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Abstract

A geonetric programconcerns mnimzing a function subject
to constraint functions, all functions being of posynom al form
In this paper the posynom al functions are condensed to nono-
mal formby use of the inequality reducing a weighted arithnetic
mean to a wei ghted geonetric nmean. The geonetric nean is a
nonom al and by a logarithmc transformation it beconmes a |inear
function. This observation shows that the condensed programis
equivalent to a linear program Mbreover by suitable choice of
the weights it is found that the m nimumof the condensed program
is the same as the minimumof the original progranms. This fact
together with the duality theorem of |inear programm ng proves
that the maxi num of the dual geometric programis equal to the
m ni mum of the primal geonetric program Wth this result as
a basis a new approach to the duality properties of geonetric
progranms is carried through. In particular it is shown that

a duality gap" cannot occur in geonetric progranm ng.
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LI NEAR ZI NG GEOVETRI C PROGRANG

1. | nt roducti on

It was shown by Federowi cz that by a sinple transformation
of variables a linear programcan be expressed as a geonetric
program [1l, p.265]. |In this paper a converse question is treated.
It is shown that a geonetric program can define an associ ated
famly of linear programs. This linearization can be of use
bot h analytically and conputationally.

The linearization is achieved by use of the inequality
reducing an arithnetic nean to a geonetric nean. This |
operation performed on the polynom al functions defining
the geonetric program condenses themto nonom al functions. But
by the Federowi cz transformation a nonom al geonetric program
Is equivalent to a linear program

Li nearization is enployed in this paper as a theoretical tool.
It enables the duality theory of linear programm ng to prove part
of the duality theory of geonetric progranm ng. In this way it
is shown that if the mnimzation of a priml geonetric. program
yields a finite value then maxi m zati on of the duél programis
feasible and yields the sane value. This result is termed Theorem
4a. |

To obtain a conplete duality theory it is necessary to show
that, conversely, if the nmaxim zation of the dual programyields
a finite value, then the mnimzation of the priml programis
feasible and yields the same value. This is termed Theorem 4b.
The proof of Theorem4b is given by a reduction ' ad absurdunt!

maki ng essential use of Theorem 4a.




The duality theorens proved here are essentially equival ent
to those proved previously [1,2]. However, the old proof and this
new proof shed light on different facets of the problem

It will be apparent from Section 4 to follow that the
condensation nmethod used to linearize geonetric prograns suggests

vari ous conputational applications. However, these questions
will not be pursued.

The proofs to follow depend on elenentary inequalities and
the duality theoremof |inear programmng. Oherw se the paper is

sel f cont ai ned.




2. Definition of posynomial geometric programs.

The primal geometric program is denoted by the letter A
and is stated as follows.

Primal Program A. Seek the minimum value of a function go(t)

subject to the constraints

(1) t; >0, £, >0, ... , £ >0
and
(2) gy(t) <1, gp(t) <1, wuv, g (B) < 1.
Here
3 aiq a5o a; -
(3) g (t) =T ot lt2 seeeest MMk =0,1,...,p
i=mk
where n_ = n and
where P ana
mO =1, m1 = no+l, m, = nl+1, cee s mp = np—l+l .

The exponents aij are arbitrary real constants, but the coeffi-

cients c, are positive constants.

The functions gk(t) are termed posynomials. If there is a

point t which satisfies the constraints (1) and (2) then program

A 1is said to be consistent. If A 1is consistent let

(4) MA = inf go(t)

for points t which satisfy the constraints. Then MA is
termed the infimum of A. Program A is said to have a finite
infimum if MA > 0.

Associated with the preceding mimimization program is a

maximization program termed a dual geometric program. The

dual program is denoted -by the letter B and is stated as

follows.




Dual program B. Seek the maximum val ue of a” product function

n c 6 p Ak
(5 v(6) =1T hp) i
Kk=ix °i k=l Afc
wher e
:i.=nk
(6) A =X 6.
wth n_.=n an
e ——— p e ——
req- 1* mliszE)l, m,qﬁ n-iJlrl, e, nE):nPJ’ATl
The factors c. are assumed to be positive constants and the
vector variable 6 = (6 1 gql) JLS_subject to the linear
constraints:
(7) MN0 6, A0, ..., B MO, (positivitv)

n

(8) ne s = 1, (normality)

an
n
(9) L Gia“] = 0, j =1,2,...,m (orthocronality)

i=1

Here the coefficients aij are real constants.

In evaluating the product function v(6) it is to be
understood that x> = x~~ =1 for , = 0. This will make v(6)
continuous over its domain of definition. Program B is said

to be consistent if there is , point 6 which satisfies the

constraints (7),(8), and (9). If program B is consistent |et

(10) Mg = sup v(6)

for points 6 which satisfy the constraints. Then Nb is
termed the supremum of B. If M < » then program B is said

to have a finite supremum




3. The geometric inequality.

The inequality stated in the following lemma is termed a

geometric inequality.

Lemma 1. f u, >0 and Gi >0 for i=1,..., N then

N o, N u; b,
(1) (.Zui) 2i1=r (-5—') A

i=1 1 i
where
N
(2a) A = 6i and
i=1
6.

(2b)  (u,/6.) -1 if 6, = 0.

Moreover the inequality becomes an equality if, and only if,

jz:‘f 6, , 3 =1,2,...N.

N —
(3) 6j Zﬁui = u
Proof: We consider three exclusive cases: (a) all Gi are
positive, (b) some but not all 6i are positive, and (c) all

Gi are zero.

In the case (a) let " weights!" €3 be defined as

(4) €; = 5i/% and U, = ui/bi'

Then the classical inequality stating that the weighted arith-

metic mean of Ul’UZ""’UN is not less than the weighted geo-

metric mean can be written as follows

€.
N N 1

Substituting relations (4) into (5) is seen to prove inequality
(1) . Moreover for positive weights €5 it is known that (5) is

an equality if and only if
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Clearly this is equivalent to (3). This proves Lemma 1 in case
(a).
6.
In case (b) it is seen that if 65 =0 then (uy/65) =1
so the right side of relation (1) does not depend_on U How-

ever the left side increases with wu This fact together with

5
t he proof of case (a) shows that (1) is a strict inequality in case
(b). Mbr eover (3) is not satisfied for i =j. Thus relation
(1) and (3) both hold in case (b)*

In case (c) it follows that (1) becones the equality 1=1
and (3) becomes 0=0. This proves case (c). Since the three
cases are exhaustive the proof of Lemma 1 is -conplete.

The following result is termed ' the main | emma!* of geo-

metric progranmng. It is a consequence of repeated application

of the geonetric inequality of Lemma 1.

i Eheorem 1. jUf t _satisfies _the constraints of primal program A

and 6 satisfies the constraints of its dual program B then

P A
(7)  go(t) ™ g-(t) TLr[g,-(t)] “Av(B) .

Moreover, under the sane conditions g*(t) = v(6) if, and only

if,

(8) go(t)6i =ui(t) i =1, , No .and
(9) 61 = Akui(t) i = mk)' .an

Here k = 1, , p and




Proof. Then for k = 0,1, ... , p
n

_ k
(11) Iy = Emk u,
and by virtue of the geometric lemma
A n_u. 6, A
k k
(12) (g) © > wmk(g%) 2% k=0,1,....,p.
i

Here %o = 1 and m, = 1. Multiplying these p + 1 inequalities

together gives
%k u, 6. A

p n, i 1 _P
9571 Jx 2-”1(61) ™ N -
Then by the definition of the duwal function v(§)

A D D D
p_k 1 2 m
(13) 9T Ik 2 v(0) tl t," ... t

where

(14) D. = zg 5.2,

Since Gi satisfies the orthogonality condition it follows that
Dj = 0. Thus
A
P __k
(15) 9571 Ik > v(b).

But t satisfies the constraints of A so

(16) g <1 k=1, ... , p.

Thus (15) and (16) together prove inequality (1l).
Now suppose that the condition (8) of Theorem 1 holds. Then
(12) is an equality for %k = O because condition (8) of Theorem

1l is the same as condition (3) of Lemma 1 when xo = 1.




If condition (9) of Theorem 1 hol ds and Ak =0 then (12
is an equal ity because then condition (9) inplies condition (3)
of Lemma 1. |If A, "0 then sum (9) and obtain

n

(17) T .
z;m.k:l. km.ku.l.

This shows that g = 1 and consequently (3) and (9) are equivalent.

Kk
Thus (12) is seen to be an equality also in the case Ax ™ 0.
Since (12) is an equality for k=0,1, ... p it follows that

(15 is an equality. However if A, =0 t hen g,}{ =1 and if

A"/ 0O we have seen that g¢= 1. Thus g» =1 for k=1, ...,p
and this together with the equality (15 give go=v. This

proves the second part of Theorem 1.

To prove the third part of Theorem 1 suppose t hat g, =V Then

(15 and (16) showthat actually g.K =1 for k=1, ..., p.
Moreover all the inequalities (12) nust be equalities. Then
relation (3) of Lemma 1 holds and since g.K =1 for k=1, ... , p
it follows that (3) inplies (9). S nce A =1 it follows that
(3) inplies (8). Thus it has been shown that if g° = v then
(8 and (9) hold and the proof of Theorem1 is conplete.
Corottary 1. -Suppose tiat v A*) < 1 1< some vatoe of K
amd for some pornt t*  satTsfying the primat constrants. Fhen
the trequatity

(18) v(6) " c

for sone positive constant ¢ inpli 'e's that

(19) A £ log[go(t™)c" / loglge(t*)17t




for any 6 satisfying the dual_ constraint and (18) .

Prooft It is a direct consequence of inequality (7) that

(20) go(t*) [gu(t*)] “;>.v(6)
This is equivalent to (19).

Corollary 2. Jj[ 9g(t) = v(6) where t satisfies the prinal

constraints and 6 satisfies the dual constraints then

n A P\ n A

(21) M 7T 6 Y= T AKXV CH
X L 1

for any A satisfying the dual constraints.

Proof; The equations (8 and (9) are raised to the powers A"

and multiplied. This gives

AN n A An A
(22) g °ir 6.« * = | TASTT U *
0 1 [ [ K 1 X

n
where Ao = "B 6.. But go(t) = My, A =1, and

n A, n A
(23) Tu =T C
1 1

Thus (22) and (23) prove (21).
Relation (21) is due to Clarence Zener. It can be used
to derive the Mmaxim zing equations” [1, p.88]. The maximzing

equations are of prine inportance for conputational work.

Corollary 3. QE program A _and program B are both consistent

(24) M. > " > 0.

Proof; This follows directly from (7).
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4. Condensed Programs.

Proof for duality theorems to follow is based on the notion

of a condensed program. A condensed program is equivalent to a

linear program. It is denoted by A and defined as follows.

Primal Program A. Given program A and a set of non-negative

weights €15 o+ 5 €, such that

(1) T e. =1 k=o0,1,...,p.

- k i, i
g, (t) =7 (=)
(2) k mo ey
where the u, are the terms of Iy Thus
a a.
— _ = k1 km
(3) gy (t) = ¢ t; cee BT
n c. €,
- _ k i, 1
SIS U
— nk

(5)  ayy = zﬁk €; 355 Kk =0,1,...,p.

Note that it is a direct consequence of the geometric inequality
that

(6) g (t) >, (t) .

Thus if program A is consistent so also is program A and

Mp 2 Mz .

In a similar manner a partially condensed program can be

defined when at least two terms are condensed into a single -
term by the geometric inequality. Condensed and partially con-

densed programs suggest approximation procedures for computation
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but these questions are not treated.
The posynonmials of program A have only one term so the

dual program B can be expressed in the following form

Dual Program B The maximum of <a product function

(7 v(A) =T (C) *

k=0 K

is sought where A A, ... , A are subject to the constraints
— o J p n
(8 A" DO k=01, ..., p
(9) Xo=1

P - .
(LO kEOA" M—O j =L ..., m.
It will nowbe shown that A and B are equivalent to linear

progr ans.

Make the follow ng one to one transformation:

I
i
3

(112) zj = Iogt.:j ]

(12) G = log gk k =

| |
o o
=
©

(13) C¢ = log"cc k =

(14) v = log v~ .

Then program A becones equivalent to the follow ng |inear

program

Program A, . Seek the mininum of the linear function
(15) GQ: T?-aoJ%. +C0

subject to the constraints

(16) Go= I""agZi + G <. 0 k=12 ... , p.
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Under the trasnformation, program B also becames equivalent to

a linear program.

Program Ei. Seek the maximum of the linear function

(17) V = co+251) MCpo

subject to the constraints

(18) 2 >0 k=1, ... , p

(19) a4 * zﬁ A a5 =

It is clear that ‘XI, and B, are a pair of dual linear programs.

Lemma 2. Suppose condensed program A is consistent. Then

Mz > O if and only if the weights €5 satisfy the relations

n
kK &' _ g :

(20a) e, Tﬁk 'Gj = 6i m < i< n

for k= 0,1, ... , p and for sane ©6' satisfying the constraints

of program B. Moreover ©6' can be chosen so a

to also satisfy

(20Db) MK = v(6').

Proof. Suppose first that program A has the infimum MK > 0.

It follows by the transformations (11), (12) and {13) that program
XL has the infimum log Mz . Then by the duality theorem of
linear programming it follows that there is a point A' where

the program Ei has the maximum value log MX' Thus by the

transformation (14) program B has the maximum value MK' Thus

A' satisfies the constraints of program B and
1
k=0
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Now substitute in (21) the expression (4) for E,K obt ai ni ng

(22) M; =

t
where 6, is defined as

(23) b, =-e ~ for m.kgi_gnk

p
I

(J+)§] *“—IT(g>>

Sunmi ng these relations gives

<24

Mul tiplying relation (5) by A,:( and summi ng gi ves

P P x> | o at
e L 2NN = - * e A, . = Y‘.rl oﬁa-. -
0 s - ap A - B

It follows from (24) and (25) together with (8), (9 and (10)
that 6* satisfies the constraints of program B, noreover

(23) and (24) prove (20a). Substituting (23) in (22) gives
t

P n 1Au< 6,

(26) M- =V W (=) T
A K=U [!Lj 61
This may be witten in the form
n c. 6.i p fAi
(27) M~ =T (-4 *i1 (TOX .
A 1 6'i 1 k-

The right side is the dual function v(6'). This proves (20b).

Next suppose 6' s given to satisfy the constraints of
program B. Let A, be defined by (24). If A "~ 0 let €.
K 1 K 1
be defined by (23). If Ac=0 let e. be arbitrary. Then

relations (20a) are saiisfied. Cdearly (8 and (9) hold and
£25) praves (10) so A satisfies the constraints of B. Since

B and A are both consistent Corollary 3 .gives M > 0. ‘Q E D

HUNT LIBRARY
CABJIEGIE-MELLON  UNIVERSTY
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5. Superconsistent programs.

Program A is defined to be superconsistent if

(1) gk(t*) <1 k=1,2, ... , p

for at least one point t*.

Theorem 2. Suppose program A 1is superconsistent and has a

minimum M, > O at a point t'. Then in the condensed program

A let the weights be chosen for m i <n, as

n
(2a) e, = ui(t')/th u(t') k=0,1, ..., p.
Then program A also has a minimum at t'. Moreover Mz =
MA.

Proof. It follows from (2a) and the definition of ak that
(2b) g, (t") = g (t') .
Suppose that, contrary to the statement of the theorem, there is

a point t° such that

- = ,,0
(3) 9 (%) <My, g(t) <1, k=1,....,p .
Also since program A 1is superconsistent there is a point t*

such that

(4) 1> qg(t*) >q (%), k=1, ..., p.
et o >0, 8 >0, and a+g = 1l. Then let
(5) t" = (£ (£x)°

Since Ek has only one term

(6) g (t") = [g (£2)1%g, (£¥)1° .




It follows from (3), (4) and (6) that if p 1is sufficiently

smal |
(7) io(t"™) <M, ix(t") <1 k=1, ..., p
Next choose h':l so that
tt ) h
(8) t. =t. eP
3 3
Then defi ne tA.interrrs of s as
3

(8 t.=t.e *® O~rs~”. 1.
Thus - — _
3 )
(9) logagu(t) =1log gu(t» + s 1™ 1. h.
Since g" (f) =M and g (t" ) <M this shows that
O *x O -CTL
(10) 2~ "oD"j < ° *
Likewise if O(t') =1 then gu(t" ) <1 and
(11) 1%a,.. h. <O .
Now not e t hat

dg
(12 —% = f:Z‘ u; Ty 2y 4h;

ds
Set s = 0) aaddeephbgvtthee didffiiniition of p.. amd a&

1 19
@ & BT e 222 7 Za

It nowfollows that if k=0 or if g,k(f) =1 then

dgk
(14> d'l <o

Hence if (14) holds and s is small and positive

15

to obtain
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(15) gu(t) <gwx(f) -

Consequent | y

(16) goft) < Ms and

(17) gu(t) <1 .

But if g, (t) <1 then (17) also holds if s is small and
positive. Thus (17) holds for k=1, ... , p. Thus (16) and
(17) give a contradiction show ng that the assuned rel ation

(3) is false. This proves M = M-

Theorem 3. _Suppose program A jjs superconsistent and has an

infimm M, > 0. Then the dual program B JLS consistent and has

a maximum M at a point 6. Mreover M. = M.
B A &
Proof : First . suppose program A has a minimumpoint t'y; Hence

g (t) = M > 0. Then Theorem2 gives that NL = M-. Thus
@) A A A
according to Lemma 2 there is a 6" such that

(18)  go(t") = M = v(6<).

This together with inequality (7) of Theorem 1 shows that
v(6') = I\{f_‘ Hence Theorem 3 is true if program A has a mni-
mm

If program A does not have a m ni nmum point consider a
nodi fi ed program A’n in which the following 2m additional

constraints ar6 inposed:
(19) gp+j(t)=htj_<1 =1, .o s m.,

(20)  Qpenvrj(t) = htglg 1 =1, ... . m
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Then if h is a sufficiently small positive nunber it is clear
t hat A,n al so is superoonsistent. Mreover the additional
constraints insure that the set of consistent points is conpact.
Consequent |y program An has a mni mumpoint t and by what

has just been proved

(21)  go(t™ ) s va(6>»)

for a point 6" satisfying the constraints of program B, .
n

The dual function is

n+2m 6.
(22) v, (6) -=v(6) 1T h*.
u n+1
The constraints of B, are
n
(23) 6.1\]_>0 =1, ..., n+2m
n
(24) Fi° 6.=1
(25) |, Slaij+6n+j - 6n+mf_-J:0 j«l,2,...,m

Now let h -« O then g (t" ) -«M.. Then because of (21) we
o r\

have Y-4(6" ) -« M > 0- Since program A has a superconsistent
point t* it follows that Corollary 1 applies to each of the

functions gx so there is a constant dJ> 1 such that as h -» 0

(26) Ak"d k=1,2, ... , p+ 2m
Al so A0 =1 soas h -« 0
(27) 6;' £d i =1,2, ... , n + 2m

For k >p we see that g, ét*) =ht* -« 0 as h -« 0. Thus it

follows fromCorollary 1 that




18
11
(28) Gi - 0 for i=mn+tl, ... , n+ 2m.

1"
By virtue of relation (27) the points Oi are confined to a

compact region. Thus as h - O there is at least one limit point
1 1
ﬁi. Since 6i =0 for i >n it is seen from (23), (24) and
1
(25) that Gi satisfies the constraints of program B. Also

if h<1l

(29) vh(b") L v(bm).

Taking the limit of this relation gives
(30) MA_gv(G')

but Theorem 1 shows that My 2> v(6'). This is seen to complete

the proof of Theorem 3.
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6. Subconsistent programs.

In Theorem 4 to follow the condition of consistency is

replaced by a weaker condition termed subconsistency. Program
A is termed subconsistent if the program Ae defined by the

functions
] -
(1) gk(t) = egk(t) k= 0,1, ... , P

is consistent for any constant 6 in the range 0 < 6 < 1. Thus
suppose program A is subconsistent and let M 9 be the

A
infimum of program Aa. Note that M 5 is an increasing function
A

of 6 soas 6 - 1 1let the subinfimum be defined as

(2) m, = lim M
A g a®
with the understanding that pn can be + «» when the right

A
side is unbounded. Finite M, means 0 < mA < o,

Theorem 4a. If program A is subconsistent and has a finite

subinfimum ma then program B 1is consistent and has a finite

supremum. Moreover Ma = MB.

Proof. Clearly the programs Ae are all superconsistent. More-

over if O is close to 1 then M 9 > 0. Thus by Theorem 3 we have
A A
(3) M ,o,=M,=vu,(07).
Ae BG ?]

Where Vg 1s the dual function for Be. Clearly

0
%0,

(@) vy(6%) = vetho Tt ¢ vie?) .

]

If 69 satisfies the constraints of B it also satisfies the

constraints of B so (3) and (4) give
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(9) I\Q\p£v(6°) <My -

Allowng 9 to approach zero give

(6) my <My -
On the other hand if 6 satisfies the constraints of program

B if follows fromTheorem 1 that

TL 6.
(7) M8" 6)et X,

A
Allowing 0 to approach zerowth 6 fixed gives

(8) frval v(6)
Taki ng the supremumof the right side gives
(9) ma™ MB e
Then (6) and (9) together prove Theoremd4a.

Theorem4b. JL£ program B JLS consistent and has ja finite

supremum M, then program A JLS subconsistent and has <a finite

subi nf i mum irh. Mor eover ”A :MB.

Proof. If program A is not subconsistent then it follows that

there is an integer q <€ p such that the set of inequalites

(10) g™l , ... , gq-1 "1

i s subconsistent but the constraints (10) inply that there is a

constant D such that
(11) gg>D>1 .

Thus let the program AY be the mnimzation of Oq subj ect

to the constraints (10). Then the dual program BY is the
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maximizing of the dual function

n_ c., A, A A
=79 (3 * 1 ... A9
(12) w(A ; (Ai) A1 q
n1
where A, = T 1 Ai etc. The constraints are
1 m,
"q
(13) Zﬁl Ai aij =0 =1, ... , m

(14) & >0 and A = 1.

Then by virtue of Theorem 4a it is possible to choose A so

that
(15) WwW(A) > D .

Let N be a positive integer then it follows from the definition

of W that
(16) W(NA) = [(w(A]Y

Let Ai =0 for i< my and for i > nq then it is seen fhat
(N)

(17) Gi = 6i + NAi

satisfies the constraints of dual program p if Gi does.

Clearly

V(6 + NA) _ W(6 + NA)
vV (0) B w(0)

and

(18)

(19) WwW(6 + NA) (w(a+ 6/M1Y .

By continuity of the function W it follows that there is an

N such that for N > N
o) o
(20) wW(A+ 6/N) > D .

This inequality together with identities (18) and (19) give
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(21) v(6+NA) 5 wrer D
Hence v is unbounded as N-+ »  This contradiction proves that
program A is subconsistent.
Program A" i's superconsi‘'stent and program B is consistent.

Thus by Theorem 1

(22) Ma ™ Ma >0 .
A B>
Then by Theorem 3

= 8
(23) Mg = v(6%)9 % X
A

where 6 is a maximizing vector for B"Y. Snhnce 0 < 1 the

equality (23) gives the inequality

(24) Mg £ v(6°) £ M. .

F2 Y

Thi s shows t hat Mng has a finite limt as 0 -« 1. I n ot her
A
words A has a finite subinfimum  Theorem4b then follows directly

from Theorem 4a.
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7. The question of a duality gap.

It is easy to construct exanples of primal prograns which are
subconsi stent but which are not consistent. On the other hand

If program A is consistent it is also subconsistent and clearly
(1) m, < M.

It is worth noting that there are exanples in programm ng theory
where the relation corresponding to (1) can be a strict inequality

[3], [4]. This has been termed a Mduality gap!* . That a duality

gap can never appear in geonetric programmng is nowto be shown.

Theorem 5. jy[ program A Jjs consistent then the _infinmum Nk

and the subinfimm fn, are equal.

Proof. If A is consistent then relation (1) holds. As a
consequence the subinfimumcan not be infinite. Then by the

definition of the subinfimmthere nust exist a sequence of points

t = T(r) such that as r = 152, ..., ».
(2) g(T) - tn,
(3) limsup ngT) <£1 k=1, ... , p

Since the terns ui(T) are uniformy bounded it may be supposed
that they have linmts e. for a suitable subsequence. Then

the follow ng |enma applies.

Lemma 3. Suppose the terms u” have linmts e as t runs

through a sequence t = T(r). Then there is another sequence

t =T (r) such thatas r - oo

(4) ui('T') = e if e[/ 0,
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(5 ui(T) - O if & =0.

Proof. Linear functions U'1( Z) are defined by

u. .
(6) u =log(—) =™ a.. Z
1 Ci 1 Xj

where Z . = Io*g T.. Thus

3 3
(7) Ui(Z) - E:. = log(ei/cy) if e~ ™~ 0
(8) u.(2z) - if e =0 .

Let N be the set of functions Uy_ cee Un. Let P be the
subset corresponding to (7) and let Q be the subset correspondi ng
to (8). Let p be amximl linearly indepe;ﬁdent subset of P.
Let g be a maxi mal subset of Q such that M=p Uq is
linearly independent. Thus assigning val ues of U.] in the set

M determ nes all Ui inthe set N Moreover for certain b’:

(9) U =Eb. .U U inP
i ., ip 3 i :

(1) Uy =Eb,, U +Eb"U; U in Q

Let U_. =E_. in p, U.;:Uj(Z) in . Then (9) shows that

Also (7), (8), (9 and (10) showthat U - I~ is bounded.
Thus

(12) u[ - - i n Q.

However the U variables are dependent on the Z variables so

there is a sequence Z'. such that W = U.l(Zf) in N Then by
taking T* = exp(Z') it is seen that (11) and (12) prove (4) and (5).
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Lemma 4. Let G(t) Dbe a posynomial and let t; > 0 and t% > 0.
- - ]

Let

1" 1 *
(13) t, = (tj)o‘(tj)B =1, ... ; m

where o and g are positive constants such that o + g = 1 then

(14) e(t) < [6(t)1%[6(£%)1°
Proof. Clearly
(15) 6(t") = Tlug(£)1%u, (£)1°

Then apply Holder's inequality with the standard terminology
1/p+tl/g = 1. Take p = 1/a and gq = 1/p and the proof of (14)
follows.

Returning to the proof of Theorem 5 let the sequence T
define a new sequence T' as in Lemma 3. Then given an € > O

there exists an rO such that
(16) g (T') < my + €/2, r >r,.

Let t* be a point which satisfies the constraints of program

A and let T" = (T')a(t*)B . Then by use of Lemma 4
(17) g (T") < [g.(T)1%g_(£¥)1" .

o o o
It is clear therefore, that if p 1is sufficiently small
(18) g (T") <my + €, r>r_.

Next consider the constraint function I+ First suppose

Iy contains no term u. for which e; =0 then by Lemma 4

(19) g (T'") < [g (T)1Y g (e0)f < 1
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If gy contains terms for which e; = 0 let
(20) Gk(t) = gk(t) - (terms for which e, = 0).
Then by Lemma 4
o :
(21) G (T") < [, (T)]1%[G, (£M1° .
But Gk(T') < 1 and gk(tﬂ < 1. But since some terms of Iy

have been deleted Gk(t*) < 1. Hence there exists a constant

h > O such that
(22) Gk(TJ') <1 -h.

But gk(T" ) - Gk(T") - 0 as r - ». Thus there is an

Tk
such that
1"
(23) gk(T ) <1 for r > ry -
Let R = max r, for k=0,1, ..., p. Then (19) and (23)
show that T" satisfies the constraints if r > R. Moreover

(18) holds and since € 1is arbitrary it follows that

(24) M, < m,.

Of course this implies M, = m and the proof is complete.

A A

Theorem 6. If program A 1is consistent and has a finite

infimum Ma then program B is consistent and has a finite

infimum MB. Moreover MA = MB.

Proof. This is a direct corollary of Theorem 4a and Theorem 5.
It is now seen that Theorems 4 and 6 form a rather complete

duality theory for geometric programming.
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