NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



REPRESENTATION OF NONLINEAR
TRANSFORMATIONS AND
FUNCTIONALS ON LP SPACES

Victor J. Mizel*
Report 68-16

May, 1968

*
Partially supported by National Science Foundation Grant GP 7607




MAR 21 69

Introduction. Recently the author in collaboration with A. D.

Martin [A) and K. Sundaresan (B] has obtained a characterization
of certain classes of nonlinear functionals defined on spaces of
measurable functions (see also K. Sundaresan [C]). The functionals

in question had the form
(1) F(x) = f(?'x)d)t - [rctenapce
T T

with a continuous "representing function" P: rR— R, orx
P

(2) Flx,y) = f‘P-(X.y)d}A@v f‘P(x(s),Y(t))d}l(S)dv(t)
SxT SxT

with a separately continuous representing function Y: Rz-e R.
There are direct applications of this work to the theory of gener-
alized random processes in probability (see Gelfand-Vilenkin ([D])
and to the theory of fading memory in continuum mechanics (E).
However the main motivation for these studies was an inferest in
possible application to the functional analytic study of nonlinear
differential equations. From the standpoint of this latter appli-
cation it would also be desirable to characterize the broader class

of functionals having the form

3 F(x) = fc/(x(t).- £)apu(t),

T
where the representing function Y : RxT —R satisfies "Caratheo-
‘dory conditions". This can be readily understood if we recall that
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the existence theory for
x(t) = Px(t),t)

with Y a function satisfying Caratheodory conditions is very close

to that for
x(t) = P(x(t))

with ¥Y: R—R continuous (see e.g. [F]).

In the present paper we obtain an abstract characterization
for functionals having the form (3), a characterization which is
of the kind obtained earlier for functionals having the form (1).
In addition we characterize corresponding transformations from
P (T) to C(S) where C(S) is the space of continuous func-
tions on a compact Hausdorff space. Our proofs utilize some
results appearing in Krasnoselkii's important summary [G] of
work on transformations of the type x —Yfex. For some work on
a problem analogous to ours for functionals on the space of con-

tinuous functionson a compact metric space see [H].

END OF INTRODUCTION
Throughout this paper T = (T, £,p) is a measure space, R

is the real line with Lebesgue measure, and M(T) denotes the space
of real valued measurable functions on T.

Definition. A real valued function \P:‘ RxT —R is said to be of
Cai‘atheodorz type for T and we write fecar(T) if it satisfies

the following conditions,

(1) Y(-,t): R—R is continuous for almost all teT,

(2) f(c,*): T —R is measurable for all ceR.
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One can extend this definition in an obvious way to functions

Y- Rm’x T—R®. We remark that Car (T) is a subspace of the vec-
tor space M(RxT).

If x is a real valued measurable function on T and ¥ is

in cCar(T) then the function Yox defined by
(Pox) () = ¥(x(t),t),

is also a measurable functon on T. This is obviously true
when x is a simple function. In the general case x is the
limit almost everywhere of a sefuence of simple functions X
so that by continuity of P in its first argument, Yox being
the pointwise limit of the measurable functions Yo X is meas-
urable. Thus for each Yé& car(T), the mapping x = Yox is
a mapping of M(T) into itself. It is useful to single out
certain subspaces of the vector space CAR(T) in terms of

their mapping properties.

Definition. Given the numbers p and q, 1 £ p,q = o0, a function
® of Caratheodory type for T is said to be in the Caratheodoxry

(p,q)-class, and we write YecarP'9(T) if ¢ maps LP(T) into

19(7). That is, ¥ is in carP?'9(T)  if

Yex erLd(T) for all x eLP(T).
Remark. For the case of a non-atomic & -finite measure space it
is known ([G], p.27) that ¥Yis in Carp’q(T) , lf£p,qe o, if
and only if :
[Px,0)] € a(t) + b|x| P/

for some ae L9 (T) .
Theorem 1. Let T
NAAA A A

(T, £, M) be a finite or o¢-finite measure
Space. Let F be a real valued functional on L (1) which
satisfies:

(i) F(xt+ty) = F(x) + F(y) when Xy = 0 a.e.,

(ii) F is uniformly continuous on each bounded subset of L% (1),

(iii) P (xn) ~— F (x) whenever {x n} n=z] Cconverges bounded].y

a.e. to x €L°° (7).




Then there exists a function ‘PGCaroo’l(T) such that

(*) F(x) = f(‘P'x)d}». = [‘P(x(t).t)dp(t).
T

Moreover ¢ ¢ e taken to satisfy

(a) Y(0,°) = 0 a.e.,

and is then unique up to sets of the form RxN with N a null get in T.

nver , for every fecar®'}(r) gatisfving (a), (%)
defines a functional satisfying (i), (ii), and (iii).

Remarks: l. The final statement of the theorem is valid for any

Pecar®: 1 (T) satisfying

(a*) ﬁeO)d» = 0.
T

Moreover condition (i) on F can be modified in such a way that

this result applies to all P eCar°°'l('1') . Namely we could replace

(i) by
(i') F(x+y) - F(x) - F(y) = const. when xy = 0 a.e..

(If we denote the constant in (i') by k then the functional

Fl(x) = F(x) + k satisfies (i), (ii) and (iii).)

2. Unlike the results in [A] and [B] the present char-

acterization does not require a hypothesis concerning the non-atomic
" nature or almost non-atomic nature of T. The same holds true

for Theorem 2 to follow.




Proof of the theorem:

It follows from (i) and (iii) that for each real number h

the real valued set function a  defined by
s) = F(h
a (8) (h X,)

is countably additive and absolutely continuous relative to M.
Hence by the Radon-Nikodym theorem there corresponds to each h a

function ?he Ll(T), unique up to a null set, such that

F(h X) =f9h dp.
S

The functions 'Ph with h rational will be utilized below in con-
structing the function ¥ occurring in (*). This construction
applies the following lemma whose proof will be deferred until

later.

®
Lemma. Given any W > O there is a measurable set Sy, = US,z i
. ’

such that

(1) p(P-5) < m . }L(S_m{)<oo i=12...,
(2) on SY‘ there exists for each pair of numbers
t4

M,g>0 a § = 5;(£,M) > 0 such that for rational h and h'
we have

h,h'e[M,M] and [h-h'|< & = sup |P,(8) - P () = £.
tes .

N
Now select a sequence = —> 0 and define a function P:RxT>R

as follows:




oo
lim Py (¢) for tes = U Sy
h—c ' m=1 m
(1) Y(c,t) = ((h rational)
0 for teT - S .

It follows from the lemma that this defines ¥ unambiguously and
that V(.,t) is continuous for each t e¢T. Moreover since T-S
is a null set, for each céeR Y(c,*) is the almost everywhere
pointwise limit of a sequence of measurable functions Ph and

is therefore measurable. Thus ¥ is of Caratheodory type for T.

Purther, since for ¢ rational we have

Ple,t) = ‘Pc(t) a.e.,

it is clear that P(c,-)e Ll(T) for ¢ rational and that ‘P
satisfies (a). It remains to be shown that (*) holds.

Suppose x€eL%°(T) is a simple function with rational values,

N
X = k{:l ckka c, rational, {Tk} disjoint.

Then, using (i),

N N
F(x) = F(c, X,..) = j d
kz=:l k Ty kgl 2 k 4
X
= o a
_[‘P(chx.rk) ot

(Pexjd .
! x)d




Thus (*) holds in this special case.
Now each x eL®(T) is the limit a.e. as weil as in norm of

a sequence X of simple functions with rational values,
X —x a.e. and in 1L°°(T).
Since YecCar(T) it follows that

(2) \Poxn —>¥Pox a.e.

In addition, the sequence "PoxneLl(T)- is uniformly absolutely

continuous, i.e.

(3) ' Z‘I‘Poxnldpao as p(R) — 0, uniformly in n.

Otherwise there would exist for some £ >0 a sequence of sets

R T with p(R m) <3™ and a corresponding sequence ‘P-xn

m
{H’oxﬂm\dy. > £,

It follews that each Rm possesses a subset R::\ satisfying

such that

R £
'l.[;‘? xnmdyvl> /2 .

Now the functions y = x XR form a bounded set in L% (T)
m n - !;l :

since the Xn form such a set, and hence

Yp 0 boundedly a.e.




Moreover y_ being a rational valued simple functionimplies
F(ym) =£'P-ym)dp, = j‘f’oxnn:d,u.
'
m

However by the construction of RI;1 this implies that the F(ym)

do not converge to zero, contradicting property (iii).

Furthermore the sequence Poxn has the property that for each

€ >0 there exists a set R, such that M(R;) <oco and

(4) f”’vxnldp- < g for all n.
T‘-RG

Otherwise, for some ¢ >0 there would exist an expanding

oo
sequence of sets R~ with p(R)) < oo and U],Rm =T and a

corresponding sequence ¥ eox ,  such that
m

fl‘?-xn l[dp > €.
T=R m

Thus for some R" ¢ T - R
m m

!ﬁ[‘(‘f)oxnn)ld,;.' > £/2.
m

The functions Yo = X, XR" satisfy
m T m

ym--» 0 boundedly a.e.

while the formula

P = [lenfiy = [i0ex o
T

R"
m




implies that the F(ym) do not converge to zero, contradicting
(iii).

Since the sequence ‘Poxn in Ll('r) satisfies (2), (3), and
and (4) it follows by Vitalli's convergence theorem (see [J ], p. 150)
that YPex belongs to Ll(T) and that ‘P-xn —> Pox in Ll('r),
whereby

F(x) = 1im'F(xn) = lim f‘)ooxndp
n -»00 n-o00 q

= [ Yo .
!xdp

Thus ‘PcCaroo'l(T) and (*) holds . The uniqueness of ‘Y follows

from the fact that by (a)
F(c Xg) = [XS Plc,t)ap = !‘Pcd)t-

Cohsidering only rational c¢ we see that this condition determines
Y(c,*) up to a null set, and hence determines Pecar(T) up to
sets of the form RXN as claimed.
For the converse let Y be a function in Car°°'l('1‘) which
satisfies condition (a). Then the functional F defined by (*)
obviously satisfies (i). We proceed to show that (ii) holds.
Otherwise there would exist numbers A,a > 0 such that corresponding to each
positive integer n there is a pair of functions xn,yneLoo (T)

satisfying
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nxnlloo, H‘ynll o S A !lxn - ynll w < l/n

(5)
l'¢°xn'_ °yn“l >a.

Consider first the case in which p(T) is finite and set s, = T.
We select a subsequence of XY, as follows. By the absolute

continuity of the indefinite integral of ‘Poxl - ‘Pcy:L there exists
an €, >0 such that

1
!“P‘oxl - ‘Poylﬁdyy < a/3 whenever u(S) < 28 .

Obviously &; < % wu(T). Since ¢(-,t) is continuous for almost
all teT, it is uniformly continuous on the set [-A,A] € R for

such mt. Thus for each E,
‘ 1 . :
T = nE’___l{t|cl,c2€[-A,A]l, |cl- c2|5-5 :)H‘(cl,t) - “P(cz,t)ii &}U'N where

&(N) = 0. Hence by selecting n, sufficiently large one can find a

measurable set T satisfying

2

a
[ Pexy ) (8) - (Poy, ) () < Tpm  for teTy, and
By (5) this implies that with S, =T - T,

f,'?oxnz - ‘P-ynzldp > 2a/3, ,u(Sz) < &,.
S
2

Again, since the indefinite integral of ‘Poxn - ‘Peyn is absolutely

2 2

ctontinuous there exists an 82 > O such that

f"fcxnz -‘Poynz'dp < a/3 wherever pM(S) = 2“2.
S
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Obviously 2§ <« %;ﬁSZLAgain by the uniform continuity of P(-,t)

2
on [-A,A] for almost all t, there exists an n, sufficiently
large and a corresponding set T3 such that
(Pox, ) (t) - (Poy_ )(t)] < —2 for teT
By (5) this implies that with S3 =T - T3,

Pox - Pey du > 2a/3 s < £
!l s n, lap sy < €.

3
Proceeding in this fashion we obtain a subsequence X, Y,
k “k

and a corresponding sequence of sets Sk satisfying

Pox. - Yoy lam = 2as3, | ox - E
fl xnk ¢ ynklp a/3, j | ¢ x“'k ‘Pynkld,;<3,
Sk Ska1

PSE) < g s pmls, ;) /2.

o
Now define Rk = Sk - .kki SQ, The sets Rk are disjoint. More-~
=k+1
over
0
pt U s,) < 2is, ) « 2¢
=K+l * k+1 k

so that, recalling how the Ej are defined, we have

Jl‘?oxnk - ‘Poynkld)* > a/3.
k
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We now define
oo

o o]
x = gl *WXg ¢ ¥ " k2=lynk)(,,,k .

By construction x,yeLoo(T), so that ?ox, @oy,eLl(T), and

‘{"‘Pox - ‘Poy, = lJI\Poxnk" ‘Pf'ynk’d).& >a/3, k=1,2,c00 &

Since the Rk are disjoint, this is a contradiction.
Consider now the case WM(T) = oo and assume that (5) holds.
We will construct sequences of functions {x },[y } and a
My 70k

sequence of disjoint sets {Rk} such that

(6) | p(Ry) < oo, ﬁ&Poxn - ‘Po.yn ldl"' > a/2.
' Rk k k

The procedure is again inductive. Let R1 be a set of finite meas-

ure such that

f,‘fexl - ‘Poylldp > a/2.
Rl

This is possible by (5). Then, by the result in the preceding

paragraph, for n sufficiently large

2

R{,‘Po xn2 = ‘Poynzld).& < a/2.

Hence there exists a set R2 c¢T - Rl such that F(Rz) < oo and

f 2
R,
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Again since P‘(Rl ) R‘é) <00 we have by our earlier result that

for n, sufficiently large

l‘Poxn - Poy, ‘d;.t « a/2.
R JR 3 3

1 2

Hence there exists a set Ry eT - (Rl v Rz) such that H(R3) <

and

fl‘foan - ‘P-yn3ldp > a/2.

Ry

Proceeding in this fashion we arrive at sequences of functions
X and of disjoint sets for which (6) holds.
{ nk}' {ynk} J {Rk}

Defining

oo o
*= kglxnkak YT kglynkak

we again find that

J

Rx

contradicting the fact that Yox, Poy eLYT).

'P‘x‘ ‘POYldH >a/2 k=l,2,coo '3

There remains the proof of (iii). Let x -~ be a sequence such

that

X —x a.e., Nx 1 e 1%l g = A

Since Pecar(T) it follows that

HUNT LIBRARY
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(7) 'Poxn —YPox a.e.,

while by (ii)

[[€exyll 1o JIPex |1, = M =mM@a).
We will show that (iii) holds by proving that
Po xn-—-—%‘Pax weakly.

Now the sequence Pe X, € Ll (T) is bounded and therefore weakly
precompact. Suppose ‘P0xn does not converge weakly to P eox.

Then thefe exists a subsequence Pe xnk no subsequence of which
converges weakly to Yex. Moreover by extracting a furthez subsequence

we may suppoée without loss of generality that

(8) Pox 2 weakly for some z # Yox.

Mk

Of course, by (7),
(9) Qe xnk.____, Pox a.e.

Now by a theorem of Banach and Saks ([ J ], p.462), (8) implies
that there is a subsequence Yo x , of ‘Poxn such that
n,.
3 k

y W
(10) m Z "? *X  —>Z in measure,
J=1 J

However (9) and (10) imply that =z = Yo x, contradicting (8). Q.E.D.




15
Proof of the lemma: In the sequel we restrict the symbols h
and r to denote rational numbers. Consider first the case of a
finite measure space. To begin with we show that, with M >0

given, for each integer n the contracting sequence of sets

M | o
T - Sn,j = {t""’h(t)" ‘Ph(t)[ >1/n for some h,h'e[-M,M] with lh"h"‘j}
j = 1l2'000

converges to a null set. Otherwise for some fixed c¢ >0,

M .
P(T - Sn ,) = C J = 1,2,.0. o
’
Now
o g = U , B = B(J)9
n,j he[M,M) ref-1/5,1/5] hoX  hel[-M,M] P
where

R R ER S A C O

B .
ht rel-1/3,1/3] BF

Enumerating the rationals in [-M,M] and [-1/3,1/3j] as

hl'hz"" and rl,rz,... , respectively, define the sets
C(j) and C as follows
'
i ]
. , k-1 .
¢ _ 5@ U B}:;) K o=1,2,... .
hy h 4o hy
-1
C = B - U ’Q = 1,'2)... .
hy /Ty heexrp 53 Bhk'ri

For each j define the functions xj and vy by,




(1) Xy = glhkxcéi)
(2) yj = k}; Z (hk + r, ) x .

1l 2=1" hkl

are in L°(T) and satisfy

By construction X40Y5
(3) lej”oo. 15/l 0 = M+ 1
Moreover
N
3. th( | —3 X, boundedly a.e., and
chfj) j
k
N N
Z Z (h + x, )X — Y. boundedly a.e. .
k=1 4=1 J

Hence by (i) and (iii) and the definition of ‘)oh

F(x)-F(yJ)-zF(hkx Z ZF((hk+r,_)x )

16

k=1 2=1
hk'rJ.
= . - d >y=c
kgl[?hkxc(J) =1 ‘fhk-l-rLXChk ,I}:'] M7 R
ji=1,2,...

contradicting (ii).
It follows from the above that with M given there exists

for each R > 0 a set Sf: satisfying
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(5) for each £ >0 there exists a § = K(S,M) > 0 such that
h,h'e[-M,M] and |h-h'|< = l‘Ph(t) - *{’h,(t)]sz for tes’,;,

(6) (T -5 < .

For by the preceding paragraph one can select for each integer n

an index j, such that

plT - st ) <« Wyon n

n'Jn

1,2,..0 ‘e
M .

Then the set Sn defined by

(7) S

satisfies (5) and (6).
In addition, the set S,2 defined by
X M
(8) Sp = nan Sp/2M
is readily seen to satisfy (5) and (6) for all M. Thus the lemma
is proved in case T is a finite measure space.
Now suppose that M(T) = oo . By hypothesis,
oo
T = iL-_-)]_ T. with P(Ti)'< oo .

Using the result established in the preceding paragraphs we con-

struct sets %2 ;i€ Ti i=1,2,... by defining
’

S (relative to the measure space Ti).

7. i = S’?/zi




18

¢ T which is defined by

It is then clear that the set S'Z
oo
s, = U s .
(R
satisfies all the requirements stated in the lemma. Q.E.D.
Corollary. With T nonatomic let F be a real valued func-

tional on L% (T) [9_1;_ M(T)] which satisfies the conditions

(i) F(x+y) = F(x) + F(y) when xy = 0 a.e.,

(ii) F is uniformly continuous on each bounded subset of
L® (1),

(iii)* F(xn) —F(x) whenever {xn }n 21 converges a.e.

to xeL®(T) ([or M(T)] .

Then there exists a function ¢ in car(T)

such that
(*) F(x) = ﬁ?ox}d,u. for xeL® (1) [or M(T)],

T
and F: L°°(T)—->R (or M(T) —»R] is bounded. In fact,

(b) R.P c Ll(T) is bounded.

‘Moreover, Y can be taken to satisfy (a)_and is then unique in the
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same sense as in Theorem 1.

Conversely, for every Pecar® 1 () which satisfies con-
ditions (a) and (b), the functional defined by (*) satisfies (i),
(ii) and (iii)°’.

Pxroof: Observe that the functional F, =F }L°° (T) satisfies

(i), (ii) and (iii) of Theoremld and hence is given by

(1) Fy(x) = j‘?ox)d,u for x € L2 (1),
T

for some P e Car°°'1(T) .

We show that R,fC L2(T) is bounded. For otherwise there

exists a sequence x €L (T) such that
(2) ll‘i’oxnul =c .
It then follows that there exists a subset A, € T such that

(3) IF(x X, )| = ,f (LP"xr)d,u/ Zc /2.
n A

Consider first the case u(T) < oco. Then since T is nonatomic
there exists for each sufficiently large n a subset A}

of An such that

lF(anAr;)’ z 1

(4)
MA@l s 2/c,.
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However, we have x X+ =20 a.e., so (41) contradicts (iii)',
Now suppose T = 191 Ti' ,u(‘I‘i) < o©o. The preceding argument
shows that for each m we have a constant N such that
m
< . ,
”q’oxnl- Nm for x such that supp x © U Ty
i=1
By extracting a subsequence we can assume that in (2) ¢ > 3Np.

m
Consequently there exist sets A <& T - U Ti such that

1i=]

HtfémeAmﬂl >N m=1,2,.. .

It then follows that for some subset A5 < A ,

&) e Xl = 1S Poaul >,
Al
m

Now
’SnxA' -0 a.e.,
m

so (5) contradicts (iii)'.
co,1 . e
Now suppose U ¢ Car (T) satisfies (a) and (b). It only
needs to be shown that (iii)'! holds. Suppose that x_,xeL%® (T)
and  x -» x a.e. Then it can be shown just as in the proof

of the theorem that

Yox, —>Yox weakly

and therefore

F(xn) = ~ﬁ9’0xn) du —>j(¥’°x)dy = F(x). - Q.E.D.
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Remark: It is easy to show by examples that on atomic measure
spaces (i), (ii), (iii)' do not imply (b). On the other hand,
the above proof shows that for all T, if (e car®+ 1 (T) and

satisfies (a) and (b) then F satisfies (i), (ii), (iii)?'.

Theorem 2. With T as in Theorem 1 let F be a real valued func-
as i ke a

ional on LP(T), 1l = p < oo, which satisfies the conditions
(i) F(x+y) = F(x) + F(y) when xy = 0 a.e.,
(ij.P) F is continuous on IP(T),
(iiip) F is uniformly continuous relative to Loo norm
on each bounded subset of L% (T) which is supported

by a set of finite measure.

Then there exists a function Ye¢car® ’l(T) such that

—— | G ——————— We—————— S

(*) F(x) = “Pax)d/u. for xELp(T).
Moreover Y can be taken to satisfy
(a) P(0,°) =0 a.e.

d is then unique up to sets of the form RxN with N a null set in T.

Conversely, for every Pe Carp'l(T) satisfying (a) the

formula (*) defines a functional satisfying (i), (iip) and (iiip).

Remarks . 1. Observe that when F 1is a linear functional, (iip)
signifies uniform continuity on bounded subsets of P (T) and

hence implies (iii)p . In addition, for such casesthe function
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necessarily has the form

P(x,t) = xu(t)

for some locally summable function u. Thus the present result
includes the Riesz representation theorem modulo a proof that
u ELq(T) is necessary and sufficient in order that the above

¥ be in Carp’l(T).

2. For the case u(T) <o this theorem is related to a
result state in [I], though our hypotheses are weaker than
the ones utilized there. See also the corollary and remark

following the proof.
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oo

Proof: By hypothesis T = (J Ti where the Ti are disjoint sub-
i=1

sets of finite measure. Define

Fi=F,Lm(Ti) i=l,Zpooo .

Then (i), (iip) gnd (iiip) imply that each of the functionals F;
satisfies the hypotheses of Theorem 1, the validity of (iii) being
a consequence of (iip)vand the dominated convergence theorem.
Hence there exist functions ?ieCar(Ti), unique up to null sets,

which satisfy (a) @i(O,*) =0 a.e. on T, and

(1) F, (x) = f'{’i%)dy for xe€L®(T;), i=1,2,... .
T.
b

Now define Y : RXT—R by means of
(2) P(h, )|, = ¥ (h,-) her, i = 1,2,... .

It is clear that Pecar(T) and that ¢ satisfies (a). It remains
to be shown that (*) holds for xeLP (T). Now for each simple func-

tion x we have

xITeL°°(T.) i=1,2,..., and
i 1
_ - p
x = x](n —> x in L¥(T).
7.
igl 1

Hence by (i) and (iip)
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Il

F(x) = 1linm F(x )
nsoo

fore)
F(x )
iz.—_:l xTi

T, furaan = fra

i
Therefore (*) has been established for simple functions.

To show that (*) holds for all xeLP(T), notice that each
such x is the limit a.e. as well as in norm of a sequence xn

of simple functions,

(3) X, =X a.e. and in LP(T).
Since Yecar(T) it follows that

(4) Pox, —>Pex a.e.

In addition, the indefinite integrals of the sequence ‘PoxneLl (T)

are uniformly absolutely continuous, i.e.

(5)» fﬁ‘?‘xnjdp -0 as p(U)—0, uniformly in n.
v

Otherwise there would exist for some a > 0 a sequence of sets

Um €T with ).a( Um) <3™ and a corresponding sequence Po X
m
such that

f"‘?axn |ap > a.
m

Un

It follows that each U (even if Um is an atom) would possess
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" a subset Ur:\ satisfying
‘J“?oxn)dy , > a/2.
; m
.

By (3) and the Vvitalli convergence theorem ([J],p.150)
the functions X, form a bounded set in LP(T) and

lim flx )"dp = 0 uniformly in n. Hence the functions
p(v) >0 n p

Y, = X_ X, lie in a bounded subset of L (T) and satisfy
m n Yy

Moreover because Ym is a simple function,
v no
m

However by the construction of Ul;l' this formula implies that
the F(y,) do not converge to zero, contradicting (iip).

Furthermore the sequence Yo xn has the property that for

each £ >0 there exists a set U£ such that )‘ ( Ui') < 0o
and
(6) fI‘Poxn‘ldyc £ . for all n.
Otherwise for some £ > 0 there exists an expanding sequence of
. 00
sets U_ with . p(Y ) <« oo, UU =T, and a corres-
m m 1 m

ponding sequence Po x, such that
m

ﬁ?'xn |dp > £.
T—Um m
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Thus (even if T-Um is an atom) for some U;;‘ c '1'-,Um

' "P°x%d”, > £/2.

m
By (3) and the Vvitalli convergence theorem the indefinite integrals
of the functions x, are equicontinuous with respect tou, so

that the functions Ym = X, Kyn
m m

ym_,O in LP(T).

satisfy

However, the formula

Fly ) = ﬁ‘?oyn}iy = _/E‘Pexnnzdy
T Um

implies that the F(ym) do not converge to zero, contradicting
(ii).

Since the sequence ‘*Poxn satisfies (4), (5) and (6) it
follows by Vitalli's convergence theorem that Pex is in Ll('r)

and that ¢o x, — Pox in Ll(T) ., whereby

n-3o00 n-— oo

F(x) = 1lim F(xn) = lim ﬁ‘{’oxn)dp
T

ﬁ‘?oﬁdy.
T

Thus (*) holds for all xeLP(T). The uniqueness of ¥
assuming that (a) holds follows since Theorem 1 then
asserts the uniqueness of lTi o 1=1,2,... .

For the converse we proceed as follows. Suppose Y is a

function in Carp'l('l‘) which satisfies (a) . Then (i) obviously
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holds. Moreover for any S such that J(S) < oo, the restriction
Pls is in carP’1(s). This implies in particulér that ¢Qls
is in Caroo‘l(s) and satisfies (a). Thus the validity of (iiip)
follows from Theorem 1. On the other hand (iip) is a consequence
of a theorem of Nemitskii [ G ] which asserts that every ¢é¢carP '1('1')

yields a continuous transformation from P(T) to Ll('r) by
x 4?0 X

For, the continuity of the above transformation yields as a by-

product the continuity of the functional

x —-)ﬁ\?o}#l}l.
T

Q.E oDo

Corollary. With T as above, there exists for every real valued
SN AP A AN —— —

functional F on (M), 1< p <o, which satisfies the conditions
(i) F(xt+y) = F(x) + F(y) when xy = 0 a.e.,
(ii') P 4is uniformly continuous on each bounded subset of
P(T),

a function \feCarp’l(T) such that

(*) F(x) = f(‘?o:gdﬂ for x eL¥(T).
T

Moreover ¢ can be taken to satisfy (a),_and is then unique up

a null set.

to sets of the form RAN with NcT
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Remark: The converse to the corollary is false except for a space
T consisting of a finite number of atoms. That is, { being in

arP 'l(T) and satisfying (a) does not in other cases ensure that

oo
(ii') holds. To see this let T= T, ~where 0< M (T,) < 00
i=1
and T; are disjoint. Then the function

e -4
Ph,t) = .glfi(h)hp Xy, (©)

is in carP ol (T) provided that each £;: R>R is continuous
and satisfies 'fi, < 1. However it is easy to prevent uniform
continuity on certain bounded sets in P (T) by selecting the £

to have appropriate zeros.

Theorem 3. With T as in Theorem 1 let A be a transformation

on L (T) with values in C(S) where S is a compact Hausdorff

space. Suppose A satisfies the conditions

(iA) A(x+y) = A(x) + A(y) when xy =0 a.e.,
(iiA) A is uniformly continuous on each bounded subset of
L (1),
(iiiA) A(xn) — A(x) whenever {xn} nz1 converges boundedly
a.e. to xeL%®(T).
Then there exists a transformation @§: s — car®:1 ()

such that

(*) A(x) (s) = f(@(S) ox)dp = f@ (s;x(t),t)du(t).
T T

The transformation @ ¢an be taken to satisfy

(a) d(s)c0 = 0 a.e., for all sesS,
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in which case i)(s) is unique, for each s, up to sets of the

form RYN with N a null set in T. Moreover § has the

following ad'ditio‘nal properties,

(b) the mapping s+—@(s)ex 1is weakly continuous for each
xer.® (T),

(c¢) the mapping x-——»@(s)oxeLl (T) is uniformly continuous
on each bounded subset of L® (T), uniformly in s,

(d) if X, — X boundedly a.e. then

(1) lim j(@(s)nxn) dp = O uniformly in s and n,
p(E)v-»O B

(2) for any expanding sequence Ej such that UJEj T

lim j(@(s)axn) dp = O uniformly in s and n.

Conversely, every transformation ¢: S —70ar°°’l(T) sat-

i.sAfzi‘ng (a), (b) , (c¢) and (d) "determines by means of (*) a trans-

formation A: L (T) - C(S) satisfying (in), (1i,), (iidy) .

Proof: If A satisfies (iA),(iiA),(iiiA) then for each fixed

s€S the functional defined by
F (x) = A(x) (s)

satisfies (i ),(ii ), (iii ). Hence by Theorem 1 there exists
a unique element Q(S)ECarco’l(T) satisfying (a) for which the
representation

F () = A(0) () = [@(s)ex)ap
T

holds. To show that (b), (¢) and (d) are satisfied we proceed
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as follows. According to (iA) and (iiiA) F determines for

each xeLCD (T) a p-continuous measure J/x by means of

L) 200 =P (xXg) = [@(s)exXay.
T

Using (a) we can rewrite this as follows:

(2) (@ = !(Q(s)ox)d;«% a(x X)) (s) .

Thus for any x,yGLCJO (T) we have
(3) [@(s)ox - Bls)oyldm = Z(G)- Z (6) = A(xX) (s) - AlyXy) (s) .

Now the total variation of the signed measure r, - J/y‘ is given

by

(4 var(y-») = [|6=)ex - F)ov|ay
T

sup [A (x IG) (s) - A(y XG) (s)]
Gex

- inf [A(xXg,) (s) - Aly Xg,) (8)].
G'sL.
However by (iiA) we see that on each bounded subset B of
L (T) there exists for each & >0 a §, independent of s,
such that for x,y¢B, "x-y"oo < 4§ the right side of equation (4)
is less than ¢ . This yields (c).
To show that (b) holds we observe first that, as a conse-

quence of (c), for each xeL® (T) the family

Rx = {Q(s)ox ’ seS}

is ‘a bounded subset of Ll (T) (here B=Bx= {,QLOO (T)'//g”m = //xl/a)}).

Moreover, since A maps L® (T) into cC(S) we have for each




30
EeXx that

(5) j(Q(S)ox IE)d;l = fXE@(S)ﬁx)dy = A(x IE) (s)
T T

is continuous with respect to s. It then follows by (iA)

and (a) that

(6) fz (P (s) ex) duec(s)
T

for every simple function 2z. Since the simple functions are
dense in L% (T) = Ll (T) ! and R’x is a bounded subset of
11(T), it follows that (6) holds for all zeL™ (T), which yields
(b) .

To prove (d) we argue by contradiction. If (dl') were false
then there would exist a sequence X converging to x bqundedly
a.e. and a sequence of triples (Em, sm,xnm) with )A(Em) <% such

that for some fixed o« >0,

[ Gegex, yapra, w12,
B m
m
By compactness of s we may assume without loss of generality

that S, —So- Moreover, by (iiiA) we have for each GeZX

CEN

Sm(G)= j(@(sm)oxn) dp = A(x X,) (s )= A (xX.Xs ) =f‘(§)(sm)°x) dpm
G G
as n->o00,
uniformly in m. The continuity of _A(xx;) now implies that

(9) lim v, . m'(G)é A(xé) (s°)= Jg{, (G).

m, n->ao n’® 5o

Therefore it follows by the Vitalli-Hahn-Saks. Theorem ([J],p.158)
that
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(10) lim ¥ (E) = lim J@(s )ex )dp = O
M(G)=0 *ns®n pE->0 g "0

uniformly in m and n,

which contradicts (7). 1If (d,) were false then there would exist
a sequence X, converging boundedly to x a.e. and a sequence of
triples (EI;I, 8%, )s With [EI;‘} an expanding family in X

m
whose union is T, such that for some fixed d >0

(11) f@(sm)"xn Ydu > «, m=l,2,... .
'r-EI;1 m

Again we may assume S, ~? S5 SO that (9) holds. Therefore it
follows by Nikodym's corollary to the Vitalli-Hahn-Saks Theorem
([J],p.160) that

(12) lim f (Q(sm)uxn )dpu = 0 uniformly in m and n,
m
-E

-
m CDT

which contradicts (11).

For the converse we observe by Theorem 1 that (iA) R (iiA)
and R’A cC(s) all follow directly from (a), (b), and (¢). To
prove (iiiA) we observe that X converging to x boundedly
a.e. implies by (d2) that for each ¢ >0 there exists a set

Ee, with )A(Ez) < oo, such that

-(Q(S)"Xn)d}J < g uniformly in s and n.
T-E

Now bounded a.e. convergence of X, ‘to x implies that on the
set E, this convergence is almost uniform. Hence by (dl) there
exists a subset F, € E, such that

lj@ (s)oxn) dp , < & uniformly in n and s

F,
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while the convergence of X, to x on E - 1;": is uniform,

Thus by (iA)

|a(x) () -a(x) (S)l=,ﬁQ(S)°Xn)dp - f@(S)"X)d)A + (@ (s) ex ) dpr
T-E

T-E, e Fg

- f@E enan+ [ @lorox,- Be) exl
(13) F, E, -F,
<4+ 5,@(8)9xn-§(s)cx’dp.
5y |

Then by (iiA) we have for sufficiently large n that
(14) {A(xn) (s) - A(x) (s)] = 5s, uniformly in s.

Since ¢ >0 was arbitrary this yields (iiiA) . Q.E.D.
We now give an analogue for P (1) s 1€ p=<0o.

Theorem 4. With T as in Theorem 1 let A be a transformation

on LP(T) with values in 'C(S) where S 1is a compact Hausdorff

space. Suppose A satisfies the conditions

(i) Alxty) = A(x) + A(y) when xy = 0 a.e.,
(iiAp) A is continuous on Lp(T)‘,

(iiiAp) A is uniformly continuous relative to L® nom on
‘each bounded subset of L% (T) which is supported by
a set of finite measure.

Ihen there exists a transformation &: S - Car ’l(T) such that

) AG)(s) = [(@(s)ex)ap
T

The transformation ¢ can be taken to satisfy

(a) $(s)e0 = 0 a.e. for all seS,
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in which case &(s) is unique, for each s, up to sets of the

form RxN with N a null set in T. Moreover & has the fol-

lowing additional properties,

(bp) the mapping s - ®(s)ex is weakly continuous for each
xeLp(T)

(cp) the mapping x = ®(s)ox 1is weakly continuous on Lp(T),
uniformly in s

(dp) the mapping x - ®(s)ex is uniformly continuous
(relative to Loonorm), uniformly in s, on each
bounded subset of L% (T) which is supported by a

set of finite measure.

Conversely, every transformation &: S - Carp’l(T) satisfy-

ing (a),(bp),(cp) and (dp) determines by means of (¥) a trans-
).

formation A: LP(T) - c(S) _satisfying (ip), (i), (iid

Ap

Proof: If A satisfies (iA),(iiAp),(iii then for each fixed

AP)
seS the functional defined by

F (x) = A(x) (s)

satisfies (i),(iip),(iiip). Hence by Theorem 2 there exists a
unique element @(s)eCarp’l(T) satisfying (a) for which the repre-

sentation

F (x) = A(X) (s) = [(2(s)ox)dp
T
holds. To show that (bp),(cp) and (dp) hold we proceed as follows.

According to (iA) and (iiAp) Fs determines for each xeLp(T) a
p-continuous measure Vo by means of
(1) v (@) = F_(xXy) = [(@(s)oxXy)ap.

T
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Using (a) we can rewrite this as follows

(2) v, (@ = [(@(s)ex)ap = A(xLy) (s) .
G

Thus the variation of the signed measure Vo is given by

(3) var(v) = [|®(s)ex|ap
T
= sup A(xIGXs) - inf A(xIG,)(s).
GeZ GeXl

We now show that for each x the right side of equation (3) is
bounded. Since x is in LP(T) we deduce by equicontinuity of
its indefinite integral that corresponding to each € there is
a set E eI, W(E,) < o, such that |lxI.T_E£ | < £. We can require

without loss of generality that E contain at most finitely many

£
atoms, El""’En . Moreover by absolute continuity of the
£

indefinite integral of x there exists a 6 such that
(4) HxIE“p < ¢ whenever u(E) < 6.

Now by (iiAp) A is continuous at O0eLP(T). Hence on taking €

sufficiently small we deduce that

A(xX_)(s)]| < 1, uniformly in s, whenever u(F) < 6
F — — 3

(5)
]A(xIF)(s)| < 1, uniformly in s, whenever F C T-E,.

Now for any GeZ we have by (iA)
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n
13
|2 (xXg) (s) |=|A(XI'Gﬂ(T-E£)) (s) + .EIA(XIGﬂEi) (s)+ A(xlgn (g -Q‘Ei)) (s) |

i
(6) n

€
<1+ I IA(xIE Y(s)| + |A(xX
i=1 i

. e (5 -UE,)) (&) -

1

Moreover by splitting the nonatomic subset E; -

U
1
ne
U E, into parts
1 1

of measure less than 6 and applying (51) we obtain the estimate

De

(7) |A (xX ne )(s)]| < + 1<

GN (£ -V, ) 5 5

+ 1.

Combining (6) and (7) we deduce that

(E) o _ . o
+ “A(XIE.)"oo = M_, uniformly in s and G.

i=1l i

1
(8) |A(xxG) (s)| <2+

Therefore by equation (3) it follows that the set
(9) B, = {¢(s)°xIE|EeE, seS}

is a bounded subset of Ll(T).

Now since A takes LP(T) into C(S) we have for each

EeXZ that

) [@sexxpan = [X (@(s)ex)an = AlxIKs)
T T

is continuous with respect to s. It then follows by (iA) that

(11) fz(cp(s)ox)du is in C(S)
T

for every simple function 2z. Since the simple functions are

dense in LOO(T) = Ll(T)' and Bx is a bounded subset of Ll(T),
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it follows that (11) holds for all xeL® (T), which yields () .
To show that (cp) holds let {xn}nZ} denote a sequence
converging to x = X5 in LP(T). Then the indefinite integrals

of the are uniformly absolutely continuous and equi-

(xp )0
continuous with respect to . Hence it follows by the technique
used in deriving equation (8) that

By = {@(s)oxn1E|EeE, seS, n > 0]

xn]

is a bounded subset of Ll(T).
Now for each EeZ, xan converges to erE in Lp(T) and

hence by (ii we have

Ap)

12)  [@eexTpap = [ 1 (@e)exyap ~ [ 1 (8(s)om an,
T T T

uniformly in s.

It then follows by (iA) that

(13) J z(@(s)oxn)dp - j z(P(s)ox)du uniformly in s,
T T
for every simple function z. Since the simple functions are
dense in LOO(T) = Ll(T)' and B{x ) is a bounded subset of
n
L1 (T), it follows that (13) holds for all zeL™ (T), which yields
the transformag%on
(cp). Finally, AA; = A|L™ (E), for any E such that u(E) < oo,
satisfies (iA),(iiA) and (iiiA) of Theorem 3, the last following
from (iiAp) by virtue of the Lebesgue dominated convergence theorem.

Therefore (dp) is a consequence of Theorem 3.

The converse is immediate. Q.E.D.
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Remark: Theorems 3 and 4 are well known in the linear case

([31,p.490.)
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