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OSCILLATION AND NONOSCILLATION OF SOLUTIONS OF SECOND ORDER LINEAR
DIFFERENTIAL EQUATIONS WITH INTEGRABLE COEFFICIENTS*

by James S. W. Wong

L. Introduction.

We are here concerned with the oscillatory behaviour of

solutions of the following second order ordinary differential

equation:

(1) x' ' + a(t)x = 0, t >_ O,

where a(t) is a locally integrable function of t. We call

equation (1) oscillatory if all solutions of (1) have arbi-

trarily large zeros on [ O , O D ) , otherwise, we say equation (1)

is non-oscillatory. As a consequence of Sturm1s Separation

Theorem [21], if one of the solutions of (1) is oscillatory, then

all of them are. The same is true for the non-oscillation of (1).

The literature on second order linear oscillation is

voluminous. The first such result is of course the classical

theorem of Sturm which asserts that

(2) a(t) > a Q > 0 s=$ oscillation,

and

(3) a(t) < 0 s^ non-oscillation,

where the inequalities in (2) and (3) are to be valid to all

large t. Using the classical Euler!s equation as the basic

^Portions of this paper were based upon an address delivered
to the Summer meeting of the Canadian Mathematical Congress on
June 13, 1968, under the title, fRecent advances in second order
oscillation theory1.

We shall assume such an understanding throughout all our later
discussions.
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comparison equation:

(4) x» t + - 1 ~ x = 0,
4t

Kneser [9] showed that

2 1
(5) t a(t) <̂  -r sz$ non-oscillation,

and

(6) t2a(t) ^ ^ p £ ^ oscillation.

Fite [5] was first to give an integral criteria for oscillation,

namely

a(t)dt = GD = ^ oscillatiori.

Condition (7) was complemented by results of Hille [8] which

states that if

(8) a(t) >_ 0 and I a(t)dt < oo,

then

(9) tA(t) < •£ a^ non-oscillation,

and

(10) tA(t) >. -^j^a^ oscillation,

where
koo

(11) A(t) = i a(s)ds.•IT
2

Later, Wintner [22] showed that Fite»s condition remains valid

2
Wintner actually proved a stronger assumption than that of
(12), cf. Remark,



without the additional assumption that a(t) be non-negative, i.e.

f T _ V 2
(12) lim 1 a(s)ds = oo ss^ oscillation.

T -• OD *J o

Wintner [23] also proved under the assumption that

(13) lim 1 a(s)ds < oo ,
T -* cr> J o

the following theorems:

JOD ft
exp(-kl A(s)ds)dt < oo , k = 2 c^ oscillation

o Jo

and

(15) A (t) < —4--*- ̂ non-oscillation.

Assertion (14) remains valid remains valid with k = 4. This

improvement was due to Hartman [6]. On the other hand, Opial

[16] extended (15) to

(16) [ A (s)ds £ —̂ rf- s^non-oscillation,

J t

and complemented (16) by

/^O

I
w t

(17) I A (s)ds >_ -ijS. A(t) >_ 0 s^ oscillation.

The significance of integral conditions, e.g. (7), (12), (14)

lies in the fact that no individual t-values occur explicitly

in the condition. In other words, a(t) and its repeated indefinite

integral A(t) can be of 'arbitrarily irregular growth1. However,

the integral conditions are merely criteria for osciallation

and gives no information concerning non-oscillation when the

conditions fail to hold. On the other hand, the integral com-
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parison tests of Kneser (5),(6) , Hille (9) , (10), and Opial (16) ,

(17) are !within e1 necessary and sufficient conditions for

oscillation or non-oscillation of equation (1).

We are primarily interested in equations with integrable

coefficients, namely those a(t) satisfying (13). In this

case, A(t) exists for all t. If A(t) >_ 0 for large t,

then Opial!s results, i.e. (16), (17), are applicable. However,

for most interesting examples with a(t) assuming negative values

for large t, its iterated integral A(t) will also assume

negative values for large t, e.g. a(t) = Sir? ^ • , £ ^ 0. There

seems to exist only a few results which cover equations with

coefficients of this sort. Earlier results by Wintner [23],

Hartman [6], and Moore [14], Opial [16], [17], and also comparison

theorems due to Wintner [24] and Hartman [7], (Exercise 7.9,

p. 369) are applicable to certain situations. Recently, a few

other papers appear which also treat this problem, e.g. Macki and

Wong [11], Willett [25], and Coles and Willett [4]. However, a

thorough study of the relationship between the integrability of

the coefficients a(t), (its iterated integral A(t)), and the

oscillation of equation (1) has not been made. The purpose of

this paper is to provide some ground work for generating oscilla-

tion criteria for equation (1) with integrable coefficients.

Consider the special example a(t) = Sln.^t. Results

of Willett [25] show that for this special example, equation



(1) is oscillatory if |j3| > ~ and non-oscillatory if \B\ < 7— .

Similar to Opial!s (16) of Wintner's result (15), Willett obtained

a further extension of Opial's result by integrating conditions

(16), (17) in some appropriate manner. Our results here will show that

this special equation is non-oscillatory when Ij8| = -= . Moreover,
42

our results are applicable to further perturbations of the boundary

situation |j8| = — , reminiscent of the Riemann-Weber [18] extension

of the Euler!s equation:

(18) x " + (-— + s j)x = 0,

4tz 4(t log t) z

which states that (18) is oscillatory if c > T a n d non-oscillatory

otherwise.

The basis for our extensions is the introduction of a new

Riccati integral equation which is useful in this study especially

which A(t) is not non-negative for large t. It will be shown

that under suitable assumptions, one may iterate this new Riccati

integral equation again and obtain another one of the same type.

In section 2, we establish the equivalence of non-oscillation of

(1) and the existence of a solution of certain Riccati integral

equation. In section 3, we prove generalizations of results of

Opial [1] and Willett [25]. In section 4, we present some refine-

The fact that |j8| = —£ is the dividing line for oscillation and
2%2non-oscillation of this special example was previously known to

the author and \T. J. Mahony by methods of asymptotic expansions.
In fact, our Computational1 technique is applicable to a large
number of special examples of this sort.



6

ments of comparison theorems due to Wintner [24] and Hartman [7].

We devote section 5 to a discussion of some relevant examples,

most of which are so far not covered by the existing results.

Finally, we indicate in section 6 how transformation of variables

may be used to extend our results to a larger class of equations

than those of equation (1). Portions of sections 2 and 3 was

earlier announced in Wong [26].

2. Basic Theory,

For later discussions, it is convenient to introduce the

notion of disconjugacy. We say a solution x(t) of (1) is dis-

conjugate on the interval [t ,OD) , where t > 0, if x(t) has at

most one zero in [t ,oo). It is clear from Sturm1s Separation

Theorem that (1) is non-oscillatory if and only if it has a solu-

tion x(t) which is disconjugate on [t ,oo) for some t . The

following lemma is basic for all later discussions and was due to

Wintner [23], [24], the proof may be found in Hartman [7] and is

hence omitted.

LEMMA. The following statements are equivalent:

(i) Equation (1) Jjs non-oscillatory,

(ii) There exists a function cpeC [t ,00), where t is

some positive real number such that

(19) <p' (t) + <p2(t) + a(t) < 0,

(iii) There exists a. solution to the following Riccati integral

equation:



r°° 2
(20) v(t) = A(t) + I v (s)ds..

J t

We are now ready to prove the following three theorems which form

the basis of the present theory.

THEOREM 1. The non-oscillation of (1) is, equivalent to the

existence of a. solution to the following integral equation
(21) u(t) = A(t) + 1 QA(s,t)u (s)ds,

where
. OD

(22) ~(t) = f A2(s)QA(s,t)ds,

and

(23) Q A C 8 ^ ) = exp(2 \ A(T)dT).

PROOF. Assume that (21) has a solution u(t), then an easy

computation shows that v(t) = u(t) + A(t) defines a solution of

(20). As a consequence of the above lemma, we conclude that (1)

is non-oscillatory. Conversely, if (1) is non-oscillatory then

Too 2

v (s)ds.
t

One easily sees that u(t) satisfies the differential equation:

(24) u! (t) = -(u(t) + A(t))2.

Using (^(tjO) as an integrating factor, we integrate (24) and

obtain

fT 2 r T 2
A^(s)QA(s,t)ds + V u^(s)QA(s,t)ds.

Since lall integrals on the right hand side of (25) have non-negative

integrands, we infer from (25) that A(t) exists and
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(26) lim u(T)QA(T,t) = L ( t ) .

T ->• oo

We now claim that the limit L(t) in (26) must be zero for all t.

Suppose that L(t) > 0 for some t. Choose ^ >_ t such that

for s >_ t- ,

(27) u(s)QA(s,t) >_\ L(t) > 0.

Substituting (27) into the last integral in (25), one finds

(28) u(t) >. f u2(s)Q (s,t)ds >i(L(t))2 f QA(t,s)ds, t >_ t .

Jt A Jt A L

Letting T tend to infinity in (28), we obtain (14) which implies

that (1) is oscillatory, which is a desired contradiction. Since

t is arbitrary, this shows that L(t) = 0. Now we may replace

T in (25) by oo and readily obtain (21) .

Using (21) instead of (20), we obtain the following result

which complements the result of Hartman [6] in case A(t) is

integrable.
THEOREM 2. If. A(fc) is inteqrable, i.e.

f
J o

(29) lim 1 A(s)ds < oo,
T "• o o J o

and A(t) satisfies

roo rt
(30) I exp(-4 \ A(u)du)dt < oo;

Jo Jo
then (1) jus oscillatory.

PROOF. Assume the contrary that (1) has a non-oscillatory

solution x(t). Define v(t) = X
x>ti , then it follows from



r 2
v (s)ds satisfies (21).

f- 2 t

u (s)Q (s,-t)ds, then one easily sees that p
t A

satisfies

p« (t) = -u2(t) - 2A(t)p(t)

(31) = -p2(t) - 2(A(t) + A(t))p(t) - A2(t)
< -(4A(t) + 2A(t))p(t).

Too
p(t)dt < oo . Observe that

o

f
T /»oo 2 r T rs - t 2

I u (s)Q (s ,t)ds >_ I (I exp(-2 I A (or) da) dt) u (s) Q. (s,O) ds
t J t A J t J t Jo A

o o o

(32) u (s)QA(s,O)ds, cx > O,

(33) (f u(s)ds)2 < (f s u2(s)QA(s,O)ds) (j iQA(O,s)ds),

o

and

(34) (f i Q (O,s)ds)2 < (f exp(-4 f A(a)da)ds) C % < c .
J t S A J t J o J t s ^ ^

o o o
U s i n g ( 3 2 ) a n d ( 3 4 ) i n ( 3 3 ) , w e o b t a i n t h a t f u ( s ) d s < c..

J o
From the d e f i n i t i o n s of u ( t ) and v ( t ) , we have

rn m rn

(35) (f v(s)ds)2 < (f sv2(s)ds) ( 4r
o

and

rn m rn

(f v(s)ds)2 < (f sv2(s)ds) f
J to J to J'

(36) (f s v2(s)ds) £ \ f u(s)ds.
J to J too J t o

Using (35) and (36), we obtain the following estimate for the



10

non-oscillatory solution x(t), namely

c- > 0(37) logtf^j) = f v(s)ds < c5(log t)
1 / 2,

where c^ as the previous c^s is an appropriate positive

constant depending only on t . As a consequence of (37), we have
o

- — > _ c6exp(-2c5 (log t)
1'2) >_ c6exp(-~ log t) , c& > 0

x2(t)

thus

rTO dt r i
o > c,- I exp(--̂ - log t)dt =x2(t) " 6 J 2

This contradicts the existence of nonprincipal solutions (Hartman

[7], p. 355) and completes the proof.

We remark that the above proof is a modification of Hartmanfs

proof of assertion (14) with k = 4. Here, we apply the technique

to equation (21) instead of (20). Now, we may use Theorem 2 in

place of (14) to obtain a further Riccati integral equation in

case A(t) is integrable. The analogue of Theorem 1 is the

following:

THEOREM 3. IJ: A(t) JLS inteqrable then (1) ̂ s non-oscillatory

if and only if there exists ja solution to the following integral

equation:

(38) w(t) = T(t) +C Q-(s,t)w2(s)ds,

where

•n(39) A(t) = \ A2(s)Q-(s,t)ds,

and

(40) (A(T) + A(T))dT) .
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I
0
•I

PROOF. Assume that (38) has a solution w(t), then an easy

computation shows that v(t) = w(t) + A(t) + /T(t) is a solution

of (20), hence by the above Lemma, (1) is non-oscillatory. Con-

versely, if (1) is non-oscillatory then by Theorem 1, equation (21)

has a solution u(t). Define w(t) = 1
M t

easy to see that w(t) satisfies

(41)

Q (s,t)u (s)ds. It is

w'(t) = -w2(t) - A2(t) - 2(A(t) + A(t))w(t).

Using Qy(t,O) as an integrating factor, we can integrate (41)

as before and obtain

A (s)Q-(s,t)ds +1 vr (s)Q-(s,t)ds.

Proceeding as in the proof of Theorem 1, we need to show that

lim w(T)Q-(T,t) = C(t) = 0,
T - GO A

for all large t. Suppose that C(t) > 0 for some t. Choose

to >_ T such that for s >_ t9, we have

(43) w(s)Q-(s,t) > \ C (t) > 0.

Substituting (43) into the last integral in (42), we obtain

r T 2 i - - 2 r T

(44) w(t) >l w (s)Q-(s,t)ds > z(C(t)) I Q*(t,s)ds,

Jt A Jt A

for all t >_ t2. Letting T -+ GD in (44), we obtain (30), which

by Theorem 2 contradicts the assumption that (1) is non-oscillatory.

This completes the proof.

It is clear from the proofs of Theorems 1,2,3 that the process

of generating higher-order iterated Riccati integral equations may

be continued if we assume further that the iterated integrals A(t),

A(t),... are integrable. As immediate consequences of Theorems
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1 and 3, we obtain the following oscillation criteria which

seems to be new.

COROLLARY 1, (i) l£ a(t) ijs integrable, then

(oo 0 rs
A (s)exp(2 I A(T)dr)ds = oo -4 oscillation,

o Jo

and (ii) if A(t) is integrable then

r°°-2 r s —
A (s)exp(2 1 A(T)dT)ds = cogfr oscillation,

o J o

Example 1. As a nontrivial example, one may take

a(t) = «
 sin fit w h i c h satisfies (45) for all «,j8 ̂  0 and
(In t ) A

A > 0. Previous result implies oscillation only for A < 1,

(cf. Macki and Wong [11].)

Example 2. Consider a(t) = a s " P . It is easy to check
t7

that in this case for all ot and j3 ̂  0 (45) is satisfied if

0 < y < y but (46) is satisfied if 0 < y < 1. No previous

result in literature, with the exception of Willett [25], seems

to cover this example.

In the following sections, we shall develop other oscillation

and non-oscillation criteria when (45) and (46) fail to hold.

3. Main Results.

In this section, we shall improve the results of Opial [16]

and Willett [25] mentioned in the introduction, based upon our

results in section 2. The following theorem is a further elabora-

tion of Opial!s condition (16) .
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THEOREM 4. Ij[ there exists a function B(t) such that

roo 9

(A(s) + B(s)rds|) < |A(t) + B
then (1) is non-oscillatory.

PROOF. We shall use condition (47) to prove the existence

of a solution of (20) by the Caratheodory1s successive approxi-

mation technique. Let N be a positive integer. We define the

sequence of functions {v (t)} as follows:

t A(t) + B(t) , t >_ N

(48) v__(t) 1 r°° 2

I A(t) + I vN(s)ds, 0 < t < N

N

Equation (48) de f ines v
N ( t ) s u c c e s s i v e l y on the i n t e r v a l s

[N - —, N - ~"ĵ ~l f o r k = I*2**-** a n d hence v
N ( t ) i s def ined

on [O,oo) . For N - r r < 1 t < o o , w e have from (48) t h a t

(49) v w ( t ) < |A(t) + f (A(s) + B ( s ) ) 2 d s | < |A(t) + B ( t ) |
N J t

a n d

(50) v__(t) > A ( t ) > - | A ( t ) | > - | A ( t ) + B ( t ) | .

N — — —

Using (49) and (50) and a simple induction, it is easy to show

that for all t >. 0, we have |vN(t) | <. |A(t) + B(t) | < M. We

now wish to show that {vN(t)} forms an equi-oscillatory family of

uniformly bounded functions on [O,OD) , i.e. for each e > 0,

there exist 6 > 0,N > 0 such that for |s - t| < 6, we must

have |vN(t) -
 V
N<

S)I < G f o r a 1 1 N > N
o- Since A(t) - 0, for

HUNT LIBRARY
6AANE6IE-MELL0N UNIVERSITY
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each e > O, we may choose T >_ 0 such that for all t >_ T, we

have | A (t) | <. 4*« On the finite interval [O,T] 9 A(t) is continuous

and hence uniformly continuous9 therefore, there must exist 6, > 0

such that for all 0 £ s < t < T, |A(S) - A(t) | < -|- whenever

|s - t| < 61 • From (48), we may estimate as follows:

1
9

ds
-, JN " '

SH

| v N ( s ) - v N ( t ) | < |A(s ) - A ( t ) | + f "^ v*
0 cj_JL

N

|A(s) - A(t) | + M| s - t|

Choose 5 = Min(61,-^r) , one readily sees that |v (s) - v (t) | < e,

whenever | s - 11 < 6, N >. N . Now an application of Arzela-Ascdli1 s

Theorem shows that {v (t)} contians a pointwise convergent sub-

sequence {v (t)}, which converges uniformly on every compact

subinterval of [O,GD) . Denote its pointwise limit by v(t).

Note that condition (47) implies there exists a sequence {t.}*

t. - co as j - GD such that |A(t.) + B(t.) | ~* 0. Write equation

(48) in the form

t j
(51) v (t) = I a(s)ds +1 v; (s)ds + j8 (t ) ,r t j 2

where

=A(t.)

F r o r a ( 4 7 ) i t f o l l o w s t h a t | 0 k ( t . ) | < | A ( t . ) + B ( t . ) | . L e t t i n g

k -» GO i n ( 5 1 ) , w e h a v e

ftj ffc3 2
(52) l im i n f /3 ( t ) < v ( t ) - \ a ( s ) d s + V v (s) ds < l im sup fl ( t J

k - o o K : i J t J t k - c o K J
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Now, since ]8, (t.) - 0 as j - GD , letting j - oo in (52) ,

we establish that v(t) is a solution of (20)•

COROLLARY 2. IJ| A(t) >_ 0 .and there exists a. function

B(t) such that

r 0 0 2
(53) f (A(s) + B(s)) Zds < B ( t ) ,

then (1) is^ non-oscillatory.

We note that Corollary 2 reduces to Opial 1s condition (16)

by taking B(t) = A ( t ) . In view of the Wintner !s Lemma, we can

present independently a short proof of Corollary 2, hence the

result (16) of Opial.

Z*00 2
PROOF. Define <p(t) = A(t) + 1 (A(s) + B(s)) ds >. 0.

J t

A simple computation shows that <p' (t) + a(t) + (A(t) + B(t))2 = 0,

Condition (53) implies that <p (t) < (A(t) 4- B(t))2, from which

(19) readily follows. Hence (1) is non-oscillatory.
Example 3. Consider the example A(t) = j ~ ~ — . It

is easily checked that in this case condition (16) fails for

all k > 0. On the other hand by taking B(t) = rr, one can show

that for large t, condition (53) is satisfied with k > 4-j.

Example 4. Consider the example A(t) = "^1'f^n t^ , k > 0

for which neither Opial1s condition (16) nor Corollary 2 is
4

applicable. However, in this case we may take B (t) = -r~~, and
Jet

easily checked that condition (47) is satisfied for k > 5.
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In view of the other Riccati integral equations developed

in the previous section, we can now apply similar techniques to

(21) and (38) and obtain non-oscillation theorems. Note that in

case of (21) and (38) , A*(t) and JT(t) are non-negative, hence

analogues of Theorem 4 take the same form as that of Corollary 2,

THEOREM 5 • JTf there exists â  function B (t) such that

r°° - 2
(54) 1 (A(s) + B(s)rQA(s,t)ds < B(t),

then (1) jjs non-oscillatory.

PROOF. By Theorem 1, it is sufficient to show that (54)

implies the existence of a solution of equation (21). Define

u (t) = A(t) + B(t) and inductively, n = 1,2,3,...

(55) un(t) = A(t) c
Using (54) and (55) , it is easy to show by induction that

0 < A(t) < un(t) < un-1(t) < A(t) + B(t) .
n

Thus the sequence of functions (u (t)} has a pointwise limiting

function u(t) = lim u (t). Since the integrand in (55) is
n ~* GO

non-negative, it follows from the monotone convergence theorem

that u(t) is a solution of (21).

Applying the same line of argument given in the proof of

Theorem 5 to equation (38), we obtain

THEOREM 6. JLf A(t) is inteqrable, and there exists ja

function B(t) such that
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(56) f (A(s) + B(s))2Q-(s,t)ds < B(t),
1 4-

then (1) jLjS non-oscillatory.

— — s 9
Taking B(t) = A(t) and B(t) = A(t) in the above two

theorems, we obtain the following

COROLLARY 3. (i) (Willett [25]). I_f

(57) f A2(s)Q_ (s,t)ds < J A(t),

J t A 4

then (1) is non-oscillatory; and (ii) JLf A(t) is integrable and

(58) P A2(s)Q-(s,t)ds < i A(t),

then (1) is non-oscillatory.

We also note that our proof differs slightly from that of Willett

[25] and both proofs are much simpler than that of Opial»s [16].

We shall now present a further generalization of the oscillation

part of Opial!s result (17).

THEOREM 7. I_f A(t) >_ 0 and there exists a. non-negative

function C(t) ^ 0 such that

(59) f A2(s)ds > -| A(t) + C ( t ) ,
J t

and

(60) [ C(s)A(s)ds >_ 6 C(t),

J t
for some 6 >, -g, then (1) JLS[ oscillatory.

PROOF. Assume that (1) is non-oscillatory, then by Wintner!s

Lemma, equation (20) must have a solution v(t), which satisfies

>. ao
A^t^ >- °> w i t h aQ = 1. Substituting this into (20),

we find
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(61) v(t) >_ a-jAft) + b ^ t t ) , ai ° 1 + 4' bl s lf

Substituting (61) again into (20), we obtain

a »̂oo 2

v(t) >_ (1 + -r-)h(t) + 2a b I C(s)A(s)ds + a^
* Jt

(62) a2

= a.A(t) + b ?C(t), a = 1 + -±, b = a^

Using (62) and an easy induction, we can show in general that
2
a . 2

(63) v(t) >. anA(t) + b nC(t), an = 1 + -^"i
 b

n = an->1 +
 2 6 a

n-l
b
n-]

From the recurrence relation given by (63) and the fact that
a2 -̂ ai* ^9 — ^1^ o n e r e a di^y s e e s that a > _ a - i ^ b ^ b ,.

Furthermore, it is easy to show that lim a = 2 . Now, if
n - oo

lim b is finite, then we can show from (63) that 46 < 1,
n - oo n

contrary to the given hypothesis. Since C(t) f 0, and b -• oo

as n -̂  oo, the desired contradiction follows from (63).

We observe that Opial's condition (17) follows from Theorem

7 by taking C(t) = -j A(t) for some € > 0. Applying the same

argument to equations (21) and (38), we obtain respectively:

THEOREM 8. JTf there exists a. non-negative function c'(t) f 0

such that

AZ(s)QA(s,t)ds > |A(t) + C ( t ) ,

and

(65) C C(s)A(s)QA(s,t)ds > 6C(t),

Jt A

for some 6 >_ -j, then (1) _ij3 oscillatory.
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THEOREM 9. JIf. A(t) JLS integrable and there exists a non-

negative function cT(t) f 0 such that

(66)

and

C f2(s)Q-(s,t)ds> |f(t) + C(t)

J(67) C(s)A(s)Q-(s,t)ds > 6C(t),-

for some 6 > -rs then (1) is oscillatory.
— - — — — — — — — — fj. — — - — — — — •

COROLLARY 4. (i) (Willett [25]). Ig A(t) ?O satisfies

(68) C A2(s)QA(s,t)ds > -^A(t)

for some e > O, then (1) is oscillatory, (ii) ĵ f A(t) f O

satisfies

(69) f A2(s)Q-(s,t)ds > l±§ft(t)

for some e > 0, then (1) jjs oscillatory.

4. Comparison Theorems.

Consider another linear second order equation of the same

form as that of (1)

(70) y' • + b(t)y = 0,

we wish to discuss conditions on a(t) and b(t) such that non-

oscillation of (1) would imply non-oscillation of (70), or vice

versa. Indeed, Sturm!s Comparison Theorem states the following:

Suppose that for all large t,

(71) a(t) >. b(t),

then the oscillation of (70) implies that (1) is oscillatory.

In case both a(t) and b(t) are integrable, hence A(t) and
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B(t) =1 b(s)ds exist, Hille [8] showed that in this case if
J t

(72) a(t),b(t) >. 0, and A(t) > B(t),

then, the same conclusion results. Hillefs result was later

improved by Wintner [24], who showed that condition (72) may be

weakened to

(73) A(t) >. B(t) >_ 0,

Later, Hartman [7] (p. 369, Exercise 7.9) indicated that Wintner1s

condition (73) may be improved to read

(74) A(t) > |B(t) |.

Hartman1s result is particularly important in our discussion here,

for it seems to be the first result of comparison type which is

applicable when B(t) is not necessarily non-negative. In parti-

cular, we have

Example 5. Consider b(t) = a s i" ^ . Take a(t) = - ^
t 7 4t:

in (74), we conclude from the result of Hartman that (70) is non-

oscillatory for all a, fi if y > 1 and |*f I < "4 if 7 = 1.

On the other hand, Hartman result gives no information concerning

the oscillation of (1) when A(t) assumes negative values of

large t. In view of the Riccati-integral equations (21), (38)

introduced here, we can offer similar comparison theorem com-

plementing that of Hartman1s.

THEOREM 10. Suppose that A(t) J^ inteqrable, and in addition

we have



21

(75) A(t) >_ B(t) and A(t) + A(t) >. B (t) + B (t) ,

then if (1) _is_ non-oscillatory, (70) JLS_ also non-oscillatory.

PROOF. Suppose that (1) is non-oscillatory. By Theorem

1, equation (21) has a solution u(t). Define p(t) =

r00 2

[ u (s)Q (s,t)ds, which satisfies:
Jt A

(76) p.(t) + p2(t) + 2(A(t) +A(t))p(t) +A 2(t) = O.

Now define z(t) = exp(l p(s)ds), which on account of (76) is

a solution of the following second order equation:

(77) z« » (t) + 2(A(t) + A(t))z> (t) + A2(t)?(t) = 0.

Consider the second order equation with coefficients B(t) and

B(t) in the same form as (77)

(78) r< • (t) + 2(B(t) + F(t))r' (t) + B2(t)r(t) = 0.

Since A(t) is integrable, non-oscillation of (1) implies on

account of Theorem 2 that

roo ^t
exp(-2 I A(u)du)dt = oo.

o Jo

Note that z(t) is non-oscillatory, this together with (79) show

that (77) has a solution z(t) satisfying z(t) > 0, z' (t) >̂  0

(Cf. Hartman [7], p. 352, Exercise 6.2). Using this fact con-

cerning equation (77) and (75), we may apply another result of

Hartman [7] (p. 363, Exercise 7.2) to conclude that equation (78)

is non-oscillatory which in turn implies that there is a solution

to the following Riccati differential equation:
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(80) a' (t) + a2(t) + 2(B(t) + B(t))a(t) + B2(t) = o.

Define y(t) = exp(l (B(s) + B (s) + a(s))ds). An easy computation
Jo

shows that y(t) is a non-oscillatory solution of (70). The

proof is complete.

Example 6. Consider a(t) = a cof/ ^
t
j> 0 < y < 1. Take

t 7

b(t) = Sin.x for some A, y < A < 1. It is easily verified in
t

this case that A(t) is integrable and condition (75) is satisfied.

Since! equation (70) is oscillatory with this particular b(t)

from Example 2, we conclude that (1) is oscillatory.

We remark that (46) is also applicable to Example 6. How-

ever, Theorem 10 offers comparison between coefficients a(t),

b(t), whose iterated integrals A(t),B(t) may both be negative

for large t.

5. More Examples.

We shall now consider more elaborate examples demonstrating

various applications of the results established in the previous

two sections.

Example 7. Consider a(t) = a " " . Using Corollary

4(1), it is easy to show that (1) is oscillatory if |-g-| > —
P

and similarly using Corollary 3(i), we obtain non-oscillation

of (1) when \-K\ < -= . (Details of these may be found in Willett

[25]). We shall now show that Theorem 5 implies non-oscillation

of (1) when \-x\ = ~= . Note that in this case, we have
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(81) A(t) = | ^ ° | ^ + 0(-\),

(82) QA(s,t) = 1 + O(^) < 1 + p L > 0.

From (81) and (82), we obtain the following estimate for A(t):

(83) A(t) = -^j j
2 t t:

+m 1 K

Let K > 0 be the constant such that A(t) <_ -rr + —7. We choose

B(t) = T T + -~2, where M is to be determined in terms of K and

L. Using (82), (83) and the estimates on A and A, we can

compute the integral in (54) and obtain

00 (A(s) + B(s))2Q (s,t)ds = TT +
2t t

In order that (54) is satisfied, it is sufficient to require:

M > K + f.

Example 8. Consider a(t) = a n ^ t + -\, with a,j8,A ^ 0,
+-

1 1 /y 2

Willett [25] shows that (1) is oscillatory if A > •£ - jtff) and

non-oscillatory if A < -r- - y(l>) • Following a similar argument

as outlined in Example 73 we find that (1) is non-oscillatory if
1 1 ,Qt, 2

A = 4* - 2*™ . We note that in this case A(t) is not integrable
and estimate (82) for Q (s,t) does not hold.

Example 9. Consider a(t) = a s i n ^ + P G O S ut
y w i t h

<x,fi,H,v ? 0. Applying Theorems 5 and 8 as before, we find that

(1) is oscillatory if (|)2 + (^)2 > 1 a n d non-oscillatory if

t&)2 /i£\ 2 2.

Example 10. Consider a(t) = a s^ n ^ + ^ s i n ^^ ^ wifch
1 t

^ CT > 0, v j£ fi. in this case, we find that (1) is4 2
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oscillatory if a £ 1 and non-oscillatory if a > 1.

Similar to the role that equation (18) plays with regard to

equation (4), we also consider the logarithmetic perturbation to

the boundary case of Example 7, i.e. |-o| = -— .

Example 11. Consider a(t) = a s*n ̂  + jj fin ff*, with
XL *c log t

\t\ = , £,T) / 0 . Case I , /? = r\5 we have

(84) *(t, =

(85) A(t) = XT + - T
i ^ + 0 ( j

^ C jŜ t log t t(log t)z

and

(86) f A2(s)QA(s,t)ds = yi- + - ^ + o( l j).

J t A lbt )82t log t t(log t) Z

Substituting (85) and (86) in (59) and (60), and applying Theorem

8, we conclude that (1) is oscillatory if a£ > 0, i.e. £ has

the same sign as a. As a direct consequence of Theorem 5, we

also have that (1) is non-oscillatory provided that <x£, < 0.

In this example, (84) implies that A(t) is integrable, so

Theorems 6 and 9 are also applicable and indeed they produce the

same conclusion. Note that Willett's results [25] in particular

are not applicable here, and hence give no information for this

case. Case II, fi jt r), we have

(87) A(t) = i- + hh2 1 + 0(1)
4 t Z * t(log t)Z tZ

and
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(88) C A2(s)QA(s,t)ds = ̂  + ̂ (£)2 3= — + 0 ( -

Using (87) and (88) and a direction application of Theorem 8,

we condlude that (1) is oscillatory in this case.

2
Example 12. Consider a(t) = \i sin vt . Since a(t) is

integrable, our results are applicable. It can easily be computed

that in this case

A / f- \ == Jr .... —. 4. c\ /-i—\
&{t) 2u t + t

2' '

and

^ ' "" 2 2u t 2' *

Applying similar techniques as before, we obtain oscillation for

|*j| > 1 and nonoscillation for |^| <̂  1.

We remark that in all examples discussed above the con-

clusions remain valid if sines and cosines are interchanged or

the coefficient A(t) has a perturbation term of order 0 (—T-) ,
tA

A > 1. Also note that part of the results may be obtained by a

combination of Theorem 10 and Theorems 5 through 9. It is believed

that in case A(t) is integrable, Theorems 6 and 9 will be use-

ful in discussing perturbations of higher order, namely

0((t log t log I log t))"1).

6. Extensions and Remarks.

Using transformation of variables, one can easily translate

results concerning equation (1) to the general Sturm-Louiville

equation of second order:

(87) (p(t)x')' + q(t)x = 0, p(t) > 0.
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Following Moore [13], we can transform equation (87) into the same

form as equation (1) , depending on the convergence or divergence

f°° dt
—rpr* In the first case, we introduce the

change of variables

-r
«* o

(88) s = I - ^ r - , y(s) = x ( t ) ,
j o P v

which transforms (87) into

2
(89) -^-J + p(t)q(t)y(s) = 0 , se[s c o ) .

ds

In the other case, we introduce the transformation

oo ,

(90) s = (f J(7j-)" * s"y(s) = x(t),

which tranxforms (89) into

(91) ^ | + P(t?q(t) y(a) = Q > 86[ ^

ds s

In both cases, equations (90) and (91) are of the same form of

(1) to which results based upon (1) are readily applicable. Some

results on asymptotic behaviour of equation (87) and in particular,

oscillation or non-oscillation results, which have appeared in

literature are for the most part simple consequences of trans-

formations (88), (90), or some slightly more general transformations

as given in [13] . This phenomenon occurs also in its nonlinear

analogue, Willett [25] and Wong [27] listed a few references of

this nature.

In order that results in this paper be applicable to equation

(87) , we require instead of condition (13) the equivalent condi-
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t ions on p( t ) and q( t) :

r°° dt r°°
(92) j ^ - = 0 0 , j q ( t ) d t < o o ,
or

;

oo , . 00 <̂x>

^ - < 0 0 , C q(t)

Under assumptions (92) and (93), we can introduce functions

Q (t) , and Q (t) for equation (87) which play the same role as

that of A(t) and A(t) for equation (1). In case when condition

(92) holds, an easy computation yields the following formulae

Q ( t ) = f q ( r )d r ,
P J t

f o r %

( t )

and V

3 Q P
P

Q

(r)

(r)

Similarly, when condition (93) is satisfied, we have the alter-

native formulae for Q and Q •

op(t) =

Q (£) AX> r°° df 2(Ut> = I -^^exp^J^-f^a ~^r)"^)(l T^T)
P " J t P ( T ) J t PW j£PW S y J T P ( O

It is rather important to point out that transformations

(88) and (90) are just two of many possible »oscillation invari-

ant' transformations, i.e. s -> 00 as t - GO and y(s) vanishes

whenever x(t) does. In many instances when oscillation or non-

oscillation criteria fail to apply to equation (1) directly,
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some appropriate oscillation invariant transformation may be

introduced so that in the reduced equation (87) results on

oscillation or nonoscillation may be applicable. In this regard,

we discuss the following two examples.

Example 13» Consider the following equation with inde-

pendent variable s:

2
(94) •£-¥• + (cos s)y = 0, s > 0.

ds^

Since cos s is not integrable on [0,oo), our results are not

directly applicable to equation (94). However, by introducing the

1 oscillation invariant * transformation:

s = log t, y(s) = tx(t) ,

we may transform equation (94) into the form (87) as follows:

(95) (t3x') « + (t + t cos log t)x = 0,

to which our results are applicable. In particular, an easy

application of Corollary 1 (i) to equation (95) with the above-

mentioned modification, replacing Q , Q for A and ~, yields
P P

oscillation of all solutions of (94).

Example 14. Consider the following equation with independent

variable t:

2
(96) x' ' + (jut cos vt )x = 0, \i,v ^ 0.

Obviously, none of the above-mentioned results is applicable here.

Now, using the following !oscillation invariantf transformation:

2S = t2, y(s) = tx(t),
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we can transform (96) into:

(97) J ( SV ( 8 ) ) + ( +
s s

Since (97) is of the form (87), an easy verification of (92)

shows that our results are applicable here. In fact, using any

oscillation criteria above, we obtain the conclusion that (96)

is oscillatory for all \xsv ̂  0.

Finally, we close our discussion with a number of remarks

relating our present work to others; (Other related results may

be found in Reid [19], [20].)

Remark 1. For non-negative coefficients a(t) other results

are known. See for example, Nehari [15], Barrett [1]. We note

that our results are best possible in the sense that in cases

Euler?s equation (4) and the Riemann-Weber equation (18) inequali-

ties concerning A(t),A(t) become equalities.

Remark 2. Examples 13 and 14 belong to a class of so called

fwildly oscillating1 coefficients. For these examples, the

technique of averaging plays an important role, (Cf. Wintner

[22], Hartman [6], Coles [2], Willett [25], Macki and Wong [11],

and Coles and Willett [4].) The fact that some of these cases

can be handled by some appropriate oscillation invariant trans-

formations via results on integrable coefficient seems not yet

fully understood. On the other hand, Macki and Wong [11] demon-

strates an example with integrable coefficient which can be

handled by averaging methods.
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Remark 3. The behaviour of non-oscillatory solutions has

been studied by a number of authors, under the assumption that

a(t) must eventually be of one sign (see Levin [10], and other

references listed there). In that case, specific information on

the limiting behaviour of non-oscillatory solutions are known.

In view of the present development it will be of interest to

improve the above mentioned results by relaxing the sign restriction

on a(t) .

Remark 4. Marcus and Moore [12] have presented a detailed

discussion of disconjugacy domains of solutions of (1) when

a(t) is non-negative and almost periodic. We hope that the

present development will lead to an improvement of their results

when a(t) is not required to be non-negative.
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