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1. Introduction

The functional-differential equations studied here have the

form
x(t) = £&D), (1.1)

where the superposed dot denotes a right-hand derivative, §t is the
function on [0,») defined by §t(s) = 5(t-s), and f is a preassigned,
continuous, locally bounded functlon mapping a function space V into a
finite dimensional vector space E". By a solution up to A (A > 0) of
(1.1) we mean a function x(-) on (-»,A) which obeys (1.1) for all t in
[0,A). Assuming that the domain Vof £ is a history space of the type

occurring in the theory of fading memory,# we find sufficient conditions

#See, in particular, [1968, 1].

for the stability of solutions of (1.1).

In a recent essay [1968, 2], we considered evolving systems
. more general than those described by (1.1), but wevsought sufficient
conditions for only simple stability; here the emphasis is laid on
asymptotic stability.

After listing in Section 2 the basic properties of a history
space V, we show, in Section 3, how results obtained in [1968, 2] may be

applied to the equation (1.1). In Section 4 we prove lemmas about the




compactness in V of the closure of trajectories, and the existence,
invariance, and attracting power of positive limit sets of solutions of
(1.1). The utility of such lemmas for the investigation of asymptotic
stability is brought out by the work of La Salle [1960, 2], [1967, 4]
on ordinary differential equations and of Hale (1963, 1], [1965, 5] on
functional-differential equations. Indeed, the proofs given in Section 4
are modeled after those employed by Hale [1965, 1] for the case
in which the domain of g is a space (2 of continuous functions on [0,)
endowed with the compact open topology. Because the Banach function
spaces V of the theory of fading memory are likely to be less familiar
to the cultivators of stability theory than the space (3 employed by
Hale, we have thought it desirable to outline in detail our proofs of
the basic lemmas. The theorems proven in Section 5 give sufficient
conditions for the asymptotic stability of a solution of (1.1). 1In
Section 6 we apply Theorems 3.1 and 5.1 to an easily visualized physical
problem. In the Appendix we discuss extensions of stability theorems of
Hale [1963, 1], [1965, 3] to our history spaces V.

Although we assume that the generally non-linear functional f
in (1.1) is continuous on a history space V and maps bounded sets in ¥
into bounded sets in En, our main theorems do not require that f be

#

Lipschitz continuous.

#Although Hale [1963, 1], [1965, 1], in the proof of his theorems on the
extent of stability, assumes that the functional f is locally Lipschitzian,
he points out [1965, 1, p. 455] that no such condition is required for

the proof of his basic lemmas.
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The present investigation arose out of two observations.

(I) Ttere are differences between the function spaces usually
employed in the theory of functional-differential equations and the
history spaces V which occur in studies of the mechanics and thermodynamics
of materials with gradually fading memory. An example of a material with
fading memory is one obeying Boltzmann's linear theory of viscoelasticity;
for such a material, in the one-dimensional case, the stress T(t) is given

by the following type of functional of the history of the strain E:

T(t) = G(O0)E(t) +f G' (s)E(t-s)ds. (1.2)
0

Here G is a smooth function on [0,») with its derivative G'(s) negative
for all s > 0. A functional with the form (1.2) is clearly not continuous
in the compact open topology, but is continuous over an appropriate

#

history space from the theory of fading memory, provided only that G' is

#Cf. Coleman & Noll [1960, 1], [1961, 1]; Coleman & Mizel [1966, 1].

a

dominated bXApositive measurable function £ with the properties (I)-(IV)

listed in Remark 2.4 below. We have, therefore, been interested in

determining whether the theories of stability developed recently by

Krasovskii, La Salle, and Hale can be extended to cover functional-differential

equations compatible with the theory of fading memory used in continuum

physics.




(II) For many problems with physical applications, known

results in the thermodynamics of materials with memory# can supply

#boleman (1964, 1], Coleman & Mizel (1967, 2].

directly free-energy functionals which have properties similar to, but not

.

identical with the Liapunov functionals occurring in the work of Krasovskii

##see [1959, 1, Theorems 30.1 and 30.3].

and Haleﬁﬁﬁ. It is natural to ask whether one may use free energy

###See [1965, 1, Corollary 2].

functionals to:investigate stability. Our present Theorems 3.1 and 5.1
show that the answer is yes. The criterion for stability which results
seems to justify the common practice in physics of declaring that states

of stable equilibrium are those which minimize the "equilibrium free

i

energy". In this regard the present study continues and extends our

ﬁﬁﬁﬁCf. Gibbs [1875, 1].

T

recent investigations of the relation of thermodynamic principles

isisﬁimColeman & Mizel [1967, 2], [1968, 2]; see also Coleman & Greenberg [1967, 1].

to criteria for dynamical stability.




2. The Space g£ Histories

Let E® be a real Euclidean space of n-vectors with norm

lxl = ¥x-x , and let yr be a past-history space, i.e. a Banach function

space of the type discussed by Coleman & Mizel

#[1967, 31, [1968, 11]. V_ can be constructed by employing an appropriate seminorm v
on measurable functions mapping (0,®) into itself and asserting that a

measurable function 2 mapping (0,») into ED corresponds to an element

of v, if and only if v(lfl) < », The norm on Xr is then "Z"r = V(lfi) and two

functions 9 and ¥ on (0,») are considered the same if v(IW*'¢I) = (,

formed from functions ¥,$,... mapping (0,®) into E'. We list below the

basic properties assumed for Xr:

A. Constants are Zr; i.e. if a is in E® then Q, defined by

a(s) = a for se(0,0), is in v.

B. Yr contains all right and left translates of its elements;

i.e. if ¥ is in ¥_ then (Y and T oY defined by

0 for se(0,0l,
1Dy = 2.1)
1~0(s-0) for s e (0,»),

. and

Z(U)Z(s) = ﬂ(s+0) for s € (0,), (2.2)

are in v for each 0 > 0.

C. The norm l'"r on Zi is compatible with the natural partial
ordering of functions on (0,~) in the sense that if ¥ is in gr and if ¢

is a measurable function mapping (0,%) into E" which obeys IQI % h{/l,##

##The superposed ° indicates that the given relation holds pointwise a.e.,
i.e. at all points in (0,») with the possible exception of a set with

Lebesgue measure zero.




(2]

then ¢ is in Xr and “¢"r < I Furthermore, if "'"r is not identically

o V&

zero, then "g"r = 0 only if Z 0. It is also assumed that Zr has the

following Fatou property: If

A2

(7 e1Qgreee are in ¥, if ”‘Bn"r <K<,

and if |¢n| T lwl, pointwise a.e., with ¥ measurable, then ¥ is in Xr and

Lol = Iyl < &

n—o

D. yr is a separable Banach space.

#

E. yr has the relaxation property:

fes. [1966, 1, §6], [1968, 1, §§4,5].

LindTPPl. = 0 for each yey. (2.3)

00

Remark 2.1. It follows from known results in the theory of Banach

i

function spaces””that Properties C and D imply (a) that continuous

##Luxemburg (1965, 2, Theorem 46.2, p. 241]; Lorentz & Wertheim [1953, 1,
see the proof of Theorem 1, pp. 570, 571]; Luxemburg & Zaanen [1956, 1,

Theorem 4, p. 117], [1963, 2, Theorems 2.2 - 2.4, p. 157]; Dunford &

Schwartz [1958, 1, Exercise 17, p. 170].

functions of compact support are dense in Yr’ and (b) that the

~

dominated-convergence theorem holds for Xr’ For each ¢ in Yr and each

sequence wn in v such that |¢nl % |¢| for all n and ¢p —9¢p pointwise

~

a.e., we have "¢p-¢pﬂr - 0.




Remark 2.2.# Properties B-D of Xr imply that for each ¥ in gr and each 0 > 0

#[1967, 3, Appendix 1]. The proof given there uses Property A, but

clearly this property of Xr is not needed. See also [1968, 1, Theorem 3.4].

y ., _ (0 - ' - -
Lnlz®y =3P, = 0 bmlzgyy -z, - o

€ -0

Remark 2.3. It follows from Properties B-E of Yr that the norm

Iz = 2up 1Oy
o T Bl

~

(o)

of the linear operator T °, as a function of oc€[0,), is not only

submultiplicative, but is also bounded:##

#[1968, 1, Theorems 3.3 and 4.1]; see also [1966, 1, Remark 6.4].

wup 12PN =1 < a. (2.4)
530 -

Given a past-history space Yr and its norm "'Ir we may consider

. the set V of measurable functions ¥ which map the ﬁalf open interval

. [0,») into E" and satisfy "Zr”r < o, where Zr’ called the past history

of ¥, is the restriction of ¥ to (0,~). The function |

-" given by
gl = x| + g (2.5)

is a well defined semi-norm on Y. If we identify, in the usual way,




functions @, ¥ in V obeying "g-—g" = 0, then V becomes a Banach space

with |-“ as its norm. A Banach space so constructed is called a history
space i
space.

#Cf. [1967, 3, §3], [1968, 1, §3]. V may be referred to also as the

space of total histories, to emphasize its distinction from the space

Zr of past histories.

The elements ¥ of V are called histories; their independent

variable is called the elapsed time and is denoted by s. It follows

from (2.5) that, even after identification, each history ¥ has a

well defined value X(O) at s = 0; g(O) is called the present value of Y.

It is clear that a continuous functional over V must have a "special

dependence" on the present values of the histories in g.##

Tsee also [1968, 1, Remark 3.3].

. .
If x is a vector in E', we denote by §+ the constant function

on [0,) with value x:

§+(s) = X, s « [0,0), {2.6)

t

It follows from (2.5) and Property A of Zr that x 1is in The

Il.<

restriction'of §* to (0,») is denoted by 5:. Let @ and B be the numbers




3

defined by

o= "gilr and B = "gfu, when e-

1)

= 1. (2.7)

Clearly, 0 <Qa <o and B =Qa+l.
We write g* for the constant function in X whose value is the
zero element 0 in En, and we denote by g(h) the open ball in v about QT

with radius h > 0:

s(h) = {g | Yey, |l <h}. (2.8)

Given any function = on $(h), we can define a function =° on

a neighborhood S of 0 in E" by the formula

h
X = Ex'); (2.9)

‘=

E° is called the equilibrium response function corresponding to =.

A measurable function x(-) mapping (-»,a) into E® is said to

be admissible on (-»,a) with respect to V if, for each t in (-»,a), we

have "ﬁt" < o, where §t, called the history of x(-) up to t, is the

function on [0,») defined by
t
X (s) = x(t-s). (2.10)

Unless we state otherwise, we regard the histories Et of an admissible

function 5(-) as elements of the Banach space V rather than as functionms,
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#

Elsewhere” we have given arguments which we believe strongly

#[1968, 1, Theorems 2.1 and 3.1].

motivate the present method of constructing the space ¥ of histories.
Here we shall content ourselves with the mention of an example often

employed in continuum physics.#

ié‘#Se_e Coleman & Noll [1960, 1], [1961, 1]; Coleman [1964, 1]; Coleman &

Mizel [1966, 1].

Remark 2.4. For fixed p > 1, the norm u “ given by

~T'r

g = 1ol +igl,  ILE - [ ILePiees,  @an
0

and the corresponding set V of functions ¥ mapping [0,®) in E® with
"g" < o define a history space whenever 4 is a fixed measurable function

on (0,o) obeying the following four conditions:

00
I. f-l(s)ds < o

0
1I. 230

;
III. the functions K and K defined by

= - £§s+0‘2 ‘ - £(s)
K(0) u:.;:,&z ()’ K(o) ,u:/;tgﬁ 1 (s+0)

have finite values for all oe[0,»);

v. b K(s) < .

s>0
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x5 + 5, = x| + X0, ey%e + 100 < Izl + Ix0, ey%ely + Iz =2l

11.

In fact, if £(s) is not almost everywhere zero, I-IV supply
necessary and sufficient conditions that the norm "."r defined by (2.11)2
and the corrésponding set of functions g mapping (0,®) into E" with
"Zur < . form a past history space. Condition I is clearly equivalent
to Property A; it can be shown that II and III together are equivalent

to Property B;# given I, II, and III, the condition IV is equivalent to

#[1966, 1, Theorem 3, p. 101].

1

Property E; and for 1 < p < ® these ;f;-spaces automatically have Proper-

##[1966, 1, Remark 6.4, p. 111, and Eq. (4.26), p. 101].

ties C and D. In this example, "E(O)"r = E(o)l/p, "I "r = 5(0)1/p,

(o)
and a sufficient condition for Property E (i.e. for IV) is that £ be
monotone decreasing on (0,x).

To illustrate a method of working with a general history space

V, we now prove an easy, but useful, lemma.

" Lemma 2.1. Given any 1 > 0, there is a { = {(n) > 0 such that any

measurable function 5(-) mapping (-%,») into E® that obeys 'ﬁ(t)l <t

for all t > 0 an has‘zo in §(§) must have Et in §(n) for each t > 0.

Proof. By (2.5), (2.10), (2.1), and the triangle inequality

t

o
(2.12)
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where X(O t) is the characteristic function of (0,t). Suppose that, for
J
some number { > 0, we have |x(t)| < ¢ for t > 0 and also "50" < {. Then,

by (2.10) and (2.5), we have

Ix(e)] < ¢ (2.13)

not only for t > 0 but also for t = 0. Furthermore, for each t > 0 we have

|X(o,c)(s)§:(s)| < ¢ = |tel()| for all s >0,

where s: is a constant function or (0,©) whose value is a unit vector in

En; thus, by (2.7) and Property C of v.

"X<o,t>z§"r < leefll, = ta (2.14)

Of course,

A

t) O 0
Iz®L0 < 1zC1L1,

and, by Remark 2.3, this yields, for t >0,

t) 0 0
Iz, < w2l

< MQ, (2.15)

with M the constant in (2.4). Substituting (2.13)-(2.15) into (2.12) we

find that for t > 0

I < ta+o+m,

and if we now put

=}
o

m
=

&)

I+a+M°

the lemma is proven.
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As a corollary to the proof of Lemma 2.1 we have

Lemma 2.2,

0

If x(-) is a measurable function mapping (-®,») into E® with

]
|5
<

and

b 1xwy] LE ¢ < o
te [0,»)

then for each t > 0

oy d
I=°1 < to+ il def y < »
Il < H+¢ < =

with @ and M defined in (2.7) and (2.4).

HUNT LIBRARY
GARNEGIE-MELLON UNIVERSITY
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3. Basic Definition, Free Energy Functionals, and Stability

Let a history space V be given, let h be a positive real
constant, and let f be a function mapping S(h) into E" and enjoying

the following properties:

@

L+

is continuous over g(h).

(2) £ is bounded in the sense that g(g(h)) is a set in E

with finite diameter.

@ £@H =o.

~

If ¥ is in ¥ and if A is in (0,»], then we say that a function

5(-) mapping (-»,A) into E® is a solution up to A of the equation

x(t) = £G&D), (3.1)

with initial history ¥, provided

(a) 5(-) is admissible on (-»,A) with respect to !,'and §t is

in §(h) for t in (0,A);

(b) x(t) is continuously differentiable in the classical sense

for t in (O;A) and has a right-hand derivative, x(0), at t = 0

;
(¢) (3.1) holds for all t in [0,A) with x* the history of x(-)
up to t;

0
(d) x, the history of x(+) up to 0, is equal to Y.
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Remark 3.1. Properties (i) and (g) of £ insure that for each g in g(h)
there exists an A > 0 and a function x(-) which is a solution up to A
of (3.1) with initial history Z. Furthermore, this sblution can be

extended, i.e. A can be increased, until zt reaches the boundary of g(h).

Since we do not assume that £ is Lipschitz continuous on g(h),
we know nothing about the uniqueness of solutions corresponding to an
arbitrary initial history ¥ in S(h).

Of course, it follows from Property (3) that x=01is a

solution of (3.1) up to = with initial history QT; we call this the

zero solution.

The solution x = 0 of (3.1) is said to be stable if for every
€ >0 there is a 6 = 6(e¢) > 0 such that if ¥ is in S(6) then (a) every
solution x(+) of (3.1) with initial history ¥ has Ig(t)l < ¢ for each
t >0 in its domain 6f existence, and (b) a solution of (3.1) with
initial history ¥ exists for all t <. 1If, in addition, there is a
£ > 0 such that each solution x(+) of (3.1) with its initial history §0

in S(£) obeys }umn,lz(t)| = 0, then the solution x = 0 is said to be

, t—oo
agymptotically,s;able.

It follows from Lemma 2.1 and Remark 3.1 that the zero solution

of (3.1) is stable if and only if for each ¢ in (0,h) there is a & = 8(e¢) >0

such that ¥ in 2(6) implies that every solution x(:) of (3.1) with 50 =Y

~

has gt in g(e) for each t > 0. (We shall discuss this point in more

detail in our proof of Theorem 3.1.)
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A real-valued function = on g(h) is called a free energy
functional for the equation (3.1) if
(i) = is continuous over S(h),

(ii) for each solution up to A of (3.1), E(ﬁt) is a non-increasing

function of t for te [0,A), and

(1ii) for each history ¥ in S(h) with ¥(0) in the domain Sy of the

e

equilibrium response function =° corresponding to =,

EW > 2°(¥(0). (3.2)

We say that a real-valued function, such as =°, defined on a

neighborhood of 0 in E" has a strict local minimum at 0 if there exists

an 1 > 0 such that

xeE", 0<|x| < => E°x) >E°(0). (3.3)

" Theorem 3.1. If there exists a free energy functional = for (3.1) whose

equilibrium response function =’ has a strict local minimum at 0, then

the zero solution of (3.1) is stable.
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Proof. A proof we have given elsewhere# shows that in the present

#[1968, 2, Theorem 1]. The metric p(Q,¥) = "g-—g", with || || the norm
on the history space V, clearly obeys the postulates laid down in that
paper. The set F mentioned there should here be chosen to be a small

neighborhood of 0 in E".

situation there does exist, for each ¢ >0, a 61 = 61(e) > 0 such that
each solution x(-) of (3.1) with 50 in g(él) obeys Ig(t)l < e for all
t > 0 which are in its domain of existence. If we can now produce a

62 > 0 such that for each ¥ in g(éz) a solution of (3.1) with initial
history ¥ exists for all t, then Theorem 1 will be proven, for

6 = nn;”u(él,éz) will then have the properties (a) and (b) mentioned in
the definition of stabiliﬁy. Clearly, by Lemma 2.1, there exists a

€ >0 such that if x(.), with domain (-»,A), A > 0, has 50 in $(f) and
Ig(t)l <f for t in'[O,A), then x(-) will have gt in S(h) for each t -
in [0,A). Now, if we put 62 = ”n;qb(g,él(c)), then each solution x(-.)
of (3.1) with 50 in 2(62) will have |§(t)| < for all t >0 in its
domain of existence, and hence no solution with §0 in 2(62) will have
§t reaching the boundary of S(h) at a time t > 0. But, by Remark 3.1,
this implies that every solution of (3.1) with its initial history in

2(62) can be extended indefinitely; q.e.d.
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4. Some Lemmas
We ‘have observed that any solution 5(-) of (3.1) with 50 in
g(h) can be extended until a time t at which §t reaches the boundary
ag(h) of é(h). Henceforth, whenever it is known in advance that §t
cannot reach Bg(h) at a finite value of t let us suppose that the
solution has been "extended to infinity", i.e. that x(-.) is defined on

(-»,©). Given such a solution we may consider at each time t the

truncated history A?f.:- defined by:

(x5(s)=x2(0) = x(t-s)=x(0) for se(0,t], ]
when t >0, A?f‘:_(s) =

0 for se(t,»), &,(4.1)

when t <0, Aﬁz(s) =0 for se(0,x). J

Since 5(') is a solution, 5(-) is admissible with respect to v, and hence
each past history zi along 5(-) is in gr' Moreover, IE;(S) - 5(0)| > |A§:(s)|
'for all s in (0,»), and thus each truncated history'Aﬁi is also in Xr’
We denote by {AEE) the set of all the truncated histories, with - < t < o,
occurring along & given solution 5(') of (3.1).

The set of all histories §t with t > 0 occurring along a
preassigned solution of (3.1) is denoted by [§t| t>0}. Of course,

[?st | >0} is a subset of V.
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Lemma 4.1. If x(-) is a solution of (3.1) with (§t| t>0} < §(h), then

the sets (Aﬁi] and [Etl t >0) corresponding to x(-) are both precompact;

that is

1) [Aﬁil is contained in a compact subset of V , and

(2) [ztlt:ZO] is contained in a compact subset of V.

Proof. We first prove (1), employing the fact that for metric spaces
compactness is equivalent to sequential compactness. Since it is

assumed that

Ix*l <h  for t e [0,%) (4.2)
and since lﬁ(t)l = |§t(0)| < "§t", we have
laxS(s)| < 2n for te (-m»), s e (0,%). (4.3)

Furthermore, (3.1), (4.2), and Property 2 of f tell us that

wih i@y = supltahH| LE k < o
t>0 t>0

#

i.e.

#At s = t, (4.4) gives a bound on the left-hand derivative of Agi(-) and
the right-hand derivative is zero. Elsewhere Agt(-) is differentiable

in the classical sense.

< K < = for t € (~»,0), s € (0,»). 4.4)
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Thus, {Axi] is an equicontinuous, uniformly bounded, set of functions,

tn

and, by a standard argument invoiving diagonalization, each sequence Aﬁr
. t tm .

composed of functions in {Aﬁr} has a subsequence A%r which converges

t
uniformly on every compact subset of (0,). The limit function ¥ of Aﬁrm

is continuous on (0,®) and, by (4.3), obeys
|¥(s)] <2n for s e (0,®). (4.5)

Hence, by Properties A and C of Zr’ Y is in Yr' To complete our proof

~ =

of (1) we must show that

. t
Lomollog ™ =yl = o. (4.6)

m—> o
As we observed in Remark 2.1, the dominated convergence theorem holds

in Zr’ and it follows trivially from (4.3) and (4.5) that if e-e = 1, then

t
|A§ m(s) - f(s)' < ~|4hs:(s)| for all s« (0,») and each m.

by
Of course, by Property A of v. the function 4hSI is in v. and therefore,ARemark 2.1,

t
the pointwise convergence of Axrm to ¥ does imply (4.6). Thus the closure

of {Agi] is compact in ¥ .
t
To demonstrate statement (2) of the lemma we let X 2 be a

tl tn tm
sequence in [5 t >0}. We wish to show that X  has a subsequence x

obeying

P t
towlx™ -2 = o (4.7)

m—>
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for some function @ in V. Since |§t(0)| < "gt", it follows from (4.2)
t

that the vectors x n(0) = E(tn) form a bounded sequence in En, and, by

the Bolzano-Weierstrass theorem, the sequence of numbers t has a

subsequence tz such that

bom |x(e)) —a| = 0
z ~ ~
—00
for some vector a in E. Putting $(0) equal to a we observe that, by

(2.5), to establish (4.7) it suffices to show that t, has a subsequence

£

t such that
m

. tm
bomlz"™ - el = o (4.8)

m—
for some function gr in ¥V . If the sequence t, is bounded above, then

t, will have a subsequence t, with a finite limit 7, i.e.

£
t »1T<® as m — o,
m

and it will follow from Remark 2.2 that (4.8) holds with @ = x .

~r
Therefore, the only case to be examined is that in which t, is unbounded

and hence has a subsequence t obeying
t 5o as m oo, 4.9)

In this case we observe that (2.1) and (4.1) yield, for t > 0,

t

At | (t) 0
X Aﬁr + E(O)X(O,t] +T X (4.10)
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with X the characteristic function of (0,t . Clearly, we may choose

,t]
the sequence t, in (4.9) in such a way that (4.6) holds for some function

Y in Zr' Employing the function ¥ so obtained, we define 9: as

~ ~

= P+ O - (4.11)

~r

Properties A and C of gr imply that z(O)X(O,m), and hence gr’ is in Xr’

while (4.10) and (4.11) imply

(tm)
"ol . 6.12)

=" —e . < lax ™ -yl + HE(O)K(O,tm] 50X wyly + 12

By Property E of gr’ (4.9) yields

: (tm) 0
Lnolz ™. = o, (4.13)

m—>®

and, because the dominated convergence theorem holds in Xr’ (4.9) also

yields

m -

Liww Ilgs(O)x(O,t ] ~ 50X gl = 0. (4.14)
m b

It is clear that (4.6) and (4.12)-(4.14) imply (4.8); q.e.d.

With each solution x(-) of (3.1) which can be extended to infinity

we associate a set Q (possibly empty) called the w-limit set of x(:) and

defined as follows: Y is in Q if and only if ¥ is in V and there exists a

sequence of positive numbers t such that

tm
e and "5 - g" -0 as m -, (4.15)
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Lemma 4.2.# If x(*) is a solution of (3.1) with [§tlt:20) < §(h), then

#Cf. Hale [1965, 1, Lemma 3].

the w-limit set R of 5(-) is a non-empty compact subset of v, and

dist(x,0) -0 as t . (4.16)

Proof. It follows from Lemma 4.1 that if x(-) is a solution of (3.1)
with [§t| t >0} in S(h), then each unbounded positive sequence t, has a
subsequence tm obeying (4.15) for some element ¥ of V. Hence, Q is ﬁot
empty. Since Q is a subset of the closure C of {§t| t>0)} in ¥, and
since, by Lemma 4.1, C is compact, to prove that R is compact it suffices
to show that Q is closed in V. To this end, suppose that gn in Q
approaches ¥ in ¥V as n —» ». There then exists, for each n, an unbounded

sequence tz(n) of positive numbers such that

I -

tz(n) — o and gnu -0 as £ - o,

and for any given integer m we can find an integer k such that

Moreover, by choosing Ek > k sufficiently large we will have

t, &) >m and “5 —Nk" <
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and therefore
t, (k)
\ y)
t, (k) >m and “x k - Y” < l’.
£ ~ ~ m
k
If we write tm for tZ (k), then the sequence tm so obtained obviously
k o
obeys (4.15), which proves that ¥ is in Q, i.e. that Q is closed and hence
compact.

If (4.16) were not true there would exist a positive sequence

tn and a number Y > 0 such that

t, 2 and ngtn - gn > (4.17)

t
for all ¥ in Q. But, since {xtl t >0} is precompact, x " must have a

tm
subsequence x = such that, for some ¥ in ¥,
fomllx™ - ¥l = o,
m-—>o0

and the ¥ so obtained is clearly in Q. Thus, (4.17) is impossible, and

(4.16) must hold; q.e.d.

One can easily show that the hypothesis of Lerma 4.2 implies,

further, that Q is a connected subset of V.

A set T in S(h) is called an invariant set for (3.1) if for each

g in T there exists a function x(-) on (-o,o) such that

(8) y© is in T for each t in (-=,%);

(b) Y(-) is continuously differentiable on (-»,®);

(<) ;(t),'-',ﬁ(zt) for each t in (-»,®);
@ y°=ut

~

#Note: We do not require that every solution Z(-) with ZO in T have the

properties (a)-(c). Hence, what we call an invariant set others may

prefer to call a "quasi-invariant set".
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Lemma 4.3.# If Q is the w-limit set

—

f a solution x(+) of (3.1) having

#Cf. Hale [1965, 1, Lemma 3].

(x| £20) © §(h)) with h) < h, then @ is contained in §(h) and is an

invariant set for (3.1).

Proof. If ¥ is an element of Q, then there must exist a positive sequence
t
t obeying (4.15). Since we here assume that each x M in (4.15) is in
g(hl), ¥ must be in §(h); hence Q is contained in §(h). Now,
x| = [x*@] < 15"l -
since [x(t)| = |x (0)| < [x and {x | £>0]} cg(hl) c §(h), we here

have (4.3) holding and hence, for the sequence ﬁtm obeying (4.15),
T
|A§r (s)| < 2n for s e (0,0), T & (-o,w), (4.18)

and, by (3.1), (4.1), and Property 2 of f,

d tytT

s &x. (s)] £ K < o for se& (0,0), T (~o,0), (4.19)

Employing Ascoli's theorem and a diagonalization argument, one easily proves
that (4.18) and (4.19) imply the existence, for each integer N, of a

subsequence tz =‘t£(N) of tm and a function w(N)(-) such that as £ — o,

5.7 () =y ™ ()] = o,

uniformly in s for s in compact subsets of (0,o). Clearly, since

Axtjg--l-'l’ (s) = AXtg+N

% x “ (s+ N-1), (4.20)
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the sequence t, has the additional property that as £ — x,

a2 o) =3 )| - o,

uniformly in s and 7 for s in compact subsets of (0,») and T in [-N,N];
here W(T)(s) = ¢(N)(s+-N~'T). We may now employ diagonalization relative

to the integer N to find a subsequence t, of t and a function w(')(-) such

k
that as k - o, we have t, o and

ti+T

| Ax
~r

(s) —g(‘)(s)l - 0, (4.21)

uniformly in s and 7 for s in compact subsets of (0,) and T in compact
subsets of (-»,©), Furthermore, by (4.18), we have IZ(T)(S)I < 2h for
all s in (0,~). and all 1 in (-»,o). The continuity of Aﬁz(s), the
relation (4.20), and the uniformity of the convergence in (4.21), imply
that z(T)(s) is continuous in both s and t. Thus, 2(1)(') is in zr for
each 7 and, by Part b of Remark 2.1, we have

Lol =y 2 0 for 1 (-m,w). (4.22)

sw T ~ r

Furthermore, because w(T)(s) = W(N)GP+N—4) there exists a continuous function

z(-), on (-»,®), such that Et = w(t). Hence y = 54-3(0) is a continuous
function on (-»,o) obeying XT(S) = ¢(T)(s) + x(0) for s in (0,»); i.e.
T T
Y f( ) + §(O)X(0,m) for 1 € (-o,®), (4.23)

where ZT is the history and y; the past history of y(:) up to time T.
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Since te 2% (4.21) and (4.1) imply that

lg(tk+1-s) - X(T—s)l - 0 pointwise, for s € (0,»), 1 (-m,wz)
as k 5o, This limit holds also for s = 0 and therefore implies that
for 1 in (-»,®)

I xtk'."f

|zt = y(@| = © -y @ > o0 (4.24)

as k » o, Employing (4.10) apd (4.23) we may write, for t > -1,

tyt+T R tk+1 k+1 0 (7) )
R L T M Y 5(0))((0,3: +1 T 1L (?I/ + x0X y@)/?
thus
_ tett (1) : )T 0
vl < lox, Al L FIOVP el T EOX g ) o+ hz™ =0

Since t, 2> ® as k -, it follows from (4.22), (4.25), (2.3), and Part b

of Remark 2.1, that, for each 17 € (-»,x),
t T
Lo lls X =yl = o. (4.26)
~r Iely
k— o
It is clear from (4.24) and (4.26) that we have produced a function y(-)
on (-»,) with the property that for each T in (-»,®) the history yT of

y up to T is in ¥ and

M " xtk+'r

t, Do

k

-NTII = 0. (4.27)

(4.25)
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Hence, each of the functions ZT is in Q. If we can now show that X(o)
has the Properties (b)-(c) listed on page 24, with T = Q and ¥ our
original given element of Q, then it will follow that Q is an invariant
set.

Since tk is a subsequence of tm’ it follows from (4.15) and
(4.27) that ZO = g, and hence Z(-) has Property (d). Therefore, it

remains only to verify that y(-) has Properties (b) and (¢); i.e. that

y(*) is continuously differentiable and obeys

tp
. def T
Z(tb) - Z(ta) = g(T)dT, with g(T) == E(Z ), (4.28)
ta
for each pair of numbers ot Since £ is continuous over S(h) and yT

is in g(h) for each 1, it is a consequence of Remark 2.2 that the function

g(-) in (4.28) can suffer discontinuities at only those values of 1 at

#

which y(-) is discontinuous.” Thus, the continuity of y(-) insures that

#

his property of equationsof the form g(t) = £(yT), with f continuous
on a region in ¥, is called "conservation of regularity"” and is
discussed in detail by Coleman and Mizel [1968, 1, particularly

Remark 3.3].

g(-) is continuous, and if we show that (4.28) holds then y(.) will
automatically have not only Property (c) but also Property (b). Now,

let a pair tsty be assigned, with, say, t. > t . Noting that t, —

b k

*
as k —» o, we may pick an integer k so that t +ta is positive for all

k
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* *
k >k . Since x(-) is a solution of (3.1), we have, for k >k ,
“
x(t, +t, ) — x(r,+t ) = g, (t)dt with g (1) def f(xtk+r) (4.29)
~ k b ~ k a ~k ’ ~k ~ ¢ *
t
a
Clearly, (4.24) implies that, for each t, as k — = the left side,
g(tk+tb) - E(tk+ta)’ of (4.29) approaches the left side, Z(tb) - Z(ta)’

of (4.28). Therefore, if we can show that
t

) % b
lmuf §k(r)d1 = f g(1)dr, (4.30)

o]
k- t
a a

then y(-) must obey (4.28). Since f is bounded on S(h) and [gt I t>0}

is a subset of S(h), we have
§k(T) < K < oo, (4.31)

*
for each k > k and all t in [ta,tb]; and since f is continuous on §(h),

(4.27) yields
§k(r) —>§(1), pointwise, as k — . (4.32)

Furthermore, the continuity of x(t) in t for t > O implies that each

pls
therefore, (4.31), (4.32), and a theorem of Arzel\a# tell us that (4.30)
J J 2 J

%
function g (7), with k >k, is continuous in 7 for 7 in (e, ,t

#Or, if one prefers, the standard form of Lebesgue's theorem on

dominated convergence.

does indeed hold under our arbitrary assignment of t, and tb. Thus (4.28)

holds for every pair ta’tb’ and y(-) has the Properties (b) and (c); q.e.d.
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As a direct consequence of the lemmas proven here we have

Theorem 4.1. If the zero solution of (3.1) is stable then there exists

a { >0 such that each solution x(-) of (3.1) with its initial history

50 in g(;) has the following properties:

(@) {§t| t >0} is precompact in V;

(B) the w-limit set of x(-) is a non-empty compact subset

of S(h) and is an invariant set for (3.1);

(Z) the w-limit Q set of x(-) "attracts x(+)" in the sense

that as t -, dist(gt,ﬂ) - 0.

Proof. Whenever the zero solution is stable it follows immediately from
Lemma 2.1, Remark 3.1, and the definition of stability that there exists
a § > 0 such that each solution x(-) of (3.1) with 50 in g(;) can be

extended to (-»,») and has "Et" <h, <h for all t > 0. By Lemmas

1
4.1 - 4.3 each such solution x(+) has the Properties @-(); q.e.d.
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5. Asymptotic Stability

We call a real-valued function = on g(h) a strictly dissipative

free energy functional for (3.1) if = has the Properties (i)-(iii) of

free energy functionals and, in addition,

(iv) for each solution x(-) of (3.1) that is not identically

*
equal to 0, there exists a number t > 0 such that

*
E(x)) >EES). (5.1)

Thus, a free energy functional is strictly dissipative if it

eventually decreases on each solution that differs at some time from
the zero solution.

Our main result is

Theorem 5.1. If (3.1) has a strictly dissipative free energy functional

] ) ] ] ’_'o ] 3
whose equilibrium response function = has a strict local minimum at 0,

then the zero solution of (3.1) is asymptotically stable.

Proof. It is clear from Theorem 3.1 that under our present hypothesis

the zero solution of (3.1) is stable. Therefore, there exists a { > 0
such that each solution of (3.1) with its initial history in S(f) has

the Properties (g), (Q), and (z) listed in Theorem 4.1. Let 5(-) be
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one such solution; we wish to show that

m |x(0)] = 0. (5.2)

t—>o

.0
Property (iii) of free energy functionals and our assumption that = has

a local minimum at 0 imply that E(ﬁt) is bounded below by the constant

It

o(,Q,):

Furthermore, by Property (ii) of =, E(Et) is non-increasing in t along
the solution x(-). Hence, E(gt) has a limit as t — o
© =, t

Lo E(x) = 4. (5.3)

too
Of course, # depends on the solution x(-) under consideration. Let Q
be the w-limit set of x(-). By (g), Q is a non-empty invariant set for
(3.1) and is contained in the set g(h) on which = is continuous. If g

t

is an arbitrary element of Q, then there exists a sequence x M in

{Etl t>0} obeying (4.15). Therefore, by (5.3) and the continuity of =,
E(g) = 4 for each Y & Q. (5.4)

Now, since Q is an invariant set, for each ¥ in Q (and there is at least
one ¥ in Q) there exists a solution y(-) of (3.1) with y0 = ¥ and

{ytl t>0} € Q. On this solution y(+) we have, by (5.4),

In]
~~
&
o

i

>
rh

o]
R
ot
\
o
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But, since = is strictly dissipative, this is possible only if y(-) is
the zero solution. Hence, gf is the only element of @, and, by
Property (Y).of Q,
‘ t g t_ .t
bm gl = bmlx =o'l = o, (5.5)
t—o o t—oo

which, in view of (2.5), implies (5.2); q.e.d.

The arguments used to prove Theorems 3.1 and 5.1 yield also

#

the following generalization of these two propositions.

#Cf. [1968, 2, Theorem 3].

Theorem 5.2. If there exist two real-valued functions V and v such that

(1) V is defined and continuous on g(h) while v is defined

and continuous on Sy,

(2) there is a 61 > 0 such that V(gt) is a non-increasing

function of t, for t > 0, along each solution x(-) of

(3.1) with x° in §(5)),

(3) v has a strict local minimum at O,
@) v(@Q") = v(0), and for each ¥ in §(h) with ¥(0) in Sy,

v(¥©0) < v,

then the zero solution of (3.1) is stable. If, in addition, we can find
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a 62 > 0 such that, for each solution x(-) that is not identically zero

* *
and has 50 in g(éz), there exists a time t > 0 at which V(§t ) < V(go),

then the zero solution of (3.1) is asymptotically stable.
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6. Examgles

a. The Dangling Spider

We suppose that a ball of mass M is hanging from a ceiling by
a massless but extensible filament of length z. The forces acting on
the ball are the tension T in the filament and a body force F in the
z-direction. We take F to be derivable from a time-independent, twice

continuously differentiable potential h:

F = F(z) = —gfﬁﬂ. 6.1)

In the special case in which the only long-range force acting on the

ball is that of gravity, we have

h = -gMz and F = gM, (6.2)

with g a constant. We may, however, seek greater generality and allow

for the possibility that F varies with z. Since the filament is

supposed massless, at each instant the tension and strain in it are spatially
homogeneous. We assume that the filament is composed of a simple
viscoelastic material with constant and uniform temperature. The value

of the tension T at time t is therefore given by a function ,f (which

may be non-linear) of the history of z up to t; i.e.

T(t) = ;ﬁ(zt), with zt(s) = z(t-s), s e [0,). (6.3)
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The constitutive functional . is assumed compatible with the "principle

of fading memory"; that is, £ is a continuous functional on a history

1) obeying the postulates laid down for V in Section 2. [The

L

space V
superscript in the symbol v serves to indicate that this Banach space
is formed from functions mapping [O,w) into El, i.e. the real numbers.]
We assume that £ is also locally Lipschitz continuous on g(l). We

further assume that £ is compatible with a recent formulation# of the

#Coleman [1964, 1]; Coleman & Mizel [1967, 3].

thermodynamics of materials with memory. Thus, at each time t the
filament has a Helmholtz free energy ¥(t) which may be regarded as a

function of zt,

Ye) = p@5.

Equivalently, we may regard ¥(t) as a function of the present value z(t)
and past history ZE of z [see the paragraph containing equation (2.5)

and note that z(t) = zt(O)]:

¥ = pcH = p(z2m),2D). (6.4)

The functional 42 1s assumed to be continuously differentiable on y(l),

in the sense of Frechet. Thus, in particular, the "partial derivative"
Dgp defined by

. d ’
Dp@® = $y pO,0) =000 (6.5)
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® #

exists for each ® in ¥ Dp is called the instantaneous derivative ggifz.

#Coleman [1964, 1, eq. (9.5), p. 252].

In the thermodynamics of materials with memory there is a theorem## which

##[1964, 1, Theorem 1, p. 19]; see also [1967, 3, Theorem 1].

here implies that

(e)) £ determines the tension through the "stress-relation",

1 = Df)», i.e.

T(t) = Dp(z%); (6.6)

(B) whenever the indicated time-derivatives exist, the number

o

o) L Yo —1im = FpeEH -LEHim = SN -ppEhHim 6.1

",
.

obeys the following "internal dissipation inequality

o(t) < 0. (6.8)

It can be shown### that (@) and (B) together imply that the

###For details see [1964, 1, Theorem 3, p. 26 & Remark 11, p. 27] and

[1967, 1, Theorems 2 & 4].

equilibrium response functions.7afand ,focorresponding to 70'and,z§
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[see (2.9)] obey the formula
t‘(z) = %; 7a°(z), for each number z, (6.9)
and that
2@ 2 p%®@©) for each ¢ in ). (6.10)
The equation of motion for the ball is
ME = F(z) — Z(z").

Putting y = Z we may write this equation as a functional-differential

equation of the type (3.1) with x(t) = (Z(t)’ z(t)):

j o= EE@ -5 465

(6.11)
z = vy.
If the origin z = 0 can, and has been chosen so that
A£°0) = F(0) (6.12)

then the right-hand side of (6.11) has the Properties (1)-(3) required
of £ at the beginning of Section 3. Here, in line with the discussion
of Sections 2-5, the domain of f should be considered a history space
formed from functions mapping'Iij) in E2. However, although f depends
on the past history z§ of the second component z of x = (y,z), £ is

independent of the past history of the first component. Hence we can
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1Y)

alternatively take the direct sum Z(Z) of E(l) and Z( for the domain of f.

t ¢t 2
That is, if we take the norm "gt" of an element Et = (y ,z ) of X( ) to be

I = 1y*©@| + [z2°©)| + llzf_,llr, (6.13)

¢y

where ﬂ'"r is the norm on Yr , then £, as a functional on ¥

(2), is

locally Lipschitz continuous. The fact that f is independent of y: is

important; it means that our initial data can be such that the velocity

y(t) = z(t) does not exist for some t < 0. Of course, we must here

extend slightly our concept of a "solution”. By a solution up to A of

(6.11) we mean a function pair x(+) = (y(-), z(-)), with y(+) defined on [0,A) and
z(*) on (-w,Az,such that z* is in Z(l) (i.e. §t is in Z(z)) for all t in [0,4)

and (6.11) holds for all t in [O,A).ﬁé The equation (6.12) is equivalent

#It is not difficult to verify that Theorems 3.1, 5.1, and 5.2 remain

valid under this extended concept of solution, provided that V = Y(Z)

and the norm on v has the form (6.13).

to asserting that x = 0 is a solution of (6.11). Hence (6.12) may be

called the equation of equilibrium. By (6.13), the definition of

.stability given in Section 3 here reduces to the assertion that the
zero solution x = 0 is stable if and only if for every € > 0 there exists

a d=206() >0 such that if §(-) = (y(-);z(')) is a solution up to A of

(6.11) with
0
120 = Iy@] + 2] + 2] < &

‘then x(-) can be extended until A = « and for each t >0,

lye)| + |ze)] = |2@)| + |z(e)] < e.
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If, in addition, there is a { > 0 such that
l[2(e)] + |z(0)] - 0 as t -

whenever "§0" is less than {, then the zero solution is asymptotically

stable.

@

Let ¢ = (®1,¢§) be a generic element of ¥ The functional

=,defined by

—_ _ 1 2
E@ = p@)+ h(q>2(0)) + 5 M0, (0)7, (6.14)
is clearly continuous over Z(Z); in fact, the differentiability of7Kb
implies that = has a Fréchet derivative at each point in Z(z). Along
solutions x() = (y(-), z(-)) of (6.11),
Y = a5 +h(z®) + Ewyo? (6.15)
b £ 3 . .

The value of % is the Helmholtz free energy of the filament, plus the
potential energy of the body force acting on the ball, plus the kinetic
energy of the ball.

When = is defined by (6.14), the function =° of (2.9) is

given by

Eo(g) = 7Qf(z) + h(z) + %’Myz, x = (v,2) €1E2, (6.16)

and, by (6.10), we have E(®) >E((0)) for all ¢ in YP. In view of
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(6.1), (6.11) yields immediately the "energy equation",

N[

-g—t-:- My(t)2 + :—t- h(z(t)) = -T(t)z(t),
and, by (6.15), (6.7), and (6.8), we have, for t > 0,
LEEH = §pEH - 2EHE® = o® < 0, (6.17)

along those solutions §(-) of (6.11) for which %E 7&(zt) exists. Thus,

—

the function = defined in (6.14) is a free energy functional for the

functional-differential equation (6.11).#

Ty

e assert, but we omit the proof, that monotonicity of E(gt) for t >0
on the solutions for which gz.fz(zt) exists (for t > 0) implies the
required monotonicity of E(ff) on other solutions. The proof uses the
fact that since .£ and F are locally Lipschitz continuous, so also is
the right hand side £ of (6.11), and therefore §t, for each t > 0,

. . s 0
depends continuously on the initial data x .

The function ?Z defined by

22(2) = 70?(2) + h(z) (6.18)

may be called the equilibrium Gibbs function for (6.14). Its value is

the sum of the equilibrium free energy and the potential of the applied
body force, both evaluated at position z of the ball. Since M is

positive, the function =° of (6.16) has a strict local minimum at 0 in
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E2 if, and only if, ?_has a strict local minimum at O in El. Therefore,

Theorem 3.1 here yields

Remark 6.1. Suppose that the functional ,f in (6.11) is locally Lipschitz
(1)

continuous on a history space V¥ and obeys the restrictions which
thermodynamics places on the response function for the stress in a
material with memory. If the equilibrium Gibbs function (6.18) has a

strict local minimum at zero, then X = 0 is a stable solution of

(6.11).

We may note if ;Z has a minimum at O then, ?7’(0) = 0 and, by
(6.1) and (6.9), the equation of equilibrium (6.12) is automatically
satisfied. Hence, in Remark 6.1 we need not assume 2(91) =0, as a
separate hypothesis, for it follows whenever the equilibrium Gibbs
function has a minimum at zero.

We may also note that if (6.12) is assumed, a sufficient
condition for the stability of the zero solution of (6.1l1l) is that 7;“(0)

be positive, i.e. that
£°°(0) > F’(0). (6.19)

When (6.2) holds, (6.19) reduces to the condition that the equilibrium

infinitesimal modulus _2°/ be positive at zero, i.e. that

X°(0) > 0. (6.20)
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The most elementary considerations in mechanics suggest that in the case
(6.2) the condition #°(0) > 0 is necessary for stability; we believe it
interesting that under our present precise concept of the dynamical

stability of equilibrium, the condition (6.20) is sufficient, even for

a non-linear filament with memory.

b. Linear Filaments

In Remark 6.1 it is not assumed that the tension-functional _#
is in any way linear; a particularly interesting special case of the
present theory arises, however, when (6.3) has the form found in the

linear theory of viscoelasticity:

T(t) = G(0)z (0) +f-G’(s)zt(s)ds = _£(@z%). (6.21)
0

Here G, with derivative G/, is a real-valued function on [0,)
characterizing the material under consideration. We call G the relaxation

function; G(0) is the instantaneous modulus; and the limit

G(w) def LG (s),

§— ©

which we assume exists, is the equilibrium modulus. Let us assume, as

is usual in linear viscoelasticity, that G can be written in the form

G(s) = fk(r)e_S/TdT+G(m) (6.22)
0
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with k a non-negative, measurable function, with bounded support and

with J; k(t) summable:
T

N
k(t) > 0, while for some N > O, \/P J; k(t)dt = a <o for n=1,2,3, and
T
0

k(t) = 0 whenever 1T > N.

k is called the relaxation spectrum. It follows from (6.22) and (6.23)

that -G’(s) is a positive, bounded, decreasing, analytic function on

(0,©) dominated by the function
4(s) = ae 7, (6.24)

which has Properties (I)-(IV) listed in Remark 2.4. If we let 2(1) be

(6.23)

a space of real-valued functions for which the norm (2.11) is finite with p = 1 and

with £ given by (6.24), then the functional X in (6.21), i.e.

@) = G(O)@(O)-+U/\ G’(s)@(s)ds, (6.25)
0
(1)

is clearly well defined for each & in ¥

and is continuous over g(l).

So as to be able to compute time-derivatives and perform
integrations by parts we shall here assume that we are dealing with
. : . . . . 0
solutions of (6.11) whose initial histories z are of bounded variation

on (0,o), Then equation (6.25), which by (6.22) may be written

@) = G(=)P(0) +l/p-k(1)[$(0) - %-/P e'S/T®(s)ds]d1, (6.26)
. O \. O
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yields, for t > 0,

25 = e@)zt0) —f-k('r)[f e's/‘d_z“(s)]dx. (6.27)
0 0 |

A theory based on (6.21)-(6.23) is certainly compatible with
the thermodynamics of materials with memory. Indeed, it is readily
verified that if (6.22) and (6.23) hold, then the functional 1@ defined

by

@ = Lo@e@?+ L [Tkmlo@ -1 [T ogeas] 4
f’ 5 G(= 2 " e (s)ds| drt (6.28)
0 0 ,

is continuous over the space 2(1) and is a Helmholtz free energy function

for the functional £ of (6.26) in the sense that /& and Z obey

(6.6)-(6.8). The equilibrium response functions corresponding to.fz and
Z are

p°@) = 6@, 2% = 6. (6.29)

These functions obviously obey (6.9) and (6.10). It follows from (6.23)
that either k = 0, or
©0
JF k(t)dt > 0. (6.30)
0
If k = 0, then (@) = _£%®(0)) and 0 (0) = 7@‘(@(0)); that is, our

theory reduces to the linear theory of elasticity.
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Direct calculation shows that when 2 has the form (6.28), the

quantity w(t), defined in (6.7) and occurring in (6.17), is given by

oo o0 2 o . 0 2
...f 4%.1((1—)[2':(0) - %—f e-S/th(s)ds] dt = —f %_-k('r)[f e-s/szt(s)] dt.
0 0 0 0

(6.31)
(¢9)

Let ® be a function of bounded variation in'il and consider

Y,
o @,7) = \/P~e 8/%40(s).
: 0
Clearly, J(@,T) is an analytic function of 7 for 1t in (0,»), and if d

denotes the set of points T in (0,») at which .,Q@,T) = 0, then (L has
an accumulation point only if ®(s) = ®(0) for almost all s in [0,®).
Thus, (6.23), (6.30), and (6.31) imply that w(t) = O only if z"(s) is
almost everywhere equal to zt(O), and this, by (6.17), implies that = ,

defined in (6.15), is a gtrictly dissipative free energy functional for

solutions of (6.11) whose initial histories lie in a sufficiently small
neighborhood of zero. (We are assuming here that 0 is an isolated

solution of the equation F(z)-— 1°(z) = 0.) Theorem 5.1 now yields

Remark 6.2. Suppose the functional £ in (6.11) obeys (6.21)-(6.23) and

also (6.30). The zero solution of (6.11) is then asymptotically stable

whenever

G(») > F'(0). (6.32)

If, in particular, the only long range force acting on the ball is that

due to gravity, then the zero solution is asymptotically stable whenever

G(») > 0. (6.33)
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Aggendix: On the Extent gg Stabilitx

Each type of evolution equation has a natural "state space” R.
For ordinary differential equations R is En; for functional-differential
equations R is a linear function space containing the domain of definition
of £ in (1.1). A function V on R that is bounded below and decreases on
all solutions of an evolution equation may be called a Lyapunov function
for the equation. We may denote by Eb the set in R on which V is less
Ehan b, For ordinary differential equations, La Salle [1960, 2] showed
that if V is a Lyapunov function with U, bounded in R and if M is the
largest invariant set in U, on which %E V = 0, then every solution with
its trajectory in gb approaches M. This result was extended by Hale to
certain types of functional-differential equations. In his first paper
on this subject [1963, 1], Hale considered the case in which R is the

set of continuous functions mapping a finite interval [0,r] into E” and

he employed the uniform topology on 5.# Later [1965, 1], he explored

#See also the work of Krasovskii [1959, 1, §§27-34], and a recent essay

by La Salle [1967, 4].

the case in which R is endowed with the compact open topology and is the
set of continuous functions mapping [0,») into E". Once the lemmas of
Section 4 are in hand, it is easy to show that stability theorems of

the type obtained by Hale hold when R is a history space V as defined

in Section 2.
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Henceforth, unless we state otherwise, we shall drop the

assumption (3) about £, and replace the assumptions (1) and (2) by

(L)' £ is defined and continuous over ¥

(g)' £ maps bounded subsets of v into bounded subsets of E",

We shall keep our other postulates unaltered. Clearly, Property (3) of
£ is not needed for the Lemmas 4.1 - 4.3, and when (l)' and (g)' are
assumed these lemmas are valid with h an arbitrary positive number.
If V is a continuous functional over an open region in ¥V and
if § is in the domain of V, we write V(g) for the supremum of
Limg e - ved)
£-0* ©

over all solutions x(+) of (3.1) with initial history ¢.

Theorem 7.1#. Let V be a continuous real-valued function on ¥V, let b b

#Cf.. Hale [1963, 1, Theorem 1], [1965, 1, Theorem 1].

a positive number, and let U be the set of elements ® in V for which

V(@) <b. Suppose there exists a { >0 such that

)| <¢t, V@ >0, and V(@) <0, (7.1)

for all ¢ in U,. If M is the union of all the invariant sets in U, on

which V = 0, and t

[

x(+) is a solution of (3.1) with 50 in U then x

_— — — =b) ~

approaches M as t — «,
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Proof. It follows from (7.1) that each solution x(:) of (3.1) with 50
in Up has §t in U, and |5(t)| < for t >20. By Lemma 2.2, along each
such solution uzt" is bounded for t > 0. Thus every solution which

has its initial history in U, can be extended to (-»0,0) and obeys the

b
conclusions of Lemmas 4.1 - 4.3. Hence the w-limit set Q of such a
solution x(-) is a non-empty invariant set. It follows from (7.1)2&3

that V(zt) has a limit bo < b as t - »; therefore,
V() = bo for each ¥ e Q, (7.2)

and Q is contained in gb' Since Q is invariant, (7.2) implies that
V(Y) = 0 for each ¥ in Q. Thus, @ is a subset of M, and (4.16) implies
that

dist(zt,g) -0 as t -

q.e.d.

Theorem 7.2.# If there exists a functional V obeying the hypothesis of

Tce. Hale [1963, 1, Corollary 11, [1965, 1, Corollary 1].

Theorem 7.1 and, in addition, such that ng) # 0 for all ® in U

with

b
o 4 Qf, then g(g*) = 0 and every solution of (3.1) that has its initial

history in Eb obeys

Lomlx)| = o. (7.3)

t—o
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Proof. Lemmas 4.2 and 4.3 and the proof of Theorem 7.1 require that each

solution with §0 in Eb have a non-empty invariant limit set Q on which

V = 0. But, since we here have V(g) <0 for ¢ ¢ Qf, the only possible
element in R 1is Qf. Of course, the singleton Q = [Qf} can be an
invariant set only if g(gf),= 0. Furthermore, when 50 is in Uy, (4.16)

here reduces to (5.5), which implies (7.3).

Theorem 7.3.# Let V be a continuous real-valued function on V obeying

#Cf. Hale [1965, 1, Theorem 3].

V() >0 and V(®) <O for all ¢ in V. If M is the union of all the

invariant sets' in V on which V= 0, then every solution of (3.1) with
lg(t)l bounded for t > O approaches M as t — =.

If, in addition, there exists a continuous non-negative

function u on (0,») such that u(o) »» as 0 »», and

a(le@]) < v@ (7.4)

for all ¢ in V, then all solutions of (3.1) have |x(t)| bounded for t > 0.

Proof. The first part of this theorem was demonstrated in the proof of
Theorem 7.1. The proof that (7.4) implies boundedness proceeds as

follows. Let x(¢) be a solution of (3.1). Since u(o) »» as g »», it
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follows from (7.4) that for this solution x(-) there is a number m such
that V() > V(go) whenever IQ(O)I > m. Therefore, since V(gt) is a
non-increasing function of t for t > O, |§(t)| cannot exceed m at any

t >0; q.e.d.

Theorem 7.4. Let V be a continuous real-valued function on v obeying

V(g) < 0 for all ¢ in V with equality holding only when ¢ = 0*. If

— ——— ~ ~ —

there exists a continuous non-negative function u on (0,~) such that

u(0) »» as o-« and u(|©(0)|) < V@ for all ¢ in ¥, then

@ £@H =g,

(B) all solutions of (3.1) have lg(t)l bounded for t > 0, and

(Y) for every solution

,ez;yn)l,?s(t)l = 0..

t— o

25225. It follows immediately from Theorem 7.3 that (B) holds here.
Hénce, by Lemma 2.2, uét" is bounded, for t > 0, along each solution
x(+) of (3.1), and each solution can be extended to (-w,»). By Lemmas
4.2 and 4.3, the w-limit set of 5(-), Q, is non-empty and invariant.
As we saw in the proof of Theorem 7.1, this, along with the fact that
V(ﬁt) has a limit as t —» », implies that V=0 on Q. Therefore, since
here V(Q) = 0 only when @ = Qf, Q is the singleton (gf], and, because
Q is invariant, (@) holds. Just as in theproof of Theorem 7.2, (4.16)

here reduces to (5.5) which implies (Y).
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