COMPLETE SETS OF EXPECTATIONS ON VON NEUMANN ALGEBRAS

by

x,

- .

.

Andre de Korvin

Report 68-17

June, 1968

University Libraries Carnegie Meflen Universf_{ty} Pittsburgh PA 15213-3890

1) <u>Introduction</u>.

<u>,</u> ^

ž

The first theorem shown in this paper states:

If N is a von Neumann subalgebra of M and if M has enough states which diagonalize N and if the restrictions of these states to the center of N are normal, then there will exist sufficiently many expectations from M to N. If the states are normal, the expectations will be normal. This result is an improvement of a result contained in [5]. In [5] the following is shown: if M is a finite countably decomposable von Neumann Algebra and if cr is a normal state which diagonalizes the subalgebra N of M then there exists an expectation $<p_{g}$ invariant under cr. A corollary of this theorem is the equivalence of the following two statements:

(1) N is finite and there exists an expectation < p of f(h) on N such that $< p(UXU \sim \frac{1}{}) = < p(X)$ for all X in f(h) and all unitaries U in the commutant N* of N.

(2) The commutant of N is finite and there exists an expectation $q^!$ of f(h) on N' such that $^{(VXV*^1)} = q^!(X)$ for all X in f(h) and all unitaries V of N.

The second theorem states: let M be a von Neumann subalgebra of f(h), then if there exists enough expectations of X(h) on M, then M is atomic.Conversely if M is atomic in f(h) then there exists enough normal expectations of f(h) on M. A corollary of this result is that if G is a maximal abelian self-adjoint algebra of $f(h)_g$ then there exists a faithful

> HUNT LIBRARY CARNEGIE-MELLON UNIVERSITY

expectation of f(h) onto G if and only if G is totally atomic. A result by Sakai [3] and by Tomiyama [4] are necessary to carry out the proof of the above result. Another corollary to the result is that if M is a von Neumann subalgebra of f(h) onto M then there exist enough expectations of f(h) onto the commutant of M.

2) Definitions.

In this paragraph we shall give some of the basic definitions. For these definitions see [1] and [4]. Let G be a von Neumann subalgebra of the von Neumann algebra ft. An expectation \$ of ft on G will be a linear positive map from ft on G such that \$ preserves the identity and such that \$(AB) = A\$(ft) for all A in G and B in ft. \$ will be faithful if $\tilde{\Phi}(\mathbf{T}) = 0$ and T positive implies T = 0. \$ will be called $(\sup_{\alpha} A) = \sup_{\alpha} \langle D | A_{\alpha} \rangle$ where A_{α} are self-adjoint normal if operators uniformly bounded in norm. Let $\$_{n}$ be a set of expectations from ft on G such that if T is positive and if for all a then $T = 0_9$ the set $\$_n$ will then be $a_{n}(T) = 0$ called complete. A state will be a linear functional of norm one. The above definitions of faithfullness, normality and completeness carry over for states.

Finally if N is a von Neumann subalgebra of the von Neumann algebra M and if p is a state of M, p will diagonalize N if p(nm) = p(mn) for all m in M and all n in N. (For example if an algebra of nxn matrices G_n has a diagonal representation respectively to some orthonormal basis XpX_2, \ldots, x_n .

-2-

Then the states Ui (A) = (Ax, ,x.), diagonalize G in the x i i n above sense.)

3) <u>The Diagonalization Theorem</u>.

N will denote a von Neumann subalgebra of the von Neumann algebra M. Z will denote the center of N. If G is any von Neumann algebra and P is a projection in G or G' (the commutant of G) then G_p will denote the von Neumann algebra containing all operators of the form PAP, AeG.

Lemma JL. Let C_{α} be a family of projections in Z. Assume that C_{α} are orthogonal and that $Sc_{\alpha} = I$. Let $\$_{\alpha}$ be a family of expectations of M on N_{c} . For each X in M define a $\$(X) = S < \pounds (C^XC.)$. Then \$ is an expectation of M on N. If $OL \ CL \ OL$ all $\$_{\alpha}$ are normal then so is \$.

Proof. Clearly \$ is a map of M on N. If X is positive then so is ${}^{c}{}_{f}{}^{a}{}_{f}{}_{y}$ so ${}^{n}{}_{f}{}^{c}{}_{r}{}_{s}{}^{a}{}^{c}{}_{o}$ "As positive ${}^{n}{}^{N}{}_{p}$ so $\Phi(X)$ is positive

$$\Phi(I) = \Sigma \Phi_{\alpha}(C_{\alpha}) = \Sigma C_{\alpha} = I$$

Let T be in N then $(TX) = \Sigma \Phi_{\alpha}(C_{\alpha}TXC_{\alpha})$

$$= \Sigma C_{\alpha} T \Phi_{\alpha} (C_{\alpha} X C_{\alpha}) = (\Sigma C_{\alpha} T) (\Sigma \Phi_{\alpha} (C_{\alpha} X C_{\alpha}))$$
$$= T \Phi (X) .$$

Hence \$ is an expectation.

Lenuna², Suppose p is a collection of states which satisfy the following conditions:

1) Each p_a diagonalizes N

- 2) Each p, restricted to Z is normal
- 3) The set of p_{α} is complete

then N is finite and $p_{\alpha}(A) = p_{\alpha}(A^{*})$ for all A in N (A^{*}) denotes the unique point in the intersection of C(A) with Z where C(A) denotes the norm closure of the convex hull generated by UAU* as U ranges over the unitaries of N. This map is defined in [2].)

Proof. Let U be any unitary in N, let X be any element of N. Then $p^UXU^{1} = p^XUU^{1} = p^X$ for all a. Let C(X) be the norm closure of the convex hull of UXU* as U ranges over unitaries of N. By continuity p_{π} is constant on CiX). By [2] C(X)0 Z is never void, and it is sufficient to show that it reduces to only one point.

Let T be in C(X) fl Z. Let A be in Z. T is limit in the norm sense of elements of type) a.U.XU. where $OL > 0_3$ $\sum_{i=1}^{n} a_i = 1$ and U_i are unitaries of N. So AT is limit in the norm sense of elements of the type

$$\sum_{i=1}^{n} a.AU.XU. = s) a.U.AXU, ,$$

$$\mathbf{i=1} \quad \mathbf{i=1}^{JLJ} \quad \mathbf{i=1}^{JLJ}$$

so AT is in C(AX)(1 Z. p_{e} is constant on C(AX) so

 $P_a(AT) = P_a(AX)$ for all a and all A in Z.

Let T_{i} be another element of C(X) Hz then

$$p^{(AT)} = P_a(AX) = P_a(AT_x)$$

so $p^{AOT-T^{}} = 0$ for all A in Z in particular if A = $(T-T_{i})^{*}$

-4-

then by 3) $T = T_{\pm}$.

Also $Pyy(^{A}) = P/y(^{A}) \cdot Note that since ^ is normal, it follows that <math>p_{\alpha}$ are normal on N.

Lemma 3. Under the above hypothesis for each a there exists a map a such that $P_a(AX) = P_a(A^{(X)})$ for all A in N and all X in M.

Proof, Each p_{α} restricted to N is a normal, finite trace. Let E_{α} be the carrier of p_{α} restricted to N. Then E_{α} is in Z and p_{a}^{*} is a finite, normal, faithful trace on $N_{E_{\alpha}}$. $N_{E_{\alpha}^{*}}, p_{a}^{*}$ forms a Hilbert algebra with $(A,B) = p_{a}^{*}(AB^{*}) \cdot Let X$ be a positive operator in M and define $a_{a}(b) = P_{\alpha}(AX)$, $[A,B] = a_{a}(AB^{*})$ for all A and B in $N_{E_{\alpha}}^{-}$. Then [,] is a bounded hermitian form on $N_{E_{\alpha}} > P_{a}^{*}$ In fact a_{a} is a positive linear functional dominated by $||x||p_{\alpha}$. By Riez lemma there exists a bounded operator (X) defined on the completion of $N_{E_{\alpha}}^{-}$ respectively to (,) such that

 $[A,B] = (\$_a(X) (A),B)$.

For any D in $\mathbb{N}_{E_{a}}^{*}$, let \mathbb{R}_{V}^{-} be an operator defined on $\mathbb{N}_{E_{a}}^{-}$ by $\mathbb{R}_{D}(\mathbf{T}) = \mathrm{TD}$ then it is easy to check that $^{*}(\mathbf{X}) = ^{*}(\mathbf{X}) ! ^{*}$. By the commutation theorem [], $\$_{\alpha}^{*}(\mathbf{X})$ acts on $\mathbb{N}_{E_{a}}^{*}$, by premultiplication (on the left) by some element which we designate by the same symbol $^{*}\mathbf{y}(\mathbf{X})$. Then

$$\Phi_{\alpha}(\mathbf{x}) - \mathbf{A} = *_{a}\mathbf{r}\mathbf{x}) (\mathbf{A}) .$$

 $P_a(AB*X) = [A,B] = (p_a(X) A,B) = \bullet P_a(*_i(X)AB*)$ as $N^{\wedge} = N_E \alpha$

 $P_a(AX) = p_a(A \$_a(X))$ for all A in N_E .

So $P_a(AX) = P_a(A\$_a(X))$ for all A in N and all X in M and X positive. Now extend $\$_{\alpha}$ to M, the above relation still holds.

Theorem 1,. Under the above hypothesis there exists a complete set of expectations from M to N. If all p_{α} are normal in M, these expectations are normal.

Conversely if N is finite and if there exists a complete set of expectations of M on N, then there exists a set of states of M satisfying (1), (2), (3) of Lemma 2. Proof. Consider the maps $\[mathbb{s}\] of M on N- of the previous <math>\[mathbb{a}\] a \[mathbb{R}\] a \[mathbb{C}\] a \[mat$

$$\Phi_{\alpha}(AT\Phi_{\alpha}(X)) = \rho_{\alpha}(A\Phi_{\alpha}(TX)).$$

Then $P_a[A(T\$_a(X) - *_a(TX)] = 0$ for all A in N_E . Let α A = [T\\$^(X) - 3> (TX)]* by faithfulness of p^ on NL, α

$$T\Phi_{\alpha}(X) = \Phi_{\alpha}(TX) .$$

The other axioms are checked out the same way.

By completeness of the $p_{\alpha'}$ sup $E_{\alpha} = I$. One can pick (in orthogonal many ways)/\projections C_{α} in Z where $C_{\alpha} :\leq E_{\alpha}$ and $fc_{\alpha} = I$. For any such choice of C_{α} consider $\$(X) = S_{\alpha}\$(C X C_{\alpha})$. By Lemma 1 0 is an expectation of M on N. To each choice of C_{α}

-6-

we have associated an expectation \$. Now the claim is that one obtains a complete set of \$ (as one ranges over possible choices of C^). Let X > 0, X ^ 0, X $\in M$. If $0^{(X)} = 0$ for all a, then $p_{\alpha}(X) = 0$ so by completeness of the $p_{\alpha'}(X) = 0$, a contradiction. Assume then that for $a_{\sigma}^{0} $ $_{\alpha}_{0}^{(X)} 0. Choose C <math>_{\alpha} = E_{\sigma}^{0} $$ then construct the C for $a^{*}a_{\sigma}$. Clearly then the corresponding \$ will verify \$(X) / 0.

If all p_{α} are normal, then all \hat{s}_{α} are normal so all \hat{s} are normal. Conversely if N is finite then there exists a complete set of normal finite traces, all this set $\operatorname{Tr}_{*} \operatorname{Let}_{} sg_{,}$ be the complete set of expectations of M on N. Define $p_{,\bar{\beta}}(x) = \operatorname{Tr}_{a}(\hat{s}_{\bar{p}}(X))$. Normalize the $p_{,\tilde{\rho}}^{,}$. It follows trivially that the normalized $p_{,R}$ satisfy (1), (2), (3) of Lemma 2.

Corollary 2.

If p_{α} is faithful for some a, then a for that a is a faithful expectation.

Proof. If $\hat{s}_a(X^*X) = 0$ then $p^{(X^*X)} = p^Q^{iX+X} = 0$ so X = 0.

Remark. Let p be a state of M such that

(1) p restricted to Z is faithful and normal

(2) p diagonalizes N,

then there exists an expectation * of M on N such that p(AX) = p(A\$(X)) for all X in M and A in N. Lemma 3 would go through replacing p_{α} by p and $\$_{\alpha}$ by \clubsuit . Of course E_{α} would be replaced by I.

.-7-

Corollarv 3.

Let N be a von Neumann subalgebra of £(h). Assume that Z is countably decomposable, the following conditions are equivalent:

(1) N is finite and there exists an expectation \$ of $\mathfrak{L}(h)$ on N such that $^UXU""^1$ = \$(X) for all X in $\mathfrak{t}(h)$ and all unitaries U of N^T (N¹ = commutant of N).

(2) $N^{!}$ is finite and there exists an expectation \$>> of £(h) on N' such that \$' (VXV"¹) = \$(X) for all X in £(h) all unitaries V of N.

Proof. To show (1) implies (2). (The same argument will show that (2) implies (1).)

By [2] the following statements are true: N is countably decomposable, there exists on N a finite, faithful, normal trace, call it Tr. Define

p(X) = Tr(\$(X)) for all X in $\pounds(h)$.

As $\$(UXU \sim L) = \(X) for all unitaries U in N', hence \$(A'X) = \$(XAt) for all A* in N¹. Now $p(A*X) = Tr\$(XA*) = \Phi(XA')$.

Also p(AX) = Tr\$(AX) = Tr(A\$(X)) = Tr(\$(X)A) = Tr(\$(XA)) = p(XA) for all A in N. Moreover p restricted to Z is normal and faithful as Tr is. By the above remark, there exists an expectation from £(h) onto N' such that p(A'X) = p(A « \$t(X)). Let V be a unitary in N

p(A'\$ (VXV'')) = pfA'VXV'') = p(A'X) = .p(A'\$t(X)).

It was shown in Lemma 3 that p is normal and faithful over all of N'. If one lets $A \gg = (\$ \otimes (VXV^{-1}) - \$ < (X))^*$ then $\$' (VXV^{*1}) = \diamondsuit' (X)$.

Application.

Let G be a non discrete locally compact group. Let m be 2 its Haar measure. Let h = L (G,m). Then there does not exist any normal expectation of f(h) onto the multiplication algebra M.

First to show that no state of f(h) exists which is normal and diagonalizes $\mathbf{1}^{M}$. Let x be in G, let t be defined on h x by $I f(-) = f(x^{"} .)$ for each f in h. Let p be a state of f(h) which diagonalizes M. Pick an orthogonal family E of subsets of G_{α} such that U E = G, m(E) < oo and $\mathbf{E} \times \mathbf{E}^{\wedge}$ is dis*qi oL oL oL a* joint from E . (x ^ identity of G). Then if *ij*) is the characteristic function of E $= \sum_{\alpha} \rho(\psi_{\mathbf{E}} \ell_{\mathbf{v}} \psi_{\mathbf{E}})$

by normality of p.

So pU = Lp(iI) IJ = Ep(0 if) I = 0.

Since G is non discrete there exists a net x_{α} which converges to e. So I converges strongly to I. So p(I) = 0 a contra-diction.

Now no normal expectation $\$ could exist or else if Tr is a finite normal trace on M, p(X) = Tr\$(X) would be a normal state diagonalizing M.

4) Complete sets of expectations from £(h) to a von Neumann subalgebra.

Theorem £. Let M be a von Neumann subalgebra of $\pounds(h)$, then if there exists a complete set of expectations of $\pounds(h)$ on M, M is atomic. Conversely if M is atomic in Z(h), there exists a complete set of normal expectations of $\pounds(h)$ on M.

Proof. Assume there exists a complete set of expectations of f(h) on M. Call this set a_{α} . Let A be a compact positive operator in f(h) with A ^ 0. Then for some $a_{\alpha'} a_{\alpha'}^{(A)} a_{\alpha'}$

subset of compact operators is norm separable. So $\$, \bullet, \bullet, \bullet, \bullet, \bullet, \bullet, \bullet, \bullet$ is norm separable as $\$, \bullet, \bullet, \bullet, \bullet$ is norm continuous. By [3] this implies that M_p^{\bullet} is finite dimensional as an algebra. Hence there exists a minimal projection Q in M, Q < P.

Now let C be a central projection of M such that M is non atomic. Let X be any compact positive operator in f(h). Then $*_{(CXC)} \ge 6Q$ for some $6 \ge 0$, where Q is a minimal projegtion in M_r. The only minimal projection in M_r is 0 so $g_{\alpha}(CXC) = 0$ for all a. So CXC = 0 for all X compact positive in f(h). So C = 0 and M is atomic.

Now to show the converse. Let M be atomic i.e., M is a direct sum of factors M, of type I in £(C h) (C eZ). Assume a a a first that M is a factor of type I in £(h). A result by J. Tomiyama [41 states: Let $N_1 c: M_1$ i=1^2 be von Neumann algebras. Let tr_i be a normal expectation of M_1 on N_1 Then $ir = IT_4 \otimes TT_2$ is a normal expectation of $M_1 \otimes M_2$ on $N_1 \otimes N_2$. From the proof of this result it is clear that if $TT_1^{(\alpha)} \otimes iri^{(\alpha)}$ form complete sets of expectations then $ir = 7ri^{a_1} \otimes \sqrt{2}$ $f^{Qrm a}$ complete set of expectations from $M_1 \otimes M_2$ to $N_1 \otimes N_2$. Now M as a factor of type I is isomorphic to $f(h_1)$ for some h_1 .

Let P be a minimal projection of M. Let $h_2 = P(h)$. Then it has been shown [2] that f(h) is isomorphic to $f(h_x) \otimes Z(h_2)$. Take $M_{\pm} = \uparrow(tu)$ i=1,2. $N_{\pm} = \uparrow\{h^{\uparrow}, N_2 = CI_h$ (scalar operators on h_2). Let TT_1 be the identity. Let p be a normal state of $f(h^{\uparrow})$ (there exists a complete set of these) and define $ir_2(B) = p(B)I_h$ for all B in $f(h_2)$. So

> $IT (A \otimes B) = A \otimes p (B) I, = p (B) (A \otimes I,).$ ⁿ2 ⁿ2 ⁿ2

As p ranges over all normal states of $f(h_2)$, *ir* ranges over a complete set of expectations of ML® ML on N, \mathbb{N}_2^{-} . Of course $^{N}1 \otimes ^{N}2^{-}$ "*"[§] i^{somor}P^hi^{c to M}* ^T following has been shown: When M is a factor of type I in f(h) there exists a complete set of expectations of f(h) on M.

Now in general M is the direct sum of ME where $M^{\mathbb{C}}$ is a factor of type I in $f(c_{\mathbf{A}}^{h})$. For a fixed a. alet $g_{\mathbf{A}}^{KP}$ ba a complete set of expectations of $f(C_{\mathbf{A}}^{h})$ on $M_{\mathbf{C}}$ then

$\Phi^{(\beta)}(X) = E_{\alpha}^{*} f > (C^{*}C^{*})$

is a set of expectations from f(h) on M by Lemma 1. Now let G be a positive operator in f(h). Say $f^{*'}(G) = 0$ for all ft, then $\langle \mathbf{E}_{\mathbf{x}}^{\mathbf{x}^{\mathbf{p}_{i}}}$ (G) = 0. As $\mathbf{S}_{\mathbf{x}}^{\mathbf{p}_{i}}$ form a complete set of expectations onto VL_{n} , then C.GC. = (C, G^{2}) (C, G^{2}) as EC. = I this implies $\mathbf{x}^{\mathbf{x}}\mathbf{x}$ \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x}

Corollary 4.

Let M be a von Neumann subalgebra of f(h) and assume that there exists a complete set of expectations of f(h) on M. Then there exists a complete set of expectations of f(h) on M*. Proof. By the above theorem it is sufficient to show that M[!] is atomic. Since M is atomic, M is of type I and hence [2] M* is of type I. Hence any non zero projection in M¹ dominates an abelian non zero projection of M. Let P be an abelian projection of M[!]. Let Q be a projection in M*, Q \leq P, then Q = PC where C is a central projection. But the center Z of M is finite and atomic, so C dominates a non zero minimal projection of Z. So P dominates an atomic projection, i.e., M[!] is atomic.

Cfrollarf J5.

Let M be a maximal abelian self adjoint von Neumann subalgebra of f(h). There exists a faithful expectation of f(h)on M if and only if M is atomic.

Proof. If there exists a faithful expectation of f(h) on M, that expectation forms a complete set hence M is atomic by Theorem 2. Conversely suppose M is atomic. Let P_{α} be minimal orthogonal projections in M such that $EP_{\alpha} = I$. Put $0(X) = f_{\alpha}^{P} \alpha P_{\alpha}$ in the strong topology (Xef(h)). Clearly $P_{\alpha} \Phi(X) = \Phi(X) F_{\alpha}$ for all a. But the P_{α} generate M so (X)eM'Af(h) = M. Trivially now it can be shown that \$ is an expectation of f(h) on M. \$ is faithful: indeed if <|>(T*T) = 0 then $P_aT*TP_a = 0$ for all a i.e., $(TP^{A}) * (TP_a) = 0$ so $TP_{\alpha} = 0$ so T = 0.

> HUNT LIBRARY CAANEGIE-MELLON UNIVEROIJI

Bibliography.

- [1] Dixmier, J.: "Formes lineaires sur un anneau d^fOperateurs", Bull. Soc. Math. France, 81: 9-39, 1953.
- [2] : "Les Algebres d'Operateurs dans l»Espace Hilbertien", Paris, 1957.
- [3] Sakai, S.: "Weakly Compact Operators in Operator Algebras", Pac. Jour, Math., 14: 659-664, 1964.
- [4] Tomiyama, J.: "On the Product Projection of Norm One in the Direct Product of Operator Algebras", Proc. Jap. Acad., 11: 305-313, 1959.
- [5] Umegaki, H.: "Conditional Expectation in an Operator Algebra", Tohoku Math. Jour., 6: 177-181, 1954.