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On the symmetry of the conductivity tensor
and other restrictions in the nonlinear theory

of heat conduction

by

W. A. Day and Morton E. Gurtin

Introduction.

In continuum thermodynamics a rigid heat conductor is
defined by constitutive relations giving the internal energy,
entropy, and heat flux as functions of the coldness+ and cold-
ness gradient. COLEMAN and MIZEL [1963] have shown that the
second law of thermodynamics implies certain restrictions on
these constitutive relations. However there still remain two
important restrictions which physicists believe to be true but
which are not provable consequences of the second law. These
are the symmetry of the conductivity tensor and the positivity
of the heat capacity.

We here introduce a new notion, based on the requirement
that a certain functional have a weak relative minimum at equi-
librium, which yields as consequences the above restrictions.
We conjecture that this requirement is intimately connected

with the notion of stability.

The coldness is the reciprocal of the absolute temperature.

« HRUNT LIBRARY
- SARNEGIE-MELLON URIVERSITY




An interesting feature of our study is that we nowhere

i ntroduce the concept of entropy.




JL  Adnissibility.

Throughout this paper the inner product space associ ated
with euclidean point space is denoted by the symbol V .

We consider a rigid honbgeneous heat conductor which occupies
a conpact regular'-L region G in euclidean space. A field on
the body is any function defined at all pairs (§Lt) e Gx [0,00) >

where we interpret t as the 'time’. As exanples of fields

we have the (real-valued) internal energy e per unit volune
and the (vector-valued) heat flux q . |If these fields are

of class C* , they determ ne the heat supply r through the

energy bal ance equation
e =-divg+r, (1)

where <+ denotes d/dt . The coldness field 9 ¢ whose val ues

are strictly positive, is assuned to be of class C and we
wite
g = grad 6 (2)

[

for the col dness gradient.

For the materials considered here the coldness field determ nes

the internal energy and the heat flux in the follow ng way:

1

there are class C~ constitutive functions e (0,00) XV -« (-00,00)

and g (0,00) X\s -« \s such that

e(x,t) =e(6(x,t), g(x,t)) ,

(3)

q(x,t) =79q(9o(x,t),g(x,t))

IV% use the termregular in the sense of KELLOGG [1929].




Equation (1) then defines the correspondi ng heat supply r(x,t)

For brevity we refer to the ordered pair (e; q) as the material*

It should be noted that in terns of the coldness the heat capacity

is given by
C(e) =-eZE'f|(e,O) ) (4)

whil e the conductivity tensor equals

K(9) =927 (9,0) . (9

Here and in the sequel the subscripts O and g denote
partial differentiation with respect to these vari abl ese

Let 6O > 0 be any given coldness. Qur aimis to determne
the restrictions inposed on the material by an assunption
about the behaviour of a certain functional on coldness fields
'close! to the constant field 8, - To fornul ate the assunption
we introduce the collection 0(90) of class C functions
ca G X [O,do) - (-00,00) with the properties (i) 99+ co>0 ,
(ii) co(*,00 =0, (iii) thereis a nunmber T >0 , depending
on o , such that co(*t) = co*,7) for all t >17 . dearly
the constant function O e &(9(9', and the set EKQO) has the
property that if coe O(Qo) then there is a pdsitive nunber 6 ,

depending on co, such that Aco e Cl(g ) for any A in

-6 < X< 1 . W define a real-valued functional F on 0(60)
by setting
OO p . «COp .
F(w) -_-\] I ] I
9g- ndAdt - 9r dVvdt (6)
07sG ~ Jo’G
wher e




q and r are given by (1) - (3), and n is the unit outward
normal to OG . By the first and second variations of F we
2

mean the real-valued functionals OF and 6°F defined on

(8 ) by

5F(w) = I F(Ow
dA A
(8)
52F(w) = 1 —7‘12 F (Aw)
2 dAa
A=0
The concept of admissibility of the material is phrased in
terms of the functional F : we say that the material is
admnissible at the coldness 96 if and only if
SF(w) =0 ,
(9)
52F(w) Z o,
for every w € a(eo) . The following theorem characterizes

admissibility.

Theorem. The material is admissible at the coldness 6 if
PPN o —

and only if the results (I), (II), and (III) hold:

(I) the conductivity tensor K(GO) is symmetric and

positive semi-~definite;

(I1) the heat capacity c(Go) >0 ;

T3 _ g _ 5 _
(I11) g(eoyg) = 26(90’2) = eg(eo’g) =0 .

TThe restriction (III) and the positive semi-definiteness
of K(Go) are consequences of the second law as has been shown

by COLEMAN AND MIZEL [1963].




- .
6<40 « g(onr,0)-f f grad co dvdt (11)
1) J J
~ 0 G
and
2 oo =2 — .
6F(co) = f f {-&d ,O)co” - & (0 ,0)-co grad cb
* O\ wn W O F* ~ o>
(12)
+ gy 0™, co grad co + grad ?'%gﬁ (0,.9) grad cg dvdt
W establish the necessity of the conditions (1) - (II1)
by meki ng speci al choices of functions coe 0(0) . If veU

is any vector the conpactness of G enables us to choose a point

X, depending on v ,, such that v-(x - x ) >0 for each xeG.
~O ~ P D — oy
Now define co € O(0 ) by co(x*) =f(t)v(x - x ) where f

O * *

F* * % f*o

is any C* function with f >0, f(0) =0 and f(t) =1 for
every t =1 . Then (11) and the assuned adm ssibility of the
material inply

0 = 6F () = vqume(G:)Vﬁ(G. -0)

But VGV is arbitrary and so (0,0 = 0 which proves the
first part of (II1) .

Next consider elements co e Q(do) of the form
co( t) =f(t)exp(v(x - x.)) ,

where x is any fixed point, v 1is any vector in V ,
f(t) >0 and f(0) =0 . For an elenent of this type grad co

and (12) becones

oX




9 ., _ _
5°F(w) = —(JO £ (t)dt)(Ichp(Zx‘(5—50))dv)(ee(qo,2) + egfqo,g)'z)

Q0 . '
+ (| 210 a0 (] explay Gz AN (G469 y + 1500 Q)

Since

exp(2v:(x~-x ))dv > O ,
jG ~ '~ ~O

admissibility requires that the inequality

Q0 . 2
-] 2()2at) (54(8,,0) + 5 (8_,0)-v)
o) s g O~ ~
© . (13)
+(J"O £(D(Da) (Gg(0,, 0.y + 1T, (8,,00y) > 0

hold. Choosing f to be any non-negative C2 function with
£f(0) =0 and f(t) =0 for t > 1 but which is not identically

zero we find that

85(8,,0) + 5,(6.,0)y < O

~

— e 2
for every vector v . Thus eg(eo,g) = 0 and c(Bo) =-6, ee(Oo,g)

~

4

>0

Again, if we choose f with f(t) = 3 (t - 1)3 for

0<t< 7T and f(t) = 73 for t > T then f is of class 02

and the inequality (13) becomes

95— 6 — _
-57°%p (85,0) + 37 (6,00 v + ¥-q (8 ,0)x) > 0




holding for all numbers 7T > O . Dividing throughout by

176 and letting T - o gives the inequality

2

which can hold only if the conductivity tensor K(6_)) = eozgé(eo,o)

is positive semi-definite and ge(eo,g) =v9 .
It remains to be shown that K(Go) is symmetric. To do
this let u er be any vectors, %5 any fixed point, and
let f,h be real-valued c? functioné on [0,00) with
£(0) = h(0) =0, £(t) = h(t) =0 for t > 1 and Jmf(t)ﬁ(t)dt =
(0]

Consider the sequence of functions
w (x,t) = e(@E®u + nSv)(x - x) .
n ' a’ n ~ n° a ~ ~O

Taking e sufficiently small guarantees that w ¢ (6 ) and
o
then a straightforward computation using (12) and the results

already proved yields

2
62F(uh) - 57—(1'K(60)2 - B'K(eo)z) , as n - o .

%

Thus the admissibility of the material implies that for all

vectors u,v
~

v'K(8 )u > u'K(g )V .

On interchanging u and v we find that equality must hold;
~S \

i.e. the conductivity tensor K(Go) is symmetric and the necessity

1
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of the conditions (1) - (IIl) is established.
The sufficiency of these conditions follows inmmediately

on noting that if they do hold then, for any co e 1XD‘) ,

grad 6>K(9 Agrad a; = %[grad co-K(9 )grad co
o £J o

and so

2

9 ‘roor | o
6°F(w) =1 N
38:}8 8% (90_.9)1:0 dvdt

+h | ne grad w( x, 00) K(9 ) grad co(x,00)dV > 0 ,

2 |S e/\ —_ o A m
0
whi ch conpl etes the proof.
The result (111) of the theorem show that whenever the

material is admissible at coldness 8°

"é( %) :e<e0,9) - %2 c(9o)(9-90) + 0(|9—90| + Ig') ’
o
(14)

g(e,g) = %ﬁx(eo)ﬁ + o(|9~90| + lﬁl)

|f we consider coldness fields close to the constant coldness 9

O
in the sense that |[9-8 | + gl is small then equations (14)
(0] raw
tell us that effects due to the col dness and the col dness
gradi ent uncouple; i.e. towthin terns of order o(]|9-9° + |9|)

the internal energy e depends only on the col dness increnent

6- 6 and not its gradient g o whereas the heat flux g depends
O *% *W
only on g and not on 6-6 . |In fact the second of (14) is, to
* k%
0
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wi thin higher order ternms, Fourier's law of heat conduction
Anot her inportant consequence of the first of (I1l1) is that

heat can flow at col dness 60 only in the presence of a non--

zero col dness gradi ent.
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2 The Linear Material,

The linearized theory corresponding to the theory discussed

in section 1 results on considering the material wth

0<e,g) - eg- V<°-%0> >
& o gz 0
° (15)

- 1
O

wher e e, C are constant scalars and K is a constant tensor
In this case it follows from (11) and (12) that 6F = 0 and
F = 62F and we deduce that the materi al defjned in (15) is
adm ssi ble at sone, and hence every, col dness q) if and only
if F>0 on £2U3& . One way of stating this conclusion
IS
Theorem 2. For the linear material the heat capacity c¢ 1is
non-negative and the conductivity tensor. K [s_symetric and
itiv i-defini if and only if F 1 ni num

0 e ey

The admissibility of a linear material can be characterized
in another way if we introduce the concept of a conduction
potential, by which we nean any cl ass C1 function 0: V -* (-00,0]

with 0(Q =0
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Theorem 3. A linear material is admissible if and only if
ARIRIRIRIRIS

there exists a conduction potential @ such that, for every

w e 0(60) ,
j B(g)dv > - I éq-ndA + J ordv s (16)
G ~ 3¢ ~ ~ G

where 6 =06 + w and q and r are given by (1) - (3) .

o ~  —

Proof. If @ is a conduction potential then we conclude from

(6) that

0 S:J ?(g)dv < F(w
GN

and hence the material is admissible. Conversely suppose the

material is admissible. Then

-f 0q-ndA + f 6rdv = - i f (c62 + g-Kg)av . (17)
G~ ¥~ G 6 G ~
(o]
If we set
_ 1
¢(§‘) = —§§‘K§ s

the function @ 1is a conduction potential since K 1is positive

semi-definite. 1In addition the symmetry of K tells us that

.

g) = ~g-Kg
~

Q

and this remark, when combined with (17) and the inequality
c > 0, implies (16).

It should be remarked that the conduction potential @
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of Theorem 3 is unique. In fact, for a rigid heat conductor

the production of entropy per unit volune is

Y = g-Kg

N

and so the conduction potential is

Furthernore, in view of the symetry of K , the constitutive

function for the heat flux can be witten

5 -9 -

It should be remarked too that there is an interesting
simlarity in form between (16) and t he Cl ausi us- Duhem i nequal ity

whi ch reads

fosdV > -f GgendA + f GV,

\'S Ov \

where s is the entropy.
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