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Complete sets of Expectations on von Neumann Algebras

1) Introduction.

The first theorem shown in this paper states:

If N is a von Neumann subalgebra of M and if M has

enough states which diagonalize N and if the restrictions of

these states to the center of N are normal, then there will

exist sufficiently many expectations from M to N. If the

states are normal, the expectations will be normal. This result

is an improvement of a result contained in [5]. In [5] the fol-

lowing is shown: if M is a finite countably decomposable von

Neumann Algebra and if cr is a normal state which diagonalizes

the subalgebra N of M then there exists an expectation <p

invariant under cr. A corollary of this theorem is the equivalence

of the following two statements:

(1) N is finite and there exists an expectation <p of £(h) on

N such that <p(UXU~ ) = <p(X) for all X in £(h) and all unitaries U

in the commutant N* of N.

(2) The commutant of N is finite and there exists an expecta-

tion <p! of £(h) on N' such that ^(VXV*1) = <p! (X) for all

X in £(h) and all unitaries V of N.

The second theorem states: let M be a von Neumann sub-

algebra of £(h), then if there exists enough expectations of

X(h) on M, then M is atomic.Conversely if M is atomic in

£(h) then there exists enough normal expectations of £(h) on

M. A corollary of this result is that if G is a maximal
S
^ abelian self-adjoint algebra of £(h)9 then there exists a faithful
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expectation of £(h) onto G if and only if G is totally

atomic. A result by Sakai [3] and by Tomiyama [4] are necess-

ary to carry out the proof of the above result. Another coroll-

ary to the result is that if M is a von Neumann subalgebra of

£(h) onto M then there exist enough expectations of £(h) onto

the commutant of M.

2) Definitions.

In this paragraph we shall give some of the basic defini-

tions. For these definitions see [1] and [4]. Let G be a

von Neumann subalgebra of the von Neumann algebra ft. An expecta-

tion $ of ft on G will be a linear positive map from ft on

G such that $ preserves the identity and such that $(AB) =

A$(ft) for all A in G and B in ft. $ will be faithful if

= 0 and T positive implies T = 0. $ will be called

normal if $(sup A) = sup <I>(A ) where A are self-adjoint

operators uniformly bounded in norm. Let $ be a set of

expectations from ft on G such that if T is positive and if

a (T) = 0 for all a then T = 09 the set $ will then be

called complete. A state will be a linear functional of norm

one. The above definitions of faithfullness, normality and com-

pleteness carry over for states.

Finally if N is a von Neumann subalgebra of the von Neumann

algebra M and if p is a state of M, p will diagonalize N

if p(nm) = p(mn) for all m in M and all n in N. (For

example if an algebra of nxn matrices G has a diagonal repre-

sentation respectively to some orthonormal basis XpX2,...,x .
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Then the states Ui (A) = (Ax. ,x.) , diagonalize G in the
x • i i n

above sense.)

3) The Diagonalization Theorem.

N will denote a von Neumann subalgebra of the von Neumann

algebra M. Z will denote the center of N. If G is any

von Neumann algebra and P is a projection in G or G' (the

commutant of G) then G will denote the von Neumann algebra

containing all operators of the form PAP, AeG.

Lemma jL. Let C be a family of projections in Z. Assume

that C are orthogonal and that Sc = I. Let $ be a

family of expectations of M on Nc . For each X in M define
a

$(X) = S<£ (C^XC ) . Then $ is an expectation of M on N. If
OL CL OL

all $ are normal then so is $.

Proof. Clearly $ is a map of M on N. If X is positive

then so is c
f^

c
fy

 so ^nf^Cr?^Co) "̂ s positiv® ^n N
P
 so

is positive

Let T be in N then $(TX) =

Hence $ is an expectation.

Lenunâ  2,. Suppose p is a collection of states which satisfy

the following conditions:

1) Each pa diagonalizes N
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2) Each p restricted to Z is normal

3) The set of p is complete

then N is finite and p (A) = p (A ) for all A in N (A^

denotes the unique point in the intersection of C(A) with Z

where C(A) denotes the norm closure of the convex hull gener-

ated by UAU* as U ranges over the unitaries of N. This map

is defined in [2].)

Proof. Let U be any unitary in N, let X be any element of

N. Then p^UXU" 1) = p^XUU" 1) = P^X) for all a. Let C (X)

be the norm closure of the convex hull of UXU* as U ranges

over unitaries of N. By continuity p is constant on CiX).

By [2] C(X)0 Z is never void, and it is sufficient to show that

it reduces to only one point.

Let T be in C (X) fl Z. Let A be in Z. T is limit in

the norm sense of elements of type ) a.U.XU. where OL.> 03

Z — i 1 1 1 I""™*

a. = 1 and U. are unitaries of N. So AT is limit in the

norm sense of elements of the type

n n

a.AU.XU. =s ) a.U.AXU,,
1 1 1 JLJ 1 1 1

so AT is in C (AX) (1 Z. p is constant on C (AX) so

Pa(AT) = Pa(AX) for all a and all A in Z

Let T, be another element of C (X) Hz then

p^(AT) = Pa(AX) = Pa(ATx)

so p^fAOT-T^] = 0 for all A in Z in particular if A = (T-T,)*
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then by 3) T = T±.

Also Pyy(A) =• P/y(A ) • Note that since ^ is normal, it

follows that p are normal on N.

Lemma 3• Under the above hypothesis for each a there exists a

map $a such that Pa(AX) = Pa(A^(X)) for all A in N and

all X in M.

Proof, Each p restricted to N is a normal, finite trace.

Let E be the carrier of p restricted to N. Then E is

in Z and p^ is a finite, normal, faithful trace on N_ .
a Ea

N-, ,p^ forms a Hilbert algebra with (A,B) = p^(AB^) • Let X
Ea a a

be a positive operator in M and define a
a(b) = P (AX) ,

[A,B] = a (AB*) for all A and B in N- . Then [ , ] is
a Ea

a bounded hermitian form on NE >Pa* In fact a is a positive
a a

linear functional dominated by ||x||p . By Riez lemma there exists

a bounded operator $ (X) defined on the completion of N_
a Ea

respectively to ( , ) such that

[A,B] = ($a(X) (A),B) .

For any D in N^ , let R_ be an operator defined on N_ by
Ea v Ea

= TD then it is easy to check that ^^(X) = ̂ (X)!^. By

the commutation theorem [ ], $> (X) acts on NL, by premultipli-
a.

cation (on the left) by some element which we designate by the

same symbol ^y(X) . Then

-A = *arx) (A) .

Pa(AB*X) = [A,B] = (pa(X) A,B) = •Pa(* i(X) AB*) as N^ = NE
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Pa(AX) = pa(A $a(X)) for all A in NE .

So Pa(AX) = Pa(A$a(X)) for all A in N and all X in

M and X positive. Now extend $ to M, the above relation

still holds.

Theorem 1,. Under the above hypothesis there exists a complete set

of expectations from M to N. If all p are normal in M,

these expectations are normal.

Conversely if N is finite and if there exists a complete

set of expectations of M on N, then there exists a set of

states of M satisfying (1), (2), (3) of Lemma 2.

Proof. Consider the maps $ of M on N- of the previous
a Ea

lemma. When restricted to E , $ is uniquely defined by

p (AX) = p (A$ (X)) . The * are expectations of M on N_, .
Oi OL OL OL Jc#

For example let us check that $ (TX) = T<3> (X) for all T in

N_, and all X in M. Let A be any operator in N- then
E E

Then Pa[A(T$a(X) - *a(TX)] =0 for all A in NE . . Let

A = [T$^(X) - 3> (TX)]* by faithfulness of p^ on NL,

The other axioms are checked out the same way.

By completeness of the p , sup E = I. One can pick (in
orthogonal

many ways)/\projections C in Z where C ;< E and £c = I.

For any such choice of C consider $(X) = S $ (C XC ) . By

Lemma 1 0 is an expectation of M on N. To each choice of C
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we have associated an expectation $. Now the claim is that one

obtains a complete set of $ (as one ranges over possible choices

of C^) . Let X > 0, X ̂  0, X€M. If 0^(X) = 0 for all a, then

p (X) =0 so by completeness of the p , X = 0, a contradiction.

Assume then that for a 9 $ (X) ^ 0. Choose C = E > then

construct the C for a ̂  a, . Clearly then the corresponding

$ will verify $(X) / 0.

If all p are normal, then all $ are normal so all $

are noraml. Conversely if N is finite then there exists a com-

plete set of normal finite traces, all this set Tr^* L e t $g

be the complete set of expectations of M on N. Define

p^ -(x) = Tra($n(X)). Normalize the p^ ~. It follows trivially

that the normalized p R satisfy (1), (2), (3) of Lemma 2.

Corollary 2.

If p is faithful for some a, then $ for that a is a

faithful expectation.

Proof. If $a(X*X) =0 then p^(X*X) = p^Q^iX+X)) =0 so

X = 0.

Remark. Let p be a state of M such that

(1) p restricted to Z is faithful and normal

(2) p diagonalizes N,

then there exists an expectation * of M on N such that

p(AX) = p(A$(X)) for all X in M and A in N. Lemma 3

would go through replacing p by p and $ by <E>. Of course

E would be replaced by I.
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Corollarv 3.

Let N be a von Neumann subalgebra of £(h) . Assume that

Z is countably decomposable, the following conditions are equiv

alent:

(1) N is finite and there exists an expectation $ of

on N such that ^UXU""1) = $(X) for all X in £(h) and all

unitaries U of NT (N1 = commutant of N) .

(2) N! is finite and there exists an expectation $» of £(h)

on N' such that $' (VXV"1) = $(X) for all X in £(h) all

unitaries V of N.

Proof. To show (1) implies (2). (The same argument will show

that (2) implies (1) .)

By [2] the following statements are true: N is countably

decomposable, there exists on N a finite, faithful, normal

trace, call it Tr. Define

p(X) =Tr($(X)) for all X in £(h) .

As $(UXU~ ) = $(X) for all unitaries U in N ! , hence

$(A'X) = $(XAt) for all A* in N1 . Now p(A*X) = Tr$(XA»)

Also p(AX) = Tr$(AX) =Tr(A$(X)) =Tr($(X)A) =Tr($(XA)) =

p(XA) for all A in N. Moreover p restricted to Z is nor-

mal and faithful as Tr is. By the above remark, there exists

an expectation from £(h) onto N! such that p(A!X) = p(A«$t(X))

Let V be a unitary in N

p(A'$» (VXV""1)) = pfA'VXV"1) = p(A'X) =. p(A'$t(X)).
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It was shown in Lemma 3 that p is normal and faithful over all

-1 *
of N' . If one lets A» = ($» (VXV ) - $< (X)) then

$' (VXV"1) = <S>! (X) .

cation.

Let G be a non discrete locally compact group. Let m be

2

its Haar measure. Let h = L (G,m). Then there does not exist

any normal expectation of £(h) onto the multiplication algebra

M.

First to show that no state of £(h) exists which is normal

and diagonalizes M. Let x be in G, let t be defined on h
x

by I f(-) = f(x" .) for each f in h. Let p be a state of

£(h) which diagonalizes M. Pick an orthogonal family E of

subsets of G such that U E = G, m(E )< oo and xE^ is dis-
Qi OL OL CL

joint from E . (x ̂  identity of G) . Then if ij) is the

characteristic function of E

by normality of p.

So pU) = L p(il) IJ) ) = E p(0 if) I ) = 0.

Since G is non discrete there exists a net x which converges

to e. So I converges strongly to I. So p(I) = 0 a contra-

diction.

Now no normal expectation $ could exist or else if Tr is

a finite normal trace on M, p(X) = Tr$(X) would be a normal

state diagonalizing M.
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4) Complete sets of expectations from £(h) to a von Neumann

subalgebra.

Theorem £. Let M be a von Neumann subalgebra of £(h), then if

there exists a complete set of expectations of £(h) on M, M

is atomic. Conversely if M is atomic in Z(h), there exists

a complete set of normal expectations of £(h) on M.

Proof. Assume there exists a complete set of expectations of

£(h) on M. Call this set $ . Let A be a compact positive

operator in £(h) with A ̂  0. Then for some a , $ (A) ^ 0.
o

Pick a projection P in M such that P<$ (A) = $ (A) P and
o o

$ (A) > 6P f o r 5 > 0. Now $& (M_A) = M-P&v (A) P. Let T
®o — u o p p "o

2 1
be in Mp, s i n c e Mp = Mp t h e e lement T (P$a (A) P) in in Mp.

Hence T Is in <J> (MpA) i . e . M c cf>a (MA) . MA as a
o o F F

subset of compact operators is norm separable. So $„ (MpA) is

norm separable as $ is norm continuous. By [3] this implies

that Mp is finite dimensional as an algebra. Hence there exists

a minimal projection Q in M, Q <^ P.

Now let C be a central projection of M such that M is

non atomic. Let X be any compact positive operator in £(h).
Then * (CXC) > 6Q for some 6 > 0, where Q is a minimal pro-(x — —'

jegtion in M . The only minimal projection in M is 0 so

$ (CXC) = 0 for all a. So CXC = 0 for all X compact positive

in £(h). So C = 0 and M is atomic.

Now to show the converse. Let M be atomic i.e., M is a

direct sum of factors M̂ , of type I in £(C h) (C eZ) . Assume
a a a

first that M is a factor of type I in £(h) . A result by

J. Tomiyama [41 states:



Let N. c: M. i=1^2 be von Neumann algebras. Let tr. be

a normal expectation of M. on N. . Then ir = IT, ® TT2 is a

normal expectation of M. ® ML on N, ® N2 . From the proof of

this result it is clear that if TT| ® iri form complete sets

of expectations then ir = 7ria'® ̂ 2 fQrm a complete set of

expectations from M,® M2 to N,® N 2. Now M as a factor of

type I is isomorphic to £(h,) for some h-.

Let P be a minimal projection of M. Let h2 = P(h).

Then it has been shown [2] that £(h) is isomorphic to

£(hx)® Z(h2) . Take M± = ^(tu) i=l,2. N± = ^{h^ , N2 = CI h

(scalar operators on h2) . Let TT1 be the identity. Let p

be a normal state of £(h^) (there exists a complete set of

these) and define ir2 (B) = p (B) Ih for all B in £(h2). So

IT (A®B) = A®p (B) I, = p (B) (A®I, ) .

n2 n2

As p ranges over all normal states of £(h2), ir ranges over

a complete set of expectations of ML® ML on N,® N2. Of course

Nl® N2 "*"s i s o m o rP hi c to M* T^ e following has been shown:

When M is a factor of type I in £(h) there exists a complete

set of expectations of £(h) on M.

Now in general M is the direct sum of ML where M is

a (B) a.a factor of type I in £(c h) . For a fixed a. let $KP) be a

complete set of expectations of £(C h) on M then
a.

(X) = E *}f> (C^C^)

is a set of expectations from £(h) on M by Lemma 1. Now let

G be a positive operator in £ (h) . Say $*"' (G) = 0 for all ft,
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then <E>*P' (G) = 0 . As $1 form a complete set of expectations
I I *

onto VLn , then C GC = (C G2) (C G2) as EC = I this implies
v* CX CX CX CX CX

G = O, so <&*p' forms a complete set.

Corollary 4.

Let M be a von Neumann subalgebra of £(h) and assume

that there exists a complete set of expectations of £(h) on M.

Then there exists a complete set of expectations of £(h) on M* .

Proof. By the above theorem it is sufficient to show that M!

is atomic. Since M is atomic, M is of type I and hence [2]

M* is of type I. Hence any non zero projection in M1 dominates

an abelian non zero projection of M. Let P be an abelian pro-

jection of M!. Let Q be a projection in M*, Q < P, then

Q = PC where C is a central projection. But the center Z

of M is finite and atomic, so C dominates a non zero minimal

projection of Z. So P dominates an atomic projection, i.e.,

M! is atomic.

C£rollar£ J5.

Let M be a maximal abelian self adjoint von Neumann sub-

algebra of £(h) . There exists a faithful expectation of £ (h)

on M if and only if M is atomic.

Proof. If there exists a faithful expectation of £(h) on M,

that expectation forms a complete set hence M is atomic by

Theorem 2. Conversely suppose M is atomic. Let P be mini-

mal orthogonal projections in M such that EP = I. Put

0(X) = £P XP in the strong topology (Xe£(h)). Clearly

> for all a. But the P generate M so
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$(X)eM'A£(h) = M. Trivially now it can be shown that $ is an

expectation of £(h) on M. $ is faithful: indeed if

<|>(T*T) = 0 then PaT*TPa = 0 for all a i.e., (TP^) * (TPa) = 0

so TP = 0 so T = O.
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