_{N} \tau_{N}\right]>0 .
$$

Proof: For any $\operatorname{Pe}\left[A^{\wedge}\right]$ we have
by the definition of the norms. Using (13) gives

$$
\left.11 \mathrm{sV} \mathrm{P} \|_{1}^{2} \ngtr \mathrm{~d}-\mathrm{ar}^{2}\right)\left\|\mathrm{s}^{\mathrm{AN}}-\mathrm{P}\right\|^{2} \ngtr \mathrm{C}^{2}\left\|\mathrm{~S}^{\mathrm{AN}}-\left[\Lambda_{\mathrm{N}}\right]\right\|
$$

Since this holds for every $\mathrm{Pe}\left[\mathrm{f} \mathrm{DV}^{-}\right.$,

$$
\left\|s^{\lambda_{N}}-\left[\Lambda_{N}\right]\right\|_{1} \geq c\left\|s^{\lambda_{N}}-\left[\Lambda_{N}\right]\right\|
$$

which, with (9) , gives (14). ||

S3: In order to apply the Theorem above to the prediction problem described earlier it is only necessary to show that the sequence $A=\left(n^{2}: n=0,1, \ldots\right)$ satisfies (6) and
(12). Certainly
(6) holds and, in fact,

$$
\begin{equation*}
T_{N}=\Sigma_{n+2}^{\infty} n^{-2}=\theta\left(N^{-1}\right) \tag{15}
\end{equation*}
$$

We have

$$
\varphi(x)=|\log (1-r) /(1+2 r)|, \quad r_{n}=n /(n+1)
$$

so, for large $N$, it follows that $\left.U-r_{N}\right)=$ © (iT $\left.{ }^{1}\right)$,

$$
\begin{equation*}
\left.<P\left(r_{N}\right)=\&\left(\log \left(l-r_{N}\right)\right)=\text { © (log } N\right) \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{N}=\left\langle P\left(r_{N}\right) / r_{N}=\odot(\log N)\right. \tag{17}
\end{equation*}
$$

Thus, combining (15), (16) and (17),

$$
\begin{aligned}
a^{\wedge}+\left(N / A_{N}\right)<p\left(r_{N}\right)= & \odot\left(N^{\prime \prime} "^{1} \log N+\left(N / N^{2}\right) \log N\right) \\
& =\odot\left(N^{N} "^{1} \log N\right)
\end{aligned}
$$

which goes to 0 as N -» 0 , satisfying (12) .

It follows, therefore, that Theorem 1 may be applied so that, if $a$ is small enough that

$$
\begin{equation*}
a r^{2}<1 \tag{18}
\end{equation*}
$$

we have $c^{2}=1-a^{2}>0$ and, by (5) and (14),

$$
\begin{align*}
11^{*} \wedge 1 & \_c^{\prime \prime} \mathrm{X}\left(2 \mathrm{~N}^{2}+1\right)^{1 / 2} \exp \left[\mathrm{~N}<\mathrm{p}\left(\mathrm{r}_{\mathrm{N}}\right)+\mathrm{y} \wedge\right]  \tag{19}\\
& =\exp [\mathrm{O}(\mathbf{N} \log \mathbf{N})] .
\end{align*}
$$

Substituting this in (3) we see that the factor $a=\exp [-\&(N)]$ dominates and the series converges. We have thus shown the following.
Theorem 2: For $T$ large enough that (18) is satisfied with $a=e^{-T}$, the mapping

$$
A: f=u(*, 0) i-\star u(T, \bullet)=w
$$

is a well-defined bounded (using $L$ norms) linear map for solutions $u$ of (1) with $0<t<T$. I.e., the *observation and prediction ${ }^{1}$ problem is well-posed. ||

Remark: The above proof does not, of course, show that $A$ is undefined or unbounded for smaller $T>0$. It would seem of interest to determine whether this notion of a minimal period of observation ${ }^{1}$ is, indeed, a genuine phenomenon or whether it is, perhaps, imposed merely by the exigencies of this particular method of proof. Since $F-\bullet \circ \circ$ as $a-\star 1$, (18) is genuinely a restriction on $T$ and it would also be of interest to estimate the minimal $T$ for which (18) is satisfied. The complications involved in estimating the sum for $T$ make the task of estimating a suitable $T$ unfortunately difficult.

S4: A couple of generalizations of Theorem 2 suggest themselves. For example, it is clear that the similar problem for a non-uniform bar
(1') $\quad u_{\mathbf{t}}=\mathbf{a}(\mathbf{x}) \mathbf{u}_{\mathbf{x x}}, \quad u_{\mathrm{x}}(\mathrm{t}, 0)=u_{\mathrm{x}}(\mathrm{t}, \mathrm{l})=0$
could be treated the same way using the expansion

$$
\begin{equation*}
u(t, x)=L_{n} C_{n} e^{n} v_{h}(x) \tag{2<}
\end{equation*}
$$

where the $\left\{\mathrm{A}_{\mathbf{n}}\right\}$ and $\left\{\mathrm{v}_{\mathbf{n}}\right\}$ are the appropriate eigenvalues and eigenfunctions. The asymptotic behavior of the $\left[7 \backslash_{\mathbf{n}}\right\}$ is known to be similar enough to that of $\left\{n^{2}\right\}$ to ensure the applicability of Theorem 1. The only new problem introduced would be the estimation of an asymptotic lower bound for $\left\{\mathrm{v}_{\mathrm{n}}(\mathrm{O})\right.$ \}.

Another example is the treatment of the observation and prediction problem for a solid body, rather than a rod. For a cylindrical body in $R^{k}$ we have the following result

Theorem 3: Let \& be a !suitable! region in $\mathrm{R}^{\mathrm{k}-1}$ and let $\&^{*}=(0,1) X^{*}$. Then, for $T$ large enough (as in Theorem 2), 22 the mapping from $L((0, T) X \&)$ to $L(* *)$. defined by

$$
A!f=f(t, y)=u(t, 0, y) i \longrightarrow>w=w(x, y)=u(T, x, y)
$$

## 2

is a well defined,bounded (using $L$ norms) linear map for solutions u of

$$
\begin{align*}
\mathbf{u}_{\mathbf{t}} & =\mathbf{A} \mathbf{u}\left(=\mathbf{u}_{\mathbf{x x}}+\mathbf{A}_{\mathbf{y}} \mathbf{u}\right) & & \left(\mathbf{0}<\mathbf{t}<\mathbf{T},(\mathbf{x}, \mathbf{y}) \in \mathbb{Q}_{*}\right),  \tag{1'}\\
\partial u / \partial \nu & =\mathbf{0} & & \left(\mathbf{0}<\mathbf{t}<\mathbf{T},(\mathbf{x}, \mathbf{y}) \in \partial \mathbb{Q}_{*}\right) .
\end{align*}
$$

## Proof: We use the expansion

$$
\mathbf{u}(\mathbf{t}, \mathbf{x}, \mathbf{y})=\mathbf{E}_{\ldots \mathrm{m} \mathbf{n}} \mathbf{c}_{\ldots \mathrm{m},}^{\mathbf{e}} \mathbf{x} p\left[-\left(\mathbf{n}^{2+} \mathbf{M}_{\mathrm{m}}\right)^{\wedge^{2}} \mathbf{t}\right] \mathbf{v}_{\mathbf{m}}(\mathbf{y}) \cos \text { nirx }
$$

where the $\left[v_{m}\right\}$ are normalized solutions of

$$
\begin{array}{ll}
\Delta_{y} v_{m}+\mu_{m} \pi^{2} v_{m}=0 & (y \in \theta) \\
\partial v_{m} / \partial \nu=0 & (y \in \partial \theta)
\end{array}
$$

Since the $\underset{\mathbf{H I}}{(\mathrm{v})}$ form an orthonormal sequence we have

Hence, letting $I_{N}$ be as originally, we have

$$
c_{m, N}=\ell_{N}\left(s^{-\mu_{n}}<\varphi(s, \cdot), v_{m}>_{\theta}\right)
$$

where

$$
<p(s, y)=f(t, y)=u(t, 0, y)
$$

on making the substitution $s=e^{\prime \prime w^{4} V^{2}}{ }^{t}$ as before. Thus
and

$$
\begin{aligned}
& \|A f\|^{2} \leq \Sigma_{n} \alpha^{\left.2 n^{2}\left\|\ell_{n}\right\|^{2} \Sigma_{m} \alpha^{2 \mu_{m}} \|_{s}-\mu_{m_{<\varphi}}, v_{m}\right\rangle_{\theta} \|_{1}^{2}, ~} \\
& \left.\leq \Sigma_{n} \alpha^{2 n^{2}}\left\|\ell_{n}\right\|^{2} \Sigma_{m} \|<\varphi, v_{m}\right\rangle_{v} \|_{1}^{2} \\
& =\Sigma_{n} \alpha^{2 n^{2}}\left\|\ell_{n}\right\|^{2}\|\varphi\|_{(\alpha, 1) \times \theta}^{2} \leq \pi^{2} \Sigma_{n} \alpha^{2 n^{2}\left\|\ell_{n}\right\|^{2}\|f\|^{2} .}
\end{aligned}
$$

This gives the identical estimate (3) for $\|A\|$ as in Theorem 1 and the same proof now goes through. ||

The result of Theorem 3 suggests a conjecture that a similar prediction problem would be well-posed given observation, for a sufficiently long period, of the restriction to a non-
 general domain in $R^{\mathbf{n}}$ \{Cl here corresponds to $\{0) \mathrm{x} \&$ in Theorem 3) . The methods of this paper, however, seem to afford no direct mode of attack on this more general problem; the proof of Theorem 3 makes essential use of the special nature, Of $\varepsilon^{\wedge}$ and 0 .

## References

[1] Clarkson, J. A., and Erd"os, P., !Approximation by Polynomials i, Duke Math. J., 10, (1943) pp. 5-11.
[2] Rudin, W., !Real and Complex Analysis, ${ }^{1}$

