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1. Introduction

The functional-differential equations studied here have the

form

x(t) = f ^ ) , (1.1)

where the superposed dot denotes a right-hand derivative, x is the

function on [0,<») defined by x (s) « x(t-s), and £ is a preassigned,

continuous, locally bounded function mapping a function space V into a

finite dimensional vector space E . By a solution up jto A (A > 0) of

(1.1) we mean a function x(*) on (-«>,A) which obeys (1.1) for all t in

[0,A). Assuming that the domain V of f is a history space of the type

occurring in the theory of fading memory,7' we find sufficient conditions

^See, in particular, [1968, 1].

for the stability of solutions of (1.1).

In a recent essay [1968, 2], we considered evolving systems

more general than those described by (1.1), but we sought sufficient

conditions for only simple stability; here the emphasis is laid on

asymptotic stability.

After listing in Section 2 the basic properties of a history

space V, we show, in Section 3, how results obtained in [1968, 2] may be

applied to the equation (1.1). In Section 4 we prove lemmas about the



2.

compactness in V of the closure of trajectories, and the existence,

invariance, and attracting power of positive limit sets of solutions of

(1.1). The utility of such lemmas for the investigation of asymptotic

stability is brought out by the work of La Salle [I960, 2], [1967, 4]

on ordinary differential equations and of Hale [1963, 1], [1965, 5] on

functional-differential equations. Indeed, the proofs given in Section 4

are modeled after those employed by Hale [1965, 1] for the case

in which the domain of f is a space C of continuous functions on [0,°°)

endowed with the compact open topology. Because the Banach function

spaces V of the theory of fading memory are likely to be less familiar

to the cultivators of stability theory than the space G employed by

Hale, we have thought it desirable to outline in detail our proofs of

the basic lemmas. The theorems proven in Section 5 give sufficient

conditions for the asymptotic stability of a solution of (1.1). In

Section 6 we apply Theorems 3.1 and 5.1 to an easily visualized physical

problem. In the Appendix we discuss extensions of stability theorems of

Hale [1963, 1], [1965, 3] to our history spaces V.

Although we assume that the generally non-linear functional £

in (1.1) is continuous on a history space V and maps bounded sets in V

into bounded sets in E , our main theorems do not require that f be

Lipschitz continuous.

"Although Hale [1963, 1], [1965, 1], in the proof of his theorems on the

extent of stability, assumes that the functional f: is locally Lipschitzian,

he points out [1965, 1, p. 455] that no such condition is required for

the proof of his basic lemmas.
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The present investigation arose out of two observations.

(I) There are differences between the function spaces usually

employed in the theory of functional-differential equations and the

history spaces V which occur in studies of the mechanics and thermodynamics

of materials with gradually fading memory. An example of a material with

fading memory is one obeying Boltzmann's linear theory of viscoelasticity;

for such a material, in the one-dimensional case, the stress T(t) is given

by the following type of functional of the history of the strain E:

T(t) - G(0)E(t) + / G'(s)E(t-s)ds. (1.2)

0

Here G is a smooth function on [0,«>) with its derivative G1 (s) negative

for all s > 0. A functional with the form (1.2) is clearly not continuous

in the compact open topology, but is continuous over an appropriate

JL
history space from the theory of fading memory, provided only that Gf is

^Cf. Coleman & Noll [1960, l], [1961, 1]; Coleman & Mizel [1966, 1].

a

dominated by positive measurable function i with the properties (I)-(IV)

listed in Remark 2.4 below. We have, therefore, been interested in

determining whether the theories of stability developed recently by

Krasovskii, La Salle, and Hale can be extended to cover functional-differential

equations compatible with the theory of fading memory used in continuum

physics.
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(II) For many problems with physical applications, known

results in the thermodynamics of materials with memory" can supply

^Coleman [1964, 1], Coleman & Mizel [1967, 2].

directly free-energy functionals which have properties similar to, but not

identical with the Liapunov functionals occurring in the work of Krasovskii7nr

^ [1959, 1, Theorems 30.1 and 30.3].

and Hale""". It is natural to ask whether one may use free energy

See [1965, 1, Corollary 2].

functionals to investigate stability. Our present Theorems 3.1 and 5.1

show that the answer is yes. The criterion for stability which results

seems to justify the common practice in physics of declaring that states

of: stable equilibrium are those which minimize the "equilibrium free

II it it II
energy"Junu/ in this regard the present study continues and extends our

Cf. Gibbs [1875, 1].

recent investigations''Jrninr of the relation of thermodynamic principles

//////////Coleman & M i z e l [1967, 2], [1968, 2]; see also Coleman & Greenberg [1967, l]

to criteria for dynamical stability.
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Let E n be a real Euclidean space of n-vectors with norm

Ixl = -/x*x , and let V be a past-history space, i.e. a Banach function
I f>f | rsj r>** ' = = r A———

space of the type discussed by Coleman & Mizel

"[1967, 3], [1968, l]. V can be constructed by employing an appropriate seminorm v

on measurable functions mapping (0,°°) into itself and asserting that a

measurable function ifj mapping (0,°°) into E corresponds to an element

of V if and only if v(|^|) < «>. The norm on V is then ||̂ || = v(|^|) and two
—r n*, **r]c r>^ r ***

functions 0 and if/ on (0,<») are considered the same if v(|^~0|) = 0.

formed from functions #,0, ... mapping (0,°°) into E n. We list below the

basic properties assumed for Vr:

A. Constants are V ; i.e. if a is in E then a, defined by

a(s) = a for se:(0,«>), is in V .

B. V contains all right and left translates of its elements;

i.e. if f is in V then T(° f and T, ,f, defined by

(0 for se (0, a],

(2.1)

f(s-o) for s€z(a,«>),

and

for s c (O.co). (2.2)

are in V for each a > 0.

C. The norm | • || on V is compatible with the natural partial

ordering of functions on (0,°o) in the sense that if ^ is in V and if 0

is a measurable function mapping (0,°°) into E n which obeys |<£| < |^| "

jut

""The superposed ° indicates that the given relation holds pointwise fi.<s.}

i.e. at all points in (0,<») with the possible exception of a set with

Lebesgue measure zero.
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then 0 is in V and ||0|| < \f\\ . Furthermore, if || • || is not identically
rs* = r />» r *"" #>/ r r

zero, then ||̂|| = 0 only if f = 0. It is also assumed that V has the

following Fatou property; If 0 . .. .,0 , ... are in V , if ||0 || < K < «>,
————— • «»j_ rja =5r rjn r

and if |0 I T \f\, pointwise a.e., with f measurable, then f is in V and

D. V is a separable Banach space,

E. V has the relaxation property:"

[1966, 1, §6], [1968, 1, §§4,5].

Z fL = ° for each

Remark 2.1. It follows from known results in the theory of Banach

function spaces7nrthat Properties C and D imply (a) that continuous

^Luxemburg [1965, 2, Theorem 46.2, p. 241]; Lorentz & Wertheim [1953, 1,

see the proof of Theorem 1, pp. 570, 571]; Luxemburg & Zaanen [1956, 1,

Theorem 4, p. 117], [1963, 2, Theorems 2.2 - 2.4, p. 157]; Dunford &

Schwartz [1958, 1, Exercise 17, p. 170].

functions of compact support are dense in V , and (b) that the

dominated-convergence theorem holds for V x For each 0 in V and each
— — — — — — — — — — — _ — _ _ _ _ — _ — Y ,+j SS]f

sequence if/ in V such that |^n | < | 0 | for a l l n and if/n -» if/ pointwise

a .e . , we have \\fn~i/ || -> 0.
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S
Remark 2.2." Properties B-D of V imply that for each if/ in V and each a > 0

"[1967, 3, Appendix ll. The proof given there uses Property A, but

clearly this property of V is not needed. See also [1968, 1, Theorem 3.4].

Remark 2.3. It follows from Properties B-E of V that the norm

of the linear operator T 9 as a function of a€:[0,<»), is not only
JUL

submultiplicative, but is also bounded:777'

^[1968, 1, Theorems 3.3 and 4.1]; see also [1966, 1, Remark 6.4].

A = M < ~ . (2.4)
a > 0

Given a past-history space V and its norm || • | we may consider

the set V of measurable functions Y which map the half open interval

[0,°o) into E n and satisfy |||rHr < °°, where £r, called the past history

of ¥, is the restriction of IF to (0,«>). The function || • || given by

III - -IX<0)| +lllrilr (2.5)

is a well defined semi-norm on V. If we identify, in the usual way,
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functions <t>, T in V obeying ||j""^|| • 0, then V becomes a Banach space

with || • || as its norm. A Banach space so constructed is called a history

4
space."

^Cf. [1967, 3, §3], [1968, 1, §3]. V may be referred to also as the

space of total histories, to emphasize its distinction from the space

V of past histories.

The elements ? of V are called histories; their independent

variable is called the elapsed time and is denoted by s. It follows

from (2.5) that, even after identification, each history ¥ has a

well defined value ¥(0) at s = 0; ¥(0) is called the present value of ¥.

It is clear that a continuous functional over V must have a "special

MM.

dependence" on the present values of the histories in V.

^See also [1968, 1, Remark 3.3].

If x is a vector in E , we denote by x the constant function

on [0,oo) with value x:

xf(s) iE x, s c [0,co). (2.6)

It follows from (2.5) and Property A of V that x is in V. The
=sr <v* =

restriction of x to (0,oo) is denoted by x . Let a and p be the numbers
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defined by

a - | e
+ | and p - ||e+L when e-e - 1. (2.7)

Clearly, 0 < a < <» and P « a + 1 .

We write 0 for the constant function in V whose value is the

zero element 0 in E y and we denote by S(h) the open ball in V about 0

with radius h > 0:

S(h) (2.8)

Given any function H on S(h), we can define a function H° on

a neighborhood S, of 0 in E by the formula

H°(x) - H(x+); (2.9)

H° is called the equilibrium response function corresponding to H.

A measurable function x(-) mapping (-»,a) into E is said to

^ e admissible on (-°°,a) with respect to V if, for each t in (-°°,a), we

have |jx || < », where x , called the history of x(») U£to t; is the

function on [0,°°) defined by

xt(s) - x(t-s). (2.10)

Unless we state otherwise, we regard the histories x of an admissible

function x(*) as elements of the Banach space V rather than as functions.
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Elsewhere7' we have given arguments which we believe strongly

# [1968, 1, Theorems 2.1 and 3.1J.

motivate the present method of constructing the space V of histories.

Here we shall content ourselves with the mention of an example often

employed in continuum physics.""

Coleman & Noll [1960, l], [1961, 1]; Coleman [1964, 1]; Coleman &

Mizel [1966, 1].

Remark 2.4. For fixed p > 1, the norm || • || given by

/
0

and the corresponding set V of functions ¥ mapping [0,«>) in E n with

IÎ H < °° ^fine a history space whenever i is a fixed measurable function

on (0,«>) obeying the following four conditions:

/I. / 4(s)ds <

0

II. Jt > 0 ;

III. the functions K and K defined by

have finite values for all aez[0,«>);

IV. J4jk K(s)
s>0
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In fact, if >0(s) is not almost everywhere zero, I-IV supply

necessary and sufficient conditions that the norm || • || defined by (2.11K

and the corresponding set of functions tfj mapping (0,«>) into E with

\tfj\ < «> form a past history space. Condition I is clearly equivalent

to Property A; it can be shown that II and III together are equivalent

to Property B,#7r given I> II, and III, the condition IV is equivalent to

^[1966, 1, Theorem 3, p. 101].

M4l n
Property E;77" and for 1 < p < °° these 5tl"sPaces automatically have Proper-

^[1966, 1, Remark 6.4, p. Ill, and Eq. (4.26), p. 101].

ties C and D. in this example, ||T(a)||r = £(a)
1 / p, |T(a)||r = K(a)

1 / p,

and a sufficient condition for Property E (i.e. for IV) is that I be

monotone decreasing on (0,«>).

To illustrate a method of working with a general history space

V, we now prove an easy, but useful, lemma.

Lemma 2.1. Given any r\ > 0, there is a £ = £(T]) > 0 such that any

measurable function x(*) mapping (-00,00) into E n that obeys |x(t) | < £

for all t > 0 anc[ has, x in S(O must have x^ in S(T)) fo£ each t > 0.

Proof. By (2.5), (2.10), (2.1), and the triangle inequality

(2.12)
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where X,o s is the characteristic function of (0,t). Suppose that, for

some number £ > 0, we have |x(t)| < £ for t > 0 and also ||x || < £. Then,

by (2.10) and (2.5), we have

|x(t)| < i (2.13)

not only for t > 0 but also for t = 0. Furthermore, for each t > 0 we have

|X(0,t)(s)£r(s)| " S = l ?£r ( s ) | for all s > 0,

where e is a constant function or. (0,«>) whose value is a unit vector in

En; thus, by (2.7) and Property C of V ,

Of course,

|x|| ,

and, by Remark 2.3, this yields, for t > 0,

flT^x^ < M\k% < MS, (2.15)

with M the constant in (2.4). Substituting (2.13)-(2.15) into (2.12) we

find that for t > 0

and if we now put

d e f

the lemma is proven.
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As a corollary to the proof of Lemma 2.1 we have

Lemma 2.2. I£ x(#) i£ a measurable function mapping (-<*>,<*>) into E n with

x in V and

t€z[O>)

then for each t > 0

SSG H <

H+

with a and M defined in (2.7) and (2.4)

HUNT LIBRARY
CABNEeiE-MELLON UNIVERSITY
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3. Basic Definition Free Energy Functionals, and Stability

Let a history space V be given, let h be a positive real

constant, and let f be a function mapping S(h) into E and enjoying

the following properties:

(1̂ ) f is continuous over S(h).

(2) f is bounded in the sense that f(S(h)) is a set in E n

with finite diameter.

Q) I(2f) - 0.

If ? is in V and if A is in (0,«>], then we say that a function

x(*) mapping (-«>,A) into E is a solution up to A of the equation

i(t) - ffe*), (3.1)

with initial history ¥, provided

(a) x(#) is admissible on (-°°,A) with respect to V, and x is

in S(h) for t in (0,A);

(b) x(t) is continuously differentiable in the classical sense

for t in (0,A) and has a right-hand derivative, x(0), at t = 0;

(c) (3.1) holds for all t in [0,A) with x*1 the history of x(.)

up to t;

(d) x , the history of x(.) up to 0, is equal to Y.
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Remark 3.1. Properties (1.) and (2) of f insure that for each ¥ in S(h)

there exists an A > 0 and a function x(0 which is a solution up to A

of (3.1) with' initial history ¥. Furthermore, this solution can be

extended, i.e. A can be increased, until x reaches the boundary of S(h).

Since we do not assume that f is Lipschitz continuous on S(h),

we know nothing about the uniqueness of solutions corresponding to an

arbitrary initial history ¥ in S(h).

Of course, it follows from Property (3) that x = 0 is a

solution of (3.1) up to «> with initial history 0 ; we call this the

zero solution.

The solution x s 0 of (3.1) is said to be stable if for every

€ > 0 there is a 6 = 6(e) > 0 such that if ¥ is in S(6) then (a) every

solution x(O of (3.1) with initial history ¥ has |x(t)| < € for each

t > 0 in its domain of existence, and (b) a solution of (3.1) with

initial history IF exists for all t < <». If, in addition, there is a

£ > 0 such that each solution x(0 of (3.1) with its initial history x

in S(£) obeys j^W/|x(t) | « 0, then the solution x s 0 is said to be
t-»°° ~ ~

asymptotically stable.

It follows from Lemma 2.1 and Remark 3.1 that the zero' solution

o£ (3.1) is. stable if and only ijE fo£ each € in (0,h) there Ls a 6 - 6(€) > 0

such that ¥ in S(6) implies that every solution x(*) of (3.1) with x° » *

has x in S(e) for each t > 0. (We shall discuss this point in more

detail in our proof of Theorem 3.1.)
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A real-valued function H on S(h) is called a free energy

functional for the equation (3.1) if

(i) H is continuous over S(h),

(ii) for each solution up to A of (3.1), E(x ) is a non-increasing

function of t for te[O,A), and

(iii) for each history T in S(h) with £(0) in the domain S h of the

equilibrium response function H° corresponding to E,

(3.2)

We say that a real-valued function, such as E°, defined on a

neighborhood of 0 in E has a strict local minimum at 0 if there exists

an T) > 0 such that

xeE n, 0 < |x| < T] = > H°(x) >H°(0). (3.3)

Theorem 3.1. Lf there exists a free energy functional H for (3.1) whose

equilibrium response function H° has a strict local minimum ait 0, then

the zero solution of (3.1) Is stable.
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Proof. A proof we have given elsewhere7' shows that in the present

^[1968, 2, Theorem l]. The metric p($,p - Ilj-^L with || • || the norm

on the history space V, clearly obeys the postulates laid down in that

paper. The set F mentioned there should here be chosen to be a small

neighborhood of 0 in En.

situation there does exist, for each € > 0, a 6 « 6- (e) > 0 such that

each solution x(-) of (3.1) with x in S ^ ) obeys |x(t)| < € for all

t > 0 which are in its domain of existence. If we can now produce a

&2 > 0 such that for each ¥ in S(62> a solution of (3.1) with initial

history ¥ exists for all t, then Theorem 1 will be proven, for

6 = /JHuru(6p 6*) will then have the properties (a) and (b) mentioned in

the definition of stability. Clearly, by Lemma 2.1, there exists a

£ > 0 such that if x(.), with domain (-°o,A), A > 0, has x° in S(£) and

|x(t)| < £ for t in [0,A), then x(-) will have ^ in S(h) for each t

in [0,A). Now, if we put 62 = /mi/rtXCj^i (£)) > then each solution x(0

of (3.1) with x° in |(62) will have |x(t)| < ^ for all t > 0 in its

domain of existence, and hence no solution with x in S(6O) will have

x reaching the boundary of S(h) at a time t > 0. But, by Remark 3.1,

this implies that every solution of (3.1) with its initial history in

S(6 ) can be extended indefinitely; q.e.d.
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4. Some Lemmas

We have observed that any solution x(-) of (3.1) with x in

S(h) can be extended until a time t at which x reaches the boundary

dS(h) of S(h). Henceforth, whenever it is known in advance that x

cannot reach dS(h) at a finite value of t let us suppose that the

solution has been "extended to infinity", i.e. that x(-) is defined on

(-oô oo) . Given such a solution we may consider at each time t the

truncated history Ax defined by:""""——-—— <i**'r

fxt(s)-x°(O) = x(t-s)-x(O) for s€i(O,t]

when t > 0, &£(s) = \

(0 for se(t,«>),

when t < 0, Axt(s) = 0 for se(0,«>).

Since x(») is a solution, x(O is admissible with respect to V, and hence

each past history x along x(-) is in V . Moreover, |xt(s) — x(0)| > |Axt(s)
for all s in (0,<») and thus each truncated history Ax is also in V .

We denote by {Ax } the set of all the truncated histories, with -» < t < «>,
^r

occurring along ^ given solution x(*) of (3.1).

The set of all histories x with t > 0 occurring along a

preassigned solution of (3.1) is denoted by {x" \ t>0}. Of course,

{x | t>0} is a subset of V.
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Lemma 4.1. If x(*) is a solution of (3.1) with {xfc | t>0} c S(h), then

the sets {Ax } and {x | t >0} corresponding t£ x(#) are both precompact;

that Is

(1) {Ax } ijs contained in a compact subset of V , and

(2) {x | t >0} i£ contained iii a compact subset of V.

Proof. We first prove (1), employing the fact that for metric spaces

compactness is equivalent to sequential compactness. Since it is

assumed that

fix*! < h for t e [0,oo) (4.2)

and since |x(t)| = |x (0) | < ||x ||, we have

(s)| < 2h for t e (-«,oo), s e (0,oo). (4.3)

Furthermore, (3.1), (4.2), and Property 2 of f tell us that

, t,« def
^ ^ ) ! K

t>0 t>0

i.e.#

^At s » t, (4.4) gives a bound on the left-hand derivative of M (•) and

the right-hand derivative is zero. Elsewhere Ax (•) is differentiable

in the classical sense.

— Ax^(s) < K < oo for t e (-00,00)̂  s e. (0,oo). (4.4)
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Thus, {Ax } is an equicontinuous, uniformly bounded, set of functions,

t
and, by a standard argument involving diagonalization, each sequence Ax

composed of functions in {Ax } has a subsequence Ax which converges

t,
uniformly on every compact subset of (0,°°). The limit function ip of Ax

is continuous on (0,«>) and, by (4.3), obeys

| < 2h for s e: (0,«>). (4.5)

Hence, by Properties A and C of V , ^ is in V . To complete our proof
— r rs» =sr

of (1) we must show that

Mwl**? - %lr - 0. (4.6)
m-»°°

As we observed in Remark 2.1, the dominated convergence theorem holds

in V , and it follows trivially from (4.3) and (4.5) that if e-e = 1, then

|Ax m(s) ~ ^ ( s ) | < |4he+(s)| for all s€z(0,«>) and each m.

t b y

Of course, by Property A of V , the function 4her is in V , and therefore,ARemark 2.1,

the pointwise convergence of Ax m to if/ does imply (4.6). Thus the closure

of {Ax } is compact in V .
~r v =r

tn
To demonstrate statement (2) of the lemma we let x be a

sequence in {x | t>0}. We wish to show that x has a subsequence x m

obeying

jJnu«xtm-2ll = o (4.7)
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for some function 0 in V. Since |x (0) | < ||x ||, it follows from (4.2)

that the vectors x n(0) • x(t ) form a bounded sequence in En, and, by

the Bolzano-Weierstrass theorem, the sequence of numbers t has a

subsequence t. such that

i —»OO

for some vector a in E . Putting 3>(0) equal to a we observe that, by

(2.5), to establish (4.7) it suffices to show that t. has a subsequence

t such that
m

5 ; - M r - ° <4-8>

for some function <I> in V . If the sequence t, is bounded above, then
*̂ r ~r &

t0 will have a subsequence t with a finite limit T. i.e.
Xt m '

t -» T < °° as m->oo
m '

and it will follow from Remark 2.2 that (4.8) holds with Jr - x \

Therefore, the only case to be examined is that in which t. is unbounded
Xt

and hence has a subsequence t obeying

t -»°o as m -> a>. (4.9)

In this case we observe that (2.1) and (4.1) yield, for t > 0,
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with Xfn 1 the characteristic function of (0, t . Clearly, we may choose

the sequence t in (4.9) in such a way that (4.6) holds for some function
m

in V . Employing the function if/ so obtained, we define $ as

Jr J M . (4.11)

Properties A and C of V imply that x(0)X,o v, and hence <f> } is in V ,

while (4.10) and (4.11) imply

By Property E of V , (4.9) yields

(tm)£l - 0, (4.13)

and, because the dominated convergence theorem holds in V , (4.9) also

yields

Lro l*«»X(o t ]
m-»<» ^ m

It is clear that (4.6) and (4.12)-(4.14) imply (4.8); q.e.d.

With each solution x(-) of (3.1) which can be extended to infinity

we associate a set Q (possibly empty) called the a)-limit set of x(-) and

defined as follows: ¥ is in Q if and only if ? is in V and there exists a

sequence of positive numbers t such that
m

t ->oo and ||x m-^||-»0 as m -»«>. (4.15)
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Lemma 4.2.^ If x(«) is a solution of (3.1) with {xfc | t >0} c S(h), then

fGt. Hale [1965, 1, Lemma 3].

the oo-limit set 8 of x(») is. fi, non-empty compact subset of V, and

dist(x ,Sl) -» 0 as t -»<». (4.16)

Proof. It follows from Lemma 4.1 that if x(-) is a solution of (3.1)

with {x I t>0} in S(h), then each unbounded positive sequence t has a

subsequence t obeying (4.15) for some element ¥ of V. Hence, SI is not

empty. Since SI is a subset of the closure C of {x | t> 0} in V, and

since, by Lemma 4.1, C is compact, to prove that SI is compact it suffices

to show that SI is closed in V. To this end, suppose that ! in 2

approaches f in V as n -» °°. There then exists, for each n, an unbounded

sequence t-(n) of positive numbers such that
Xt

t .(n) -» «> and ||x — ¥ ||- -» 0 as i, -» «>,

and for any given integer m we can find an integer k such that

|j \jr _ ̂|| < J L #

Moreover, by choosing &. > k sufficiently large we will have

t, (k) >m and IIx ̂  - %\ < ±- ,
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and therefore

t& !(k) > m and ||x ̂  - *| < £ .

If we write t for t. (k), then the sequence t so obtained obviously
m i>, m

obeys(A.15), which proves that ¥ is in ft, i.e. that ft is closed and hence

compact.

If (4.16) were not true there would exist a positive sequence

t and a number 7 > 0 such that
n

t -»OD and ||xtn - 11| > 7 (4.17)
n /N» /x* —

for all ¥ in ft. But, since {x | t>0} is precompact, x must have a

subsequence x such that, for some ¥ in V,

and the Y so obtained is clearly in ft. Thus, (4.17) is impossible, and

(4.16) must hold; q.e.d.

One can easily show that the hypothesis of Leirma 4.2 implies,

further, that ft is a connected subset of V.

A set T in S(h) is called an invariant set for (3.1) if for each
S = — — — — — — — i _ —

• JF in T there exists a function %(•) on (-00,00) such that

(a) y is in T for each t in (-00,00);

continuously differentiable on (-c0,00);

t t in (-00,00);

(d) y°

^Note; We do not require that every solution 3^(0 with y in T have the

properties (a)-(£). Hence, what we call an invariant set others may

prefer to call a "quasi-invariant set".
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Lemma 4.3. r If ft is the a)-limit set of a solution x ( O of (3.1) having

. Hale [1965, 1, Lemma 3 ] .

^ I t > 0 } cz S O i ^ with hj < h, then ft is. contained in S(h) and jLs an

invariant set for (3.1).

Proof. If ¥ is an element of ft, then there must exist a positive sequence

t obeying (4.15). Since we here assume that each x m in (4.15) is in
m />/

S O O , ¥ must be in S(h); hence & is contained in §(h). Now,

since |x(t)| = |xt(0)| < Ix^l and {xt | t > 0) c S(h.) c S(h), we here

have (4.3) holding and hence, for the sequence x m obeying (4.15),

I^m+T(s)l < 2h for s e (0,«), T e (-%oo), (4.18)

and, by (3.1), (4.1), and Property 2 of f,

u A m , \
— Ax (s)
as ~r < K < co for s e (0,oo)^ T e (-%«>). (4.19)

Employing Ascoli's theorem and a diagonalization argument, one easily proves

that (4.18) and (4.19) imply the existence, for each integer N, of a

subsequence t̂  = t^(N) o f ^ a n d a function fK ' (•) such that as I -> oô

uniformly in s for s in compact subsets of (0,°°). Clearly, since

'-"O, (4.20)



26.

the sequence t0 has the additional property that as & -»<»,
JO

\tOLr
t T(S) - / T ) ( S ) | -> 0,

uniformly in s and T for s in compact subsets of (0,«>) and T in [-N,N];

here if/ (s) = if/ ( s + N - x ) . We may now employ diagonalization relative

to the integer N to find a subsequence t, of t and a function if/ (•) such

that as k -* °°, we have t, -» «> and

- / T ) ( s ) | -̂  0, (4.21)

uniformly in s and T for s in compact subsets of (0,<») and T in compact

subsets of (-<»,«>). Furthermore, by (4.18), we have \f (s)\ < 2h for

all s in (0,«>) and all T in (-00,00). The continuity of £x (s), the

relation (4.20), and the uniformity of the convergence in (4.21), imply

that if/^'(s) is continuous in both s and x# Thus, if/ (#) is in V for

each T and, by Part b of Remark 2.1, we have

lr - 0 for T e (-«>,«>). (4.22)

Furthermore, because f (s) • if/ (s+N-x) there exists a continuous function

£(-)^ on (-^o0), such that £ • if/^ '. Hence y = £+x(0) is a continuous

function on (-00,00) obeying y (s) = f^ (s). + x(0) for s in (0,«>); i.e.

where y is the history and y the past history of y(*) up to time T
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Since tk ->~, (4.21) and (4.1) imply that

|x(t,+T-s) -""jr(T-s)| -» 0 pointwise, for s e: (0,«>)j T e (-oô co)

as k -» °o. This limit holds also for s « 0 and therefore implies that

for T in (-00,00)

|x(tk+r) - y ( x ) | - |xtk+T(0) - yT(0)| - > 0 (4.24)

as k"-»». Employing (4.10) and (4.23) we may write, for t, > -x,

tk+T
x K _

thus

Tx

r + | S < O K , - 2(0)X(0)^||r + | A
+ V y r . (4.25,

Since tfc -* » as k -»», it follows from (4.22), (4.25), (2.3), and Part b

of Remark 2.1, that, for each T €: (-00,00),

5r "Zr'r * °* (4-26)

It is clear from (4.24) and (4.26) that we have produced a function y(*)

on (-00,00) with the property that for each T in (-00,00) the history yT of

y up to T is in V and

|x K - yT|| = 0. (4.27)
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Hence, each of the functions y is in ft. If we can now show that y(*)

has the Properties (b)-(c.) listed on page 24, with T = ft and ¥ our

original given element of ft, then it will follow that ft is an invariant

set.

Since t. is a subsequence of t , it follows from (4.15) and
k ^ m> v

(4.27) that y = ¥, and hence y(-) has Property (d). Therefore, it

remains only to verify that y(*) has Properties (b) and (c.); i.e. that

y(#) is continuously differentiable and obeys

y(t,) - y(t ) = / g(x)dx, with g(x) = f(yT)* (4.28)

for each pair of numbers t , t, . Since £ is continuous over S(h) and y

is in S(h) for each T, it is a consequence of Remark 2.2 that the function

g(-) in (4.28) can suffer discontinuities at only those values of T at

which y ( 0 is discontinuous. Thus, the continuity of y(-) insures that

2 ^
''This property of equationsof the form g(x) * f (y ), with f continuous

on a region in V, is called "conservation of regularity" and is

discussed in detail by Coleman and Mizel [1968, 1, particularly

Remark 3.3].

g(-) is continuous, and if we show that (4.28) holds then y(«) will

automatically have not only Property (<c) but also Property (b). Now,

let a pair t , t, be assigned, with, say, t, > t . Noting that t -»<»

as k -» «>, we may pick an integer k so that t, +t is positive for all
K. a
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* *

k > k . Since x(«) is a solution of (3.1), we have, for k > k ,
tb

x(tk+tb) - x(r.k+ta) = J gk(*)dT, with gk(T) £§£ f(x
t k + T). (4.29)

a

Clearly, (4.24) implies that, for each t, as k -» » the left side,

x(tk+tb) ~ x(tk+ta), of (4.29) approaches the left side,

of (4.28). Therefore, if we can show that

f 8(T)dT, (4.30)

t t

a a
then y(0 must obey (4.28). Since f is bounded on S(h) and {x | t>0}

is a subset of S(h), we have

gk(x) < K < oo, (4.31)

for each k > k' and all T in [t ,tu); and since f is continuous on S(h),

(4.27) yields

gi,(T) -• g(T)/ pointwise, as k -̂  «>. (4.32)

Furthermore, the continuity of x(t) in t for t > 0 implies that each

function g, ( T ) , with k > k , is continuous in T for r in It ; t l ;

therefore, (4.31), (4.32), and a theorem of Arzela7', tell us that (4.30)

^Or, if one prefers, the standard form of Lebesgue's theorem on

dominated convergence.

does indeed hold under our arbitrary assignment of t and t, . Thus (4.28)
a D

holds for every pair t , t, , and y(O has the Properties (b̂ ) and (<c); q.e.d.
a b ,v»
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As a direct consequence of the lemmas proven here we have

Theorem 4.1. If the zero solution of (3.1) is. stable then there exists

a £ > 0 such that each solution x(-) of (3.1) with its initial history

x iS £(£) has the following properties:

(a) {x** | t >0} JLS precompact in V;

(£) the CD-limit set of x(«) i£ a non-empty compact subset

of S(h) and is an invariant set for (3.1);

(7) the a)-limit Q set of x(*) "attracts x(O" in the sense

that <as t -> «>, distCx^Q) -> 0.

Proof. Whenever the zero solution is stable it follows immediately from

Lemma 2.1, Remark 3.1, and the definition of stability that there exists

a £ > 0 such that each solution x(-) of (3.1) with x in S(£) can be

M t ii
x II < h- < h for all t > 0. By Lemmas

4.1 - 4.3 each such solution x(O has the Properties (a)-(7); q.e.d.
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5. ĝiigjtot̂ ic S£abilit^

We call a real-valued function E on S(h) a strictly dissipative

free energy functional for (3,1) if H has the Properties (i)-(iii) of

free energy functionals and, in addition,

(iv) for each solution x(#) of (3.1) that is not identically

equal to 0, there exists a number t > 0 such that

E(x°) >H(xt*). (5.1)

Thus, a free energy functional is strictly dissipative if it

eventually decreases on each solution that differs at some time from

the zero solution.

Our main result is

Theorem 5.1. If (3.1) has a strictly dissipative free energy functional

whose equilibrium response function H° has a strict local minimum at 0,

then the zero solution of (3.1) i£ asymptotically stable.

Proof. It is clear from Theorem 3.1 that under our present hypothesis

the zero solution of (3.1) is stable. Therefore, there exists a £ > 0

such that each solution of (3.1) with its initial history in S(£) has

the Properties (Of), (g), and (7) listed in Theorem 4.1. Let x(-) be
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one such solution; we wish to show that

= 0. (5.2)

_ 0

Property (iii) of free energy functionals and our assumption that E has

a local minimum at 0 imply that E(x ) is bounded below by the constant

—.̂ x j r. -* \JS WJJ £ *-* \l'•

Furthermore, by Property (ii) of E, E(x ) is non-increasing in t along

the solution *(•)• Hence, S(x ) has a limit as t -> «>:

Of course, £ depends on the solution x(*) under consideration. Let Q

be the co-limit set of x(*)- By (J3), Q is a non-empty invariant set for

(3.1) and is contained in the set S(h) on which S is continuous. If ¥

is an arbitrary element of &, then there exists a sequence x m in

{x | t> 0} obeying (4.15). Therefore, by (5.3) and the continuity of S,

S(¥) m a for each ¥ e Q. (5.4)

Now, since Q is an invariant set, for each ¥ in ft (and there is at least

one ¥ in ft) there exists a solution y(O of (3.1) with y = ¥ and

fy | t>0} a ft. On this solution y(*) we have, by (5.4),

S(yt) s i for t > 0.
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But, since E is strictly dissipative, this is possible only if y(*) is

the zero solution. Hence, 0 is the only element of ft, and, by

Property (7) .of ft,

Wll^ll - Jt»*\xt-Ofl = 0, (5.5)
t->°° t-»°°

which, in view of (2.5), implies (5.2); q.e.d.

The arguments used to prove Theorems 3.1 and 5,1 yield also

JL
the following generalization of these two propositions.

*Cf. [1968, 2, Theorem 3].

Theorem 5.2. Lf there exist two real-valued functions V and v such that

(1) V i£ defined and continuous on S(h) while v is, defined

and continuous on S* ,

(2) there ĵs <a 6. > 0 such that V(x ) ijs a non-increasing

function of t, for t > 0, along each solution x(-) of

(3.1) with x° in S ^ ) ,

(3) v has a strict local minimum ajt 0,

(4) V(0+) - v(0), and for each H in S(h) with f(0) in S h

then the zero solution of (3.1) jLs, stable. Ift in addition, we can find
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a 60 > 0 such that, for each solution x(«) that is not identically zero

and has x in S(6O). there exists a time t > 0 at which Vfx*1 ) < V(x°),

then the zero solution of (3.1) is. asymptotically stable.
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6. Examples

a. The Dangling Spider

We suppose that a ball of mass M is hanging from a ceiling by

a massless but extensible filament of length z. The forces acting on

the ball are the tension T in the filament and a body force F in the

z-direction. We take F to be derivable from a time-independent, twice

continuously differentiable potential hi

F = F(z) = - 5 ^ • (6.1)

In the special case in which the only long-range force acting on the

ball is that of gravity, we have

h = -gMz and F = gM, (6.2)

with g a constant. We may, however, seek greater generality and allow

for the possibility that F varies with z. Since the filament is

supposed massless, at each instant the tension and strain in it are spatially

homogeneous. We assume that the filament is composed of a simple

viscoelastic material with constant and uniform temperature. The value

of the tension T at time t is therefore given by a function £ (which

may be non-linear) of the history of z up to t; i.e.

T(t) = ^(z*), with zt(s) = z(t-s), s e [0,»). (6.3)
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The constitutive functional J: is assumed compatible with the "principle

of fading memory"; that is, jt is a continuous functional on a history

space V obeying the postulates laid down for V in Section 2. [The

superscript in the symbol V serves to indicate that this Banach space

is formed from functions mapping [0,«>) into E , i.e. the real numbers.]

We assume that £ is also locally Lipschitz continuous on V • We

further assume that -Z* is compatible with a recent formulation" of the

^Coleman [1964, 1]; Coleman & Mizel [1967, 3l.

thermodynamics of materials with memory. Thus, at each time t the

filament has a Helmholtz free energy ^(t) which may be regarded as a

function of z ,

Equivalently, we may regard tf/(t) as a function of the present value z(t)

and past history z of z [see the paragraph containing equation (2.5)

and note that z(t) = z'

(6.4)

The functional -fi, is assumed to be continuously differentiable on V ,

in the sense of Frechet. Thus, in particular, the "partial derivative"

defined by

(6.5)
7=$(0)
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(1) #
exists for each 0 in V . D ^ is called the instantaneous derivative of j & .

^Coleman [1964, 1, eq. (9.5), p. 252].

In the thermodynamics of materials with memory there is a theorem"" which

^[1964, 1, Theorem 1, p. 19]; see also [1967, 3, Theorem 1].

here implies that

(OC) J&> determines the tension through the "stress-relation",

£ « D^O- , i.e.

T(t) = D^Cz 1 1); (6.6)

O ) whenever the indicated time-derivatives exist, the number

a>(t) — f(t) -T(t)z(t) - ^ - ^ ( z ^ -.^(z^iCt) = ^ - ^ ( z ^ - D ^ C z ^ z C t ) (6.7)

obeys the following "internal dissipation inequality":

co(t) < 0. (6.8)

//////
It can be shown""" that (a) and (p) together imply that the

For details see [1964, 1, Theorem 3, p. 26 & Remark 11, p. 27] and

[1967, 1, Theorems 2 & 4].

equilibrium response functions J^and jt corresponding to
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[see (2,9)] obey the formula

(z) = -r- J&°(z)9 for each number z. (6.9)

and that

for each * in V ( 1 ). (6.10)

The equation of motion for the ball is

Mz = F(z) -

Putting y s z we may write this equation as a functional-differential

equation of the type (3.1) with x(t) • (y(t), z(t)):

(6.11)

If the origin z = 0 can, and has been chosen so that

F(0) (6.12)

then the right-hand side of (6.11) has the Properties (l)-(3) required

of f at the beginning of Section 3. Here, in line with the discussion

of Sections 2-5, the domain of f should be considered a history space

formed from functions mapping [0/») in E . However, although f depends

on the past history z of the second component z of x = (y,z), f is

independent of the past history of the first component. Hence we can
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alternatively take the direct sum JT ̂  of E* ' and V( ) for the domain of f.

That is, if we take the norm flx^ of an element / s (y ,z ) of V to be

l/ll - ly'wl + 1̂ (0)1 +|,J|r, (6.13)

where J • || is the norm on V , then f, as a functional on V , is

locally Lipschitz continuous. The fact that f is independent of y is

important; it means that our initial data can be such that the velocity

y(t) = z(t) does not exist for some t < 0. Of course, we must here

extend slightly our concept of a "solution". By a solution up to A of

(6.11) we mean a function pair x(-) « (y(-), z(*)), with y(*) defined on [0,A) and

z(-) on (-°°,A) such that z* is in V^1) (i.e. xc is in V<2)) for all t in (0,A)

and (6.11) holds for all t in [0,A)J The equation (6.12) is equivalent

FIt is not difficult to verify that Theorems 3.1, 5.1, and 5,2 remain

(2)valid under this extended concept of solution, provided that V « V '

and the norm on V has the form (6.13).

to asserting that x = 0 is a solution of (6.11). Hence (6.12) may be

called the equation of equilibrium. By (6.13), the definition of

stability given in Section 3 here reduces to the assertion that the

zero solution x = 0 is stable if and only if for every € > 0 there exists

a 6 = 6(e) > 0 such that if x(-) = Ty(*Vz(#)) is a solution up to A of

(6.11) with

l|x°ll - |y(0) | + |z(0) | + |zr°| < 6

then x(#) can be extended until A = ©ô and for each t > 0,

< € .
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If, in addition, there is a £ > 0 such that

|z(t)| + |z(t)| -» 0 as t ->«>

whenever ||x || is less than £, then the zero solution is asymptotically

stable.

(2)
Let 3> = (<I> ,<J>2) be a generic element of V . The functional

S,defined by

= f($2) + h(d>2(0)) + \ Mfl^O)
2, (6.14)

(2)
is clearly continuous over V ; in fact, the differeritiability of Qs

implies that H has a Frechetderivative at each point in V . Along

solutions x(O = (y(-), z(*)) of (6.11)^

H C ^ ) = f,(*-) + h(z(t)) + | M y ( t ) 2 . (6.15)

The value of E is the Helmholtz free energy of the filament, plus the

potential energy of the body force acting on the ball, plus the kinetic

energy of the ball.

When S is defined by (6.14), the function H° of (2.9) is

given by

H°(x) - jb\z) + h(z) + j My2, x = (y,z) e E2, (6.16)

and, by (6.10), we have E(O) > EYO(0)) for all $ in V^2\ In view of
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(6.1), (6.11) yields immediately the "energy equation",

2

and, by (6.15), (6.7), and (6.8), we have, for t > 0,

along those solutions x(-) of (6.11) for which T T -/^(Z ) exists. Thus,

the function H defined jln (6.14) i£ a free energy functional for the

functional-differential equation (6.11).

"We assert, but we omit the proof, that monotonicity of H(x ) for t > 0

on the solutions for which — Jtl(z ) exists (for t > 0) implies the

—•. t
required monotonicity of H(x ) on other solutions. The proof uses the

fact that since JC and F are locally Lipschitz continuous, so also is

the right hand side f of (6.11), and therefore x , for each t > 0,

depends continuously on the initial data x .

The function /$ defined by

) - f»°(z) + h(z) (6.18)

may be called the equilibrium Gibbs function for (6.14). Its value is

the sum of the equilibrium free energy and the potential of the applied

body force, both evaluated at position z of the ball. Since M is

positive, the function ̂  of (6.16) has a strict local minimum at 0 in
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2 1
E if, and only if, /Q has a strict local minimum at 0 in E • Therefore,

Theorem 3.1 here yields

Remark 6.1. Suppose that the functional jfc in (6.11) is locally Lipschitz

continuous on a history space V and obeys the restrictions which

thermodynamics places on the response function for the stress in a

material with memory. If the equilibrium Gibbs function (6.18) has a

strict local minimum at zero, then x = 0 is a stable solution of

(6.11).

We may note if yO has a minimum at 0 then, /&' (0) = 0 and, by
f f

(6.1) and (6.9), the equation of equilibrium (6.12) is automatically

satisfied. Hence, in Remark 6.1 we need not assume f(jO ) = 0, as a

separate hypothesis, for it follows whenever the equilibrium Gibbs

function has a minimum at zero.

We may also note that if (6.12) is assumed, a sufficient

condition for the stability of the zero solution of (6.11) is that /^"(O
9

be positive, i.e. that

;t*'(0) > F'(0). (6.19)

When (6.2) holds, (6.19) reduces to the condition that the equilibrium

infinitesimal modulus Jtc/ be positive at zero, i.e. that

> 0. (6.20)
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The most elementary considerations in mechanics suggest that in the case

(6,2) the condition j£c'(0) > 0 is necessary for stability; we believe it

interesting that under our present precise concept of the dynamical

stability of equilibrium, the condition (6,20) is sufficient, even for

a non-linear filament with memory.

b. Linear Filaments

In Remark 6.1 it is not assumed that the tension-functional ,j£

is in any way linear; a particularly interesting special case of the

present theory arises, however, when (6.3) has the form found in the

linear theory of viscoelasticity:

poo

T(t) = G(0)zt(0) + / G/(s)zt(s)ds = jdCz*). (6.21)

0

Here G, with derivative G/, is a real-valued function on [0,°°)

characterizing the material under consideration. We call G the relaxation

function? G(0) is the instantaneous modulus; and the limit

which we assume exists, is the equilibrium modulus. Let us assume, as

is usual in linear viscoelasticity, that G can be written in the form

r00 /
G(s) - / k(T)e"S/TdT + G(oo) (6.22)
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with k a non-negative, measurable function, with bounded support and

with — k(x) summables
T

r N i
k(x) > 0, while for some N > 0, / -^ k(T)dr » a^ < «> for n » 1,2,3, and

n T
00 (6.23)

0 whenever T > N.

k is called the relaxation spectrum. It follows from (6.22) and (6.23)

that -G'(s) is a positive, bounded, decreasing, analytic function on

(0,°o) dominated by the function

s / N (6.24)

which has Properties (I)-(IV) listed in Remark 2.4. If we let V ^ be

a space of real-valued functions for which the norm (2.11) is finite with p = 1 and

with I given by (6.24), then the functional j£ in (6.21), i.e.

r00

G(O)<D(O) + / G/(s)O(s)ds, (6.25)
0

is clearly well defined for each 0 in V and is continuous over V .

So as to be able to compute time-derivatives and perform

integrations by parts we shall here assume that we are dealing with

solutions of (6.11) whose initial histories z are of bounded variation

on (0,oo). Then equation (6.25), which by (6.22) may be written

f k ( T ) U ) - ~ f e~s/T<D(s)ds |dx, (6.26)
Jo L o J
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yields, for t > 0,

/

CO f" ^s 00 ~1

k(T) / e'^VCs) dx. (6.27)
o L o J

A theory based on (6.21)-(6.23) is certainly compatible with

the thermodynamics of materials with memory. Indeed, it is readily

verified that if (6.22) and (6.23) hold, then the functional j& defined

by

^($) - jG(oo)<D(0)2 + \ j k(T)[<i>(0) - i j e"s/T<D(s)dsJ dT (6.28)
0 0

is continuous over the space V and is a Helmholtz free energy function

for the functional Jt of (6.26) in the sense that /^ and st obey

(6.6)-(6.8). The equilibrium response functions corresponding to J2> and

are

« G(oo)z. (6.29)

These functions obviously obey (6.9) and (6.10). It follows from (6.23)

that either k • 0, or

J k(T)dT > 0. (6.30)

0

If k = 0, then £($>) - jt°($>(0)) and y&(<!>) - ^(0(0)); that is, our

theory reduces to the linear theory of elasticity.
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Direct calculation shows that when J& has the form (6.28), the

quantity o>(t), defined in (6.7) and occurring in (6.17)/ is given by

oo r~ A\OO HI 2 s*\Ob r** r> oo HI 2

a>(t) - - y ^kOo iz^O) -\J e" s / Tz t(s)d3J dt - -J ±k(t)\J e ' ^ d z ^ s ) ! dx.
0 ° ° ° (6.31)

Let $ be a function of bounded variation in V and consider

/

00 /
e d$(s).J

0

Clearly, Jt($,t) is an analytic function of T for T in (0,°°), and if (JL

denotes the set of points T in (0,«>) at which Jt($,i) m 0} then (L has

an accumulation point only if 0(s) * <3>(0) for almost all s in [0,«>).

Thus, (6.23), (6.30), and (6.31) imply that 0)(t) » 0 only if zfc(s) is

almost everywhere equal to z (0), and this, by (6.17), implies that H ,

defined in (6.15), is a strictly dissipative free energy functional for

solutions of (6.11) whose initial histories lie in a sufficiently small

neighborhood of zero. (We are assuming here that 0 is an isolated

solution of the equation F(z)— jt°(z) m 0.) Theorem 5.1 now yields

Remark 6.2. Suppose the functional jt in (6.11) obeys (6.21)-(6.23) and

also (6.30). The zero solution of (6.11) is then asymptotically stable

whenever

G(oo) > F'(0). (6.32)

If, in particular, the only long range force acting on the ball is that

due to gravity, then the zero solution is asymptotically stable whenever

G(oo) > 0. (6.33)
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Appendix: On the Extent of Stability

Each type of evolution equation has a natural "state space" R.

For ordinary differential equations R is En; for functional-differential

equations R is a linear function space containing the domain of definition

of f in (1.1)• A function V on R that is bounded below and decreases on
/%/ x * ax

all solutions of an evolution equation may be called a Lyapunov function

for the equation. We may denote by U, the set in R on which V is less

than b. For ordinary differential equations, La Salle [I960, 2] showed

that if V is a Lyapunov function with yb bounded in R and if M is the

largest invariant set in U, on which T T V • 0, then every solution with

its trajectory in U, approaches M. This result was extended by Hale to

certain types of functional-differential equations. In his first paper

on this subject [1963, 1], Hale considered the case in which R is the

set of continuous functions mapping a finite interval [0,r] into E and

he employed the uniform topology on R. Later [1965, 1], he explored

JL

"See also the work of Krasovskii [1959, 1, §§27-34], and a recent essay

by La Salle [1967, 4].

the case in which R is endowed with the compact open topology and is the

set of continuous functions mapping [0,<x>) into E • Once the lemmas of

Section 4 are in hand, it is easy to show that stability theorems of

the type obtained by Hale hold when R is a history space V as defined

in Section 2.
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Henceforth, unless we state otherwise, we shall drop the

assumption (3) about f, and replace the assumptions (1.) and (2) by

(1)? f is defined and continuous over V

(2)f f maps bounded subsets of V into bounded subsets of E .

We shall keep our other postulates unaltered. Clearly, Property (3) of

f is not needed for the Lemmas 4.1 - 4.3, and when (1) ' and (2)f are

assumed these lemmas are valid with h an arbitrary positive number.

If V is a continuous functional over an open region in V and

if $ is in the domain of V. we write V(O) for the supremum of

+

over all solutions x(O of (3.1) with initial history 0.

Theorem 7.1 . Let V be a continuous real-valued function on V, let b be

^Cf. Hale [1963, 1, Theorem 1], [1965, 1, Theorem 1].

5. Positive number, and let U, b£ the set of elements 0 in V for which

(<£) < b. Suppose there exists a ^ > 0 such that

l*(0)| < £, V(J) > 0, and V(J) < 0, (7.1)

for all 0 in Uu. If M is the union of all the invariant sets in UK on

which V = 0, and if x(O is a solution of (3.1) with x in U, , then xZ

approaches M as t -» ».
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Proof. It follows from (7.1) that each solution x(.) of (3.1) with x

in UK has xt in UK and |x(t)| < £ for t > 0. By Lemma 2.2, along each

such solution ||x || is bounded for t > 0. Thus every solution which

has its initial history in U, can be extended to (-00,00) and obeys the

conclusions of Lemmas 4.1 - 4.3. Hence the co-limit set SI of such a

solution x(O is a non-empty invariant set. It follows from (7.1

that V(xfc) has a limit b < b as t -» *>; therefore,

V(p - bQ for each I e SI, (7.2)

and SI is contained in U . Since Si is invariant, (7.2) implies that
sb

V(p - 0 for each | in Q. Thus, C is a subset of M, and (4.16) implies

that

^ M ) -» 0 as t -> »•

q.e.d.

Theorem 7.2. ^f there exists £ functional V obeying the hypothesis of

. Hale [1963, 1, Corollary 1], [1965, 1, Corollary 1].

Theorem 7.1 and, in addition, such that V($) 4 0 for all $ in U b with

* ^ 2,+> then f (0+) -

history in U, obeys

* ^ 2,+> then f (0+) - 0 and every solution of (3.1) that has its initial

- 0. (7.3)
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Proof. Lemmas 4.2 and 4.3 and the proof of Theorem 7.1 require that each

solution with x in U, have a non-empty invariant limit set ft on which

V - 0. But, since we here have V(<f>) < 0 for $ *f 0 , the only possible

element in 8 is 0 . Of course, the singleton Q • (0 ) can be an

invariant set only if f(0 ). - 0. Furthermore, when x is in U^, (4.16)

here reduces to (5.5), which implies (7.3).

JL

Theorem 7.3. Let V be a continuous real-valued function on V obeying

^Cf. Hale [1965, 1, Theorem 3].

V(*) > 0 and V($) < 0 for all 0 in V. If M is the union of all the

invariant sets in V on which V * 0, then every solution of (3.1) with

|x(t) I bounded for t > 0 approaches Mas t -> «>.

Ift in addition, there exists £ continuous non-negative

function u on (0,°°) such that u(a) -* °° ££ O -• °°, and

S V(*) (7.4)

for all * in V, then all solutions of (3.1) have |x(t)| bounded for t > 0,

Proof. The first part of this theorem was demonstrated in the proof of

Theorem 7.1. The proof that (7.4) implies boundedness proceeds as

follows. Let x(«) be a solution of (3.1). Since u(a) -> °° as a -• «>, it
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follows from (7.4) that for this solution x(O there is a number m such

that V($) > V(x°) whenever |$(0)| > m. Therefore, since V(xfc) is a

non-increasing function of t for t > 0, |x(t) | cannot exceed m at any

t > 0; q.e.d.

Theorem 7.4. Let V be a continuous real-valued function on V obeying

V($) < 0 for all $ in V with equality holding only when <f> • 0 . If

there exists ji continuous non-negative function u on (0,<») such that

u(a) -»«> as a -»°o and u(|<f>(0)|) < V($) for all, $ in V, then

(a) f (0+) - 0,

O ) £ii solutions of (3.1) have |x(t)| bounded for t > 0, and

(7) for every solution

| | = 0.

Proof. It follows immediately from Theorem 7.3 that O ) holds here.

Hence, by Lemma 2.2, ||x jj is bounded, for t > 0, along each solution

x(*) of (3.1), and each solution can be extended to (-00,00). By Lemmas

4.2 and 4.3, the co-limit set of x(O, fl, is non-empty and invariant.

As we saw in the proof of Theorem 7.1, this, along with the fact that

t •

V(x ) has a limit as t -» «>, implies that V a 0 on 8. Therefore, since

here V(0) « 0 only when £•» 0 , ft is the singleton (0 }, and, because

Q is invariant, (a) holds. Just as in theproof of Theorem 7.2, (4.16)

here reduces to (5.5) which implies (Y).
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