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81; Consi der an insulated uniformrod with unknown tenperature
distribution. Wth proper normnalization the tenperature
u=u(t,x) satisfies
utt:u_x_x_ _ (t >0, O<x<1l,

(1) w(t,0 = u(t,1)=0
Suppose it possible to observe f (t) =u(t,O for 0<t <T.

W ask: Is it possible, given f, to determne wWx) =
u(T,x) for 0<x<1 ? Assumng the answer to this first
question is 'yes!, is this a well-posed probl en?

V¢ may formul ate the probl emnore precisely as foll ows.
The boundary data f nust satisfy certain consistency condi -
t'i ons, i.e., nust lie in a certain manifold to. .Wé are then
aski ng whet her the operator A fi—»w is well-defined from

toto L2(O,1) and whether it is continuous, topologizingto
2
by the L normon (0,T):

= 3740
0]

As is well known, we may wite the solution of (1) as

2.2
(2) u(t,x) =LA, cpe""T 2os mrx

with appropriate coefficients {cn: n=2~01...} such that

2 .
2 - t
S Z el e T <oo
(3} 24_ .
ﬁfor t >0. Wth the substitution s = e ., wWe have
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2
for 0<t<T or a=¢e" T <s< 1. Then
2
Af = w(x) = E, c,a" cos mrx
2
_ n
= £nK>n(<p)a cos mrx
wher e each IN (N=20,1,...) is the linear functional

- assum ng
it is well-defined - such that

2
n
vVinens >-<v
L etting
n2
[A] = sp{s : n=0,1,...},

: : - — Q

we have, assuming each "y is continuous on M= [A £L (a,l),

©) HAZ<ir*Lna®"?[Itall®.

VWhat i s needed, therefore, is a suitable estinmate for IKMI e

The Hahn-Banach Theorem assures us that

i f
2 2

(4 sNiL (KE\ =iF{s": n=01,,... n""
t hen AN exists as a continuous linear functional on [M wth
(5) IM~15 HNV2 Al
where |[+]U is the L* norm on (a,l), so that

' 2 2, 2%' ﬁ -2
(3" AP <7r%Ln a®"||s™ - [AGl]".

The problem is thus reduced to showing that (4) holds, so that




each Uy is vell-defined, and obtaining a |ower bound for (5) .
If we had a =0 then Muntz* Theorem (for which see,

e.g.. [2]) assures (4) since En"2 <o0o0. For O0<acx]l,

a result due to darkson and Erdds [1] shows that [AL is not

dense in L2(a,l) but does not give (4), nmuch less a | ower

bound for (5 . W shall obtain a sharpened formof the d arkson--

Erdbs result, for a certain class of sequences including

{n2: n=0,1,...}, showing that (4 holds if a is sufficiently

close to zero (i.e., for large enough T) and that then

||INj| = &(Nlog N sothat the right hand side of (3) converges

and A is continuous.

82: Let A= (AA, ...) be a sequence of non-negative reals
with 0 <A< A< ... ; let A=AV Uy). Let [A =
sp{s ™ 7y eA n=0,1,...}. W assune that

-1
(6) EA A, <00
and set
_ -1
TN=En>N

It is convenient to introduce

A n <N

N n & N

r = s r=max[rn:n5£N]<l
7\N/}\n n >N

n N n

and

Pr) = -log[(1-v)/(+ @A 0],




If we set, for nN =0,1,... with n ~ N,

f_log[(l_rﬂ)/(l+r§+xﬁl)] Nn<N,
N
n ~

Ilogtd~/d# ;)] n=>N,
then

(1) 0 < 9 < <p(ry) -

It is known (see, e.g., [2]) that, for any sequence A,

112 = —i-— - 2
(8, ||V =g (N
where |[|*|] denotes the L® norm on (0,1) . Thus, by (7),
. -1/2 N
(8" ||sv\'\I Al = @2y exp [-Z,¢p]

> (1+2Xy)-1? expl-Zelr 1.

Lemma 1: Let A, etc., be as above. Then

©  IBM [AH > (142077 expl-N<p(r)- V 4 1 > 0

where a™ = nax{<p' (0) , <p(rn)/rn).

Proof; W break up the sumon the right of '(8') into g« and

J ®»® <P %2 jncreasing function of r,
En>N' Then g
z ¢(rN) < Np(r.) .
n<N n - N
Fromthe formof the function <p we have

cp(r) <™~ r (O<r <r N)'

so that




Zon * A AEBNVNEV NV

Conbi ning these inequalities wth (8) gives (9 . ||

A
Lemm. 2: Let Pe[A'] so that (SAN- P) = SAs " with all
but finitely many b®™ zero and with by = 1. Then
A
(10) |bol <IIsVAL/ lIs™ (Al (n=01,...).

Proof:  Chserve that (10) is immediate if n =N or if b= 0.
QG herwse (n "N, b]" 0) , note that

A A A ' A
s M- Bl = 55,5 Ul = Ibylls "= B, 0, /m08 VIl

= b Ifls\ - |

A
where Po=" ( » A*s'e[A] . Thus,
| My
s

A
- Pl 2 ip, llls - 1AMl

whichis just (10). ||

Note that by (6) the sequence A satisfies:
Al\
(11) Taa" <o for 0<a< L

W add the assunption that A satisfies the additional condition:

(12) EVn + (NA)(p(ry]-+O as N-*oo0.

Lemma 3: Let A etc., be as above with A satisfying (12).

Set

A

_ n
I = Zgoa exp [mp(rn)+ an)‘nTn] .




Then, for 0 < a< 1, the series T converges and

(13) ||IBV Pt < & HS™"- HI

for P€[A&J_, where || *||lqg is the L> normon (0,a) . Cbserve

that F-~0 as a—>»0O

Proof: Let a< a. < 1. By (12) , for large enough n we

have

“nTn* ("A) V(r,) < (log oy/e) -

so t hat
A

and, by (11), the series converges. bserve, now, that
7\1\1 7‘\n ?\n ’
lls M- 2l = 150 s ™ < ZP1p, |lls P,

Using (10) and then (9) and the eval uation

2
1M = o™/ (21,
(o]
we obtain
' 2h +1 A
ISV Al zpta ™ /0120 - pllsls ™ 1A

Ay A, '
< Ve lls *- Pl2E°a” exp[n(p(r)+ a A, 7]
which is just (13) . ||

We are now ready, at last, to obtain the desired lower
bound for ||s “- [AH;- |




Theorem 1; | Let A= (7v6,X,£ ...) be an increasing Sequence
(0 _f_)é < U< ..*) of reals satisfying (6) and (12)

and let 0 <a< 1 suchthat (1 - 05‘2) = c2 > O (observe
that c¢c =c(a) - 1 as a- O . Then

(14) || sV He cHA N 1

> C(2Axt 1) -2exp[- N<p(rn) - aghgTy] > ©-

Proof : For any Pe[A*] we have
Aﬁ °, A.':I 2 AN- 2
[Is™-PlI"=1]s"-Pll +1]s"-P
o] 1

by the definition of the norms. Using (13) gives
[1sV P||§_>- d-arz) IIs*N- P2 > C?||ShN- [A] (P

Since this holds for every Pe][Ai,
A A
s - (A, 2 clls V- (Al

which, with (9), gives (14) . ||

33: In order to apply the Theorem above to the prediction
probl em described earlier it is only necessary to show that

2
the sequence A= (n: n=0,1...) satisfies (6) and
(12). Certainly (6) holds and, in fact,

' -2 -1
(15) Ty = Tpn T = 0w

We have

o(r) = |log(l-r)/(1+2r) |, r, = n/(n+l)
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so, for large N, it follows that U-ry) = ©(i TY),

(16) ~<P(ry = &(log(l-ry)) = ¢€log N
and
(17) ay = <P(ry)/rn= &log N .

Thus, combining (15), (16) and (17),

a® + (NAY<p(ry = ©(N"Hog N+ (NN)log N -
= @N""og N |

whi ch goes to 0 as N-—»o00, satisfying (12) .

It follows, therefore, that Theorem 1 may be applied so

that, if a is small enough that
(18) | ar? < 1,
we have ¢ =1 - adT?> 0 and, by (5 and (14),

(19) 11 _< ¢"™(2N* + 1)Y?exp[N<p(ry)+ y ~ ]
= exp[ ©N log N)] .
2N? 2

Substituting this in (3) we see that the factor a = exp[-& N)]

dom nates and the series converges. W have thus shown the

fol | ow ng.
Theorem?2: For T large enough that (18) is satisfiedwth
a=e | the mappi ng '

A f=u(*,0i1i—=2u(T, ) =w




2
is a well-defined bounded (using L norms) |inear map for sol u-
tions u of (1) with 0<t <T. l.e., the *observation and
prediction® problemis well-posed. ||
EEEHLK: The above proof does not, of course, showthat A is
undefined or unbounded for smaller T > 0. It would seem of
interest to determ ne whether this notion of a m ni mal period
of observation! is, indeed, a genuine phenbnenon or whether it
I's, perhaps, inposed nerely by the exigencies of .this particular
met hod of proof. Since F—=o00 as a—=*1, (18 is genuinely
a restriction on T and it would also be of interest to estimate
the mnimal T for which (18) is satisfied. The conplicafions
involved in estimating the sumfor T nake the task of esti-

mating a suitable T unfdrtunately difficult.

§£: A coupl e of generalizations of Theorem 2 suggest them
selves. For exanple, it is clear that the simlar problemfor

a non-uni form bar

(1) u, = a(x)ux U(t, 0 = uy(t,l) =0

t x’

could be treated the sane way using the expansion
(29) u(t,x) = L, cpe " vp(Xx)

where the {An} and {vn} are the appropriate eigenval ues
and ei genfunctions. The asynptotic behavior of the [7\n} IS
known to be simlar enough to that of {nz} to ensure the
appligability of Theorem 1. The only new probl em i ntroduced

woul d be the estimation of an asynptotic |ower bound for {v,(0)}.
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Anot her exanple is the treatnent of the observation and
predi ction problemfor a solid body, rather than a rod. For a

cylindrical body in d( we have the following resulte

Theorem 3: Let & be a'suitable' region in K1 and let

& = (0,1)X*. Then, for T large enough (as in Theorem?2),

2 2
the mapping from L ((0,T) X & to L (**). defined by

A= (ty) =ut,0y)i —>w=wxy) = u(Txy)
2
isa well defined, bounded (using L norns) linear map for sol u-

tions u of _
@) Ur = Au(=uxx + Ayu) O<t<T, (x,y)-es*),
du/dv =0 O<t<T, (Xy) ¢ 38,).

Pr oof: We use the expansion
@) u(t.x,y) = Emn “mn“xp[-("*" Mm)**t]vm(y)cos nirx

where the [vm} are normalized solutions of

Ayvm + um1r2vm =0 (yes}),
va/au =0 (veos) .

Since the {v ) forman orthonornmal sequence we have
HI ry

__-uirt -2 2.
u (t,O, ) s vm>ﬂ =€ En cm,ne »»*T
Hence, letting | be as originally, we have

“n
= (e T <els,),v >0
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wher e

<p(s,y) =f(t,y) =u(t,Qy)

2

on making the substitution s = &"* t as before. Thus

Lt n ‘i
m,nVs N 2~ ') " 7~ ™yjyjcos mx

and
2 . -
2 2n 2 m m
IHAfl]® < I, o ||Ln|| Z, o \s <‘P,vm>ﬂul
2 2
2n 2
S T, @ Il B e vl
e I L P PP
n n (0,1} xB — n n iy
This gives the identical estimate (3) for |[|A|] as in Theorem1l

and the same proof now goes through. |]

The result of Theorem 3 suggests a conjecture that a
simlar prediction problemwould be mell-bosed gi ven observati on,
for a sufficiently long period, of the restriction to a non-
enpty relatively open subset Qc: Si* wher e &; is a nore
general domain in R® {d here corresponds to {0)x & in
Theorem 3) . The nethods of this paper, however, seemto afford
no direct node of attack on this nore general problem the proof
of Theorem 3 nmakes essential use of the special nature,

of & and O.
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