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1. Introduction

Foif incompressible materials with sufficient symmetry there

exist classes of dynamically admissible motions which can be completely

characterized by giving the temporal dependence of a finite list of real

variables. One example is the class of isochoric, homogeneous,

circulation-preserving motions. An example involving simpler surface

"See Coleman and Truesdell [1965, 1]. They show that in a given

incompressible simple material of arbitrary symmetry, an isochoric

homogeneous motion is dynamically possible if and only if it is

circulation-preserving.

loads is the set Q of motions which describe isochoric radial expansions

4UL
of an infinitely long hollow cylindrical tube; in 1960, Knowles77" observed

^[1960, 3].

that each motion in this class is dynamically admissible in every

isotropic, incompressible^elastic material and found conditions under

which such motions can be expected to be periodic. It is easy to show

that each motion in C is also dynamically admissible in every transversely

// // //
isotropic, incompressible, simple material with memory,""" and may be

it it ii
///y//0f course, the axis of symmetry for the transversely isotropic

material must be parallel to the axis of the tube.
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characterized completely by giving the dependence on time of the inner

(or outer) radius of the tube. Another example with practical applications

is the set £ of motions in which a spherical shell undergoes isochoric

radially symmetric inflation; this class of motions, which was mentioned

by Knowles [i960, 3], has been discussed for isotropic elastic materials

by Guo Zhong-Heng & Solecki [1963, 2, 3], Wang [1965, 4], and

Knowles 6c Jakub [1965, 3]. Each motion in £ is dynamically admissible

in every isotropic,incompressible, simple material with memory, and may

be described by giving the dependence on time of the inner radius of the

shell. Both g and S are subclasses of the "quasi-equilibrated" motions

which Truesdell [1962, 2] has shown to be dynamically possible in every

isotropic, elastic, incompressible material. Carroll [1967, 1] has

recently pointed out that many of TruesdellTs results remain valid for

isotropic materials with memory of integral type.

It appears to us that an important problem in the theory of

motions of type C or S is the following: Given the history of the tube

or shell up to some time, say t = 0, and given some rule for calculating

the pressures on the bounding surfaces for times t > 0, what can one say

about the qualitative properties of the motion for times t > 0? The

qualitative properties that interest us the most here are simple Lyapunov

stability and asymptotic stability. When the material under consideration

is elastic, our problem reduces to one in the theory of ordinary differential
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equations; for a material obeying the principle of fading memory,7' the

''That is, the- fading memory postulate recently proposed by Coleman &

Mizel [1967, 3] [1968, 2] in their generalization of the earlier work

of Coleman & Noll [i960, l] [1961, l] [1964, 2], and Coleman [1964, l].

problem becomes one of analyzing a functional-differential equation of

the type recently studied by Coleman & Mizel [1968, 4]."" In this essay

7r77For earlier studies of the stability of solutions of functional-differential

equations see Krasovskii [1959, 2] and Hale [1963, 4], [1965, 2]. These

authors employed hypotheses of smoothness different from those used »by

Coleman & Mizel in [1968, 4].

we study the problem for materials with memory, emphasizing the role that

thermodynamics can play in its solution. The propositions we prove give

some justification to the common practice in applied mechanics of declaring

(without demonstration) that states ojE stable equilibrium are those which

minimize an appropriate "equilibrium free energy".

The present study continues a recent series of investigations

of the relation of thermodynamic principles to criteria for dynamical

• / / / / / /

stability.7/W

// // //
Coleman & Greenberg [1967, 2], Coleman & Mizel [1968, 3,4].
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2. Canonical Free Energy

Let a fixed reference Configuration fb be assigned for the

body t!> under consideration, and identify each of the material points X

of O with the position £ that it occupies in ft. A process of V is

a collection of functions of £ and t compatible with the laws of balance

of momentum and energy. At the level of generality which we seek, each

process is characterized by eight functions: (1) the motion X, with

x • X(£,t) called the position at time t of the material point located

at £ in fC, (2) the temperature 6 > 0, (3) the specific internal

T
energy e, (4) the specific entropy T], (5) the stress tensor T = T ,

(6) the heat flux q, (7) the specific body force b, and (8) the rate of

heat supply CD. The laws of balance of momentum and energy assert that

for each part f of (B and each time t,

4r / xdm - fbdm + / Tnda, (2.1)
P P d(P

d P / 1 \ P P
TT / [€ + 7r x-xidm « / (x«b+co)dm + / (x»Tn — q-n)da. (2.2)

where dm is the element of mass in the body, bv is the surface of (P in

the configuration at time t, ds is the element of surface area, n is the

exterior unit normal vector to dP, and the superposed dots denote

time-derivatives. When sufficient smoothness is granted, (2.1) and (2.2)
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together are equivalent to the field equations,

px = divT + pb, (2.3)

P€ - tr{TD} - div q + pa>, (2.4)

with p the mass density and D the stretching tensor, i.e. the symmetric

part of the velocity gradient:

D = |[grad x + (grad x) T]. (2.5)

[The symbols grad and div refer to differentiations in which x not £, is

the independent variable. We shall use the symbol V to indicate

differentiation with respect to £.1

It is easily verified that (2.3) implies that

%r\ fx-x dm - / t.xda + / b-x dm - / - tr(TD}dm, (2.6)

with t the contact force per unit area which is applied to the surface

of S> at the instant under consideration. The number

W = /t-xda - / x-Tnda (2.7)

is the rate of working of the contact forces applied to the surface of

QO . In a given process C , W - W(t) is a function of time alone. Let

the origin of the time axis be chosen for convenience, and put

(2.8)
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with M the mass of the body. We assume that the specific body force b

may be derived from a potential function h, which is a function of x alone:

b = -grad h, i.e. b(fc,t) « -grad h(x) . (2.9)

Substitution of (2.8) and (2.9) into (2.6) yields

T~ / ( T x*x + w + h|dm « -/ — tr TDdm: (2.10)

d t J V 2 ~ ~ / J p ~ ~
we call

T(w + h)dm = • T j W ) + h(X(6,t))] dm (2.11)

the mechanical potential of V at time t.

The specific Helmholtz free energy, ij/ = ^(£,t) is defined by

f = € - Br\. (2.12)

We call the integral

$ B 0(t) * / \f + \ x-x + w + h dm (2.13)

t^ie canonical free energy of (B j it is the sum of the Helmholtz free

energy, the kinetic energy, and the mechanical potential of O at time t.

The specific rate o£ production oj[ entropy is a function 7 of

i and t obeying the equation

T , dp Pi Pi
/ 7dm •* "z— / TJdm •" / "rcbdm +. / "r q»n da; (2.14)

which holds at each time t and for all parts f of (B • Thus, under
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suitable assumptions of smoothness we have

/IN 1

(2.15)

The second law of thermodynamics asserts that in each process of fp the

rate of production of entropy is non-negative in every part « of O at

each time t. Hence

7(1,t) > 0 (2.16)

for all i and t. Employing (2.4) and (2.12) we may cast (2.15) into

the form

f -- tr{TD} + Tie + ~ q-grad 0 - -67. (2.17)

be a process of O . We say that ^ is isothermal at

time t if

e(|,t*) - 0 and V0(j|,t*) - 0 (2.18)^

"We assume that^ at each I, the fields 9 and if/ are continuous and

piecewise C in t; the superposed dots in (2.18) - (2.20) represent

right-hand derivatives.

at each | in & . For such a process (2.17) implies that, when t = t ,

f - - tr{TD} = -97, (2.19)

and substitution of this into (2.13) yields, by (2.10) and (2.16),

- -e/7 dm < 0. (2.20)
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Thus, we can assert

Remark 2,1. In a process which is isothermal at all times the canonical

free energy 0 of to never increases.
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3. Constitutive Equations

The deformation gradient at j| at time t is the invertible tensor

• V>£(|,t). The histories up to time t of the deformation gradient

and temperature at | are functions on [0,«>) defined by

Ft(s) 0 < s < oo. (3.1)

Let us suppose that $ is an incompressible perfect conductor

of heat; that is, each process admissible in 43 obeys the following

constitutive relations:

T = -pi +T<F t,0 t),

(3.2)

|det F| - 1,

ve o.

Here p is an arbitrary function of ^ and t, and £, T, and h are functionals

which are specified in advance and characterize the particular material

comprising \D . It is customary to use the normalization tr T = 0. The

condition |det F| = 1 expresses the assumption that all deformations of

an incompressible material are isochoric, while the equation V9 = 0 asserts



10.

that in a perfect conductor of heat the temperature field must be uniform

4L
throughout the body.7' In general, the form of p, T, and h can depend on

''For our incompressible perfect conductor, instead of constitutive

equations for p and q we have the constraints |det F| = 1 and S7Q = 0.

Of course, when constructing processes we must choose p « p(|,, t) and

q = q(l,t) so that the laws of balance of momentum and energy hold.

£ as a parameter. (£> is materially homogeneous if there exists a

reference configuration, called a homogeneous reference, such that p, T,

and h are independent of £. We here consider only homogeneous materials.

Without saying so again, we shall always take the reference configuration

to be homogeneous and assume that the mass density p is constant in it

and hence constant in space and time forever.

Although it is not necessary for us to do so, let us simplify

matters by confining attention to those processes in which the temperature

of the surface of S is held constant in time, at all times. Then, by

(3.2)5, the temperature field obeys 6-0 throughout \O at all times;

i.e. each process we consider is isothermal at every instant, and there

is no longer any reason to exhibit explicitly the history 9 in (3.2)- 0 •

It suffices to remember that p, T, and h depend on 0 as a parameter

which remains constant throughout our discussion. Thus, we replace
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(3.2) by

Edf)*

-pi + T(Ft

(3.3)

|det F| - 1, >

ve = o,

e » o.

Let rt be the set of all unimodular tensors and U the set of

all orthogonal tensors:

H Q Q=lIdet H | - 1 L

We refer to n as the unimodular group and to V as the orthogonal group.

If j is a set, we denote by j the set of all functions mapping [0,<»)

*f Pi

into J" • We write ^J for the domain of definition of the functionals

P> L a n d h i n (3.3). It follows from (3.3)^ that Jj is a subset of 14 .

The principle of material frame indifference here requires that p, T, and

h obey the identities

for all F in dO and all Q in U . The symmetry group" 0 of a material

Noll [1958, l], who called it the "isotropy group". The concepts of

solid, fluid, and undistorted reference configuration which we employ

here are those of Noll.

(3.4)
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obeying (3.3) is the set of tensors H in h such that

for all F in dU . It is easily verified that fin is a group: if H.. and

ft. are in Jon then so also are HnJU and JUg... Of course, XM depends on

the choice of the reference configuration vt . If there is an (ft such

that fOn contains the orthogonal group V, then we say that the material

under consideration is isotropic«and ffl is called an undistorted reference

configuration. If, for some PL, ]̂L is contained in 0, then the material
(K.

^s a solids and we again call kL undistorted. Hence, for an undistorted

reference configuration ft of an isotropic solid , Ao « 1/ . In general,

we say that a configuration ut is undistorted if Ao is comparable to U ,

that is, if fifl either is itself a subgroup of 0 or contains f as a

subgroup. Without saying so again, whenever the material under considera-

tion is such that the class G of its undistorted configurations is non-empty,

we shall assume that the reference configuration OL we are employing is in

£• A fluid is a material for which #Lo is the unimodular group (jL . If

XJs) = IA- for one reference configuration n, then Ap = (X for all. It

is clear that every fluid is isotropic and has the property that all of

its reference configurations are undistorted.

Let k be a unit vector and let (7, be the group of all

orthogonal tensors with k as a proper vector:

R I RRT= 1, Rk«±kl
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If a material is such that for some reference configuration ft ,

contains uT, then the material is said to be transversely isotropic

with k as the axis of symmetry.

We assume that the constitutive functionals p, T, and h possess

the properties of smoothness employed in Coleman and Mizel's recent

formulation" of the general theory of materials with gradually fading

^[1967, 3] [1968, 2l. See also their study of ^ -spaces, [1966, l],

and the earlier articles of Coleman & Noll, [1960, l] [1961, l].

memory. The requirement that (2.16) hold for all smooth processes obeying

##
(3.3) places restrictions on p, T, and h."" These restrictions may be

^Coleman & Noll [1963, U.

read off immediately from Coleman1

[1964, 1]•

compressible materials with fading

s discussion

memory.fff?"f

lfW of this

We do not

problem

list all

for

these

(I If fl II

""""No difficulty is caused by the fact that we consider perfect conductors

while Coleman [1964, l] and Coleman & Mizel [1967, 3-1 focus attention

on materials for which the heat flux q is given by a constitutive

equation of the form q = q(F ,Q ; grad 0), Furthermore, the proofs

employed by these authors for compressible materials are easily

modified to cover the incompressible case.

HUNT LIBRARY
fiMIEfilE-VELUM UNIVERSITY
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restrictions here, for we shall emphasize only one of them in our

subsequent discussion. To state this one we need some definitions: If

F is a tensor we denote by F the (constant) function on [0,«0 whose

value is F for all s; i.e.

F+(s) -s P, 0 < s < °°. (3.6)

Q
When given a functional such as p with Sj for its domain, we may define

a function p° on a region in fl by the relation

p°(F) - p(Ff), for F+ in £l . (3.7)

p° is called the equilibrium response function corresponding to p. The
S3 . =

second law of thermodynamics requires that the functional p in (3.3)

have the following property:

Remark 3.1. For each function F in the domain JJ of p

po(F*(0)) < g(F*). (3.8)

Let fci/ be the subset of k) consisting of those functions F

which can occur as the history up to some time t of the deformation

gradient in an irrotational motion. It follows from a result of Coleman

4 * Pi
and Truesdell7' that to prove that (3.8) holds for all F in (M it suffices

#,[1965, 1 ]. See the proof of their Proposition 4.
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to show that (3.8) holds for all F in ^ . To do this, let F be in i

and define, for each 6 > 0, the function F ^ ' by

F (0), 0 < s < 6,

F(s-6), s > 6;
(3.9)

F is the static continuation of F bjr amount 6." We are assuming that

fCf. Coleman & Noll [1964, 2).

p is continuous over $J 7 and that ^J is contained in a history space of

the type discussed by Coleman and Mizel [1967, 3l; the norm || • || on such

a history space has the following relaxation propertyt

* ( 0 ) +- F * ( 0 ) + | = o.

Therefore,

p(F*(0)+) = P'(F*(O)). (3.10)

iOur assumption that F is in Ji implies that F vw/ is also in \H for

each 6 > 0. Furthermore, there is a process L of (Q which obeys (3.3)

and is such that the motion X of (jj is a homogeneous irrotational motion

with the history F of the deformation gradient at each point of (B obeying

F*1 = F (t) for t > 0 . (3.11)

[To construct such a process C^we first take any homogeneous motion X

obeying (3.11). We then note that when F is in Jt , X is automatically
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isochoric and irrotational, and whenever b obeys (2.9), a homogeneous,

isochoric, irrotational motion in a material of the type (3.3) automatically

satisfies the dynamical equation (2.3) for a suitable choice of the

pressure field p. Finally, we pick q so that the energy balance equation

"See Corollary 2 to Proposition 7 of Coleman & Truesdell [1965, 1].

(2.4) holds with GO set equal to zero and e and trfTD} determined by (3.3),

(3.11), and (2.5).] In the process \j we have, at each point of UD ,

D = 0 for t > 0, and, since C is isothermal for all t, (2.19) and (2.16)

yield

f = -a7 < o for t > 0.

Hence, by(3.3) 1 and (3.10),

* *ft^
p(F ) > p(F K ') for t > 0. (3.12)

It follows immediately from (3.10) and (3.12) that (3.8) must hold for

each F in JL . Therefore, (3.8) holds for each F in (to .
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4. Motions of Isochoric Extension

right and left stretch tensors, U and V, are positive

definite symmetric tensors defined by the polar decompositions

F » RU » VR,
T

RR = 1, (4.1)

with F the deformation gradient. Since U = R VR with R orthogonal, U

and V have the same proper numbers a,, i = 1,2,3. These positive numbers

a. are called principal stretch ratios. Clearly, |det p| « 1 if and only

if OLOLQL = 1. The proper vectors u. and v. of U and V are called,
1 2 3 ~i ~i ^ ^

respectively, the right and left principal directions o£ stretch; they

are related through the formulae

v. = Ru.,
T

Hi = 5 Xi- (4.2)

The proper numbers o. and the proper vectors s. of the stress

tensor T are called principal stresses and principal axes o_f stress,

A motion X of Hi is called an isochoric extension if for each

j[ there exists an orthonormal basis u.(|), independent of t, such that

the matrix of the components of U(£, t) with respect to u.(V) has the form

0

0 ( 4* 3 )
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for all t, -co < t < °°. In words: a motion of isochoric extension is

a density preserving motion in which the right principal directions of

stretch u. remain constant in time at each material point, although these

directions of stretch may vary from point to point and the stretch ratios

a. may vary in time.

It follows immediately from results obtained by Coleman7' for

ni968, 1] Theorems 4 and 5.

general isotropic materials that we can here make the following assertion.

Remark 4.1. If, the motion of an incompressible isotropic material is an

isochoric extension, the principal directions of stress are given by

(4.4)

where u.(£), i = 1,2/3, i£ the orthonormal basis relative t£ which (4.3)

holds and R i£ the orthogonal tensor in (4.1); furthermore, the principal

stresses a. = a. (I, t) and the specific Helmholtz free energy f = 1/(1, t)
— — — — — — 2. i f+» — — *****

are related as follows t£ the histories a. of̂  the principal stretch ratios:

°2 "" Ql
(4.5)

Here a.(s) = a (Lt-s) for 0 < s < «> and JT and ^ are scalar-valued
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functional^ obeying the identities

(4.6)

Ap*) (4.7)

for positive functions a*, p ., 7 on [0,«>) with a (s)p (s)7 (s) = 1. Of

course, ̂ A and ̂  are determined when the functionals T and p are specified.

We are here considering perfect conductors obeying (3.3). An

elementary calculation shows that

tr{TD} = trfR^TRUU"1),

and, therefore, (4.3)-(4.5) yield

3

Z O.Oi.

•IT

Substitution of this expression and (4.5)« into (2.19) yields the

following equation for the specific rate 7 of production of entropy in

an incompressible isotropic material obeying (3.3) and undergoing a

motion of isochoric extension:

An isochoric extension with a = 1 is called a planar isochoric

JL

extension with u- the neutral direction. For such a motion the condition

"It can be called also a "pure shear".
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t t t t

OL-CX a « 1 implies that a single function X determines QL, OL, OL; i.e.

if we put X ^ s ) « 0̂ .(6,̂  t-s), then at I,

aj(s)

In this special case (4.5) may be written

, 0 < s < oo. (4.9)

(4.10)

with

by ~jL< and

scalar-valued functionals determined as follows.

«> - f

* * -loi , (a ) V

(4.11)

—1
Here a is an arbitrary positive function on [0,°o)j (a ) is defined

by (a*)"1(s) , and l+(s) - 1 for all s in [0,«). The

identities (4.7) imply that (4.10)1 and (4.10) are equivalent to

(4.12)
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When (4.9) holds, (4.8) reduces to

A *. 1 4- A *•

(4.13)

The arguments employed by Coleman [1968, 1] for isotropic

materials may be used to prove also the following assertion which

generalizes Remark 4.1.

Remark 4.2. Suppose an incompressible transversely isotropic material

with k for its axis of symmetry is undergoing a motion X of isochoric

extension with u^S) ° ±k. Then (4.4) f (4.5), (4.6), and (4.8) hold

again, but the functionals ~A and ^ need not obey (4.7). L£ the

isochoric extension Is planar with the neutral direction along k, i.e.

if, (4.9) holds for some \l, then (4.10) and (4.13) hold with A*O ,

and ̂ & given by (4.11), but (4.12) may not hold.

By (2.16), y# and^f^ must be such that the left side of (4.8)

is not positive. If, in addition, we have

^ < 0 (4.14)

whenever the indicated derivatives exist and the function X is not

constant on [0,«>), then we say that the material under consideration is

strictly dissipative in motions of planar isochoric extension. Similarly, if



22.

whenever one of the functions CL, OL, a is not constant on [0,°°), then

the material is said to be strictly dissipative in motions of general

isochoric extension*
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5, Inflation of Circular Tube

Let us now suppose that in its reference configuration O has

the form of a hollow circular tube with inner radius R and outer radius

R . Employing a single, fixed, cylindrical coordinate system with the

z-axis along the common axis of the cylinders which bound the tube, we

assume that D is undergoing a motion of the form

z « Z, r = r(R,t), 0 = 6, (5a)

where z, r, G are the coordinates at time t of the material point which

has the coordinates Z, R, 6 in the reference configuration. In such a

motion,/D remains a circular tube at all times; its inner and outer radii

at time t are

rx(t) - rCR^t), rQ - r(RQ,t). (5.2)

Each of the unit vectors e , e , efl along coordinate lines is both a

#right and a left principal axis of stretch; the stretch ratios are7'

Ĉf.. Coleman [1968, 1, §5].

az(£,t) = i, -ar(|,t) = |i r( R,t), ae(£,t) = |r(R,t). (5.3)

If we suppose the motion is isochoric, then it is clearly a planar isochoric

extension with e the neutral direction. The condition a <3 a = \^ when
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4L
combined with (5.3), yields^

41
''For a thorough discussion of such motions in isotropic elastic materials

see the papers of Knowles [i960, 3] [1962, l].

r(R,t)2 = R2 + P(t). (5.4)

Thus a single scalar function £(•) completely determines the motion. In

this particular isochoric extension, two of the principal axes of stretch,

e and eay vary from point to point, albeit they are constant in time at

each point.

We assume that the body is composed of a transversely isotropic

material with e its axis of symmetry. By Remark 4.2, e , e~, and e are

then principal axes of stress, and the corresponding principal stresses, which we

may call a , a , a , obey the equations
z C/ r

i

f tf. (5.5)

Here

^(S) = ar(|,,t-s), 0 < S < oo;

and, by (5.3) and (5.4),

R"23(t-s)]"1/2 - 1 +
3(t-s)

-1/2
, 0 < s < oo. (5.6)

If we employ the history p of p up to time t, i.e. the function p C on
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[0,°°) defined by pt(s) = P(t-s), then the equation (5.5^ can be written,

in the spatial description, as

ar(r,t) - a0(r,t) = /ytv\1 + 2
r —

(5.7)

Similarly, for the specific Helmholtz free energy we have

^t
1 +

\
or

(5.8)

We assume that the rate of heat supply CD and the potential h

of the body force both vanish at all times. Since the material under

consideration is a perfect conductor, q assumes the value necessary to

make (2.4) hold with 0 at its preassigned constant value. It follows

from (5.1), (5.5), and (5.6) that of the three scalar equations embodied

in the vectorial dynamical equation (2.3), two reduce to 0 = 0, and the

4L
remaining one becomes

#,Cf. [1968, 1, Eq. (5.10)] which is the analogous equation for the case

in which the tube is made of an isotropic compressible material.

3v .
p b£ + pv

(5.9)



26.

ar(r,t)

where a and 0- are considered functions of r and t, and

r(R,t) - v(r,t).

By (5.4),

v(r,t) (5.10)

and therefore (5.9) can be written

d <Jr(r,t) - oQ(r,t) r..
P(t)

2r
4r"

(5.11)

When p** is specified, the term (a — O / r in (5.11) is completely

determined by (5.7), i.e. by the functional T in (3.2)2, but p determines

a through (3.2)« only to within an arbitrary pressure p(r,t). For every

2
choice of4 the function £(•) on (-00,00), with p > -R > there exists a

pressure function p(#,-) on [r ,r ] X (-00,00) such that the dynamical

equation (2.3) holds for the motion defined by (5.1) and (5.4); according

to (5.11), p(»,0 gives to a the following dependence on r and t:

J (r , t ) - / —
r I J

^ + (3(tr -2 . (5.12

Let us put

r

J&)tv def r2np/ ryftl 1T + 31

and

Mfy « / ° i /?n^ I1 +

r 2 + pfc(O)

_^

- l / 2 \

dr "1/2)dR

^+^(0)

-l/2\

) RT
R2 +

dR (5.14
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It is clear from (5.8) that X<3 ) is the total Helmholtz free energy

of a unit length of the tube. We may easily relate JL($ ) to the

difference ill the external pressures Pj.(t) and PQ(t) applied to the

inner and outer bounding surfaces of the tube. Indeed, since

AP(t) - PQ(t) (5.15)

on putting r = r in (5.12) we obtain

AP(t)

with

(5.16)

(5.17)

a. = a_(p(t)) = 2 2
ri ro

8

A problem with obvious physical applications is the following:

Suppose *nv is assigned. Given the history of the motion up to time zero,

find the motion for times after zero, assuming that the pressures on the

bounding surfaces of the tube are known. That is, given f3(t) for t < 0

and AP(t) for all t > 0, find P(t) for t > 0. This problem is one of

solving the non-linear functional-differential equation (5.16).

Writing x> for p, we can express (5.16) in the form

(5.18)

t>(t) = /
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Let us assume that AP is held constant for t > 0. Our problem

is now the following: Given a number b and a function g on [0,«>), find a

#
function pair p(*)j^(-), with P defined on (-00,00) and D defined on lO,00),

^Along a solution of (5.18), P(t) is automatically differentiable for

t > 0 and has a right-hand derivative at t - 0, However, we do not

require that £(t) be differentiable for t < 0, i.e. that g be

differentiable on [6,«>); hence, u(t) may not exist for t < 0.

such that (5.18) holds for all t > 0, and p° = g, u(0) = b, where p is

the history of p up to time 0. The pair £(•)>*>(•) is called the solution

MM
of (5.15) with initial velocity b and initial history g.7777 Since we are

MM I
, by the "initial velocity" we mean (3(0). According to (5.10),

g(0)

assuming that the functionals p and T obey the smoothness postulates

employed in Coleman and Mizel's [1967, 3] formulation of the thermodynamics

of materials with memory, the present functionals ̂ o and Jfo are continuous

on a history space V , with norm || • | , of the type used in Coleman and

Mizelfs theory of the stability of solutions of functional-differential

MMM . /?
equations."7777 If we further assume that J^u is locally Lipschitz continuous

[1968, 4, §2 & 3] . [The superscript (1) in V^1^ serves to indicate

that this Banach function space is formed from functions mapping [0,«>)

in E , i.e. the real axis. The bai

space are listed in the Appendix.]

in E , i.e. the real axis. The basic properties of such a history
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on Vv , then (5.18) becomes a functional-differential equation of the

"This condition is met, for example, when Jo has a continuous Frechet

derivative at each point in V •

form y(t) = f(y ) with f a locally Lipschitzian functional on a region

in the Banach space V^2' = E 1 ® / 1 ^ ; the norm || • ||̂ 2* on V ^ is given by

^ | | (5.19)

If a is a number, we denote by a the constant function in

(1) & o /} o

V with value a. The equilibrium response functions ^& , /yn>, ̂ t }

and JL corresponding to y& , /y>o, ̂£ > sxA^JL are defined by

2Clearly, for each number (3 > -R

RI V (5.20)

dR,
R + p

"I '

2If there exists a number f3 > -RT such thate I

df<£e) + AP = 0j (5.21)

then (5.18) has the solution

P(t) = p , o(t ) = 0 , -co < t < oo; (5.22)
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for this solution P°(s) s p . We call (5.22) the equilibrium Solution

corresponding t£ the pressure difference AP, while (5.21) is called the

equation of equilibrium.

The equilibrium solution (5.22) of (5.18) (with a fi^ed value

of AP) is called stable if, given any € > 0, there is a 6 = 6(c) > 0

such that for every pair b^g^with b a number, g in V , and

(5.18) has a unique7' solution P(#)>^(0 obeying

"The definition of stability employed by Coleman & Mizel [1968^ 4] does

not, in general, require that the solution P(#)^*o(O obeying the initial

condition P = g, ^(0) » b be unique. However, since in the present

application we assume that <*fl is locally Lipschitz continuous, if the

other conditions of the definition are met this one is here fulfilled

automatically. The example discussed in §6a of [1968, 4] is very

similar to the present.

P - %> ^(0) » b,

and along this solution

for all t > 0. If, in addition, there exists a 5 > 0 such th^t for each
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solution P(*)^(*) with

|p°+P*| + |t><0)| < t,, (5.23)

both (3(t) -> 0 and f3(t) -> P as t -> «>, then we say that the equilibrium

solution (5,22) is asymptotically stable.

When (5.22) gives a stable solution of (5.18), the configuration,

z - Z, r - /R +p , 0 = 0, (5.24)

is an equilibrium configuration of the tube that is stable against those

perturbing motions of the form (5.1) which preserve the fixed pressure

difference AP. Of course, stability of (5.22) as a solution of (5.18),

does not, by any means, imply that the configuration (5.24) is stable

against perturbing motions which do not have the form (5.1). In terms

more suggestive than precise, we can assert that asymptotic stability of

the solution (5.22) of (5.18) implies that in any motion of the form

(5.1) which preserves the given value of AP for t > 0, the velocity

approaches zero and the configuration approaches (5.24) as t .-» «>,

provided that the motion has small initial velocity and an initial

history ^ not too far, in r , from p+.

We now seek to express the canonical free energy (2.13)^ per

unit length of the tube, as a function 0 of the history of P and the

present value of Pjthat is, we try to cast the equation

r

0(t) = J If + \ v2 + wj P2*rdr, (5.25)
rl
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Into the form

*<t) = O^PCt)) = •(Pt^(t))^. (5.26)

with 2> a functional. By (5.10) and (5.4), the kinetic energy of a unit

length of the tube is

/ i pvZ2*rdr = £ pp(t)Zln -2 = | pP(t)Zln -^ . (5.27)
J 2 * ri b

 R; + p(t)
rri

For the rate of working of the contact forces applied to the bounding

surfaces of a unit length of the tube we have

W(t) • 2itr a (r , t )v (r , t ) — 2rtr a (r , t )v (r , t ) »• no (r , t )P( t ) — ito (r , t ) $ ( t )

and, since we are assuming that AP i s constant for t > 0,

*
W(t) - ^ rtp(t)AP for t > 0.

Thus, to within an additive constant, w(t) in (2.8) here obeys

rJ
r l

w(t)p2itrdr - -«p(t)AP for t > 0. (5.28)

It is clear from (5.8), (5.13), (5.27), and (5.28) that, for t > 0,

(5.25) can indeed be written in the form (5.26); in fact, 0 is given by

2 t-

, (5.29)

and is continuous when regarded as a function on a neighborhood S of
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*,0 in V . Let us define the function 0 % of two numbers £ and "0, by

R + 8+ V | 2 f . . ( 5 . 3 0 )

It follows from Remark 3.1 that -^(^(O)) < J Z Q ^ ) , and, by (5.13) and

(5.20),

Therefore^ for each pair (3 ,1) in S

,U). (5.32)

Remark 2.1 here tells us that the second law of thermodynamics requires

the functionals ^C and yynj to be such that the canonical free energy $(t)

never increases in a motion of the form (5.1), (5.4). That is, on each

solution o£ (5.18), $u3 ,'O(t)j is, «a non-increasing function of t for t > 0.

This observation, when combined with (5.32), implies

Remark 5.1. The functional $ defined in (5.29) i£ a free energy functional,

in the sense of Coleman and Mizel [1968, 3, 4], for the functional-differential

equation (5.18).

The function <y defined by

$(p) = 2>°(p,0) = ^*O) - ̂ PAP (5.33)

may be called the Gibbs function for the tube. Its value is the sum of
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equilibrium Helmholtz free energy and the mechanical potential of a unit

length of the tube. It is clear from (5.30), that 2>°(p,D) has a strict

local minimurir at the point pe, 0 in E if and only if £> (P) has. a strict

# n
''A real-valued function 0 on a vector space E is said to have a strict

local minimum at a point £ in E n if, for some 6 > 0, 0 < |y-zj < 6 = > 0(y) > 0(jz)

local minimum at p. . In view of this and Remark 5.1, from Coleman and

Mizelfs Theorem 3.1 [1968, 4] we may read off

Remark 5.2. If the Gibbs function Jj o£ (5.33) has £ strict local minimum

at p , then (5.22) gives £ stajble solution of (5.18).

In both the thermodynamics of materials with memory and the

classical theories of thermostatics, arguments are given to show that

the equilibrium response function for the free energy determines the

equilibrium stress-strain function through a formula called the

"equilibrium stress relation". Here the equilibrium stress relation

yields

/nuQC) = pX ̂  JZ°QC) for all X > 0, (5.34)

and, therefore, by (5.20), we have

° all P > - R 2 . (5.35)
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fit

Now, if <j has a minimum at P , then

(5.36)
P-P,

and, by (5.33),

- rtAP.
P-P"

But, in view of (5.35), this equation is the same as (5.21). Hence, if

the Gibbs function fj has a minimum at_ (3 , then ft automatically satisfies

the equation of equilibrium (5.21). Furthermore, if ft obeys (5.21), i.e.

i£_ (5.22) is known to be a solution of (5.18), then, by Remark 5.2, a

sufficient condition for the stability of this equilibrium solution is; that

> 0. (5.37)

P-P,

By (5.33), the condition (5.37) can be. written

2
^-rv^CP) > 0,

d P P = Pe

and by (5.35) this, in turn, is equivalent to

< 0.

(5.38)

(5.39)

It is clear from (5.20) that a sufficient (but by no means necessary)

condition for (5.39) is that /?tc°(\) be a positive, non-decreasing function

-2
p ]

\j e

- 2 - 1 / 2 2 1 /2
of X throughout the range [1+R p ] ' < X < [1+R p ] '

\j e JL e
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Let us now suppose that P is an isolated solution of (5.21)

that the material under consideration is strictly dissipative in

planar isocho'ric extensions. Since (2.20) and (4.13) here yield

R

*(t) - dR,

we have, by (4.14), ^(t) < 0 whenever the function X of (5.6) is not

constant on [0,<»). Furthermore, there exists a neighborhood S of P ,0

in Vv ' such that of all solutions £(•),!>(•) of (5.18) with initial data

in S, (5.22) is the only one for which X is constant on [0,«>)

for each t > 0. Thus, when the initial data is not P ,0 , we have

$(t) strictly monotone decreasing for t > 0. That is, 0 is a "strictly

dissipative free energy functional" for (5.18) in the sense in which the

term is used by Coleman & Mizel [1968, 4, §5], and their Theorem 5.1 here

yields

Remark 5.3. Suppose the material comprising the tube iŝ  strictly

dissipative in motions of planar isochoric extensions. If P is an

isolated solution of the equation ^ c (p ) + AP = 0, and ig Jj has a

strict local minimum at P , then (5.22) gives an asymptotically stable

solution of (5.18).

It follows from (5.33) and (5.35) that if (5.36) and (5.38)

both hold then Jj does have a strict local minimum at P , and, furthermore,
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P is an isolated solution of the equation A°($ ) + AP = 0. Hence we
e

can assert

Remark 5,4. If the material is strictly dissipative in planar isochoric

extensions and if

> 0, (5.40)

e

then (5.22) gives an asymptotically stable solution of (5.18).

ft

An Example

Of course, the results we have obtained for transversely

isotropic materials hold if the material is isotropic. Let us here

consider an isotropic material for which the equilibrium response

function p°, corresponding to the free energy functional p, has the

form associated with a "Mooney material":

p°(F) = b Q + b1(I1-3) + b2(I2-3), b1 >0, b 2 > 0. (5.41)

Here b., i » 0,1,2, are functions of the temperature alone,while I- and

T 2
I2 are the principal invariants of the Cauchy-Green tensor B = FF - V :

II = ai + a2 + ^V I2 = ai a2 + a2 a3
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For such a material

b Q -

and (5.20) yields

2P l n r ^ + p In
R2+P

(5.42)

with b a function of 9 alone (for given values of R and R ). Hence

and

2 In — + In — h
K T P ^

, (5.43)

- p • (5.44)

It follows from (5.35) that the equation of equilibrium (5.21) can be

written in the form (5.40).., and here that equation becomes

In

+ P
AP. (5.45)

For each value of AP in the range

with

AP

-oo < AP < AP , (5.46)

(5.47)

(5.45) has a unique solution P obeying

-RJ < P e < co, (5.48)
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and for this value of p , (5.44) yields

> o. (5.49)

Thus, by Remark 5.4, when the material has ah equilibrium response of the

Mooney type (5.41) and is strictly dissipative in planar extensions, for

each applied pressure difference AP less than AP the tube has a unique

equilibrium configuration o£ the form (5.24), and there exists a £ > 0

such that in every perturbing motion of the form (5.1), (5.4), which

AT*- preserves this pressure difference for t > 0 and obeys (5.23 ), both

p(t) -> p and p(t) -> 0 as t -> °°.e ——— ——

It is worth noting that for values of AP greater than AP there

is no root P of the equation (5.45) determining the static equilibrium

of the tube.#

"This fact was observed by Knowles [1962, l], who showed that if the

material comprising the tube is not strictly dissipative, but instead

perfectly elastic, i.e. if for all F11, with p° given

, thos

form (5.1), (5.4) which preserve AP must be periodic.

by (5.41), then, for values of AP less than AP , those motions of the
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6. Inflation of a Spherical Shell

Employing a fixed spherical coordinate system, we here assume

that the body is comprised of an incompressible isotropic material and

is undergoing a motion of the form7'

''For discussions of such motions in elastic materials see Truesdell

[1962, 2], Guo Zhong-Heng & Solecki [1963, 2 & 3], Knowles & Jakub

[1965, 3], and Wang [1965, 4].

0 - 6, 0 = 0, r = r(R,t) = v43 + P(t), (6.1)

with 0, 0, r the coordinates at time t of the material point which has

coordinates 0, <t, R in the reference configuration (f( , which, of course,

is chosen to be undistorted. We suppose that in the configuration K- the

body O is a spherical shell with inner radius R , outer radius R , and

center of curvature at R = 0. It follows from (6.1) that |Q is then a

spherical shell at each time t with radii

rj;(t) = r(R rt), rQ = r(RQ,t). (6.2)

In such a motion the right and left principal axes of stretch coincide

at each material point and are given by the vectors efl, e,, e tangent

#41
to the coordinate lines. Thus the motion is an isochoric extension.^'

TffTiCf. Goleman [1968, 1, §6]. The special form of the function r(R, t) in (6.1)

is a consequence of our present requirement that the motion be isochoric.
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The principal stretch ratios are

(6.3)

and by Remark 4.1 the principal stresses 0a, 0., 0 and the specific
y (p r

Helmholtz free energy ^ obey

r6 r 0

with

;(s) = [i + R"3p(t-s)]"2/3
1 +

P(t-s) '

r3-p(t)

1-2/3

0 < S <

Let us define the functionals ^ds and Uc by

= y(a*,(a*)-^2),

of course, (4.6) yields

) = 0.

Employing (6.5) and (6.6) , we obtain from (6.4) ,

1+
 +

-2/31

and

(6.4)

(6.5)

; (6.6)

(6.7)

, (6.8)
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f - Msiofy = •^.([lt+R"V]"2/3) • (6.9)

Let us now put

R

g J 2 ( " V " 2 / 3 ) (6.10)
R I

R + p
RI

The value <2,(|3 ) of the functional CC is clearly the Helmholtz free energy

of the shell, per unit solid angle. The significance of />*{$> ) will be

clear shortly.

We assume that the heat supply cb and the potential h of the body

force both vanish. Since the material is a perfect conductor, q assumes

the values necessary to make (2.4) hold, and (2.3) is here equivalent to
s

the single scalar equation"

*Cf. Coleman [1968, 1, Eq. (6.7)].

+ K ^ ' - |
with

v-.« g£r(R,t) = j[R3+P(t)]"2/3p(t) = |r"2p(t). (6.13)

We may write (6.12) in the form

|^ar(r,t) +ftar(r,t) -O0(r,t)] = p | ^ - - & & £ ] . (6.14)
3r 9r
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For each choice of the function £(•) on (-<*>,°°) with p > -R , there exists

a pressure function ,-/&(•,•) on [r ,r ] X (-<*>,°°) such that the dynamical

equation (2.3) holds for the motion (6.1); according to (6.14),

gives to O the following dependence on r and t:

ar(6,t)-ae(C,t) f l x1 2
a.(r,t) * ar(rrt) -J

If we let PT and P be the pressures applied to the inner and outer spherical

boundaries, i.e.

(6.16)

then from (6.8), (6.11), and (6.15) we obtain

AP = - (6.17)

with

a,

ft.

0/\

OA (6.18)

AP = PI-P0.

When AP is known as a function of t for t > 0 the equation

(6.17) is of the same type as (5.16), and in the case in which AP is

held constant for t > 0 a theory of the stability of equilibrium

solutions of (6.17) is easily developed along the lines explored in

Section 5.

(6.15)
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Here we assume that PT — P is given by a prescribed function

Q of P for t >0: PJ-PQ

Foif example, if the shell completely encloses the spherical

region -v/) = {r | r<r } (instead of just covering a spherical segment),

and if the region $ is filled with an ideal gas obeying Boyle's law, then

in each deformed state

PflR
3

34 + P
Here Po is a positive constant equal to the pressure on the inner

surface when the shell is in its reference configuration. If such a

closed shell is immersed in an atmosphere at constant pressure P , we have

P R3

QO) = 5 I ~ Pn. (6.20)

Of course, situations in which P — P is constant for t > 0

also fall as special cases of our present assumption that Q is a function

of p for t > 0.

Writing D for p,we cast (6.17) into the form

P(t) = x>(t)

^ ^ + jj- Q(p(t)).

We consider the following problem: First, let the function Q(*) be
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prescribed; then, given an element g of V and a number b > -R find a

function pair P(0,^(0, with p defined on (-«>,«>) and V defined on lQ,°°),

such that (6.-21) holds for all t > 0 and p° = g, t>(0) = b.

Let >l/', M?> /CL?, and Jr be the equilibrium response functions

corresponding to the functionals ^ds, M-> A>> a n^ Jf*• BY (6.10) and

3
(6.11), for each number p > -R^,

R0

= pjT R
RI \ (6.22)

dR.

j
3

If there is a number f3 > -R_ such that
e I

/'(Pe) + Q(Pe) = 0, (6.23)

then (6.21) has the equilibrium solution

P(t) s Pe, o(t) = 0 , -co < t < oo. (6.24)

Thus, (6.23) is the equation of equilibrium for <a spherical shell.

We assume that Q is a continuously differentiable function of

P in a neighborhood of Pe and that the functional M* is Lipschitz continuous

on a neighborhood of p in v' . The equilibrium solution (6.24) of

(6.21) is called stable under the pressure relation Q if for each e > 0
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there is 6 • 5(e) > 0 such that to each pair p , u(0) obeying

|| p — p+| + |u(0)| < 6 there corresponds a unique solution £(•)>*>(•) of

(6.21) and this solution has |p(t)-pj +" |tt(t)| < € for all t > 0.

If, in addition, there is a £ > 0 such that for each solution of (6.21)

with ||p°-p*|| + |\>(0)| < £ we have both P(t) -> 0 and p(t) -> p as

t -> oo, then we say that the equilibrium solution (6.24) is asymptotically

stable under the pressure relation Q.

When (6.24) gives a stable solution of (6.21), the configuration

r = VR3+p9 - 6, 0 - <t>, r = vTT+p (6.25)

is an equilibrium configuration of the shell that is stable against those

perturbing motions of the form (6.1) in which P - P equals Q(P(t)j for

t > 0. If the solution (6.24) is asymptotically stable, then such

3/1
perturbing motions have the property that r(R, t) -» vR + p and v -> 0

as t -»oo provided that the initial velocity is small and the initial

history p*1 is not too far, in r , from p+.

Let A be the total solid angle subtended from the origin by

the shell.7' By (6.9) and (6.10), the Helmholtz free energy of the shell is

"If the shell encloses a complete spherical region, ^ = {r | r<r },

then A = 4̂ t.

A7 'A/ p^r2dr - A/LO*). (6.26)
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By (6.13), for the total kinetic energy of the shell we have

2 2
2 pvr dr -• —

A A2

ri ro 18 . (6.27)

The rate of working of the contact forces applied to the bounding surfacej

of the shell is, by (6.13) and (6.16),

W(t) r t)

A
3

Since we assume that Pr~pC) ~ Q(P(t)) for t > °̂  if we put

Y(3) = / Q(a)da,

then (6.28) yields

W(t) = f ̂  Y(p(t)) for t > 0.

Thus, w(t) in (2.8) here obeys

|Y(p(t)).

(6.28)

(6.29)

(6.30)

(6.31)

It follows from (6.26), (6.27), and (6.31) that for the canonical free

energy (2.13) of the shell,

rr0f ! 2 1 2
A \f + -v+ w pr dr,

(6.32)
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we have the equation

*(t) =

/S,

where the functional 0 is defined by

$0*",!)) = 4,^) + T̂ r— ( [RT + p
t(O)]~ - [R.+pt(O)]"" ) - 7 Yfp^O)) , (6.33)

lo \ 1 0 / J \ /

and is continuous when regarded as a function on a neighborhood S of

p+,0 in r '. Remark 2.1 here implies that $(pt,\D(t)) is, a non-increasing

function of t, for t > 0, on each solution of (6.21). Furthermore, since

it follows from Remark 3.1 that

< >£6(8 ) and

if we define the function 0° by

( [ R i + p l " 1 / 3 " [ R o + p I " 1 / 3 ) - 3 Y ( p ) ^ ( 6 - 3 4 )\ $(P,D) - \ SoV) - /(P) + f

then for each pair p ;D in S we have

,*) < $(pt,o). (6.35)

Therefore, we can assert

Remark 6.1. The functional 4> defined in (6.33), with Y(«) given by

(6.29), i£ a. free energy functional, in the sense £f Coleman and Mizel

[1968, 3, 4], for the functional-differential equation (6.21).
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The Gibbs function for the shell is defined by

- ̂  AY(P); (6.36)

its value is just the equilibrium Helmholtz free energy of the shell plus

the mechanical potential of the shell. It is clear from (6.34) that

$°(P,o) has a strict local minimum at $° ,X> in E if and only if £/(p) has

a strict local minimum at P . and therefore Coleman and Mizel's Theorem 3.1
e7

[1968, 4] here yields

Remark 6.2. If the function Jo of (6.36) has a strict local minimum at

P , then (6.24) gives a stable solution of (6.21).
' QS _ _ _ _ _ •» ' ,W _ _ /x*>*̂ -V*-V%*X* i III "' • ' •

J\

For an isotropic material the "equilibrium stress relation" of

classical thermostatics yields the following formula connecting the

and s<? which correspond to the functionals

and yC in Remark 4.1:yC

7 ^ ^ ^ j \ r f V £ ^ j = 1^2^3 (no summation>

In view of this general formula, the definitions (6.6), and the identities

(4.6), (4.7), we have the following relation between the equilibrium

response functions j,° and jif corresponding to ̂  and JOx

(6.38)pa ̂  Mf(a) for all a > 0.
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Therefore, by (6.22),

for all p > -Rj. (6.39)

If J/ has a minimum at p , then d#(P)/dp = 0 at p ; and, by (6.36) and
e e

(6.29),

= jQ(P e). (6.40)

e

In view of (6.39), this equation is the same as (6.23). Hence, as

expected, whenever yj has a minimum at P . (6.24) is automatically a
— — — — — — — — — — — — — — — g —__. -"

solution of (6.21). Remark 6.2 tells us that, in addition, for (6.24)

to be a stable solution <of (6.21) ix suffices that

« 0 and —.

p=p dp4
> o. (6.41)

By (6.36), (6.39), and (6.29), the condition (6.41)2 can be_ written in

the following two equivalent forms

> 4^

I < -
P-P,

P-P,

P-P,

(6.42)

(6.43)

In the special case in which PT and Pft are both held constant for t > 0,

(6.43) reduces to the inequality

< 0, (6.44)
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which is the analogue for a spherical shell of the inequality (5.39) which suffices

for the dynamical stability of an equilibrium configuration of a

cylindrical t'ube.

An argument completely analogous to that which led to Remark 5.3

here yields:

Remark 6.3. Suppose the material comprising the shell is strictly

dissipative in motions of general isochoric extension. If p JL£ an

isolated solution off the equation J/- (p ) + Q(p )• « 0, and if the

function jj iri (6.36) has «a strict local minimum at P . then (6.24) gives
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ • e

an asymptotically stable solution of (6.21).

Furthermore, in analogy to Remark 5.4 we have

Remark 6.4. If the material is strictly dissipative in motions of

general isochoric extension and If (6.40) and (6.42) hold, then (6.24)

gives an asymptotically stable solution of (6.21).

It is easy to verify that in Remarks 6.3 and 6.4 the assumption

that the material is strictly dissipative in motions of general isochoric

extension can be replaced by the slightly weaker assertion that the

inequality

P jfcM-iof) ~ As (of)^ In 0^(0) < 0 (6.45)
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Y holds whenever the indicated derivatives exist and the function OC is

not constant on [0,°°).

For an incompressible fluid the equilibrium Helmholtz free

energy is a function of 0 alone, and the equilibrium stress is a hydrostatic

pressure. Therefore, for such a material we have

M°(oc) = const., y<z°O) - const., ^ D O ) - -/*O) - 0, (6.46)

and Remarks 6.2 and 6.3 yield

Remark 6.5. Suppose the material comprising the shell is a. fluid. If

Y O ) , defined in (6.29), has a strict local maximum at p , or, equivalently,
_ _ _ _ _ _ _ _ _ _____ — _ _ _ _ _ . , , _ Q i •

if Q(p ) = 0 and Q(p) is a strictly decreasing function of p in a neigh-
_ g _ _ _ _ •

borhood of P . then (6.24) gives a stable solution of (6.21). If, in
________ _ g _______ _________ __ __________ _______________ _ '

addition, the material is strictly dissipative in motions of general

isochoric extension, then the solution (6.24) i_ asymptotically stable.

Suppose we have a large mass of an incompressible viscoelastic

3 1 /3
fluid containing a bubble of radius r - r(R ,t) = [R^+p(t)] ' which

is filled with an ideal gas obeying Boyle's law. If conditions are

isothermal, if surface tension can be neglected, and if the viscoelastic

fluid is subject to the boundary condition that the stress at r = «> is a

constant, positive, hydrostatic pressure P , then the evolution of the

radius of the bubble as a function of time is governed by the present



53.

theory with Q given by (6.20) and R = °o. Since (6.46) holds here, the

equation (6.23) reduces to Q O e ) - 0; i.e.

•$-)•

(6.47)

and since P^ and R are positive constants, the corresponding equilibrium

solution of (6.21) is, by Remark 6.5, stable; if the fluid is strictly

dissipative in the sense of (6.45), then this solution is asymptotically

stable. Of course, (6.47) states that the equilibrium radius of the

bubble is

re = \

What is new here is our conclusion that equilibrium configuration is

stable against perturbations of the form (6.1). If, more generally, the

gas entrapped in the bubble obeys an equation of state of the form

P- = f(V) with V the volume of the bubble, then the equilibrium radius

of the bubble is the root of the equation

(to-
and the equilibrium configuration is stable, in the sense we are

considering, whenever f is a strictly decreasing function of V in a

4 3
neighborhood of V = -r itr . If, in addition, (6.45) holds, then there

e j e

exists a £ > 0 such that, in every perturbing motion of the form (6.1)

which preserves the pressure P at infinity and obeys (5.23), both

rT -> r and r_ -> 0 as t'-»«>.
I e I
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We may consider now a spherical shell comprised of an isotropic

solid material for which the equilibrium response function p° has the

form (5.41) associated with a Mooney material. In this case

fit

and since we here have an = a', = OC
6 0 r

P°(F)

Hence (6.38) yields

-1/2

of2)

(6.50)

and (6.22)2 becomes

- 4p/ ' "R3 +
 +

with

X - [1+R~3£]~2/3

dR (6.51)

(6.52)

Differentiating (6.52) we find that

R2dR

R3 +

dX

2(X1/2-X)'
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and therefore (6.51) can be written

X0 b, (A.2-A.'1) + b.(X-X"2)

i
i

with

dX

xl+ 4 ^o / 2 - x i / 2 ) ] - 2b
2[xo - h - 2%1/z - \l/2)]> (6-53)

[1+RJ3(3]"2/3 ^ (6.54)

i

Thus, for a spherical shell comprised of a material with an equilibrium

response of the Mooney type, the equation £f equilibrium (6.23) has

£ the form

- 4b]Lf(RrPe) " 2b2f(RrPe)
2 + 4b2f(RrPe)'^ (6.55)

where

f(R,p)3 = -^ = a (R,p)"3.

RJ + p *

The relation (6.55) and the limiting case of a thin shell have been given

by Green and Zerna [1954, 1, §3.10]. The accompanying graph shows the

function XT for the case RQ/RJ = 2 and several values of b2/b-. A similar

graph for the special case of thin shells is given by Green and Adkins

[1960/ 2, §4.13].



4 -

3 •

- /to
2 -

The function M* for materials with equilibrium response of

the Mooney type, assuming HL » 2R-.
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By (6.53), the condition (6.43) for dynamical stability

becomes

dQQ)

0

(6'56)

We assume, of course, b. > 0 and b~ > 0. Consider the case for

which AP = pi~ po is held constant. Then for b 2 > 0, (6.55) has at least

3
one solution P , in the range -R < p < °°, for each value of Q = AP.

For b9 » 0, there is a critical value of AP above which (6.55) has no

solution. As the accompanying graph shows, some solutions P of (6.55)

do not obey the condition (6.56).

For a spherical cavity in an infinite medium, Rn = °o, and we have
JL
7'

*See Gent & Lingley [1959, l] for the case b^ = 0, for related calculations

with other free energy functions, and for an interesting application.

'1/2-S) + 2pb2(XI-2X'
1/2+l) (6.57)

and

Thus

7/2. 2.

< 0.

( 6- 5 8 )

(6.59)

Let us assume that the pressure P at infinity is held constant. Then,

if the pressure P in the cavity is constant^ the equation of equilibrium

(6.23) has at most one solution for each value of AP = P — P . If
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b^ = 0 there is a critical value of AP above which the equation of

equilibrium (6.23) has no solution; if b~ > 0, then the equation of

equilibrium has exactly one solution for each value of AP . In each

case it follows from (6.44) and (6.59) that the equilibrium solution

for the constant pressure difference AP is stable. If P = f(V) with V

the volume of the cavity, and if f is a decreasing function in the

neighborhood of an equilibrium value of V, then, by (6.43), the corre-

sponding equilibrium solution is again stable. In particular, equilibrium

solutions are stable when P_ is given by (6.19), i.e. when the cavity is

filled with an ideal gas.
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Appendix: On History Spaces

Let' V be a Banach function space formed from functions

mapping (0,<») into the real axis E , and suppose that V^ ' has the

following properties:

(1) The norm || • || on V is compatible with the usual partial

ordering of functions on (0,°°); that is, if £ is in V and if £ is a

measurable function mapping (0,«>) into E with ||(s)| < |£(s)| a.e,,

then | is in V ^ and | £ || < |C|| . Furthermore, if || • || is not

identically zero, then | £ || = 0 only if |£(s)| = 0 a.e.

(2) V has the following Fatou property: If £..,...,£ >••• are

in V^ ;, if I5jr < K < «, and if Un(s)| T |S(s)| a.e., with |

measurable, then £ is in V and

jUtov II £ n Hv m II ̂  Hy ~ K-

Li JL JL

(3) Yr contains all right and left translates of its elements;

that is, if £ is in \T ' then T w / £ and T f .£ defined by

'0 for s e (0,a],

for s e: (a,00),

and

for s e (0,00),

are in V^ ^ for each a > 0.
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(4) V contains the constant function 1 defined by 1 (s) s 1

for s in (0,«>).

(5) V has the relaxation property"; that is, for each £ in V

#Cf. [1966, 1, §6] [1968, 1, §4,5].

(6) V is a separable Banach space.

A Banach function space with the properties (l)-(6) is called

a Past history space.777r

Coleman & Mizel [1967, 3] [1968, 2].

Given any past history space V > we may consider the set V of

1
measurable functions g which map [0,<») into E and satisfy j g || < <»,

where g , called the past history of g, is the restriction of g to (0,«>)•

The function |j*|| given by

|g| - |g(0)| + ||gr«r (A.I)

is a well defined semi-norm on V . If we identify, in the usual way,

functions g, f in V obeying ||g— f|| = 0, then V becomes a Banach

space with || • || its norm. A Banach space so constructed is called a
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history spaced The elements of V are called histories; their independent

^Cf. [1967, 2, §3] [1968, 2, §3]. See also [1968, 4, §2] where E 1 is

replaced by E n and instead of V^ ' the symbol V is used. In [1968, 2]

Coleman 6c Mizel give a motivation for this method of defining history

spaces; in that essay the values of the functions in a history space

are taken to be vectors in an arbitrary separable Banach space.

variable s is called the elapsed time. It follows from (A*l) that, even

after identification, each history g has a well defined value g(0) at

s = 0; g(0) is called the present value of g. It is clear that a

continuous functional over V must have a "special dependence" on the

present values of the histories in V .

4L
The form of the principal of fading memory7' which we use in

-- .

^I.e. that proposed in [1967, 3].

this essay implies that the functionals/^c and,^t> of (5.5) and ^ of

(6.8) are continuous functions on a history space V while the

functionals Jl of (5.8) and JX< of (6.9) are not only continuous, but have

r
continuous Frechet derivatives on V
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