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OBSERVATION AND PREDICTION FOR THE HEAT EQUATION

V. J. Mizel and T.I. Seidman

§1; Consider an insulated uniform rod with unknown temperature

distribution. With proper normalization the temperature

u = u(t,x) satisfies

ut = u x x (t > 0, O < x < 1) ,
t

x(t,O) = ux(t,l)= 0

Suppose it possible to observe f (t) = u(t,O) for 0 < t < T.

We ask: Is it possible, given f, to determine w(x) =

u(T,x) for 0 < x < 1 ? Assuming the answer to this first

question is 'yes1, is this a well-posed problem?

We may formulate the problem more precisely as follows.

The boundary data f must satisfy certain consistency condi-

tions, i.e., must lie in a certain manifold to. We are then

asking whether the operator A: fi—»w is well-defined from
2

to to L (0,1) and whether it is continuous, topologizing to
2

by the L norm on (0,T):

2dt.iiff = JT|f(t)
o

As is well known, we may write the solution of (1) as

2 2
(2) u(t,x) = L ^ o cne"

n T ^os mrx

with appropriate coefficients {c : n = 0,1,...} such that

S
24-

for t > 0. With the substitution s = e , we have
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for 0 < t < T or a = e - 7 r T < s < 1. Then

2
Af = w(x) = En c n a n c o s mrx

2
= £ K> (<p) a c o s mrx

where each I (N = 0,1,...) is the linear functional - assuming

it is well-defined - such that

n2

V L n cn s > - <V

Letting

n2
[A] = sp{s : n = 0 , 1 , . . . } ,

— 0
we have, assuming each ^N is continuous on M = [A] £ L (a,l),

(3) l|A||2<ir2Lna
2n2 | |tn | |2.

What is needed, therefore, is a suitable estimate for IKMII •

The Hahn-Banach Theorem assures us that if

2 2

(4) sN jL (K£\ = iF{sn : n = 0,1,...,n

then .̂T exists as a continuous linear functional on [M] with
N

(5) I M ~ 1 = HsN2-

where || • |U is t h e L norm on ( a , l ) , so t h a t

(3') ||A||2 <7r2Ln a 2 n | | s N -

The problem is thus reduced to showing that (4) holds, so that
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each t is well-defined, and obtaining a lower bound for (5) .

If we had a = 0 then Muntz1 Theorem (for which see,
2

e.g.. [2]) assures (4) since E n " < oo . For 0 < a < 1,

a result due to Clarkson and Erdos [1] shows that [Aj is not
2

dense in L (a,l) but does not give (4), much less a lower

bound for (5) . We shall obtain a sharpened form of the Clarkson-

Erdos result, for a certain class of sequences including
2

{n : n = 0,1,...}, showing that (4) holds if a is sufficiently

close to zero (i.e., for large enough T) and that then

||l j| = &(N log N) so that the right hand side of (3) converges

and A is continuous.

§2: Let A= (AO,A.., be a sequence of non-negative reals

with 0 < AQ < Ax < ... ; let A^ = A \ U N ) . Let [A] =

sp{s : 7\ eA, n = 0,1,...}. We assume that

(6) < oo

and set

TN = En>N \

It is convenient to introduce

/*„ n < N

N

and

<p(r) = -
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If we s e t , f o r n,N = 0 , 1 , . . . w i t h n ^ N,

x- 1 ) ] n < N,

llogtd^/d^;1)] n > N,

then

(7) 0 < <p* < <p(r*) .

It is known (see , e . g . , [2]) tha t , for any sequence A,

(8, ||sV ( ̂ j 2

where ||*|| d e n o t e s t h e L norm on (0 ,1) . Thus, by ( 7 ) ,

(8') ||s N - J

> ( 1 + 2 X N ) - 1 / 2

Lemma 1: Let A, e t c . , be as above . Then

(9) ||B N- [A l̂H > (1+2AN)-1 /2 exp[-N<p(rN)- V ^ ] > 0

where a^ = max{<p' (0) , <p(rN)/rN).

Proof; We break up the sum on the right of (8') into E <M and

J as <P is an increasing function of r,

From the form of the function <p we have

cp(r) < ̂ r (0 < r < rN)

so that



*^ ̂  En>N Vn = V N V

Combining these inequalities with (8') gives (9) . ||

A A
Lemma 2; Let Pe [A^] so that (s - P) = S ^ s with all

but finitely many b zero and with bN = 1. Then

(10) |bn| < ||sV P|| / ||s
 n- [A] || (n = 0,1,...).

Proof; Observe that (10) is immediate if n = N or if b = 0.

Otherwise (n ^ N, b^ 0) , note that

\»

where PQ = ̂ ( ^ A ^ s ve [An] . Thus,

which is just (10). ||

Note that by (6) the sequence A satisfies:

A^
(11) Tna

 n < OD for 0 < a < 1.

We add the assumption that A satisfies the additional condition:

(12) E V N + (N/AN)(p(rN)]-+O as N-*oo.

Lemma 3: Let A, etc., be as above with A satisfying (12).

Set
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Then, for 0 < a < 1 , the series T converges and

(13) | | B V Pt < & rHsAN- Pll

for P€ [AJ , where || • ||Q is the L
2 norm on (0,a) . Observe

that F -^ 0 as a —» O.

Proof: Let a < a. < 1. By (12) , for large enough n we

have

anTn + (nAn)V(rn) < (log o

so that

and, by (11), the series converges. Observe, now, that

Using (10) and then (9) and the evaluation

we obtain

||sV P||o ZP

N P||2£°a n exp[n(p(rn)+

which is just (13) .

We are now ready, at l a s t , to obtain the desired lower

bound for ||s - H
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Theorem 1; Let A= (7v-,X,, ...) be an increasing sequence

(0 <_ X < > u < ..•) of reals satisfying (6) and (12)

and let 0 < a < 1 such that (1 - oa ) = c > O (observe

that c = c(a) - 1 as a- O) . Then

(14) ||sV H H^ N II

> c(2AN+ l)-
1/2exp[-N<p(rN)-

Proof: For any Pe[A^] we have

A.T o A.- 2 A.- 2
| | s N - P | | 2 = | | s N - P | | + | | s N - P | |

o 1

by the definition of the norms. Using (13) gives

l l sV P| |2 > d-ar2) | |S
A N - P||2 > C2 | |SAN-

Since this holds for every Pe [AJ ,

which, with (9) , gives (14) . ||

$3: In order to apply the Theorem above to the prediction

problem described earlier it is only necessary to show that
2

the sequence A = (n : n = 0,1,...) satisfies (6) and

(12). Certainly (6) holds and, in fact,

(15) T N =

We have



so, for large N, it follows that U-rN) = ©(iT
1),

(16) <P(rN) = &(log(l-rN)) = ©(log N)

and

(17) aN = <P(rN)/rN = ©(log N) .

Thus, combining (15), (16) and (17),

a^ + (N/AN)<p(rN) = © (N""1log N + (N/N2) log N)

= ©(N""1log N)

which goes to 0 as N —» oo , satisfying (12) .

It follows, therefore, that Theorem 1 may be applied so

that, if a is small enough that

(18) ar2 < 1,

we have c2 = 1 - alT2 > 0 and, by (5) and (14) ,

(19) 11*̂11 < c"X(2N2 + l)1/2exp[N<p(rN)+ y ^ ]

= exp [ ©(N log N)] .

2N 2

Substituting this in (3) we see that the factor a = exp[-&(N )]

dominates and the series converges. We have thus shown the

following.

Theorem 2: For T large enough that (18) is satisfied with

-Ta = e , the mapping

A: f = u(* ,0) i—*u(T, •) = w
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2

is a well-defined bounded (using L norms) linear map for solu-

tions u of (1) with 0 < t < T . I.e., the * observation and

prediction1 problem is well-posed. ||

Remark: The above proof does not, of course, show that A is

undefined or unbounded for smaller T > 0. It would seem of

interest to determine whether this notion of a minimal period

of observation1 is, indeed, a genuine phenomenon or whether it

is, perhaps, imposed merely by the exigencies of this particular

method of proof. Since F—•oo as a—*1, (18) is genuinely

a restriction on T and it would also be of interest to estimate

the minimal T for which (18) is satisfied. The complications

involved in estimating the sum for T make the task of esti-

mating a suitable T unfortunately difficult.

§4: A couple of generalizations of Theorem 2 suggest them-

selves. For example, it is clear that the similar problem for

a non-uniform bar

ux(t,O) = ux(t,l) = 0

could be treated the same way using the expansion

(2<) u(t,x) = Ln cne
 n vh(x)

where the {A } and {v } are the appropriate eigenvalues

and eigenfunctions. The asymptotic behavior of the [7\ } is
2

known to be similar enough to that of {n } to ensure the

applicability of Theorem 1. The only new problem introduced

would be the estimation of an asymptotic lower bound for {vn(o)}
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Another example is the treatment of the observation and

prediction problem for a solid body, rather than a rod. For a

kcylindrical body in R we have the following result•

k-1Theorem 3: Let & be a !suitable! region in R and let

&* = (0,1)X *. Then, for T large enough (as in Theorem 2),

2 2
the mapping from L ((0,T) X &) to L (**). defined by

A! f = f (t,y) = u(t,0,y)i >w = w(x,y) = u(T,x,y)

o

is a well defined,bounded (using L norms) linear map for solu-

tions u of

(1") ut = Au(=uxx + Ayu) (0 < t < T, (x,y)

= 0 (0 < t < T, (x,y)

Proof: We use the expansion

(2") u(t,x,y) = E m n
 c

m n
e x p [ - ( n 2 + Mm)^2t]vm(y)cos nirx

where the [v } are normalized solutions of

= 0

Since the {v ) form an orthonormal sequence we have
HI ry

-u irzt 2 2.
( - » » *

Hence, letting I be as originally, we have
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where

<p(s,y) = f (t,y) = u(t,O,y)

2
on making the substitution s = e""71" as before. Thus

2
-jLt n +/i

Af = Em,nVs N ^ ' ) ' 7 ^ m vjyjcos mrx

and

llAfll2

This gives the identical estimate (3) for ||A|| as in Theorem 1

and the same proof now goes through. ||

The result of Theorem 3 suggests a conjecture that a

similar prediction problem would be well-posed given observation,

for a sufficiently long period, of the restriction to a non-

empty relatively open subset Q c: Sfi where & is a more

general domain in R {Cl here corresponds to {0)x & in

Theorem 3) . The methods of this paper, however, seem to afford

no direct mode of attack on this more general problem; the proof

of Theorem 3 makes essential use of the special nature,

of &^ and 0 .
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