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Introduction. Recently the author in collaboration wit;h A, D*

Martin fA] and K. Sundaresan [B] has obtained a characterization

of certain classes of nonlinear functionals defined on spaces of

measurable functions (see also K* Sundaresan fC]). The functionals

in question had the form

(1) P(x) = f(?'x)dyL = JV(x(t))d^(t)
T T

with a continuous "representing function11 i : R —• R, or

(2) F(x,y) = f^(x #y)d|i^2/ - f V(x(s) ,y(t) )d/i(s)da/(t)

SxT SxT

with a separately continuous representing function Y: R —» R #

There are direct applications of this work to the theory of gener-

alized random processes in probability (see Gelfand-Vilenkin [D) )

and to the theory of fading memory in continuum mechanics ( E ) .

However the main motivation for these studies was an interest in

possible application to the functional analytic study of nonlinear

differential equations* Prom the standpoint of this latter appli-

cation it would also be desirable to characterize the broader class

of functionals having the form

(3) P(x) = f<f(x(t), t)d/i(t),
T

where the representing function f: RxT -4R satisfies "Caratheo-

dory conditions". This can be readily understood if we recall that
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the existence theory for

Mt) = f(x(t),t)

with *f a function satisfying Caratheodory conditions is very close

to that for

x(t) - f(x(t))

with *P : R -* R continuous (see e.g. [FJ ) .

In the present paper we obtain an abstract characterization

for functionals having the form (3), a characterization which is

of the kind obtained earlier for functionals having the form (1).

In addition we characterize corresponding transformations from

L^(T) to C(S) where C(S) is the space of continuous func-

tions on a compact Hausdorff space. Our proofs utilize some

results appearing in Krasnoselkii!s important summary [G] of

work on transformations of the type x —»f°x. For some work on

a problem analogous to ours for functionals on the space of con-

tinuous functions on a compact metric space see [H].

END OF INTRODUCTION
Throughout this paper T » (T, £ , f O is a measure space, R

is the real line with Lebesgue measure, and M(T) denotes the space

of real valued measurable functions on T*

Definition. A real valued function *f: R *T —HR is said to be of

Caratheodory type for T and we write *p€Car(T) if it satisfies

the following conditions,

(1) *f(*,t): R—*R is continuous for almost all t€T,

(2) f(c,#): T—*R is measurable for all c€R#



One can extend this definition in an obvious way to functions

*f: R m x T — » R n . We remark that Car(T) is a subspace of the vec-

tor space M(RxT) •

If x is a real valued measurable function on T and ¥> is

in Car(T) then the function *f o x defined by

(fox) (t) = f (x(t),t),
is also a measurable functon on T. TJiIs is obviously true

when x is a simple function. In the general case x is the

limit almost everywhere of a sequence of simple functions x 9

so that by continuity of ^ *-n i t s first argument, V«x being

the pointwise limit of the measurable functions ^f0 x ^ s meas-

urable. Thus for each ^SCarfT), the mapping x ~* fox is

a mapping of M(T) into itself. It is useful to single out

certain subspaces of the vector space CAR(T) in terms of

their mapping properties.

Definition. Given the numbers p and q, 1 £ p,q £ oo, a function

*f of Caratheodory type for T is said to be in the Caratheodorv

(p.a)-class, and we write feCarP'^T) if V maps lP(T) into

Lq(T). That is, f is in Carp'q(T) . if

f«xfcLq(T) for all x*Lp(T).

Remark. For the case of a non-atomic or -finite measure space it
is known ([G], p. 27) that ¥ is i n c a ^ ^ d ) , l*P,q^oo, if
and only if

|*(x,t)| ^ a(t) + bjxjp/q

for some a « Lq (T) .

Theorem 1. Let T = (T, r , JK.) be a finite or <r-finite measure

space. Let F be a real valued functional on L°°(T) which

satisfies:

(i) F(x+y) - F(x) + F(y) when xy - 0 a.e.,

(ii) F is uniformly continuous on each bounded subset of L00 (T),

(iii) F(xn)—»F(x) whenever f x
n} n " 1

 converges boundedly

a.e. to x 6L°°(T).



Then there exists £ function *P €Car°°'1 (T) such that

(*) P(x) - Jif'xPr -/*V(x(t),t)d>i(t).
T T

Moreover <p can be taken to satisfy

(a) ?(0,-) = 0 a.e.,

and is then unique UP to sets of the form R*N with N a null set in T,

Conversely, for every V^Car ' (T) satisfying (a), (*)

defines a functional satisfying(i), (ii), and (iii)«

Remarks: 1# The final statement of the theorem is valid for any

^ecar 0 0' 1^) satisfying

(a1) jP*O)d)i. m 0.

T

Moreover condition (i) on F can be modified in such a way that

this result applies to all 4> €Car°°#1(T) • Namely we could replace

(i) by

(if) F(x+y) - F(x) - F(y) * const* when xy » 0 a.e.*

(If we denote the constant in (i1) by k then the functional

m F(X) + k satisfies (i), (ii) and (iii).)

2. Unlike the results in £A] and CBJ the present char-

acterization does not require a hypothesis concerning the non-atomic

nature or almost non-atomic nature of T. The same holds true

for Theorem 2 to follow.



Proof of the theorem:

It follows from (i) and (iii) that for each real number h

the real valued set function a^ defined by

a(S) - F(hXJ
n o

is countably additive and absolutely continuous relative to jx.

Hence by the Radon-Nikodym theorem there corresponds to each h a

function *p € L (T), unique up to a null set# such that
h

The functions f^ with h rational will be utilized below in con-

structing the function *P occurring in (*). This construction

applies the following lemma whose proof will be deferred until

later.

oo
Lemma. Given any X * 0 there is a, measurable set Sy, = (J £L .

such that

(2) on S there exists for each pair of numbers

M, £ > 0 a. 6 = £* (£#M) > 0 such that for rational h and h1

we have

h#h
f fef-il.M] and fh-h'l^cf r=> sup lfh(t) - fh. (t)| * C.

t € S ±

Now select a sequence i ^ — * 0 and define a function *P:

as follows:



(1) S>(c,t)

oo
for t € S « (J S

(h rational)

for t € T - S .

It follows from the lemma that this defines f unambiguously and

that *P(##t) is continuous for each t €T. Moreover since T-S

is a null set# for each c 6R ^(c,*) is the almost everywhere

pointwise limit of a sequence of measurable functions <P, and
h

is therefore measurable* Thus *P is of Caratheodory type for T#

Further# since for c rational we have

V>(c,t) = Pc(t) a.<

it is clear that ^(c,-)^ LX(T) for c rational and that f

satisfies (a). It remains to be shown that (*) holds.

Suppose xeL°°(T) is a simple function with rational values,

i.e.

N
c rational, {V X disjoint.

Then, using (i),

N N

F(x) = E F< ck XT ) - E /rc
k=l K xk k=l ^ ck

Xk
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Thus (*) holds in this special case.

Now each x €L°°(T) is the limit a.e. as well as in norm of

a sequence x of simple functions with rational values,

x —* x a.e. and in L°° (T) .
n

Since *P«Car(T) it follows that

In addition, the sequence ^P^x €L (T) is uniformly absolutely

continuous, i.e.

(3) /IPox |djA—> 0 as jui(R) —*0, uniformly in n.

Otherwise there would exist for some £ >0 a sequence of sets

R cT with U(R ) < 3 and a corresponding sequence r *x^m ' m ^ nm
such that

i n

m

It follows that each R possesses a subset R* satisfying

n

m

Now the functions y = x Y f form a bounded set in L00 (T)
m m

since the xn form such a set, and hence

m
boundedly a.e.
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Moreover ym being a rational valued simple function implies

fF!
"m i ~m *

m

However by the construction of R1 this implies that the F(ym)
m ••

do not converge to zero, contradicting property (iii)•

Furthermore the sequence P*x has the property that for each

£ *0 there exists a set R£ such that ^(R^) < oo and

(4) r^'^Lldu. * £ for all n.

Otherwise, for some i >0 there would exist an expanding
oo

sequence of sets R with P*(Rm) * °°
 a n d U ^m m T an<a a

corresponding sequence P̂ • x such that
m

m

Thus for some R" c T - R
m m

m

The functions ym ~ xn X R " satisfy
ra

y —^ 0 boundedly

while the formula

P(ym)

m



Implies that the F(Ym)
 d o n o t converge to zero, contradicting

(iii).

Since the sequence 9 e x in L (T) satisfies (2), (3), and

and (4) it follows by Vitalli's convergence theorem (see f J ], p,l50)

that 9»x belongs to L (T) and that ^ - ^ —* 9 ox in L (T),

whereby

P(x) - lim F(xn) = lim
n->oo n-»oo

/ * X

T

Thus ¥ e Car00 'X (T) and (*) holds . The uniqueness of f follows

from the fact that by (a)

F(cXs)

Considering only rational c we see that this condition determines

*P(c, •) up to a null set, and hence determines *PeCar(T) up to

sets of the form RXN as claimed.

For the converse let 9 be a function in Car00' (T) which

satisfies condition (a). Then the functional F defined by (*)

obviously satisfies (i)• We proceed to show that (ii) holds.

Otherwise there would exist numbers A#a » 0 such that corresponding to each

positive integer n there is a pair of functions xn#yneL°° (T)

satisfying
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n o o l l o o ^ A ' "*n *n" co
(5)

Consider f irst the case in which /̂ t(T) i s f inite and set S, =

We select a subsequence of x ,y as follows. By the absolute

continuity of the indefinite integral of f^x- - ̂ y , there exists

* a/3 whenever

an £, >O such that

Obviously S^ ̂  % /^(T) . Since y)(##t) i s continuous for almost

al l tfcT, i t i s uniformly continuous on the set £-A,Aj? ^ R for

such t# Thus for each £ ,
T = n=i^Ct|ci^c2ef-A^A^ lci~ C2l5n" ^I^C0!^) - ^(c2,t)|5 ŜO'N where

X̂ (N) = 0. Hence by selecting n2 sufficiently large one can find a

measurable set T2 satisfying
i 3

for t*To, and

By (5) this implies that with S = T - T ,

S2

Again , since the indefinite integral of ¥*x - fey is absolutely
n2 n2

ctontinuous there exists an £2 ̂  0 such that

/If ox - f * y Idu. -c a/3 wherever M(S)
J I n2

 n 2 '
2
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Obviously 2£ * J5/4(S2)«Again by the uniform continuity of V(##t)

on [-A,A] for almost all t, there exists an n 3 sufficiently

large and a corresponding set T 3 such that

for

/J(T - T3) -= f2.

By (5) this implies that with S_ = T - T ,

•*n3 "
 r'*r
- f.

1 n3
"3

Proceeding in this fashion we obtain a subsequence

and a corresponding sequence of sets S, satisfying

J ^ - f .Y^jd^ - 2a/3, j
Sk sk+l

<f ,

CO

Now define R = S - {) S . The sets R, are disjoint. More-

over

oo

fi( (J S ) ̂  2^(S ) ^ 2*
Jt=k+1 * k + 1 k

so that, recalling how the £. are defined, we have

i a/3.
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We now define

By construction x,yeL (T), so that *P»x, *Poy,€li (T)# and

/ l ^ x - f*y/ = Jk°xn " ?'Yn /d/* > a/3,
n

Since the R, are disjoint, this is a contradiction.

Consider now the case f-(T) = oo and assume that (5) holds.

We will construct sequences of functions fx J,j"y > and a

sequence of disjoint sets f1^.} such that

(6) j*(Rk) -e oo, l\V*xn ~ V'Yn |
d^ ^ a/2.

Rk k k

The procedure is again inductive. Let R, be a set of finite meas-

ure such that

x - f.yjan » a/2.

Ri

This is possible by (5) • Then# by the result in the preceding

paragraph, for n sufficiently large

R-i ^

Hence there exists a set R c T - R such that ^(R2) ^ <» and

*2
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Again since p(Ri U R^) -* oo we have by our earlier result that

for n3 sufficiently large

Rl w "2

Hence there exists a set R. c T - (R. U R ) such that M(R3) •* <*>

and

•, 3

f.y Idu P- a/2.
n3 n3 •

Proceeding in this fashion we arrive at sequences of functions

c ]# (y 1 and of disjoint sets f1^} for which (6) holds/

Defining

oo oo

we again find that

p- a/2 k = 1,2,... ,

contradicting the fact that f« x,

There remains the proof of (iii). Let x be a sequence such

that

x n - x a.e., ll̂ nlloo* 11*11 „ ^ A.

Since ffeCar(T) i t follows that

HUNT LIBRARY
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(7) ^ ^

while by (ii)

l l l l f H i * M

We will show that ( i i i ) holds by proving that

*P*x —=>^x weakly.
n J

Now the sequence *P*x €L (T) is bounded and therefore weakly

precompact« Suppose ^*x
n does not converge weakly to *P«x.

Then there exists a subsequence <^*xn n o subsequence of which

converges weakly to <P «x. Moreover by extracting a fur the* subsequence

we may suppose without loss of generality that

(8) ^*xn, ~~* z weakly for some z j/ ¥*x«

Of course, by (7),

(9) H>*x » ̂ o X a,e*

k

Now by a theorem of Banach and Saks (f J ] # p«462), (8) implies

that there is a subsequence V * x of *P»x such that

1 m

(10) IT T f •x^, — > JZ in measure*

3=1 "j

However (9) and (10) imply that z • H'-x, contradicting (8). Q.E.D.
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Proof of the lemma: In the sequel we restrict the symbols h

and r to denote rational numbers. Consider first the case of a

finite measure space* To begin with we show that, with M > 0

given, for each integer n the contracting sequence of sets

T ~ S^ . - ft||9h(t)- fhft)( > 1/n for some h,hf€f-M,M] wi th fh-hf|<j)

j « 1#2,•••

converges to a null set* Otherwise for some fixed c ̂  0,

M
)U(T - S .) ̂ c j - 1,2,... •

Now

T - S M C ( J
n'3 h€[-M,M) r€f-

where

h,r * I h h+r I n ^ h r f ir-l/j,l/j] h ' r

Enumerating the rationals in [-M,M] and [-1/j/l/jJ as

h.,h , . . . and r ,r , . . . , respectively, define the sets

and C as follows

h i
K - U KJ k - x'2<

* - 1,2,

For each j define the functions x. and y. by,
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OO

(1) x., =

OO OO

(2) v =

By construction xj*y-j a r e *n L°° (T) and satisfy

(3) llx. II , jly. U- < M + 1

Moreover

N
\. X /.v—* x. boundedly a.e., and

N N
y V (h + r• > X — » y . boundedly a.e.
k=l i =1 k * C ^

T̂* to

Hence by (i) and (iii) and the definition of Yu

c» a> ooP(x.) - F(y.)

* c

j • 1,2,... ,

contradicting (ii).

It follows from the above that with M given there exists

for each *( >• 0 a set sj? satisfying
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(5) for each f * 0 there exists a <f = <£"(£,M) > 0 such that

h,h'ef-M,M] and |h-h« | *• <T=£ / f h<t) - fh, (t)/ < t for

(6)

For by the preceding paragraph one can select for each integer n

an index j n such that

/4(T - SM . ) * 7?/2n n = 1,2, ••. •

M
Then the set S« defined by

^ sn. = O Sn i

satisfies (5) and (6)•

In addition, the set S* defined by

n sM
L M—*l "i/2

is readily seen to satisfy (5) and (6) for all M# Thus the lemma

is proved in case T is a finite measure space.

Now suppose that y(T) = oo . By hypothesis,

oo
T = |J T. with ^j(T.)-< oo .

i=l X

Using the result established in the preceding paragraphs we con-

struct sets S ^ T , i = 1,2, ••• by defining

S . = S ^ (relative to the measure space T.).
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It is then clear that the set S- c T which is defined by

oo
So = U S .

satisfies all the requirements stated in the lemma* Q.E.D.

Corollary. With T nonatomic let F be. a, real valued func-

tional on L°°(T) for M(T)J which satisfies the conditions

(i) P(x+y) = F(x) + F(y) when xy = 0 a.e.,

(ii) F is uniformly continuous on each bounded subset of

(iii) • F(xn) -»F(x) whenever f x n } converges a.e.

to x€L°°(T) [or M(T)] .

Then there exists a function 4* in Car(T)

such that

(*) F(x) = /ffox)d/x for x€L°° (T) [or M(T)],

and F: L (T) -• R [or M(T) — » R ] is bounded. In fact,

(b) R ^ c LX(T) is bounded.

Moreover. *f can be taken to satisfy (a) and is then unique in the
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same sense as in Theorem 1.

Conversely, for every 'feCar00' (T) which satisfies con-

ditions (a) and (b), the functional defined by (*) satisfies (i)#

(ii) and (iii)1.

Proof: Observe that the functional F, = F / L°° (T) satisfies

(i)# (ii) and (iii) of Theorem 1 and hence is given by

(1) Fx(x) = j t x ) d ^ for x € L°°(T),

T

for some f £ Car°°#;L(T).

We show that R y C L 4 ( T ) is bounded* For otherwise there

exists a sequence xn
€L°° (T) s u ch that

(2) M ( f l l

It then follows that there exists a subset ^ ^ T such that

(3) lF<*nXA )| - I J (f-x
An

Consider first the case ><(T) ̂  oo• Then since T is nonatomic

there exists for each sufficiently large n a subset A^

of An such that

|PUnX )
(4)

2/cn.
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Howeverf we have ^ J C A I " " * 0 a*e*' s o ^4i^ contradicts (iii)1.

Now suppose T = U T., /*(T^) < oo • The preceding argument

shows that for each m we have a constant N m such that

m
|| if © x II £ N for x such that supp x <£ (J T̂  •

i= l

By extracting a subsequence we can assume that in (2) cm T 3Nm#

m
Consequently there exist sets A d T - U T. such that

l y 2 Nm m " 1'2

m

I t then follows tha t for some subset A! cz A t

m mT

(5) 1 l / i

Now

m

so (5) contradicts (iii) ! •

o OO# 1

Now suppose lye Car (T) satisfies (a) and (b) • It only

needs to be shown that (iii)1 holds. Suppose that xn#x*L°°(T)

and xn-> x a.e. Then it can be shown just as in the proof

of the theorem that

(foxn—><f*x weakly

and therefore

F(xn) = J(^oxn)dM.->J(f
)
dx)d^ = F ( x ) . Q.E.D.



21

Remark: It is easy to show by examples that on atomic measure

spaces (i), (ii), (iii)1 do not imply (b)• On the other hand,

the above proof shows that for all T# if *f * Car ' (T) and

satisfies (a) and (b) then F satisfies (i), (ii), (iii)*•

Theorem 2. With T as in Theorem 1 let F be a real valued func-

tional on L P (T), 1 *• p <- oo # which satisfies the conditions

(i) F(x+y) = F(x) + F(y) when xy = 0 a.e.,

(ii ) F is continuous on L^(T)#

(iiip) F is uniformly continuous relative to L norm

on each bounded subset of L°°(T) which is supported

by a set of finite measure.

Then there exists .a function f£Carp' (T) such that

(*) F(x) =• ijfaxjd/c for x«L p(TK
T

Moreover if can be taken to satisfy

(a) f(0,-) » 0 a.e.

and is then unique up to sets of the form RxN with N â  null set in T,

Converselyr for every feCar p' (T) satisfying (a) the

formula (*) defines a functional satisfying (i), (iin) and (iii )•

Remarks. 1. Observe that when F is a linear functional, (ii )

signifies uniform continuity on bounded subsets of LP(T) and

hence implies (iii)p . In addition, for such cases the function f
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necessarily has the form

f(x,t) = xu(t)

for some locally summable function u. Thus the present result

includes the Riesz representation theorem modulo a proof that

u €. i/» (T) is necessary and sufficient in order that the above

¥ be in

2. For the case u(T) < oo this theorem is related to a

result state in [I], though our hypotheses are weaker than

the ones utilized there. See also the corollary and remark

following the proof.
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oo
Proof: By hypothesis T = (J T. where the T. are disjoint sub-

x=l
sets of finite measure. Define

1,2,... •

Then (i)# (iiD) and (iii ) imply that each of the functionals F^

satisfies the hypotheses of Theorem 1, the validity of (iii) being

a consequence of (iip) and the dominated convergence theorem.

Hence there exist functions vf.eCar(T,)# unique up to null sets,

which satisfy (a) lPi(0#
#) = 0 a.e* on T. and

(1) F±(x) » ft^l&p for x^L 0 0!!,), i - 1#2#
Ti

Now define *P : R^T —»R by means of

(2)

It is clear that *P£Car(T) and that f satisfies (a). It remains

to be shown that (*) holds for X£IJP(T). Now for each simple func-

tion x we have

(Tj) ± = 1,29... , and
i

Xn = X*n — * x in

Hence by (i) and (ii )
P
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oo
F(x) = lim P(xn) =

00 r r

Therefore (*) has been established for simple functions*

To show that (*) holds for all X€IJP(T), notice that each

such x is the limit a*e. as well as in norm of a sequence x

of simple functions,

p
(3) x n —>.x a#e. and in L (T).

Since .<ftCar(T) it follows that

(4) v f O X n _ ^ i p o x a # e #

In addition, the indefinite integrals of the sequence fox €L (T)

are uniformly absolutely continuous, i.e.

/ j ^ x )djj —> 0 as )*t{U)—*09 uniformly in n.(5)

U

Otherwise there would exist for some a > 0 a sequence of sets

ana a corresponding sequence T* x
m

U m
 c T with u{ U ) < 3 and a corresponding sequence ^ x

such that

«L
It follows that each U (even if U is an atom) would possess
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a subset U^, satisfying

> a/2.

By (3) and the Vitalli convergence theorem t [J],p.l5O)

/

the functions x form a bounded set in LP(T) and
|x I df4 = 0 uniformly in n. Hence the functions

r-< - U
 n P

v = x Y . lie in a bounded subset of L (T) and satisfy
•*m n ^u

m in

y —» 0 in LP (T) .,
m

Moreover because y is a simple function,
m

m

However by the construction of U•, this formula implies that

the F(ym) do not converge to zero, contradicting (ii )•

Furthermore the sequence *P « x has the property that for
n

each £ > 0 there exists a set U£ such that /* ( U-) <• oo

and

/if ° x
n

U
(6) J If^x^idn^ £ , for all n.

T- U.

Otherwise for some € > 0 there exists an expanding sequence of
oo

sets I) with Lk(V ) < oo , U\J = T , and a corres-
m # m m

ponding sequence ^ 0 xn such that
m

If.x
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Thus (even if T-U is an atom) for some U M c T-U
m mm

By (3) and the Vitalli convergence theorem the indefinite integrals

of the functions x are equicontinuous with respect to My so

that the functions ym = x Jf fl satisfy
mm

ym ->0 in LP(T) .

However, the formula

F(v )

x Urn

implies that the P(y ) do not converge to zero, contradicting
m

ay
Since the sequence *f»x satisfies (4), (5) and (6) it

follows by Vitalli's convergence theorem that ^"x is in L (T)

and that *Po xR -^ *P«x in LX(T), whereby

P(x) - lim F(x ) « lim
n-^oo n-^oo

Thus (*) holds for all x*lP{T). The uniqueness of V

assuming that (a) holds follows since Theorem 1 then

asserts the uniqueness of V |T^ , i = l # 2 , * . . .

For the converse we proceed as follows* Suppose *P is a

function in Carp' (T) which satisfies (a). Then (i) obviously
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holds. Moreover for any S such that )-»(S) <• oo, the restriction

9 | S is in Car^^S). This implies in particular that <f|s

is in Car00'1^) and satisfies (a). Thus the validity of (iiip)

follows from Theorem 1. On the other hand (ii ) is a consequence

of a theorem of Nemitskii C G 1 which asserts that every

yields a continuous transformation from LP(T) to L (T) by

x

For, the continuity of the above transformation yields as a by

product the continuity of the functional

X -H

T Q.E.D,

Corollary. With T jas above, there exists for every real valued

Pfunctional F on L (T), 1 < p < oo, which satisfies the conditions

(i) F(x+y) = F(x) + F(y) when xy = 0 a.e.#

(ii1) F is uniformly continuous on each bounded subset of

LP(T),

a function f ccarPjl(T) such that

r p

(*) F(x) * liyoifih for x €L (T) •
T

Moreover cp can be taken to satisfy (a), and is then unique UP

to sets of the form RAN with N cT -a null set.
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Remark: The converse to the corollary is false except for a space

T consisting of a finite number of atoms. That is# ^ being in

CarP' (T) and satisfying (a) does not in other cases ensure that
oo

(ii1) holds. To see this let T - (J T. where 0-* /4(T.)<oo
i=l x X

and T^ are disjoint. Then the function

P

is in Carp# (T) provided that each f^: R-*R is continuous

and satisfies If• J £ 1. However it is easy to prevent uniform

p
continuity on certain bounded sets in L (T) by selecting the f^

to have appropriate zeros.

Theorem 3. With T aŝ  iri Theorem 1 Let A be. <a transformation

on L (T) with values in C(S) where S is a compact Hausdorff

space. Suppose A satisfies the conditions

(i ) A(x+y) = A(x) + A(y) when xy = 0 a.e,,

(ii.) A is uniformly continuous on each bounded subset of

L°° (T) ,

(iiiA)
 A(^n) -^ A(x) whenever {xn) >j- converges boundedly

a.e. to xcL00 (T) .

Then there exists â  transformation $: S ~> Car00^ (T)

such that

(*) A(x)(s) =

T T

The transformation $ can be taken to satisfy

(a) $(s)*0 = 0 a.e., for all ssS,
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in which case |>(s) is unique, for each s, up to sets of the

form R*N with N a, null set in T. Moreover f> has the

following additional properties,

(b) the mapping s*-»$(s)<>x is weakly continuous for each

x*L°° (T) ,

(c) the mapping x^$(s)oxeL (T) is uniformly continuous

on each bounded subset of L 0 0 (T) , uniformly in s,

(d) if x —> x boundedly a.e. then

(1) lim ($(s)«x ) d u = 0 uniformly in s and n,
ji(E)-%0J n

(2) for any expanding sequence E. such that IJJE. = T

lim }($(s)^x ) d>jL = O uniformly in s and n,

VTT-Ej

Conversely, every transformation $: S -^Car s (T) sat-

isfying (a) 9 (b) , (c) and (d) determines by means of (*) a, trans-

formation A: L°° (T) —*C(S) satisfying (iA) > (iiA) 9 (
i:Li

A) •

Proof* If A satisfies (i ),(ii ) , (iii ) then for each fixed

s€S the functional defined by

PQ(x) = A(x) (s)

satisfies (i ) , (ii ) , (iii ) . Hence by Theorem 1 there exists

a unique element $(s)€Car°°' (T) satisfying (a) for which the

representation

Fs(x) = A(x) (s) = J($(s)oX)d}t
T

holds. To show that (b), (c) and (d) are satisfied we proceed
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as follows. According to (iA) and (iiiA) Fg determines for

each xsL00 (T) a ̂ -continuous measure V by means of

(1) ^X(G) = Ps(x XQ) =

T

Using (a) we can rewrite this as follows:

(2) 2c(G) - f($(s) *x)d/* = A(xJC) (S)
x I >?

Thus for any x5y€L°° (T) we have

(3) f[$(s)*x - $(s)oy]dAi= ^ ( G ) - *y(G) = A(x^) (s) - A(yXG) (s)f[$(

Now the total variation of the signed measure 2s - is is given
x y

by

(4) Varf-z^- y ) = j|$(s)»x - §(s)°y\dyy ) = j|

sup[A(xXr) (s) - A(yXj (s)]

- i n f [A(xyr,)(s)-A(yXG,)(s)].

However by (ii.) we see that on each bounded subset B of

L°° (T) there exists for each £ > 0 a £ 9 independent of s,

such that for x,y*B, l̂ -ylloQ ̂  & t h e rig h t side of equation (4)

is less than £ . This yields (c) .

To show that (b) holds we observe first that, as a conse-

quence of (c)9 for each x€L°° (T) the family

is a bounded subset of L1 (T) (here B=Bx= ̂ C L 0 0 (T

Moreover, since A maps L00 (T) into C(S) we have for each
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that

(5) j(§(s)*x XE)d/v = fXE(§(s)<x)d>A = A(xl E) (s)
T T

is continuous with respect to s. It then follows by (i.)

and (a) that

(6)

T

for every simple function z. Since the simple functions are

dense in L00 (T) = L (T)! and &x is a bounded subset of

L (T), it follows that (6) holds for all z*L°° (T), which yields

(b).

To prove (d) we argue by contradiction. If (d..) were false

then there would exist a sequence x converging to x boundedly

a.e. and a sequence of triples (E ,s .x ) with y (E ) < — such^ m m n / m mm
that for some fixed ct > 0,

i
By compactness of s we may assume without loss of generality

that s — > 3
O
9 Moreover, by (iii.) we have for each

n* m

as n->oo

6

,
uniformly in m. The continuity of A(xXj now implies that

(9) lim x> (G)= A(xY.) ( s o )= ]/ (G).
m,n->oo xn' sm G O X,SQ

Therefore it follows by the Vitalli-Hahn-Saks Theorem ([J],p.l58)

that
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(10) lim v (E) = lim I ($(s ) <>xj d^ = o

uniformly in m and n,

which contradicts (7). If (d2) were false then there would exist

a sequence x converging boundedly to x a.e. and a sequence of

triples (Em>sm'
xn ̂ ' with /E^J an expanding family in £L
m

whose union is T, such that for some fixed cL * o

(11) J
T-I m

Again we may assume s —^ s . so that (9) holds. Therefore it

follows by Nikodym!s corollary to the Vitalli-Hahn-Saks Theorem

([J],p.l60) that

(12) lim J ($(s )<>x )dy = 0 uniformly in m and n,
m ~̂  oo —. "v, i m

m

which contradicts (11) .

For the converse we observe by Theorem 1 that (iA),(iiA)

and ft. c'C(s) all follow directly from (a) 9 (b) , and (c) . To

prove (iii-) we observe that x converging to x boundedly*». n

a.e. implies by (d_) that for each £ ?• 0 there exists a set

E.I,, with P^c) < °°^ such that

J ($(s)°x ) d)A * i1 uniformly in s and n.

T-E

Now bounded a.e. convergence of x to x implies that on the

set E^ this convergence is almost uniform. Hence by (d,) there

exists a subset P- c E£ such that

J j($(s)ox )djA J * I uniformly in n and s



32

while the convergence of x to x on E£ - F. is uniform.

Thus by (iA)

|A(Xn) (S)-A(X) (S)|= j J($(s)eXn)(V - J($(S).X)C^ +J($ (s)
T-E^ T-E£ F£

(13) F£

- f ($(s)°x)d>*+ C

Then by (iiA) we have for sufficiently large n that

(14) |A(xh) (s) - A(x) (s)| ^ 51, uniformly in s.

Since £ ->0 was arbitrary this yields (iii.) . Q.E.D.

We now give an analogue for L^(T) , l£ p -«oo .

Theorem 4, With T as in Theorem 1 let A be. <a transformation

on L^(T) with values in C(S) where S is. â  compact Hausdorff

space. Suppose A satisfies the conditions

(i.) A(x+y) = A(x) + A(y) when xy = 0 a.e.,

(iiA ) A is continuous on LP(T),

(iii ) A is uniformly continuous relative to L°° norm on
P oo

each bounded subset of L (T) which is supported by

a set of finite measure.

Then there exists â  trans formation $: S -• CarPj (T) such that

(*) A(x) (s) = J(*(s)«x)d/i
T

The trans formation $ can be taken to satisfy

(a) *(s)*0 = 0 a.e. for all
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in which case $(s) is. unique, for each s, ug, t£ sets of the

form RxN with N <a null set in T • Moreover $ has the fol-

lowing additional properties,

(b ) the mapping s *•» $(s)«x is weakly continuous for each

X€LP (T)

(c ) the mapping x •-» $(s)ox is weakly continuous on L.(T)

uniformly in s

(d ) the mapping x *-» $(s)ox is uniformly continuous

(relative to L norm), uniformly in s, on each

bounded subset of L (T) which is supported by a

set of finite measure.

Conversely, every transformation <£: S -* Car^' (T) satisfy-

ing (a) 9 (b ) , (c ) and (d ) determines by means of (*) a. trans-

formation A: LP(T) -* C(S) satisfying (iA) , (iiAp) ,

Proof: If A satisfies (i.)^ (ii- ) , (iiiAp) then for each fixed

seS the functional defined by

F (x) = A(x) (s)s

satisfies (i)9 (ii ) , (iii ) . Hence by Theorem 2 there exists a

unique element $(s)6Carp* (T) satisfying (a) for which the repre

sentation

Fs(x) = A(x) (s) = J($(s)ox)d/i
T

holds. To show that (b ) 3 (c ) and (d ) hold we proceed as follows

According to (i,) and (iiA ) F determines for each xelP (T) a

/X-continuous measure i/v by means of

(1) v.
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Using (a) we can rewrite this as follows

(2) vx(G) - J(*(s)«x)dM = A(xIQ) (s) .

Thus the variation of the signed measure v is given by
X

(3) Var(i/x) = j|*(s)*x|d|i

= sup A(xIJ(s) - inf A(xlr!) (s) .
GeE G GfeE G

We now show that for each x the right side of equation (3) is

bounded. Since x is in Ii (T) we deduce by equicontinuity of

its indefinite integral that corresponding to each € there is

a set E£ eL, M(E£) < oo , such that ||xX || < £. We can require

without loss of generality that E contain at most finitely many

atoms, E J J . . . J E . Moreover by absolute continuity of the

indefinite integral of x there exists a 6 such that

(4) ||xIE|| < 8 whenever n(E) < 6.

Now by (iia ) A is continuous at O€L^(T) . Hence on taking C

sufficiently small we deduce that

|A(xX ) (s) | < 1, uniformly in s, whenever fi(F) < 6,

(5)
|A(xX ) (s) I < 1, uniformly in s, whenever P cz T-E^ .

Now for any Ge£ we have by (i )
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n

| A ( x l o ) ( 8 ) | - | A ( x I G n ( T } ) ( 8 ) + E A ( x I G n E ) ( s ) + A ( x X Q n ( E ft, J ( s )

(6) n£

< 1 + L lAfxX^ ) (s) I + |A(xX -. ,_ ne ) ( s ) I .

ne
Moreover by splitting the nonatomic subset E_ - U E. into parts

of measure less than 6 and applying (5.) we obtain the estimate

H(E - U E.) H{EE)
(7) |A(xI n* ) (s) | < JL—L.+ 1 < — — + 1.

GO (E£ -UE^ 6 6

Combining (6) and (7) we deduce that

/ ( p ) \
(8) |A(xI_) (s) | < 2 + s. + L ||A(xI_ ) |l = H. uniformly in s and G,

Therefore by equation (3) it follows that the set

(9) B x = {$(s)*xIE|E6L, S € S }

is a bounded subset of L (T).

Now since A takes LP(T) into C(S) we have for each

that

(10) J($(s)oxXE)dfi = JlE(O(s)«>x)dM = A(xIEXs)

is continuous with respect to s. It then follows by (i ) that

(11) J z($(s)ex)d|i is in C(S)

T

for every simple function z. Since the simple functions are

dense in L (T) = L (T) • and B is a bounded subset of L (T)
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it follows that (11) holds for all xeL00 (T), which yields (b ) .

To show that (c ) holds let {x }^>jL denote a sequence

converging to x = x in LP(T). Then the indefinite integrals

of the {x ) > o are uniformly absolutely continuous and equi-

continuous with respect to /i. Hence it follows by the technique

used in deriving equation (8) that

Br ^ = {$(s)ox X EeS, S€S, n > 0}[xnJ n E

is a bounded subset of L (T) .

Now for each EeE* x X converges to xeX in L^(T) and

hence by (iiA ) we have

(12) J($(s)*xnXE)d/i = J XE($(s)-xn)dM - J IE($(s)ox)d|i,
T T T

uniformly in s.

It then follows by (i ) that

(13) j z($(s)ox )d(i-» J z ($(s)*x) d/Lt uniformly in s,

T T

for every simple function z. Since the simple functions are

dense in L (T) = L (T) ' and Br ^ is a bounded subset of
1 n m

L (T), it follows that (13) holds for all ZGL (T), which yields
the transformation

(c ) . Finally,/\A1 = AJL
00 (E) , for any E such that jLt(E) < oo 9

satisfies (iA),(ii,) and (iii ) of Theorem 3, the last following

from (iijv ) by virtue of the Lebesgue dominated convergence theorem,
Therefore (d ) is a consequence of Theorem 3.

The converse is immediate. Q.E.D.
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Remark: Theorems 3 and 4 are well known in the linear case

([J],p.49O.)
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