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Abstract

A geometric program concerns minimizing a function subject

to constraint functions, all functions being of posynomial form.

In this paper the posynomial functions are condensed to mono-

mial form by use of the inequality reducing a weighted arithmetic

mean to a weighted geometric mean. The geometric mean is a

monomial and by a logarithmic transformation it becomes a linear

function. This observation shows that the condensed program is

equivalent to a linear program. Moreover by suitable choice of

the weights it is found that the minimum of the condensed program

is the same as the minimum of the original programs. This fact

together with the duality theorem of linear programming proves

that the maximum of the dual geometric program is equal to the

minimum of the primal geometric program. With this result as

a basis a new approach to the duality properties of geometric

programs is carried through. In particular it is shown that

a l! duality gapn cannot occur in geometric programming.
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LINEARIZING GEOMETRIC PROGRAMS

1. Introduction

It was shown by Federowicz that by a simple transformation

of variables a linear program can be expressed as a geometric

program [1, p.265]. In this paper a converse question is treated.

It is shown that a geometric program can define an associated

family of linear programs. This linearization can be of use

both analytically and computationally.

The linearization is achieved by use of the inequality

reducing an arithmetic mean to a geometric mean. This

operation performed on the polynomial functions defining

the geometric program condenses them to monomial functions. But

by the Federowicz transformation a monomial geometric program

is equivalent to a linear program.

Linearization is employed in this paper as a theoretical tool.

It enables the duality theory of linear programming to prove part

of the duality theory of geometric programming. In this way it

is shown that if the minimization of a primal geometric program

yields a finite value then maximization of the dual program is

feasible and yields the same value. This result is termed Theorem

4a.

To obtain a complete duality theory it is necessary to show

that, conversely, if the maximization of the dual program yields

a finite value, then the minimization of the primal program is

feasible and yields the same value. This is termed Theorem 4b.

The proof of Theorem 4b is given by a reduction ft ad absurdum11

making essential use of Theorem 4a.
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The duality theorems proved here are essentially equivalent

to those proved previously [1,2]. However, the old proof and this

new proof shed light on different facets of the problem.

It will be apparent from Section 4 to follow that the

condensation method used to linearize geometric programs suggests

various computational applications. However, these questions

will not be pursued.

The proofs to follow depend on elementary inequalities and

the duality theorem of linear programming. Otherwise the paper is

self contained.



2. Definition of posynomial geometric programs*

The primal geometric program is denoted by the letter A

and is stated as follows.

Primal Program A. Seek the minimum value of ja function g (t)

subject to the constraints

(1) tx > 0, t2 > 0, ... , t m > 0

and

(2) g^t) £ 1, g2(t) <- 1, ... , gp(t) £ 1 .

Here
k a., a.o a.

(3) gk(t) = T
 c

i
t
1 ^-2

 9 ^ m i m ' k = 0,1,...,p

where n = n and
P

The exponents a . . are arbitrary real constants, but the coeffi-
1D

cients c. are positive constants.
I ————. _—̂ ___——__»-_

The functions gfc(t) are termed posynomials. If there is a

point t which satisfies the constraints (1) and (2) then program

A is said to be consistent. If A is consistent let

(4) MA = inf gQ(t)

for points t which satisfy the constraints. Then M is

termed the infimum of A. Program A is said to have a finite

infimum if ML > 0.

Associated with the preceding mimiraization program is a

maximization program termed a dual geometric program. The

dual program is denoted by the letter B and is stated as

follows.
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Dual program B. Seek the maximum value of a^ product function

n c. 6.
(5) v(6) = IT hp)

i l °i

n c, 6, p

x-x . k=l A f c

where

(6) Av = X 6±

with n = n and

ro = 1* m1 = n +1, m0 = n-i+1, ... , m = n , + 1 .
^ i o <w I p P ~* -̂~

The factors c. are assumed to be positive constants and the

vector variable 6 = (6 , . . . 9 6 ) JLS subject to the linear

constraints;

(7) ^1^0i 62 ^ 0, ... , 6n ^ 0, (positivitv)

n
(8) 1^° S± = 1, (normality)

and

n
(9) L 6iai;. = 0, j = l,2,...,m. (orthocronality)

Here the coefficients a.. are real constants.

In evaluating the product function v(6) it is to be

understood that x = x~ =1 for x = 0. This will make v(6)

continuous over its domain of definition. Program B is said

to be consistent if there is a point 6 which satisfies the

constraints (7),(8), and (9). If program B is consistent let

(10) Mg = sup v(6)

for points 6 which satisfy the constraints. Then NL is

termed the supremum of B. If M^ < » then program B is said

to have a finite supremum.
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3. The geometric inequality.

The inequality stated in the following lemma is termed a

geometric inequality.

Lemma 1. If u. > 0 and 6. > 0 for i = 1,..., N then
— — — — — — • I "~*~~-"~ I — — — ••

N -v N U. 6
(1) ( S U . ) A ̂  7T (nri) X A*

1=1 X i=l °i

where

N
(2a) A = E 6. and

i=l x

6.
(2b) (ui/6i)

 x = 1 if 6i = 0 .

Moreover the inequality becomes an equality if9 and only if,

(3) 6.. T®u± = UjXj 6 I , j = 1,2 5...,N.

Proof; We consider three exclusive cases: (a) all 6. are

positive, (b) some but not all 6. are positive, and (c) all

6. are zero.

In the case (a) let n weights11 €. be defined as

(4) € i = 6./A and u ± = ui/6±.

Then the classical inequality stating that the weighted arith-

metic mean of U-.,U2j...,U is not less than the weighted geo-

metric mean can be written as follows

Substituting relations (4) into (5) is seen to prove inequality

(1). Moreover for positive weights e. it is known that (5) is

an equality if and only if

(6) V1 = U 2 = ... = UN.
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Clearly this is equivalent to (3). This proves Lemma 1 in case

(a).
6 .

In case (b) it is seen that if 6. = 0 then (u./6.) 3 = 1

so the right side of relation (1) does not depend on u.. How-

ever the left side increases with u.. This fact together with

the proof of case (a) shows that (1) is a strict inequality in case

(b). Moreover (3) is not satisfied for i = j. Thus relation

(1) and (3) both hold in case (b)*

In case (c) it follows that (1) becomes the equality 1 = 1

and (3) becomes 0 = 0 . This proves case (c). Since the three

cases are exhaustive the proof of Lemma 1 is complete.

The following result is termed t! the main lemma11 of geo-

metric programming. It is a consequence of repeated application

of the geometric inequality of Lemma 1.

iEheorem 1. jLf t satisfies the constraints of primal program A

and 6 satisfies the constraints of its dual program B then

P Ai

(7) go(t) ^ g (t) Tr[g,(t)]
 k ^ v ( 6 ) .

Moreover, under the same conditions g^(t) = v(6) if, and only

(8) gQ(t)6i = ui(t) i = 1, ... , nQ .and

(9) 6± = A ku ±

Here k = 1,..., p and

(10) u.(t) = - t 1 1 . . .



Proof. Then for k = 0,1, ... , p

and by virtue of the geometric lemma

K. 1

ai

together gives

(12) (gk)
 k 1 ̂ (JT) x V k= o,i,....,P.

Here A = 1 and m = 1 . Multiplying these p + 1 inequalities

A, u. 6.
p k v n , i v i

g
 ^ ^ ^

Then by the definition of the dual function v(6)

where

(14) Dj = ££ 6 ^ ^ j = 1, ... , m

Since 6. satisfies the orthogonality condition it follows that

D. = 0. Thus

D Ak
(15) g of[g k

K2 v(6).

But t satisfies the constraints of A so

(16) ĉ  .£ 1 k = 1, ... , p .

Thus 1(15) and (16) together prove inequality (1).

Now suppose that the condition (8) of Theorem 1 holds. Then

(12) is an equality for k = 0 because Condition (8) of Theorem

1 is the same as condition (3) of Lemma 1 when A = 1.
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If condition (9) of Theorem 1 holds and A, = 0 then (12)

is an equality because then condition (9) implies condition (3)

of Lemma 1. If A-. ^ 0 then sum (9) and obtain

This shows that g = 1 and consequently (3) and (9) are equivalent.
k

Thus (12) is seen to be an equality also in the case A, ^ 0.

Since (12) is an equality for k = 0,1, ... p it follows that

\(15) is an equality. However if A, = 0 then g, = 1 and if

A^ / 0 we have seen that gk = 1. Thus g^ = 1 for k = 1, ...,p

and this together with the equality (15) give gQ = v. This

proves the second part of Theorem. 1.

To prove the third part of Theorem 1 suppose that g = v. Then
\ °

(15) and (16) show that actually g. = 1 for k = 1, . . ., p.

Moreover all the inequalities (12) must be equalities. Then

relation (3) of Lemma 1 holds and since g. = 1 for k = 1, ... , p

it follows that (3) implies (9). Since A = 1 it follows that

(3) implies (8). Thus it has been shown that if g = v then

(8) and (9) hold and the proof of Theorem 1 is complete.

Corollary 1. Suppose that Sv^*) < 1 fQr some value of k

and for some point t* satisfying the primal constraints. Then

the inequality

(18) v(6) ^ c

for some positive constant c implies that

(19) Ak £ log[go(t^)c"
1] / log[gk(t*)
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for any 6 satisfying the dual constraint and (18) .

Prooft It is a direct consequence of inequality (7) that

(20) go(t*) [gk(t*)]
 K ;> v(6) .

This is equivalent to (19).

Corollary 2. Jj[ g(t) = v(6) where t satisfies the primal

constraints and 6 satisfies the dual constraints then

n A. P \ n A.
(21) M- 7T 6. L = TT A K V C. 1

for any A satisfying the dual constraints.

Proof; The equations (8) and (9) are raised to the powers A^

and multiplied. This gives

A^ n A. A n A.
(22) g ° ir 6 • * = IT A K 7T u X

o 1 l l K 1 x

n
where AQ = "Eĵ

0 6±. But gQ(t) = MA, AQ = 1, and

n A. n A.
(23) TT u. = IT c. .

1 1 1 X

Thus (22) and (23) prove (21).

Relation (21) is due to Clarence Zener. It can be used

to derive the M maximizing equations" [1, p.88]. The maximizing

equations are of prime importance for computational work.

Corollary 3. JEf program A and program B are both consistent

then

(24) MA > ^ > 0.

Proof; This follows directly from (7).
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4. Condensed Programs.

Proof for duality theorems to follow is based on the notion

of a condensed program. A condensed program is equivalent to a

linear program. It is denoted by A and defined as follows.

Primal Program A. Given program A and a_ set of non-negative

weights en, ... , e such that
l n — — — — —

(1) £ * eL = 1 k = 0,1,...,p.

Then the condensed program is obtained by replacing 9

where the u. are the terms of g,. Thus
1 JC

(3) i k k

n c e
Ck = V 7 'k ^ Gi

^ €i aij k = O * I * - - . » P .

Note that it is a direct consequence of the geometric inequality

that

(6) gk(t) ^ g

Thus if program A is consistent so also is program A and

In a similar manner a partially condensed program can be

defined when at least two terms are condensed into a single

term by the geometric inequality. Condensed and partially con-

densed programs suggest approximation procedures for computation
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but these questions are not treated.

The posynomials of program A have only one term so the

dual program B can be expressed in the following form.

Dual Program B. The maximum of <a product function

(7) v(A) = TT (C ) *

k=0 K

is sought where A ,A,, ... , A are subject to the constraints
— O J- p ' '
(8) A k ̂  0 k = 0,1, .. ., p

(9) X Q = 1

P _
(LO) E A, a v 4 = 0 j = L, ... , m .

k=O k k 3

It will now be shown that A and B are equivalent to linear

programs.

Make the following one to one transformation:

(11) z . = log t . j = 1, ... , m

(12) Gk = log gk k = 0,1, , p .

(13) C k = log "ck k = 0, ., , p .

(14) v = log v~ .

Then program A becomes equivalent to the following linear

program.

Program A Seek the minimum of the linear function

(15) G Q = T ? a o j z . + C o

subject to the constraints

(16) Gk = Î
1 "akjZj + Ck <; 0 k = 1,2, ... , p.
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Under the trasnformation^ program B also becomes equivalent to

a linear program.

Program B^• Seek the maximum of the linear function

(17) V = C o

subject to the constraints

(18) \ 1 0 k = 1, ... , p"

(19) aQJ + X^ Ak a k j = o j = 1, .... , m .

It is clear that A T and BT are a pair of dual linear programs.
Li LJ

Lemma 2* Suppose condensed program A jus consistent. Then

Mj- > 0 jlf and only if the weights e . satisfy the relations

(20a) £. T£ 6* - 6!

for k = 0,1, . . • , p and for seme 61 satisfying the constraints

of program B. Moreover 6f can be chosen so as to also satisfy

(20b) Mr- = v(6').

Proof. Suppose first that program A has the infimum Mr- > 0.

It follows by the transformations (11), (12) and (13) that program

A^ has the inf imum log M-jr . Then by the duality theorem of

linear programming it follows that there is a point A! where

the program B has the maximum value log Mr-. Thus by the

transformation (14) program B has the maximum value Mr-. Thus

A' satisfies the constraints of program B and

(21) Mr- = 7T (Ck)
 K .

A k=0
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Now substitute in (21) the expression (4) for c, obtaining
t t

6
t

p nv c. €. Av n o. 6.
(22) Mr; = IT [J (j±) X] * = IT (f>)

A k=0 ™k ei 1 €i
t

where 6. is defined as

(23) b± = e ^ for

Summing these relations gives

<24> ^

Multiplying relation (5) by A, and summing gives

P i _ P *!> i

o : o ^c D D

It follows from (24) and (25) together with (8), (9) and (10)

that 6* satisfies the constraints of program B, moreover

(23) and (24) prove (20a). Substituting (23) in (22) gives
i t

P n, c.A, 6.
(26) Mr- = V WK ( , ) •

A '• 6.

This may be written in the form
i i

n c. 6. p f A,
(27) M^ = 7T (-4) X

 IT (TO K .
A 6 k

The right side is the dual function v(6f). This proves (20b).

Next suppose 6! is given to satisfy the constraints of

program B. Let Av be defined by (24). If A, ^ 0 let €.
K K 1

be defined by (23). If Ak = 0 let e± be arbitrary. Then

relations (20a) are satisfied. Clearly (8) and (9) hold and

(25) proves (10) so A satisfies the constraints of B. Since

B and A are both consistent Corollary 3 gives M̂ - > 0. Q. E. D

HUNT LIBRARY
CABJ1EGIE-MELL0N UNIVERSITY
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5. Superconsistent programs.

Program A is defined to be superconsistent if

(1) gk(t*) < 1 k = 1,2, . .. , p

for at least one point t*.

Theorem 2. Suppose program A JLJB supercons istent and has <i

minimum MA > 0 at a point tf. Then in the condensed program

A let the weights be chosen for m, <£ i <£ n, as^

(2a) £± = u i(t')/I^ ui(t») k =

Then program A also has a minimum at t! . Moreover Mr- -
" • " " • — — — — — — — _ — — — . — — — ^ _ j^

Proof. It follows from (;2a) and the definition of g that
— — — — ĵ

(2b) g k(tM = gk(t
!) .

Suppose that, contrary to the statement of the theorem, there is

a point t° such that

(3) go(t°) < M A , gk(t°) ^ l , k = l, ....,P .

Also since program A is superconsistent there is a point t*

such that

(4) i > gk(t*) ^ g k(t*), k = i, ... , p .

Let a > 0, 3 > 0, and a+p = 1. Then let

(5) t" = (t°)a (t^)p .

Since g, has only one term

k(t°)]
a[ik(6) ?k(t" ) = [gk(t°)]
a[ik(t*)l

(3 .
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It follows from (3), (4) and (6) that if p is sufficiently

small

(7) iQ(t" ) < MA, ik(t" ) < 1, k = 1, ... , p

Next choose h. so that

tt t h .
(8) t. = t e D .

3 3

Then define t. in terms of s as

, A.
(8) t . = t . e 3 O ^ s ^ . 1 .

Thus

(9) log gk(t) = log gk(t») + s 1^ Ik. h. .

Since g" (f) = M and g (t" ) < ML this shows that
O ** O -CTL

(10) 2^ ̂ oDh> < ° *

Likewise if 9k(t') = 1 then gk(t" ) < 1 and

(11) 1% a, . h. < 0 .

Now note that

(12)
ds

") and emnlov the definition of p. and a. .Set s = 0 and employ the definition of e. and a.. to obtain

(13) _L phi = A 6. 2? a..h. = ZJja\.h.v ' g k ds I o Ti^ l 1 1] 3 1 i] 3
k

It now follows that if k = 0 or if g, (f) = 1 then

dgk
(14> d i < ° '

Hence if (14) holds and s is small and positive
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(15) gk(t) < g k(f) •

Consequently

(16) gQ(t) < M A and

(17) gk(t) < 1 .

But if g, (t() < 1 then (17) also holds if s is small and

positive. Thus (17) holds for k = 1, ... , p. Thus (16) and

(17) give a contradiction showing that the assumed relation

(3) is false. This proves MA = M^.

Theorem 3. Suppose program A jjs superconsistent and has an

inf imum M > 0. Then the dual program B JLS consistent and has

a maximum M
B

at a point 6f. Moreover M,. = JVL
A &

Proof: First suppose program A has a minimum point t!
# Hence

g (t1) = M > 0. Then Theorem 2 gives that NL = Mr-. Thus
O A A A
according to Lemma 2 there is a 6f such that

( 1 8 ) g o ( t f ) = Mrj = v ( 6 < ) .

This together with inequality (7) of Theorem 1 shows that

v(6f) = M^. Hence Theorem 3 is true if program A has a mini

mum.

If program A does not have a minimum point consider a

modified program A, in which the following 2m additional

constraints ar6 imposed:

(19)

(20) g p + n v f j ( t ) = h t ^

m

1 j = l , . . . , m .
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Then if h is a sufficiently small positive number it is clear

that A, also is superoonsistent. Moreover the additional

constraints insure that the set of consistent points is compact.

Consequently program A, has a minimum point t1* and by what

has just been proved

(21) gQ(t" ) s vh(6» )

for a point 6n satisfying the constraints of program B, .

The dual function is

n+2m 6.
(22) v, (6) = v(6) IT h x .

11 n+1

The constraints of B, are
n

(23) 6. J> 0 i = 1, . . . , n + 2m

(24) F1° 6± = 1

(25) j; S.a.. + 6n+j - 6n+mf . = 0 j«l,2,...,m.

Now let h -• 0 then g (tn ) -•ML. Then because of (21) we
O r\

have v-u(6n ) -• MA > 0- Since program A, has a superconsistent

point t* it follows that Corollary 1 applies to each of the

functions g, so there is a constant d J> 1 such that as h -» 0

(26) Ak ̂  d k = 1,2, ... , p + 2m.

Also A =1 so as h -• 0o

(27) 6. £ d i = 1,2, ... , n + 2m.

For k > p we see that g, (t*) = ht* -• 0 as h -• 0. Thus it

follows from Corollary 1 that
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(28) 6 . - 0 for i = n+1, ... , n + 2m.

if
By virtue of relation (27) the points 0. are confined to a

compact region. Thus as h -• 0 there is at least one limit point
t t

6.. Since 6. = 0 for i > n it is seen from (23), (24) and
t

(25) that 6. satisfies the constraints of program B. Also

if h < 1

(29) vh(6" ) £ v(6" ).

Taking the limit of this relation gives

(30) MA £ v(6»)

but Theorem 1 shows that M J> v(6!). This is seen to complete

the proof of Theorem 3.
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6. Subconsistent programs.

In Theorem 4 to follow the condition of consistency is

replaced by a weaker condition termed subcons istency. Program

A is termed subconsistent if the program A defined by the

functions

(1) g£(t) = 9gk(t) k = 0,1, ... , p

is consistent for any constant 0 in the range 0 < 0 < 1. Thus

suppose program A is subconsistent and let M ^ be the
0 A

infimum of program A . Note that M fi is an increasing function
A

of 0 so as 0 -• 1 let the sub infimum be defined as

(2) n\A = lim M fl
A 0U1 A^

with the understanding that ft can be + » when the right
A

side is unbounded. Finite ft means 0 < ft < ».

Theorem 4a, JLf program A is^ subcons istent and has â  finite

sub infimum ft . then program B L̂s consistent and has <a finite

supremum. Moreover ftiA = M^.

Proof. Clearly the programs A are all superconsistent. More-

over if 0 is close to 1 then M ^ > 0. Thus by Theorem 3 we have
A

(3) M e = M Q = v 0(6
e).

Where VQ is the dual function for B . Clearly

(4) ve(6
9) = v(6 e ) e l i £ v(6

e) .

0 0

If 6 satisfies the constraints of B it also satisfies the

constraints of B so (3) and (4) give
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(5) M p £ V (6°)
A

Allowing 9 to approach zero give

(6) m » <

On the other hand if 6 satisfies the constraints of program

B if follows from Theorem 1 that

TL 6.
(7) M 0 ^ (6)e L x

0
A

Allowing 0 to approach zero with 6 fixed gives

(8) frv,A 1 v(6) .

Taking the supremum of the right side gives

(9) m A ^ M B •

Then (6) and (9) together prove Theorem 4a.

Theorem 4b. JL£ program B JLS consistent and has ja finite

supremum ML then program A JLS subcons istent and has <a finite

subinf imum in . Moreover th = M .

Proof. If program A is not subconsistent then it follows that

there is an integer q <£ p such that the set of inequalites

(10) g ^ l , ... , g q - 1 ^ 1

is subconsistent but the constraints (10) imply that there is a

constant D such that

(11) gg > D > 1 .

Thus let the program Aq be the minimization of g subject

to the constraints (10). Then the dual program Bq is the
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maximizing of the dual function

n c. A. A A
(12) W(A) = -rrq (-£) \ • • • ^q

nl
where A., = T- A. etc. The constraints are

1 m, J.

n
(13) XLq A, a. . = 0 j = 1, ... , m

(14) Â ^ 2 0 and A_ = 1.

Then by virtue of Theorem 4a it is possible to choose A so

that

(15) W(A) > D .

Let N be a positive integer then it follows from the definition

of W that

(16) W(NA) = [W(A)]N

Let A- = 0 for i < m, and for i > n then it is seen that

(17) 6± = 6i + N A .

satisfies the constraints of dual program B if 6. does.

Clearly

NA) _ w(6
v(6) " w(6)

(19) W(6 + NA) = [W(A+ 6/N)]N .

By continuity of the function W it follows that there is an

N such that for N > N
o o

(20) W(A + 6/N) > D .

This inequality together with identities (18) and (19) give
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(21) v(6 + NA) 5

Hence v is unbounded as N -• ». This contradiction proves that

program A is subconsistent.

Program A is superconsistent and program B is consistent.

Thus by Theorem 1

(22) M A ̂  M A > 0 .
A B

Then by Theorem 3

(23) M 0 = v(6
9)9 X x

where 6 is a maximizing vector for B . Since 0 < 1 the

equality (2 3) gives the inequality

(24) M fi £ v(6°) £ JVL .

This shows that M n has a finite limit as 0 -• 1. In other
A 9

words A has a finite subinfimum. Theorem 4b then follows directly

from Theorem 4a.
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7. The question of a duality gap.

It is easy to construct examples of primal programs which are

subconsistent but which are not consistent. On the other hand

if program A is consistent it is also subconsistent and clearly

It is worth noting that there are examples in programming theory

where the relation corresponding to (1) can be a strict inequality

[3], [4]. This has been termed a M duality gap11 . That a duality

gap can never appear in geometric programming is now to be shown.

Theorem 5. jy[ program A Jjs consistent then the infimum M

and the sub inf imum fn A are equa 1.

Proof. If A is consistent then relation (1) holds. As a

consequence the subinfimum can not be infinite. Then by the

definition of the subinfimum there must exist a sequence of points

t = T(r) such that as r = 152, . . . , » .

(2) g (T) - tn ,

(3) lim sup g-î T) <£ 1 k = 1, ... , p .

Since the terms u.(T) are uniformly bounded it may be supposed

that they have limits e. for a suitable subsequence. Then

the following lemma applies.

Lemma 3. Suppose the terms u^ have limits ei as t runs

through a sequence t = T(r). Then there is another sequence

t = T! (r) such that as r - oo

(4) u.(T') = e± if e± / 0 ,
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(5) ui(T') - O if ei = O .

Proof. Linear functions U.(Z) are defined by

u.
(6) u. = log(—-) = 7?? a.. Z.

1 c i 1 xj j

where Z . = log T.. Thus
3 * 3

(7) Ui(Z) - E± = l o g ( e i / c i ) if ê ^ ^ 0

(8) U±(Z) - -oo if e± = 0 .

Let N be the set of functions Uy ... , U . Let P be the

subset corresponding to (7) and let Q be the subset corresponding

to (8). Let p be a maximal linearly independent subset of P.

Let q be a maximal subset of Q such that M = p U q is

linearly independent. Thus assigning values of U. in the set

M determines all U. in the set N. Moreover for certain b^

(9) U. = E b. .U. U. in P
i p iD 3 i

(10) U. = Eb,,U. + E b ^ U . Ui in Q

Let U. = E. in p, U. = Uj(Z) in q. Then (9) shows that

(11) Û_ = Et in P .

i

Also (7), (8), (9) and (10) show that U^ - l^ is bounded.

Thus

(12) u[ - -oo in Q .

However the U variables are dependent on the Z variables so

there is a sequence Z1 such that U^ = U.(Zf) in N. Then by

taking T1 = exp(Z!) it is seen that (11) and (12) prove (4) and (5).
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Lemma 4. Let G(t) be a posynomial and let t. > 0 and t. > O.-j ^

Let

(13) t^ = (t^)a(t*)p j = 1, ... i m

where a and p are positive constants such that a + p = 1 then

(14) G(tM) < [G(t')]a[G(t*)]p .

Proof, Clearly

(15) G(t» ) = a p

Then apply Holder's inequality with the standard terminology

1/p+l/q = 1. Take p = I/a and q = 1/p and the proof of (14)

follows.

Returning to the proof of Theorem 5 let the sequence T

define a new sequence TT as in Lemma 3. Then given an € > 0

there exists an r such that
o

(16) gQ(T') < mA + €/2, r ^ rQ.

Let t* be a point which satisfies the constraints of program

A and let T11 = (T!)a(t*)p . Then by use of Lemma 4

(17) go(T» ) ̂  [go(T')]
a[go(t*)f .

It is clear therefore, that if p is sufficiently small

(18) gQ(T" ) £ lnA + € , r 2 rQ.

Next consider the constraint function g., • First suppose

g, contains no term u. for which e. = O then by Lemma 4

(19) gk(T" ) ̂  [gk(T')]
a [gk(t*)f ^ 1 •
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If g, contains terms for which e. = 0 let
Jfc 1

(20) G]c(
t) = Vir^) - (terms for which e. = 0 ) .

Then by Lemma 4

(21) Gk(T" ) £ [Gk(T')]
a[Gk(t1)

p .

But GV(T
!) <̂  1 and gv(t*) <£ 1. But since some terms of g,

have been deleted G, (t*) < 1. Hence there exists a constant

h > 0 such that

(22) Gk(T-» ) £ 1 - h .

But g, (Tn ) - G, (T11 ) -• 0 as r -• ». Thus there is an 2%

such that

(23) g v(T l f ) < 1 for r ^ r v .
Jv JSl

Let R = max r- for k = 0,1, ... , p. Then (19) and (23)

show that Ttf satisfies the constraints if r > R. Moreover

(18) holds and since e is arbitrary it follows that

(24) M A £ foA.

Of course this implies M = fnA and the proof is complete.

Theorem 6. Ijf program A JLS consistent and has c* finite

infimum M then program B jls consistent and has <a finite

inf imum M . Moreover M, =

Proof. This is a direct corollary of Theorem 4a and Theorem 5.

It is now seen that Theorems 4 and 6 form a rather complete

duality theory for geometric programming.
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