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D. R. Owen
W. O, Williams

I. Introduction.

In this paper we discuss a class of materials with memory

1 are both differentiable and 'invariant

whose response functions
under static continuations!., The condition of invariance

requires that the response be constant in time when the determining
properties are held fixed This condition is satisfied by hypoelastic and, in
general, rate-independent materials but has not in itself been
regarded as a defining property for a class of materials., We call

a function which is both differentiable and invariant under

static continuations an equilibrated function. Thus, the response

functions for hyperelastic materials are equilibrated functions,
vhile the response functions for viscoelastic materials

are not (such functions are not invariant under static continu-
ations).

Our aim here is to show that the time derivative of an equili-
brated function satisfies a relation of the same form as is satisfied
by the response functions of elastic, hyperelastic, and, more
generally, hypoelastic functions. For example, suppose the stress
in a material is given in terms of the history of the strain.

Our main result may be stated as follows: If the stress function

is equilibrated, then the stress rate is a linear function of

lWe use the term 'function' in place of the often used term
' functional!'.,
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the current value of the strain rate; the linear operator which

maps the current strain rate into the stress rate depends upon

the history of strain but not upon the history of strain-rate.

These results are given in Theorem 1 and the proposition which
follows it, both of which appear in Section III.

We note first thét materials with equilibrated response
behave, from the standpoint of time rateé, very much like elastic
‘ materials; this is shown in particular when we examine the thermo-
dynamics of such materials in Section V. These materials obey a
generalized stress relation and, more significantly, exhibit no
internal dissipation, exactly like elastic materials. In fact,
if the materials are not only equilibrated but also rate-independent,

we call them generalized elastic materials since they share many

properties of hypoelastic materials. Beyond this, our results
give us a new way of describing hypoelastic materials by making
assumptions on the response function rather than on the time
derivative of the response function. More specifically, we show

that asmooth rate-independent function is hypoelastic if and only

if its instantaneous response is defined and is determined solely

by the value of the function.

All of our results are phrased in terms of elementary

concepts from .the theory of differentiable functions defined
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on a subset of a Banach space. We wish to emphasize that the
Banach spaces considered here need not contain any histories which
correspond to functioms with discontinuities. Thus, our theory
differs from the theories of fading memory due to COLEMAN [1l], [2]
and COLEMAN and MIZEL [k],[Z],[3]. In both,
the expressions for time derivatives of
response functions contain terms which are linear in the present
vélues of the time derivative of the independent variable. 1In
‘our theory the singular dependence on present values arises
through invariance properties of the response function, while

in the theories of fading memory, this dependence arises through

properties of the Banach space itself. These remarks are illustrated
by the examples given in Section VI.
The ideas of the present paper can be applied to obtain

representations for the time derivatives of response functions

which are smooth but not equilibrated., One obtains formulae of

the same form as obtained by COLEMAN [l1], MIZEL and WANG, COLEMAN
and MIZEL [2], while assuming no singular dependence of the norm
upon the present value of the history. Such considerations lead

to a better understanding of the notion of 'instantaneous elasticity'

and will be studied in a future paper.

II. Equilibrated Functions; Rate-Independent Functions.

In this section we introduce the concepts underlying our
theory. For the discussion of rate-independent materials we

follow the main lines of the development given in our earlier
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paper, Let 3 denote some finite-dimensional normed vector
space, We consider a set of functions & each of whose elements

has domain the interval [O,oo) and range a subset of X. We

suppose that ¥ is a subset of a Banach space & with norm

and that

§1) each fed is absolutely continuous on bounded subinter-

vals of [0O,0), and f is defined near O and is

continuous at O,

&2) 4if £ed then foeii for all sufficiently small o > O;

£,, the o-section of £, is defined by the relations
£5,(8) = £(s + 0), se[0,00),

33) ..:';.f: fed and 6 > O then there exists o(£,5) > O

such that for all o < o(f,5) the linear perturbation

of f
£(s) 0 < s< o
S l—»
f(s) + (s -0)a 0<s<go
is in ¥ for each ae X with.”aH*_< S

d4) if £fe¥ and ¢: [0,®) - [0,0) is

i) absolutely continuous on bounded subintervals,

ii) monotone non-decreasing,

iii) such that ¢ 4is defined near O and is continuous

at o,

iv) such that ¢[0,o) includes the essential axport of

then £ o ped,




If.one thinks of the functions in & as histories, the
above requirements have the following interpretations: ¥1) no
tsingular histories' (histories with zero derivative almost
everywhere but with positive total variation) are admitted,

32) for each history corresponding 'earlier histories' also

are admitted in &, &3) 1ihea£ perturbations of each history are admitted, ¥4)
reparameterizations of each history belong to &, Requirements

similar to &2) and &3) are common to the theories of materials

with memofy considered by COLEMAN and MIZEL. The restrictions

51)'and 34) are significant in theories of rate-independent

materials; in fact, the existing definitions of the concept of
rate-independence rest on such requirements.

The functions ¢ satisfying the conditions in dJ&4) are
called rescaling 555555223 £2£ the function £, and the set of

all rescaling functions for £ is denoted by ¢%. Of special

interest are the rescalings €0 defined by

£9 (s) = { 0, 0o<s<go

s -0, 0< s< 00
Here, 0 is any non-negative, real number. We note that for every

0> 0 and fed, €0€¢ . The function £¢ = f<>€o is called

the static continuation of £ by amount 0. A function
PNIIINISING (PP A~~~ ISP IS
m: & - Y4, where Y is some normed vector space, is said to be

invariant under static continuations if
PAINIOSINSOAN SIS PSPPI TIPSO P PDIDII OGNNSO Il PPt

7 (£%) = 7 (£)
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for every fe¥F and every o0 > O. If we regard 71 as a response
function for a mterial, the above condition provides that the

response of the material does not change during time intervals

on which £ is constant.

The property of invariance under static continuations is
implied by a hore stringent requirement: 7 1is said to bé
EEEE-indeBendeEE if

T(E o) = 7(£)
for all fed and ¢e¢f (cf. TRUESDELL and NOLL, OWEN and
WILLIAMS ). In this case, the values of 7 depend upon the
values of f but not upon the rate at which these values are
assumed,

Our theory deals with functions 7 : & = §} which are smooth,
i.e., for each £fec& there exists a continuous linear function
6v(f“|-):§ - |} satisfying the following conditions:

(i) the map £ b 6r(f |. ) is continuous;

(ii) for each fed&, there exists a function «r(f,:.): F - Y

such that
m(f + h) =7 (£f) + ér(£|h) + r(£,h)
whenever £ + he¥, and r(f,h) = o(h), i.e. given
€ > O, there is é 6 > O such that
le e, m) [l < ellnll
whenever “h“ < d.
'We say that a function 7 is sguilibrateg if 7 is both

smooth and invariant under static continuations. The set of all
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T which are equilibrated includes many non-trivial functions.

In fact, the set of rate-independent, equilibrated functions

on & may be expected to contain infinitely many non-trivial
functions. (In the final section, we indicate how this asser-
tion may be proved in certain special cases.)

In the case when the value of 7w represents the value of a
response at time t computed from gte3, a history up to time
t, of a function g : R = X we are interested in the rate of
change of the values of 7 as t varies, More precisely, con-
sider

d

t .1 t
== m(g7) = lim =(r(g") - 7w (g
dt a40 o

t-0),

.1 t t
= lim ={(r(g") - 7(g.)}.
o0 C m{9g) )

With this in mind we define a map T by

. S
(£) = lim v (£f) - w(£))},
HE = L gl - )

whenever the limit exists, and call 7 (£) the rate of change of
I PNIRS ISP NN gt

[ a d
7 at the function £,
OIS PPN NP PPN
We can prove with no further restrictions on 7 one propertywhich is
indicative of our general results and which shall prove of use

in Section V.

Pro osition: £ T is rate-independent and fed such that

m(f) exists, then for any wé@% for which ¢ is continuous in

a neighborhood of the origin 1 (f c¢) exists and

T(£e @) = 7(£)p(0).




Proof; Note that

(£20)g = £5(0) -p(0) ° ¥

where u(s) = ¢o(s + o) - ¢o(0) + ©(0). Clearly ueéf

o (o) -p(0)
by the restriction on ¢. Hence
1 1
E{‘n‘(f o) - w((£f °<P)c)] = ’E[TT(f °Q) - 1T(f<p(0') _(p(o)"“) }
_ e(0) - ¢©(0) 1
= o p(o) - ¢(0) (r(£) - 1T(fq:(o) -<p(0)”

and the proposition follows.

III. Representation for .
In this section we present our main result: the rate of

change of an equilibrated function at f 4is a linear function

of £(0). In order to obtain this result, we shall have to place

restrictions which suffice for our purpose, but which are in fact

restrictions on the norm | for . we begin by presenting
stronger then necessary. The proof of the representation theorem
suggests weaker restrictions under which the conclusion of the
theorem remains valid.

We let fe3 and let d(f) = inf{s|f(s') = 0 a.e. s' > s}.

Our assumption on the norm can be stated in the following form:

Let fl’fz""’ be a sequence of functions in & which satisfy

the condition: limd_ = 03 d_ = d(f]) . We assume that if
3 n-o P n n -

n, . ‘
f ”fn(s)ugs is respectively of order d(dn), e(dn)'gg n - oo,

then&anH is respectively of order G(dn),a(dn), as n - .
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This assumption is satisfied in both the examples considered

in Section VI. These examples indicate that our assumption
on |-| neither excludes nor necessitates a singular dependence
of H'” on the value f(0). In anticipation of the singular role

that f(o) plays in the expression for 7 (f), we remark that

invariance properties of 7 <rather than any singular dependence

of ||*]l on £(0) determine the singular role of f(o) in the

expression for T (f).

Let 7 : & - 4 Dbe given. We present our proof of the
representation for 7 in a series of lemmas. The essential

observation is contained in

Lemma 1. f 7 is invariant under static continuations then for
IS NI -

every sufficiently small o > O

o
v(fo) == v(fo)

o _ o . . . .
where fo = f0 ©o§" is the static continuation of f0 by amount o,

Proof. By &2), &3), and 34), fge3 for every o sufficiently

PSS PN

small, Since fg is a static continuation of fo’ the result

follows immediately.

Lemma 2., If fed then Hf - fGH = (o) as o0 - 0 and
PAIII PN ) _— g — —
_“f - fg - Lof(o)H = o(0) as 0 - O, where
(0] s> G0
L,(s) =

s -0 0L s<L O,
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Proof. We rely on the assumption on “-” given above. First,
PRIPIPI I

we observe that

(0] 8> 0
(£ - £0) (s) =
f(s) - £f(o0) 0<s< o
and
——ee 0 s >0
(£ - £9) (s) = -{ :
£ (s) 0<s<go

for o sufficiently small. Note that a, = a(f - fg) < 0 so

‘that d0 -0 as 0 - 0, Furthermore,

dy ———rn da .
J e - £ (ol as = [ °lio) a8 = 0(a)

o o
since f(0+) exists., It follows that Hf - fg“ = d(do): moreover,
since da < o, Hf - ng = ¢(0). This verifies the first assertion

def
in Lemma 2. If Ab = f - fg - Lof(o) then

(s) (0] s> 0
(s =
% {f(S)

- £(0) - (s-0)f(0) 0< s< o

1{ (0] s> 0
£(s) - £(0), 0< s < o,

The function Ab is in & for small o since

and

4, (s)

f - Lof(o) and fg are elements of & for every o sufficiently

small. Again, dgcg-fd(Aa) < 03 so that d('); -0 as o0 - 0. From

the expression for Ab’ we have




' 4 11
ax X e .
JOlA o)1l as = [CliE(s) - £(0) ], as
o o

ax .
=[al-g J'oollf(S) - £(0) [l as}ax

= O(dg)

since f(s) ~-£(o) as s - 0. In case dg vanishes for values
of 0 arbitrarily close to O, it follows that dg =0 for o

d¥*,, e
near zero, Thus I UHAU(S)des = 0 for 0 near zero and
o)

*
trivially, J OHAb(S)“*dS = c(dg). These considerations show that
o

“f - fg - Lof(o)“ = o(0) as 0 - 0O, which completes the proof.
Lemma 1 was concerned with a function 7 which is invariant

under static continuations. For our main theorem we shall suppose

7T is smooth and define in terms of &m(f |.) a function &7 (f |. )

which operates on a particular class of scalar valued functions

A : [0,00) = R. Recall that range (3) c X; we define glR to

consist of those functions A : [0,00) - R such that kaeg for

every ac X,

~ . .
Lemma 3: The set SR is non-empty. In fact, for o suffi-
ciently small Loegg. Moreover, %R is closed under scalar
multiplication.

Proof: Let fed, &3) guarantees that £ + Lca€3 for any a
within some ball about Oe¢ X whenever o0 is sufficiently small.

Since ¥ is a vector Spaée then (f + Lca) - £ = Loaeg. But
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since 3 is closed under scalar multiplication we may remove
the restriction on ||a||x and conclude for the selected o© that

Ldaeg for all aeX. Thus, Loe?R for o sufficiently small.

~

That 3R is closed under scalar multiplication follows from

the corresponding closure property of '5, which completes the proof.

Let 7 : F - 4§ Dbe a smooth function with differential

~

sm(f | +) at £e¥. We define o7 (f |. ) as a function on 3IR
whose values 61?(f{7\) are linear fanctions from % into Y
given by

or(£[N)a = or (£|ra)

for each ae X. We define A, the 1nstantaneous modulus of T

PIPINS Iy ~r ARSI PP

at £, to be

ag = lim -]-'- 61r(f|L )
o0
whenever that limit exists. Of course afeS(X,U), the set of
linear mappings of X into VY.
We are now prepared to prove

Theorem 1 (Representation of 7) If 7 is equilibrated and if

PRSI IS~ P

the instantaneous modulus of m is defined at fed&, then

the time derivative of m at £ exists and

#(£) = afff(o) .

Proof: From Lemmas 1 and 2
e aa ol
Y g
T(£) - w(fy) = 7w(£) - 7(£))
o o
o€ - £)) + ellf - £.ID

6T(£|L,£(0)) + om(£]4)

g
+ otle - £
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where Ab = f - fg - Lof(o). Lemma 2 implies that 6w(f|Ab) = &(0)
and o(l|f - fg“) = (o) so
T(E) - m(E,) = 57 (£]L) £(0) + o(0)

when o0 is small enough that Laegh (Lemma 3). Hence
Lir(g) - m(g)) = o7 (£|n ) £(0) + Ze(0)
o (o (o (o) (o)
and since af exists, we obtain as o0 - O
T(£) = a£(0).

Remark: From the proof of Theorem 1 it is clear that if
7 (f) exists for a given £ , we can assert that

lim = 67 (£] L) £ (0)
g-0

exists, but not that ag exists., The second assertion can be seen to
follow under the further assumption on & given in Section V.

The functions are shown in Figure 1. Pointwise,

oto
this sequence of functions tends to the function Ago which is
-1 at s = O and zero elsewhere. The function %o is not
necessarily in the set %R’ In fact, if the space & contains
only continuous functions, then %o cannot be an element of

~

qR' Hence, one cannot expect to write the instantaneous modulus
in the form 6ﬁ(flko). We note in addition that the representa-
tion T(f) = aff(o) might be trivial if no further properties of
ag could be deduced. For example, if X =} = R, EdeFw(f)/f(o)

always yields a representation of the form given above. 1In the

HUNT LIBRARY
GARNEGIE-MELLON UNIVERSITY
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Figure 1

following proposition, we use the fact that £ = &7 (f | . ) is
continuous to show that £ b ag is continuous wherever it is
defined. This rules out the trivial case for many possible topo-

logies.

Proposition: The map f k ag is continuous wherever it is defined.

Proof: First we note that “L a“ = (o) since d(L_a) = 0 and

PO (o) o
j:”(Loa)(s)“idS = GHa“*. Next, let £

and g be elements of & for which ag and ag exist. For:

o sufficiently small LOG%R and

1.-
lag - agllyx,yy < llag - gom (ElLp gy
+ llag - 157 (g] L) s,y
+ o7 (alny) - go7 (£l llg (5 -

The last term is
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Ito7 (£1ny) - 3o (gl g k. =

= sup_ “%57? (f l LO') a - %57? (g | LO') a“u

laly =1
= sup H%@v(flLoa) - -(]-;-cfnr(gILUa)Hu
lal =1
1 e
< (sup lstoalbllem(gi] ) - or(g |- )llg g
“al *=l ’
But for any ae X we have “Loa“ = 0(0) . Hence

“af - ag”&(i,l}) S_ ”af - %6ﬁ(f|Lo) Hs(*’u)

1.-
+ “ag - Eév(gch) Ils(*,u)

+ gégl lowr (£ | ) - om(g

) g m, )

and the result follows from the definition of ag and the con-

+); for o sufficiently small gégL is

tinuity of £ = &7 (f
bounded.

The relation t(f) = ag f(o) can yield a representation
for ‘1 wunder certain additional assumptions. Let us suppose
that f is such that £ e¥F and a; exists for each ¢ > O.

o
Then
d _ e _ .
Jo T(fy) = -m(£y) = -a; £(0).
o

If o+ ﬁ(fo) is bounded and integrable on [0,00) we may define

T _ (£) = lim 7w (£.)
[o'0) 000 o

and hence obtain the
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Corollary to Theorem l: Let 7 be equilibrated, fe&.
L B

if
i) for each oe[o,oo),fae5, and ag exists,
o
ii)Owﬁ(fo) is bounded and integrable,
then

QO .
T(£) = 7 (£) +j a, f(0)do.
o o

IV. Smooth Rate-Independent Functions; Hypoelasticity.

If 7 is assumed to be rate-independent and smooth (and
hence equilibrated) we will show that the mapping f + ag is

also rate-independent.

Theorem 2: Let 7 be rate-independent and smooth., If
ARSI RIS P

a. exists and ¢@e®; is such that ¢(0) =0, ®(0) # O then

exists and

3.0

af‘p= af'

In any case if ag exists for all fed this relation holds

for all fed, ¢e¢f.

We prove this in a series of lemmas.

Lemma 4: Let 7 be rate-independent and smooth. If

PPN

feF and ¢e¢f~ with ¢(0) = O then

61?(f|LU) = om (£ ogo|L0o¢)

for all sufficiently small o,
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Proof: Let o be sufficiently small to guarantee
) TIRRAIEAS
f + Loae3 for any ae X with Ha“x-< 1 (&3)). We can take
o smaller if necessary to guarantee @€¢E+L a (¥4)) for all such
(o]

a. Then let 0< e < 1l. Since ¢e® and T is

f+eLoa
rate-independent
T(f e+ e(L0°<p)a) ~-m(Eo) =7(f + eLoa) - m(£f).

Thus

5Wﬁ°¢ﬁﬂb°wa)=5ﬂﬁkyﬁ)+0@)
or

6ﬁ(f<=¢|L0° Qa = 6ﬁ(f|Lc)a + o(1)
as € - 0. Hence

6m (£ e p|L e @) = om(£]Ly) .

Lemma 5: Let ©(0) = 0, ¢(0) # 0. Then for each ac ¥

o a o o d

“ (LO'Q(p - (b(O)LG/¢(O))aI| = o(0).

Proof: Let o* = 0/4(0). For o sufficiently small both
PRI I
Ly°® and L,x are in 3%. Since @(0) # 0, ¢ is invertible
in some neighborhood of zero; letting o 1lie within this neigh-

borhood we can write
-1
d(L, e ¢) = ¢(0)

d(L,y) = o*

(recall that d(f) is the largest bound on supp f). Note that

-1 1 ‘
o(o) = ) + o(o) = o* + o(0).
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-1 -
Hence both ¢(0) and o0* are d(o) as 0 = O; their difference

is o(0). Finally, we define

max (g (0),0%)

Umax

-1
min (¢ (o) ,0%),

g_.
min

If ae X is given we define 'ga = (L0<>¢)a - é(o)Lc*a and note

oo . : » max . .
[ lgg e lgas = [ " létera - deo)al, as
o o

min . Gmax . .
< fo Ig(s)a - ¢(o)all as + jo (o ally + ll¢(s)all 1as.
min

Of course

min . g .
lf l¢(s)a - ¢(0)all as = BB

g o o L ‘[ min“(b(s)a - (b(O) a“xds
o min o

and this tends to zero as 0 — O. Similarly we note that ¢
must be bounded in a neighborhood of zero—say by k-—and thus

as O Dbecomes small

T s “max ~ “min
2 ewally + s all1as <2xllally . :
min
-1
But since ¢(0) - o*¥ is o(0) this term tends to zero with o

and hence the arc-length of g is o(0); this implies the desired
result.

We now can prove the first part of the theorem.

ILemma 6: Let 7 be rate-independent and smooth. If a
PIPIIrIrY _— — —— f
exists, ¢e¢f with ¢(0) = 0, ¢(0) # O then af‘=¢ exists and
af,¢ = ag.
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Proof: By Lemma 4
[ oo o

. l .- N
a, = lim = 67T (f|L_) = lim = 6T (£ @|L_o ¢).
f 4450 © o o0 % (o)
1 - .
But < om (£ °(p|L0°<p) =3 <51r(f°(p|(p(O)L°*)
1 .- .
+ 5 67 (f° @|Lye @ - @(0)L,)

where 0% is defined as in the previous proof. By Lemma 5

. - 1 .
lim 8T (£ e @|=(L_c @ - @(O)L_,))a
o-0 g o ao*

. 1 .
= 1lim om(f e @|=(L_° ¢ - ©(O)L_,)a) = O
a-0 g O o*

for any ae X ., Thus we knowthe limit

Lim 2 67 (£ ¢ 0|$(0) L)

o0
= lim G:L; 51F(f°<p|L0*) = ag,
o~0 ¢
exists; hence af°¢ exists and equals ag-

Lemma 6 is now used to prove the remainder of the theorem.

Let us first take the case ¢(0) # O.

Lemma 7: Let m Dbe rate-independent and smooth. If
k8 ==

(o e e ool

af,af';w exist, for ¢(0) # O, then

Proof: 1In light of 3J4) £ must be constant in some
NI NI
interval [0O,s]; let [O,§] be the largest such interval. Then

if § = ¢@(0) we have 0 < § < 8. We consider two cases.
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First, if s < S we define s* = min{s|@(s) = §) and let
-g-*s 0 < s K s*
o* (s) =
o(s) s*¥* < s < o

The finction ¢* falls under the assumptions of Lemma 6, so af°¢*

exists. However, it is clear that fo¢*¥ = fo ¢ and thus

a = ac.

fop* f
Next, suppose 8 = 4. Note first that if ¢ is identically

fo exists and af°¢ = a

equal to s in some neighborhood of zero we can define ¢*

in much the same way as above, concluding fe ¢ = f e ¥, and

thus that 30 exists and equals ag. Otherwise we let
= i 5 =21
s, = min{s|p(s) - s = n}
and note that lim s, = O. Then, consider the sequence {¢n}
n-m
defined by
' - 1 2s
(S'n)+nsn 0< s< s
¢, (s) =
¢ (s) s, <s< o
Then wn(o) = s -~% < 8 =8 and thus ? falls into the previous
category. This means that af°¢ exists for each n and is
~ "n
equal to ag. We now show that f¢’¢n - fo¢p so that af°¢n~ af°¢

as n - @ ; this of course gives the desired result. We note

first that .
#(s,)) - ¢(0) - ¢(0)s
lim pm n = (o]
n-—oo n
so 1 . é(o) as n - .
ns_

Now define g, = fop - £ ° P Then sup g c [O,sn] and on

(o, sn]
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Go(0) = £lp()00e) - o, (8115

wWithin [O,sn] both ¢ and ¢, are bounded by s + % so for

n sufficiently large f«>¢ and f °¢, are both uniformly
bounded on this interval; similarly one can establish a uniform
bound for ¢ and E%_ for n sufficiently large. Thus, the
arc-length of 92 ? f nHén(s)llxds, must be d(d(gn)) and
thus Hgn“ = d(d(gn)), wﬁich means Hgn“ - 0, since d(gn) < s -
(One can show that under our assumptions d(gn) # 0 for each
n, although this is of no significance. If d(gm) were zero

then fogp = fo ®n and the conclusion a would be

fop ~ 2f
immediate.)

Finally, we establish the case ¢(0) = 0, ¢(0) = O.

Lemma 8: Let ag exists for all fed&, f @e®P_ is such

o~ it g X8
that ¢(0) = 0, ¢(0) = O, then Ag,, = ag-

££Ss£: We proceed in a manner similar to the second part
of Lemma 7. Thus, define

s, = min{s|p(s) = %J,

s = lim s_.
@
n~co

We consider two cases., First, let S = O. We can show
exactly as above that
lim.—l— = 0.

ns
4 ade ») n

Define a sequence {¢n} as follows:
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S

me. 0=l
o, (s) = :
©(s) s < s< .,

Then define 9, = foop - £ °p,; we will show that Hgn“ = d(d(gn))
and thus that £fo e, fe¢p. To dispose first of a pathology:
if £ 1is constant in some neighborhood of zero then eventually

fep = f oo, >Otherwise, we obtain

§ (s) = £(0(s))b(s) - E(wn(s));iﬁ;

within [O,sn], which includes the supportvof 9, Inside [O,Sn]

the functions ¢ and ¢, are both bounded by '% and hence

for n sufficiently large f'ow and f °¢,  are both
bounded. = Similarly ¢(s) and ;%— are bounded so that the
arc-length of g = must be d(d(gn)?. Hence fe@ = fe°0¢;
since each ? is of the type considered in Lemma 6, af°¢; exists
and is equal ag. Thus af°¢ = ac.

Finally, let s # O. Recall that 50 is the static

continuator, First suppose ¢ = EO, and consider $e¢f

o
given by $(s) =s+ 0., ® is of the type covered in Lemma 7
and thus since a _, ac exist and f019$ = f we have a,. = a ..
fo £ fO
If ¢ 1is not a static continuator we have
oo
o =2nNef

where Ae®., A not identically zero near O. Hence since

af°k‘ exists by assumption,
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qfop = fonet®co0 T

using previous results.

Theorem 2 shows that £ b+ ag is a rate-independent function
if 7 is rate-independent. By placing further restrictions on

the instantaneous modulus ag, we can give sufficient conditions

that 7 be hypoelastic. 1In fact, m is a hypoelastic function if

1) 7 is rate-independent and smooth,

2) a exists for every fed,

£

3) ag = ag whenever 1w (£f) = 7(g).

- Conditions 1) and 2) along with Theorem 1 guarantee that i (£)
exists and equals ag f(O). Then, using 3) we can deduce the
existence of a mapping A : Y — £(X%,4) such that ag = A(r(£))
éo that we obtain the defihing equation of hypoelasticity
(TRUESDELL and NOLL , pp. 402f.):

T(E) = A(r(£))£(0).

V. Applications to Thermodynamics.

In this section we discuss the thermodynamics of simple
materials with memory whose constitutive functions are of the
sort previously considered. We follow the technique of

COLEMAN and NOLL to deduce restrictions which are placed on
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constitutive functions by the Clausius-Duham inequality. We
omit all physical motivation and discussion—the reader is
referred to COLEMAN and NOLL , COLEMAN and MIZEL [4],[5],
or TRUESDELL and NOLL for such considerations.

Let U denote a three-dimensional vector space, £ the
set of endomorphisms on U, £t the elements of £ with positive
determinant,axif?the (strictly) positive reals., We consider the

owllection & of generalized strain histories. Each element
PSP ONIAINIIY  PNHIDOSPNIOSOND N

(o e o o/

I'ed maps [0, ) into gt ox mf; we suppose & obeys the conditions
of Section II. In addition to the condition in Section III, we will
add a further assumption on the norm associated with &: if T4,

aef X R, and the linear continuation I'(0d,a) e¥ is defined.gzl

I'(s - 0) 0<s<
I'(o,a) (s) =
I'O) + (s - 0)a 0<s< o
then

lim I'(o,a) = T.
g0

We now define a function 7 mapping & into some normed
vector space | to be a generalized elastic function if there
PRIPNIOSOIPNONDOON OIS IDONOOSODONS -« (PIPIPIPI PRI
exists a continuous rate-independent function A : I'» Ar££(£NR,U)

such that for each Ted

(D) = Arvf(O).

1t o is sufficiently small then for any a, I'(0,a)e&. This
follows from 3&3) and J4), for I'(o,a) is a linear perturbation
of a static continuation of T.
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Hypoelastic functions are also genefalized elastic;
Theorems 1 and 2 give conditions under which an equilibrated
function is generalized elastic.
Finally, we introduce G as the collection of all continuous
piecewise continuously differentiable mappings of [0,c0) into U,

We call elements of G temReratusﬁ gradient histories.

We suppose that there exist functions

':1'1:3XU-'|R
T .3x - £ xR
g FX -

which, given any generalized strain history and temperature
gradient history, yield the Helmholtz free energy V¥ : [0,0) - R,

generalized stress 2: [0,0) - £ X R, and heat flux q: [0,0) = U:

¥(s) = UT_,g(s))
(s) = LT ,g(s))
a(s) = q(T ,g(s))

for some positive o©.
Let us denote right-hand derivatives by superposed dots.
We require that for all I, g the functions E;Eia be such

that the Clausius-Duhem inequality is satisfied:

-¥(0) + Z(0) -T'(0) + 25a(0) -g(0) < o.
Here |, the inner-product of two elements (A,s),(B,t)ef X R

is tr(ABT) + st, © denotes the second entry of I'(0) (the temperature},
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and p is the density, p = det(I‘l(O) )’1whe're I"l(o) is the first
entry of TI(0).

We take two different approaches to the problein of determin-
ing restrictions imposed on ?I'/,%,a ‘by the Clausius-Duhem inequality.
Let us first suppose ':‘D,E are (jointly) continuous and ¥ (jointly)

smooth. We suppose that for each vel the function ?I/(-,v) is
equilibrated and has an instantaneous modulus -A(+,v). Then for
any (I',g)e¥ x G

$(0) = A(T,g(0))T(0) + B(T,g(0)) - §(0)

where B(I,g(0)) = 62@(I‘,g(0))ekn By assumption the mappings
(I'yv) » 61@(1",v), (I,v) » B(I',v) are continuous The proof given in

Section III that £~ ag is a co:rtinuous map estaklishes the

Lemma: A is continuous or & X U,
SR

Suppose now the functions I,g are specified. The linear

N\
continuations TI'= I'(r,a), ’g\ = g(7,V)
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iii) g§(I',g(0)) - g(0) < o, all T,q.

Proof: From the Clausius-Duhem inequality, it is clear that
B(I',g(0)) must be zero, and thus that ¥ is independent of its
second argument. Hence A(I,g(0)) must be independent of g(0),

and of course zKI;g(O)) = A(D).

Remark: These results are similar to those obtained by
laaada o]

COLEMAN [l1],[2], WANG and BOWEN , GURTIN , and GREEN and
LAWS. In fact it is clear that our system obeys (sufficiently closely)

postulates (Al),(Az),(A3)‘specified by GURTIN, and hence Theorem 3 is
a consequence of his result (p. 43). 1In fact we have simply repeated

his proof. Property ii) is usually called the generalized stress

relation. ~ ~ o~
Corollary: If ¥,2,q are as in Theorem 3 and in addition

4 is rate-independent—and hence generalized-elastic—then

p> is rate-independent.

This Corollary is a consequence of Theorem 2 and the result
ZD) = aM. |
As a second approach to the thermodynamic theory we suppose
~
that thgq are all rate-independent. Given
any (I',g)ed x G and any rescaling function ¢e¢r for which ¢
is continuous in a neighborhood of zero we shall write the

Clausius-Duhem inequality both for the functions
¥(s) = YT ,g(s)), Z(s) = LT,,g(s)), als) = F(T ,g(s))

and the corresponding quantities obtained from (I'c ¢,g). These

are

-#(0) + Z(0) - I(0) + X5 q(0) * §(0) <0
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and

~(¥(0) - B(o)-Te)6() + 25 a0 ‘g(0) < 0

~ ~~

since V,Z,q are rate independent and since we can apply the proposition
in Section II to evaluate the derivative of @(Pt'w,g(o)). It
is clear that we can choose such ¢ with é(o) of arbitrary

(positive) value. Hence the

Lemma: If E;tga are rate-independent then the Clausius-
PIPIPIIG

Duhem inequality is equivalent to

i) the dissieation,ineggalitz

&5 9(0) - z(0)-T(0) > 0

and ii) the heat-conduction ineguality
_ PN OI IS PIPI SIS

————,

q(0)-g(0) < 0.

~ N

If the functions V¥,2 are such that o = 0 for all
(I'bg) eF x G we say they are non-dissipative. The proof of
Theorem 3 can be used to show that if ¥ is generalized elastic

then 3%%? are non-dissipative. A partial converse is provided by

~ ~

Theorem 4: Let QQZ;E be rate-independent and Z be continuous.
PRIPIIICSPIIG N

Then if ¥ and T are non-dissipative, they are both inde-

pendent of the second arqument and Y is generalized éelastic.

Proof: 1If V,T are non-dissipative, ¢ = O, then

UT,v) = (T, w10

~.
and L replaces A in the condition of generalized elasticity, provided
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that we can remove the second argument in each function.
Next we show that 5’ is in fact independeht of g(0). Let
(I,g)ed x G be given. For any veU we construct the linear

continuation 3 = g(r,v).

Now consider the map 0o + @(Ia,a(o)). Siﬁce (Io,g(o))eﬁ x G

for each 0¢[0,7] we know that this function has at each

oe[0,7] a right-hand derivative; on (0,7] this must be equal to
zero., But this suffices (e.g. HOBSON s, Pp. 366) to guarantee
that o P E(Ia,g(a)) is constant on [0,7] (the map is continuous by
the assumption on ¥ and the property assumed for the norm
applied to linear continuations). Hence in particular its values

at 0 and T are equal:
UIT,g(0) + v) = UT,g(0)).

since ¥ is rate-independent in its first argument this means
UT,g(0) + v) = UT,g(0)) = UT,0).

Next, we note that E(I) is also necessarily independent of
g(0) . Since

(J o ‘
YD = ET,g(0)) - T(0),
it is clear that for any v,uel

¥(T,u) - T(0) = TT,v) - T(0).
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However, we can now apply the technique of linear continuations
to this equation (exactly as in the proof of the previous theorem)

to conclude that ~Z(I‘,u) = %(].",v) .

Vi. Two_Examples.
In this section, we obtain expressions for the instantaneous
modulus ag for two choices of g. In addition, we will give
an example of a smooth rate-independent function which is not
an elastic function,

~
First, we let & Dbe the set of all absolutely continu-
ous‘functions from [0O,00) into Rn, & all functions in & smooth

near the otigin. Inoghis case, we take
lel = [ 1£(s)1as + |£(0)
o

If 7 is a smooth function mapping & into Rm, we have a
representation for the continuous linear function & (£ |. )

(DUNFORD and SCHWARTZ p. 343)

w °
o7(£lg) = b (0)g(0) + [ bi(s)g(s)ds

where bf : [0,0) - £(Rn,Rm) is essentially bounded. Hence
- IS w.
ST (£]7N) = A(0)b (0) + | A(s)b (s)ds
. o
for any absolutely continuous A : [0,00) = R. Thus
g
ls= = 1
o7 (£]L,) = -bo(0) + = fobf(s)ds.

o
Consequently, a. exists if and only if 1im-l j b_.(s)ds exists,
o0 %% ¢
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in which case

‘ag = lim 3-jo bo(s)ds - b_(0).

o0

If bf(0+) exists

ag = bf(0+) - bf(o).

As a second example, we let & consist of all bounded con-
tinuous functions on [0O,oc0) with values in Rn, ¥ Dbe all functions
in % which are absolutely continuous on finite subintervals

of [0, ) and smooth near the origin. We take

lell= sup |£(s)
se[0,0)

The differential o6m(f | +) of a smooth function 7 : & - R™

takes the form (DUNFORD and SCHWARTZ p. 344)
0o
o7 (£]g) = fo<daf(s)>g(s)-
where o is a function of bounded variation on [0O,®) with

values af(s) which are linear functions from R" into lRm.

oo
In this case, &T(f]N) = A(s)da.(s) and
o £

o)
-%.-67F(f|LU)'= -(]-T'- fo(s - c)daf(s)
g (o
=La s -0) | -1 egsas
o o .

o .
= af(o) - %: JO af(s)ds.
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‘is of
In contrast to our first example, we see that since Qg

iati i arily exists:
bounded variation, the function ag necess Yy

ag = af(o) - af(0+).
As a final note, we mention that for the set & in the first

ili i . Although we give
example, there are many equilibrated functions g

only one example here, it is possible to generate‘many such

functions by integrating ary given one. For example, if we

take X = Y = £(R3,R3), % the set of absolutely continuous
functions, then

m .
Wo(f) = f tr[f(sﬂf(s)ds
o

is an equilibrated function. Furthermore, it is not difficult

to show that
m .
T (8 = [ r (g rE(0) a0
o
is equilibrated; one can continue in this fashion to generate

many other such functions.
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