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Conpl ete sets of Expectations on von Neumann Al gebras

1) | ntroduction.

The first theorem shown in this paper states:
If N is a von Neumann subal gebra of M and if M has
enough states which diagonalize N and if the restrictions of

these states to the center of N are normal, then there wil

exist sufficiently many expectations from M to N if t he

states are normal, the expectations will be normal. This result
is an inprovement of a result contained in [5]. In [5] the fol -
lowing is shown: if M is a finite countably deconposable von

Neumann Al gebra and if c¢r is a normal state which diagonalizes
the subalgebra N of M then there exists an expectation Py
invariant under c¢. A corollary of this theoremis the equivalence

of the following two statements:

(1) N is finite and there exists an expectation <p of £(h) on
N. such that <p(UXU~5 = <p(X) for all X in £h) and all unitaries U

in the commutant Nt of N.

(2) The commutant of N is finite and there exists an expect a-
tion <o of £(h) on N such that ~(VXv*!) =< (X for al
Xin £(h) and all unitaries V of N

The second theorem states: let M Dbe a von Neumann sub- -
al gebra of £(h), then if there exists enough expectations of
X(h) on M then M is atomc.Conversely if M is atomc in

£(h)  then there exists enough normal expectations of £(h) on

‘M A corollary of this result is that if G is a maxi mal

abelian self-adjoint algebra of £(h)g then there exists a faithful
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expéctation of £(h) onto G if and only if G is totally
atomc. Aresult by Sakai [3] and by Tom yama [4] are necéss-

ary to carry out the proof of the above result. Another coroll-
ary to the result is that if M is a von Neumann subal gebra of
£(h) onto M then there exist enough expectations of £(h) onto

the commutant of M

2) Definitions.

In this paragraph we shall giye sonme of the basic defini-
tions. For these definitions see [1] and [4]. Let G be a
von Neumann subal gebra of the von Neumann al gebra ft. An expecta-
tion $ of ft on G wll be a linear positive map from ft on
G such that $ preserves the identity and such that $(AB) =
A$(ft) for all A in G and B in ft. $ wll be faithful if
®(T) =0 and T positive inplies T=0. $ wll be called
normal if $(sup A)or = sup <I'>(Ao? wher e Aoz are self-adjoint

o o
operators uniformy bounded in norm Let $a be a set of
expectations from ft on G such that if T 1is posit'ive and if
a (M =0 for all a then T =0, the set $ will then be
called conplete. A state vﬁll be a |inear f-unctional of nofm
one. The above definitions of faithfullness,_ normal ity and com
pl eteness carry over for states.

Finally if N 1is a von Neumann subal gebra of the von Neumann
algebra M and if p is a state of M p wll diagonalize N
if p(nm =p(m) for all m in M and all n in N. (For
exanpl e if an al gebra of nxn matrices Gn has a diagonal repre-

sentation respectively to sone orthonormal basis XpX,, ..., X
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Then the states U. (A = (A. ,x.), diagonalize G in the
. X i i n
above sense.)

3) The Di agonalization Theorem

N will denote a von Neumann subal gebra of the von Neunann
algebra M Z will denote the center of N If G is any
von Neumann algebra and P is a projection in G or G (t‘he
commutant of G then Gp w || denote the von Neumann al gebra

containing all operators of the form PAP, AeG

Lenma jL. Let Co: be a famly of projections in Z.  Assune

t hat Cy are ort hogonal and that Sca: . Let $a be a
famly of expectations of M on N, . For each X in M define
_ "a
$(X) =SE£ (C'XC.) . Then $ is an expectation of M on N If
L CL o
all $, are normal then so is 8.
Proof. Clearly $ is amp of M on N If X is positive

c

then so is SA%y S AnpfASG27%) "~ positive A" N, S0 @(X)

IS positive
$(1) =E<I)a(ca) =ECa = I
Let T be in N then $(TX) :?tha(caTXCa)
= ancha(_cq?cca) = (e, T) (Z@, (c XC ))
= TP(X) .

Hence $ is an expectation.

lenun® 2. Suppose p, is a collection of states which satisfy

the follow ng conditions:

1) Eéch pa. diagonalizes N




2) Each pa restricted to Z is normal

3) The set of is conplete

P
then N is finite and p (A =p,(AT) for all A in N (A®
denotes the unique point in the intersection of C(A) with Z
where C(A) denotes the normclosure of the convex hull gener-
ated by UAU* as U ranges over the unitaries of N This map

is defined in [2].)

Proof. Let U be any unitary in N, let X be any element of
N. Then pArUXU"!) = pAXuu"tl) = PAX) for all a. Let C(X)
be the norm closure of the convex hull of UXU* as U ranges
over unitaries of N - By continuity p. is constant on CiX).
By [2] C(X)0 Z is never void, and it is-sufficient to show that
It reduces to only one point.

Let T bein C(X fl Z Let A bein Z T is limt in

the norm sense of elements of type ) a. U XU where OL.> 03

ié:[' 1 1 1 | ™
Znai =1 and Ui are unitaries of N So AT is limt in the
i=1 |
normsense of elenents of the type
n n
Z a. AU XU. =s ) a.U AXU,,
i=1 t1d J.éL]z 111

so AT is in C(AX (1 Z Ry is constant on C(AX) so

P.(AT) = P,(AX) for all a and all A in Z.
Let T,J_ be another element of C(X) Hz then

pM(AT) = Pa(AX) = Pa(ATy)

so prMAOT-TA] =0 for all A in Z inparticular if A= (T-T,)*




then by 3) T = T..
Also Pyy() = Ply(*)+ Note that since " is normal, it

foll ows that P, are normal on N

Lemma 3» Under the above hypothesis for each a there exists a
mp $; such that Py (AX) = P,(AM(X)) for all A in N and
all Xin M '

Proof, Each Py restricted to N is a normal, finite trace.

Let _Ea be the carrier of Py restricted to N Then Ea S
in Z and p’\a is afinite, nornmal, faithful trace on NE.

a
N, ,g’_\ forns a Hlbert algebrawith (ADB :_pa"\(AB") e Let X
a

be a positive operator in M and define “(b) =P [(AX) ,
[A B :aa(AB*)_ for all A and B in I\FE. Then [ , ] is

: a
a bounded hermtian formon Ne >P,* |In fact a_ IS a positive

a
l'i near functional dom nated by ||><||pa. By Rez lemma there exists

a bounded operator $ (X defined on the conpletion of N_
a E

a
respectively to ( , ) such that
[AB = ($(X (A.B .
For any D in I\r‘E | et R_ be an operator defined on Iél_ by
a v a
R(T) =TD then it is easy to check that ~"(X) =7(X)!". By
the coomutation theorem [ ], $3 (X acts on , by premultipli-
a

cation (on the left) by some el enent which we desi gnate by the

same symbol ’\¥(X) . Then
e x)-A=*arx) (A .

P.AB*X) = [A,B] = (pa(X) AB) =<P.(*:/(X)AB*) as N~ = Ng
o o
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P.(AX) = pa(A $a(X)) for all A in Ne .
o
SO0 Pi(AX) = Py(A$(X)) for all A in N andall X in

M and X positive. Now extend $a to M the above relation

still hol ds.

Theor em 1. Under the above hypothesis there exists a conplete set
of expectations from M to N If all Py are normal in M |
t hese expectations are nornal .

Conversely if N is finite and if there exists a conplete
set of expectations of M on N then there exists a set of"

states of M satisfying (1), (2), (3) of Lemma 2.

Proof. Consider the mps $ of M on N  of the previous
a - E
_ a
|l emma. When restricted to Ee, $ is uniquely defined by
p (AY) =p (A5 (X)) . The * are expectations of M on N,
a a a a Jo#at
For exanple let us check that $TX = K(X for all T in

NE, and all X in M Let A be any operator in N t hen
o Boa

¢, (AT® (X)) = p, (A (TX)).
Then Py A(T$(X) - *a(TX)] =0 for all A in Ne. . Let
- o
A= [TN(X) - 3> (TX)]* by faithfulness of p* on N,

1

T(I)a(X) = @a(TX) .

The ot her axi ons are checked out the sane way.

By conpl et eness of the Pe SUP E, =1. (ne can pick (in
or t hogonal | .
many ways)/\projections C, in Z where. CuiS E, and £c, = 1.

For any such choi ce of C consider $(X = Sa$ &C &(C)x . By

Lemma 1 O is an expectation of - M on N  To each choice of Ca




we have associ ated an expectation $. Nowthe claimis that one
obtains a conplete set of $ (as one ranges over possible choices
of C) . Let X>0, X0, XM If 0MX =0 for all a, then
pa(X) =0 so by conpl eteness of the Pa X =0, a contradiction.
Assune then that for agp $°‘o(X) N 0. Choose C 0: Ea: t hen
construct the Ca for a” a - dearly then the correspondi ng

$ will verify $(X [/ 0.

I f all P, are normal , then aII,'$a are normal so aII' $
are noraml. Conversely if N is finite then there exists a com
plete set of normal finite traces, all this set "7A* ¢t $g
be the conplete set of expect ations of M on N Define |
p"’B(x) :Tra($Q(X)). Normal i ze the p",s. It follows trivially
that the normalized p _g satisfy (1), (2), (3) of Lemma 2.

Corol lary 2.
| f Py is faithful for some a, then $a for that a is a
faithful expectation.
Proof. If $4(X*X) =0 then pM(X*X) = p Qi X+X)) =0 so
X = 0.

Remark. Let p be a state of M such thatl
(1) p restricted to Z is faithful and normal
(2) p diagonalizes N,
then there exists an expectation * of M on N such that
p( AX) = p(A$(X))' for all X in M and A in N Lerma 3
woul d go through replacing p, by p and $a by €& O course

Eo woul d be replaced by |I.




Corol larv 3.
Let N be a von Neumann subal gebra of £(h) . Assume that
Z 1s countably deconposable, the follow ng conditions are equiv-

al ent:

(1) N is finite and there exists an expectation $ of &(h)
on N such that ~uxu'"') = $(X) for all X in £(h) and all

unitaries U of N (N = commutant of N) .

(2) N is finite and there exists an expectation $» of £(h)
on N such that $ (VXv'!) = $(X) for all X in £(h) all

unitaries V of N

Proof. To show (1) implies (2). (The same argument will show
that (2) inplies (1) .)

By [2] the following statements are true: N is countably
deconposable, there exists on N a finite, faithful, normal

trace, call it Tr. Define
p(X) =Tr($(X)) for all X in £(h) .

As $(UXU~1) = $(X) for all unitaries U in N', hence
$(A'X) = $(XAt) for all A* in N . Now p(A*X) = Tr$(XA») =
D(XAt) .,

Al'so p(AX) = Tr$(AX) =Tr(A$(X)) =Tr($(X)A) =Tr($(XA)) =
p(XA) for all A in N  Moreover p restricted to Z 1is nor-
mal and faithful as Tr is. By the above remark, there exists
an expectation from £(h) onto N such that p(A'X) = p(A«$t(X)).
Let V be a unitary in N

P(A $» (VXV'"Y)) = pf A VXV'Y) = p(A'X) = p(A $t(X)).
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It was shown in Lemma 3 that p is normal and faithful over all
of N . If one lets A» = ($>>(VX\/_]) - $< (X)) then
$ (Vv =& (X .

Applicatiqn.
Let G be a non discrete locally conpact group. Let m be
2

its Haar neasure. Let h =L (G m. Then there does not exist
any normal expectation of £(h) onto .t he mul tiplication al gebra
M

First to show that no state of £(h) exists which is nornmal

and diagonalizes ;M Let x be in G let t be defined on h
- X

by I f(-) =f(x" .) for each f in h. Let p be a.statg of
£(h) which diagonalizes M Pick an orthogonal famly E  of

subsets of Ggsuch that UE =G mE )< oo andg xE™ is dis-
d a o % a

o
joint from E . (x ™ identity of G . Thenif 1ij) is the

charact eri sPilc functién of E ) =& pldg ’Lv'pﬁ'.

by normality of p.
So pU =Lp(il)=1Jd).) =Ep(0.if)-1) =0.

Since G is non discrete there exists a net X whi ch conver ges

to e. So | converges strongly to I. So p(l) =0 a contra--

di cti on.
Now no normal expectation $ could exist or else if Tr is
a finite normal trace on M p(X) = Tr$(X) would be a nornal

state diagonalizing M
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4) Conplete sets of expectations from £(h) to a von Neunann
subal gebr a.

Theorem£. Let M be a von Neumann subal gebra of £(h), then if
there exists a conplete set of expectations of £h) on M M
is atomc. Conversely if M is atomc in Z(h), there exists

a conpl ete set of normal expectations of £(h) on M

Proof. Assune there exists é conpl ete set of expectations of

£(h) on M Call this set $a' Let - A be a conpact positive
operator in £(h) with A~ 0. Then for sone a, $aO(A) A 0.
Pick a projection P in M such that P@ao(ﬁ) = $aO(A) P and

$®0(A) > 6P for 5> 0. Now $<§O MA) = I\g-P&,\é (A)P. Let T

2 -1
be in Mp, since M, = M, the element T (P$ao (A) P) in in My

Hence T Is in d>aO(M‘pA) i.e. l\/lp _C'd>a0(l\zéA). I\FAA as a

subset of conpact operators is normseparable. So $,°(MA is.
nor m separ abl e as $% is norm conti nuous: By [3] this irrpliés .
that M is finite dinensional as an algebra. Hence there exists
amninmal projection Q in M Q<P

Now let C be a central projection of M such that M s

non atomc. - Let X be any conpact positive'operat or in £(h).
Then *_(__g(O(C) > 6Q for some 6 =% 0, where Q is a mnimal pro-

jegtion in M.. The only mninal projectionin M is 0 so
$a(O(Q =0 for all a So CXC=0 for all X conpact positive
in £h). So C=0 and M is atomc.

Now to show the converse. Let M be atomc i.e., M is a
direct sumof factors M, of typel in £Ch) (CeZ . Assunme
a a a '

first that M is a factor of type | in £(h) . Aresult by

J. Tomyanma [41 states:
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Let N':. C: |\4 | =172 Dbe von Neumann al gebras. Let tri be
a normal expectation of M , on N. N Then ir = IT,J_®TT2 is a
normal expectation of 'M_L ® I\/I2 on Ni ®N, . Fromthe proof of

this result it is clear that if T'Ija) ®irja) formconplete sets
of expectations then i® = {ri‘a'®"_(2") frma conplete set of
expectations from M_L® I\/l_>_ to N,J'® Nz_. Now M as a factor of
type I is isonorphic to £(h1) for sone hl'

Let P be a mniml projection of M Let hz_ = P(h).
Then it has been shown [2] that £(h) is isonorphic to
£(hy) ® Z(hy) . Take Mt:"(tg) i=l,2. N =2{h*, N, =ClI h,
"(scal ar operators on _hz_) . Let TT, be the identity. Let p
.be a nornmal state of £(h"_) (there exists a conplete set of

these) and define ir,(B =p(B I, for all B in £(hy;). So
' 2

| T(ARB) =AGp(B I, =p(B (AR, ).
n2 n2
As p ranges over all normal states of £(h,y, ir ranges over
a conpl et'e set of expectations of M®M on N®Ns.. O course
NI @N2- s j semorphjcto M Tae fg]|owing has been shown: |
When M is a factor of type | in £(h) there exists a conplete
set of expectati ons. of £(h) on M

Now in general M is the direct sumof M  where M is
a factor of type | in £(cf) . For a fixed a. glet (ﬁ‘)@) bg. a

conpl ete set of expectations of £(Cah) on I\é t hen
. a .

(8) - F % AY A

o (¥ = E*}f> (00

is a set of expectations from £(h) on M by Lenma 1. ‘Now let

G be a positive operator in £(h) . Say $*"f":‘(G) =0 for all ft,
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t hen <[—.'3*F" ( =0. As %I" forma conplete set of expectations
| | *
onto VL, , then CQC = (CG&) (CGEF as EC =1 this inplies
* cX X CX CX CX .

Ve .
G=0 so <& forns a conplete set.

Corol lary 4.
Let M be a von Neumann subal gebra of £(h) and assune
that there exists a conplete set of expectations of £(h) on M

Then there exists a conplete set of expectations of £(h) on M .

Proof. By the above theoremit is sufficient to showthat M

is atomc. Snce M is atomc, M is of type | and hence [2]

M is of type |I. Hence any non zero projection in M dom nat es
an abelian non zero projection of M Let P be an abelian pro-
jection of M. Let Qbe a projectionin M, Q< P, then
Q=PC where C is a central projection. But the center Z
of M is finite and atomc, so C domnates a non zero m ninal
pr oj ecti.on of Z So P domnates an atomc projection, i.e.,

M is atomec.

CErol Lar £ J5.
Let M be a naxinmal abelian self adjoint von Neumann sub-
al gebr'a of £(h) . There exists a faithful expectation of £ (h)

on M if and only if M is atomc.

Proof. If there exists a faithful expectation of £(h) on M
that expectation forns a conplete set hence M is atomc by
Theorem 2. Conversely suppose M is atomc. Let Pa be m ni -
mal orthogonal projections in M such that EPa: . Put

o(x) = EP XP o in the strong topology (Xef(h)). Qearly

P 2(X) = 2(X)F>, for all a. But the I?x generate M so
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$(X)eM AE(h) =M Trivially nowit can be shown that $ is an
expectation of £(h) on M $ is faithful: indeed if

4XTT) =0 then P,7*TP, =0 for all a i.e., (TP') *(TPy) =0
so TP_ =0 so T =0.
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