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I. Introduction,

In this paper we discuss a class of materials with memory

whose response functions are both differentiable and 'invariant

under static continuations'. The condition of invariance

requires that the response be constant in time when the determining

properties are held fixed. This condition is satisfied by hypoelastic and, in

general, rate-independent materials but has not in itself been

regarded as a defining property for a class of materials. We call

a function which is both differentiable and invariant under

static continuations an equilibrated function. Thus, the response

functions for hyperelastic materials are equilibrated functions,

vhile the response functions for viscoelastic materials

are not (such functions are not invariant under static continu-

ations) .

Our aim here is to show that the time derivative of an equili-

brated function satisfies a relation of the same form as is satisfied

by the response functions of elastic, hyperelastic, and, more

generally, hypoelastic functions. For example, suppose the stress

in a material is given in terms of the history of the strain.

Our main result, may be stated as follows: Ĵ f the stress function

is equilibrated, then the stress rate is _a linear function of

Htfe use the term 'function1 in place of the often used term
o> ' functional' .
°
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the current value of the strain rate; the linear operator which

maps the current strain rate into the stress rate depends upon

the history of strain but not upon the history of strain-rate.

These results are given in Theorem 1 and the proposition which

follows it, both of which appear in Section III.

We note first that materials with equilibrated response

behave, from the standpoint of time rates, very much like elastic

materials; this is shown in particular when we examine the thermo-

dynamics of such materials in Section V. These materials obey a

generalized stress relation and, more significantly, exhibit no

internal dissipation, exactly like elastic materials. In fact,

if the materials are not only equilibrated but also rate-independent,

we call them generalized elastic materials since they share many

properties of hypoelastic materials. Beyond this, our results

give us a new way of describing hypoelastic materials by making

assumptions on the response function rather than on the time

derivative of the response function. More specifically, we show

that asmooth rate-independent function is hypoelastic if and only

if its instantaneous response is defined and is determined solely

by the value of the function.

All of our results are phrased in terms of elementary

concepts from the theory of differentiable functions defined
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on a subset of a Banach space. We wish to emphasize that the

Banach spaces considered here need not contain any histories which

correspond to functions with discontinuities. Thus, our theory

differs from the theories of fading memory due to COLEMAN [1], [2]

and COLEMAN and MIZEL [^, [2], [3] . In both,

the expressions for time derivatives of

response functions contain terms which are linear in the present

values of the time derivative of the independent variable. In

our theory the singular dependence on present values arises

through invariance properties of the response function, while

in the theories of fading memory, this dependence arises through

properties of the Banach space itself. These remarks are illustrated
by the examples given in Section VI.

The ideas of the present paper can be applied to obtain

representations for the time derivatives of response functions

which are smooth but not equilibrated. One obtains formulae of

the same form as obtained by COLEMAN [1], MIZEL and WANG, COLEMAN

and MIZEL [2], while assuming no singular dependence of the norm

upon the present value of the history. Such considerations lead

to a better understanding of the notion of 'instantaneous elasticity1

aid will be studied in a future paper.

II• Equilibrated Functions; Rate-Independent Functions.

In this section we introduce the concepts underlying our

theory. For the discussion of rate-independent materials we

follow the main lines of the development given in our earlier
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paper. Let X denote some finite-dimensional normed vector

space. We consider a set of functions 3 each of whose elements

has domain the interval [O,oo) and range a subset of 3£. We

suppose that 3 is a subset of a Banach space «J with norm || • ||

and that

each fe3 jLs absolutely continuous on bounded subinter-

vals of [O,oo), and f jjs defined near 0 and is

continuous at 0,

32) i± fe3 then fa€3 for all sufficiently small a > 0;

f~* the cr-section of f9 is defined by the relations

fa(s) = f(s + a), sefO.oo)/

33) LE fe3 and 6 > 0 then there exists a(fs6) > 0

such that for all a < a(f,6) the linear perturbation

of f

f (s) a < s < oo
si

1 f (s) + (s - a)a o < s < a

i s in 3 for each ae X with. llallx < 6.

34) I f fe3 ând <p: [O,OD) - [O,oo) JLs

i) absolutely continuous on bounded subintervals.

i i ) monotone non-decreasing.

i i i ) such that <p i^ defined near 0 and is continuous

at 0,

iv) such that <p[O,oo) includes the essential support of

then f © <pe3.
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If one thinks of the functions in 3 as histories, the

above requirements have the following interpretations: 31) no

'singular histories' (histories with zero derivative almost

everywhere but with positive total variation) are admitted,

32) for each history corresponding 'earlier histories' also

are admitted in 3, 33) linear perturbations of each history are admitted, 34)

reparameterizations of each history belong to 3. Requirements

similar to 32) and 33) are common to the theories of materials

with memory considered by COLEMAN and MIZEL. The restrictions

31) and 34) are significant in theories of rate-independent

materials; in fact, the existing definitions of the concept of

rate-independence rest on such requirements.

The functions <p satisfying the conditions in 34) are

called rescaling functions for the function f, and the set of

all rescaling functions for f is denoted by $f. Of special

interest are the rescalings £° defined by

4a(s) = [ °> 0 < s < a
(̂s - a, a < s < o o

Here, a is any non-negative, real number. We note that for every

a >, 0 and fe3, £ae*f. The function f° = f o £a is called

the static continuation of f by amount a. A function
************ ************************ **** ?>*** ************

TT: 3 -• 1̂ , where V is some normed vector space, is said to be

invariant under static corrtimj^ if

7T(fa) = 7T(f)
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for every £e<} and every a > 0. If we regard ir as a response

function for a mterial, the above condition provides that the

response of the material does not change during time intervals

on which f JLS constant.

The property of invariance under static continuations is

implied by a more stringent requirement: TT is said to be

rate-independent if

7r(f o<p) = 7r(f)

for all fe& and <pe$f (cf. TRUESDELL and NOLL, OWEN and

WILLIAMS ) . In this case, the values of w depend upon the

values of f but not upon the rate at which these values are

assumed.

Our theory deals with functions ir : 5 — ty which are smooth,

i.e., for each fe^ there exists a continuous linear function

67T (f | •):& -• U satisfying the following conditions:

(i) the map f *- dir (f | • ) is continuous;

(ii) for each fe3, there exists a function r(f, • ) : <* -• ty

such that

7r(f + h) = 7r(f) + 67r(f |h) + r(f,h)

whenever f + he&, and r(f,h) = cy(h) , i.e. given

e > 0, there is a 6 > 0 such that

||r(f,h)||u < e||h||

whenever ||h|| < 6.

We say that a function ir is Bcga i 1j. br a ted if v is both

smooth and invariant under static continuations. The set of all
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7T which are equilibrated includes many non-trivial functions.

In fact, the set of rate-independent, equilibrated functions

on 3 may be expected to contain infinitely many non-trivial

functions, (in the final section, we indicate how this asser-

tion may be proved in certain special cases.)

In the case when the value of IT represents the value of a

response at time t computed from g e3, a history up to time

t, of a function g : R -* -3C we are interested in the rate of

change of the values of TT as t varies. More precisely, con-

sider

i irCg*) = llm ^{irCg*) - ir (g*"*) }

= llm kirig*-) - ir (g£) }.

With this in mind we define a map TT by

7T(f) = lim i{TT(f) - 7T(f )},

whenever the limit exists, and call w(f) the rate of change of

TT at the function f.

We can prove with no further restrictions on TT one property v*iich is

indicative of our general results and which shall prove of use

in Section V.

Proposition: If v is rate-independent and £e3 such that

7r(f) exists, then for any <pe$f for which <p is continuous in

ja neighborhood of the origin rr (f o <p) exists and

ir(f *cp) = 7f(f)<p(O).
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Proof; Note that

where /x(s) = <p(s + cr) - <p(a) + <p(0) . Clearly p
r<p(cr)-<p(O)

by the restriction on <p. Hence

a tp(a) - <p(0)
and the proposition follows.

III. Representation for TT.

In this section we present our main result: the rate of

change of an equilibrated function at f jjs j. linear function

of f(0). In order to obtain this result, we shall have to place

restrictions on the norm || • || for ^. We begin by presenting

restrictions which suffice for our purpose, but which are in fact

stronger then necessary. The proof of the representation theorem

suggests weaker restrictions under which the conclusion of the

theorem remains valid.

We let fe^ and let d(f) = inf{s|f(s») = 0 a.e. s' > s}.

Our assumption on the norm can be stated in the following form:

Let f. ,f2, ••••••, be ja sequence of functions in 5 which satisfy

the condition: lim cL = 0; d. = d(f ) . We assume that if_ n ^ n n n _

J n n • ii
||f (s) ||ds is respectively of order Cf(d ) , &(d ) as n -• oo,

then J|f || is respectively of order d(d ) ,<y(d ), 5is n -• oo .
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This assumption is satisfied in both the examples considered

in Section VI. These examples indicate that our assumption

on || • || neither excludes nor necessitates a singular dependence

of || • || on the value f(0). In anticipation of the singular role

that f(0) plays in the expression for TT (f), we remark that

invariance properties of IT rather than any singular dependence

of || • || on f (0) determine the singular role of f (0) JLn the

expression for TT (f) .

Let IT : 3 -* ty be given. We present our proof of the

representation for IT in a series of lemmas. The essential

observation is contained in

11 I_f IT JLS invariant under static continuations then for

every sufficiently small a > 0

where f£ = fQ © £
Q ij3 the static continuation of f b^ amount a,

Proof. By 32), 33), and 34), f̂ etf for every a sufficiently

small. Since f£ is a static continuation of f , the result

follows immediately.

Lemma^2. j[f f€3 then ||f - f̂ || = Cf(a) âs a - 0 .and

||f - f£ - Laf(O)|| = <y(o) as a - 0, where

( 0 s > a
La(s) - I

[ s - a 0 < s < a .
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Proof. We rely on the assumption on ||»|| given above. First,

(f - A (s)

we observe that

f ° s > a
L <) " f (a) 0 < s < a

and

f 0 a > a
(f - f£) (s) < .

a L f (s) 0 <. a < a

for a sufficiently small. Note that d = d(f - £**) <_ a so

that d •• 0 as a - 0. Furthermore,

j a\\ (f - f°) (s) l^ds = Jd(T||f (s) l^ds = or(da)

since f (Of) exists. It follows that ||f - f || = Cf(d ) : moreover,

since d <̂  a, ||f - f || = &(&) • This verifies the first assertion
def a

in Lemma 2. If ^ = f - fJ - La
f(°) t h e n

( 0 s > a

V s ) =T
(f (s) - f (a) - (s -a.)f(ofc 0 < s < a

and

f 0 s > a

(s) - f (0), 0 < s"<a.

The function A is in 5 for small a since

f - Laf(0) and f£ are elements of 3 for every a sufficiently

small. Again, d£ = d(Aa) <. <r; so that • d* -••0 as a -• 0. From

the expression for A , we have
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J ̂ w l ^ d a - J aH

since f (s) -»" f (O) as s -• 0. In case d* vanishes for values

of a arbitrarily close to 0, it follows that d* = 0 for a

r* l l •

°
r ll I!al|Atr(s) lljgds = 0 for a near zero and

trivially, J ||A (s) || ds = (̂ (d*) . These considerations show that
o

||f ̂  f£ - L f(0)|| = <y(a) as a - 0/ which completes the proof.

Lemma 1 was concerned with a function IT which is invariant

under static continuations. For our main theorem we shall suppose

TT is smooth and define in terms of 6ir (f \ • ) a function 6Tr(f | • )

which operates on a particular class of scalar valued functions

A : [0,co) -• R. Recall that range (3?) c }£ • we define 3? to
ffv

consist of those functions A : [O^oo) - R such that AaeS? for

every aeX.

: The set ^ îs non-empty. In fact, for a suffi-

ciently small L e$o. Moreover, % is closed under scalar

multiplication.

proof: Let fe#. 53) guarantees that f + L ae& for any a

within some ball about OeX whenever a is sufficiently small.

Since 3 is a vector space then (f + L a ) - f = L act*. But
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since 3 is closed under scalar multiplication we may remove

the restriction on ||a||x and conclude for the selected a that

L ae3 for all aeX. Thus, L^eSL for a sufficiently small,
ex " *̂

That 3L is closed under scalar multiplication follows from

the corresponding closure property of &, which completes the proof.

Let ir : 3 -• ̂  be a smooth function with differential

6ir(f | •) i\t £e%. We define &ir (f | . ) as a function on 3 R

whose values 6-fr(f|X) are linear functions from X into U

given by

for each ae )6. We define af, the instaiitaneous modulus of ir

at f/ to be

af = lim •- 67r(f JL )
cr-O

whenever that limit exists. Of course afe£(*,U), the set of

linear mappings of 3C into ty.

We are now prepared to prove

Theorem 1 (Representation of if) IjE IT JJ3 equilibrated and if

the instantaneous modulus of ir JLS defined at fe&, then

the time derivative of v <at f exists and

= aff(O)

Proof: Prom Lemmas 1 and 2

7T(f) - 7T(fa) = 7T(f) - TT(fJ

= 6ir(f|f - f£) + or(||f -

- 6TT.(f|LCTf (O)) + 61
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where A = f - fC - L f (O) . Lemma 2 impl i e s t h a t 67r(f|Arp) = cr(o)

and cy(||f - f£| |) = cy(a) so

ir(f) - 7 r ( f a ) » 6TF ( f | L a ) f (0) + cy(a)

when a i s smal l enough t h a t L a
€ ^ R (Lemma 3 ) . Hence

£ - Tr(fa)) = ̂ 6-F(f|La)f (o) +

and since a exists, we obtain as a -• 0

if (f) = aff(O).

Remark; From the proof of Theorem 1 it is clear that if

-rr(f) exists for a given f , we can assert that

lim i friF(f|LJf(O)

exists, but not that af exists. The second assertion can be seen to

follow under the further assumption on 3 given in Section V.

The functions --L are shown in Figure 1. Pointwise,

this sequence of functions tends to the function X , which is

-1 at s =5 0 and zero elsewhere. The function X is not

necessarily in the set 3 . in fact, if the space 3 contains
IK

only continuous functions, then "h cannot be an element of

3 . Hence, one cannot expect to write the instantaneous modulus

in the form 6-ir(f|>v ) . We note in addition that the representa-

tion if (f) = aff(O) might be trivial if no further properties of

af could be deduced. For example, if 36. = ty = R, a^ = 7r(f)/f (0)

always yields a representation of the form given above. In the

HUNT LIBRARY
BABJiEGIE-MELLON UNIVERSITY
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af is continuous wherever it is

Figure JL

following proposition, we use the fact that f N 6ir(f | • ) i

continuous to show that f

defined. This rules out the trivial case for many possible topo-

logies.

proposition: The map f *~+ af is continuous wherever it is defined,

Proof: First we note that ||L a|| = Cf{o) since d(L a) = cr and

J°"ll (I^a) (s)
o

and g be elements of
«•*

a sufficiently small L
CT
e;%R

Next, let f

for which a£ and a exist. Forf g

laf "

'£(*,U)

The last term is
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up ||iftir(f|L)a - Jeir(g|L )a|L

= pp_ ll^fiir(f|Laa) - ifiir (g|Loa) 1^
||a|| ^ —1

< ( sup ||^LCTa||)||6Tr(fi| . ) - 6ir (g |
| | | | l

But for any ae X we have ||L a|| = Cf(v) . Hence

t,!*) ^ l l a f " a

|ag -i

l67r(f

and the result follows from the definition of af and the con-

tinuity of f »•* 6TT (f | • ) ; for a sufficiently small J ^ is

bounded.

The relation Tr(f) = af f (0) can yield a representation

for TT under certain additional assumptions. Let us suppose

that f is such that ^a^
 an(^ af exists for each a >_ 0.

Then

^7T(f a) = -f(fa) = -af f(a). .
0

If a •-» if (fa) is bounded and integrable on [O,oo) we may define

7T (f) = lim ir(f )
a-co

and hence obtain the
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Corollary to Theorem 1: Let ir be equilibrated.

II

f^) is bounded and inteqrable,
a — ————————— — —

then

i) for each cr€ [O,co)j f^S, and af exists,
a

7r(f) = ^ ( f ) + T af f(a)da.
o

IV. Smooth Rate-Independent Functions; Hypoelasticity.

If ir is assumed to be rate-independent and smooth (and

hence equilibrated) we will show that the mapping f H af is

also rate-independent.

Theorem 2: Let ir be rate-independent and smooth. If

af exists and <pe$f î̂ . such that <p(0) = 0, <p(0) j£ 0 then

a<- exists and
x. °<p — — — _

af <p = af •

In any case if af exists for all fe3 this relation holds

for all fe3, <pe$f.

We prove this in a series of lemmas.

Lemma 4; Let ir be rate-independent and smooth. If

f€# and <p€$<;' with <p(0) = 0 then
* ~ — • i —•*———-• —————

6Tr(f|.Lff) = 6ir(f <xp|Lao<p)

for a l l sufficiently small a.
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Proof; Let a be sufficiently small to guarantee

f + L ae3 for any ae X with ||a|L < 1 (53)). We can take

o smaller if necessary to guarantee <P€*f+L a (34)) for all such
a

a. Then let 0 < e < 1. Since <P£*f+€L a and IT is

rate-independent

7T ( f ° <p + e (LQ ° <p) a) - IT ( f o <p) = TT (f + e L 0 a ) - 7T ( f ) .

T h u s

6TT ( f °<p |€ (L ° <p) a) = 6Tr ( f | €L a) + ©'(e)

o r

6TT ( f ° <p |L a « <p) a = 6TF ( f | L ) a + ©'(I)

a s € "• 0 , H e n c e

6TT ( f * <p|L O <p) = 6 7 r ( f | L a ) .

Lemma 5 : L e t <p(0) = 0 , <p(0) ^ 0 . Then f o r e a c h a€JL

I! ( L a o <p -. "

Proof: Let a^ = a/<p(O) • For a sufficiently small both

L ° <p and L „ are in 3L, Since <p(0) ̂ 0 , <p is invertiblecr or B\

in some neighborhood of zero; letting o lie within this neigh-

borhood we can write

(recall that d(f) is the largest bound on supp f). Note that

-1 T

+ o-(or) = CT* + o-(a) .
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Hence both <p{o) and a* are d(a) . as a - 0; their difference

is »(a). Finally, we define

IUCUK.

amin ~ i ^

If a6 X is given we define g = (L ° cp) a - <p(O)L ~a and note

«oo « max
J 11^(8)11^3 = ] ||<p(s)a -. ^(O)a||ds

o o
a . a

P mm P max
< J ||<p(s)a - <p(O)a||xds + J

o

a .
mxn

Of course
a . a .•t p illJLlA v i •• p

o mm o ^

and this tends to zero as a -• 0. Similarly we note that <p

must be bounded in a neighborhood of zero—say by k—and thus

as a becomes small

T p m a x n ,, . M M M ^..av - ^ ^ ^
i J [||(p(O)a|l + ||<p(s)a|l ]ds <2kl a|L • maX g

 min .
mm
-1

But since (p(o) - cr* is o*(a) this term tends to zero with a

and hence the arc-length of g is o(or) ; this implies the desired

result.

We now can prove the first part of the theorem.

Lemma 6: Let ir be rate - independent and smooth. If af

exists, (pe^ with <p(0) = 0, <p(0) ̂  0 then af o exists and
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P r o o f : By Lemma 4

a f = l i m ^ 6Tr(f |L C ) = l i m ̂  6ir(f • <p|L<> <p)

But ^ 6ir(f o<p|Lao<p) = -̂  6-fr(f »<p|<p(O)La#)

+ J 6-fr(f • <p|L0o<p - a

where a* is defined as in the previous proof. By Lemma 5

l i m 6u ( f o<p|^(L ° <p - <p(O)La #))a
o-*O

= l i m 6ir(f « <p|-^(L ° <p - <p(O)La^)a) = 0
cr-*O

for any ae 3t . Thus we know the limit

l im £ 6Tr(f

^ &iF(f 9lV> = af

e x i s t s ; hence a
f o ( 0 e x i s t s and equals a f .

Lemma 6 i s now used to prove the remainder of the theorem.

Let us f i r s t take the case <p(0) ^ 0 .

Lemma 7: Let ir be ra te-independent and smooth. I f

a f , a f o exist, for <p(0) ^ 0. then

proof: In light of 34) f must be constant in some

interval [0,s]; let [O^S] be the largest such interval. Then

if i = <p(0) we have 0 < i <. s. We consider two cases.
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First, if s < s we define s* = min(s|<p(s) = s) and let

( -§*s 0 < s < s*
<P*(s) = \ S* " "

(_ <p(s) s* < s < oo

The function <p* f a l l s under the assumptions of Lemma 6, so afo<p*

e x i s t s . However, i t i s c l ear that f » <p* = f ° <p and thus

afo<p e x i s t s and afo(p = afo(p* = af.

Next, suppose s = s. Note first that if <p is identically

equal to i in some neighborhood of zero we can define <p*

in much the same way as above, concluding f ° <p = f °<p*, and

thus that a f exists and equals af• Otherwise we let

s n = min(s|<p(s) - i = i)

and note that lim s = 0 . Then, consider the sequence {<p )
n-*oo

defined by

< 5 " n}

<Pn(s) ^
L <P(S) S n < S < OD

Then < p ( O ) = i - ~ < s = s and thus <p falls into the previous

category. This means that af 0 ( D exists for each n and is

equal to a£. We now show that f*<p ->f°<p so that a- -• a£^ f n fo<p r©(p

as n -• QD ; this of course gives the desired result. We note

first that
<p(s ) - <p(0) - <p(0) s

lim a- = 0
n-oo n

so — — -• <p(O) as n -• cx> .
n Sn

Now define g n = f o <p - f © (prf Then suQpgn
 c [0,s ] and on
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gL,(s) = f (<p(s))<p(s) - f (<Pn(
s))T^- •

Within [0,s ] both <p and <pn are bounded by s + — so for

n sufficiently large f ° <p and f «<p are both uniformly

bounded on this interval; similarly one can establish a uniform

bound for <p and — — for n sufficiently large. Thus, the
ns

arc-length of gn, J n||gn(s) ||^ds, must be d(d(gn)) and

thus ||g || = C((d(gn)), which means ||gnl| - 0, since d(gn) < s^.

(One can show that under our assumptions ^(9n) t* ° ^ o r e a ch
n, although this is of no significance. If ^(g^) were zero

then f © (p - f * <p and the conclusion af = af would be

immediate.)

Finally, we establish the case <p(0) = 0, <p(0) = 0.

Lemma 8: Let af exists for all fG5. ijf <p€$ JLs[ such

that <p(0) = 0, <p(0) = 0, then afo(p = af.

Proof: We proceed in a manner similar to the second part

of Lemma 7. Thus, define

s n = min(s|<p(s) = i}.,

s ^ = lim s^.
00 n-oo n

We consider two cases. First, let s = 0. We can show
9 oo

exactly as above that

lim —•— = 0.
n-a> n sn

Define a sequence (<p } as follows:
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P(S) S n < S < CD .

Then define gn = f * <p - f «<Pn; we will show that UgJI = 6(d(gn))

and thus that f « <p -» f «(p, To dispose first of a pathology:

if f is constant in some neighborhood of zero then eventually

f o <p = f o <p# Otherwise, we obtain

g (s) = f (<p(s))<p(s) - f(<p (s))-~-n n nsn

within [0,s ], which includes the support of gn. Inside [0,sn]

the functions (p and <p are both bounded by — and hence

for n sufficiently large f © <p and f * <p are both

bounded. Similarly <p(s) and — — are bounded so that the
n sn

arc-length of g must be Of(d(g ))• Hence f °<p -• f * <p;
J n n n

since each <p is of the type considered in Lemma 6, af exists

and i s equal a .̂ ilius afo(0
 = a f

n

Finally, let s ^ 0. Recall that 4 is the static

continuator. First suppose <P = 4 5 an<a consider <pe$f

given by <p(s) = s + a. <p is of the type covered in Lemma 7

and thus since a , a^ exist and f ° <̂  = f we have a,- = a

fu x r
If <p is not a static continuator we have

s
<p = 7s « 4 ° °

where Ae$f, X not identically zero near 0. Hence since

af . exists by assumption,
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~ af

using previous results.

Theorem 2 shows that f »-» a- is a rate-independent function

if IT is rate-independent. By placing further restrictions on

the instantaneous modulus af, we can give sufficient conditions

that ir be hypoelastic. In fact, TT JLIS ji hypoelastic function if

1) ir jLs rate - independent and smooth,

2) a^ exists for every fe&,

3) af = a whenever TT (f) = ir (g) .

Conditions 1) and 2) along with Theorem 1 guarantee that if (f)

exists and equals af f (0) . Then, using 3) we can deduce the

existence of a mapping A : V "* £(3^U) such that a f = A(ir(f))

so that we obtain the defining equation of hypoelasticity

(TRUESDELL and NOLL , pp. 402f.):

TT(f) = A(TT(f))f(O).

V. Applications to Thermodynamics.

In this section we discuss the thermodynamics of simple

materials with memory whose constitutive functions are of the

sort previously considered. We follow the technique of

COLEMAN and NOLL to deduce restrictions which are placed on
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constitutive functions by the Clausius-Duham inequality. We

omit all physical motivation and discussion—the reader is

referred to COLEMAN and NOLL , COLEMAN and MIZEL [4],[5],

or TRUESDELL and NOLL for such considerations.

Let V denote a three-dimensional vector space, £ the

set of endomorphisms on V, £+ the elements of £ with positive

determinant, aid IR1" the (strictly) positive reals. We consider the

collection 3 of generalized strain Msjbories. Each element

Fe3 maps [O,OD) into £ X R ; we suppose 3 obeys the conditions

of Section II. In addition to the condition in Section III, we will

add a further assumption on the norm associated with 3: jLf Fe3,

ae£ X 1R, and the linear continuation F(a,a) e3 jLs. defined by

T(s - a) a < s < CD
T(a,a) (s) = \

^ T(o) + (s - a ) a 0 < s < a

then

l im r(cr,a) = T.
a - 0

We now define a function TT mapping 3 into some normed

vector space \i to be a g^eralized elastic function if there

exists a continuous rate-independent function A : T ^ Ape£(£xDR,

such that for each FG3

T {I) = A r F(0) .

If a is sufficiently small then for any a, F(cr,a)e3. This
follows from 33) and 34), for F(a,a) is a linear perturbation
of a static continuation of F.
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Hypoelastic functions are also generalized elastic;

Theorems 1 and 2 give conditions under which an equilibrated

function is generalized elastic.

Finally, we introduce Q as the collection of all continuous

piecewise continuously differentiable mappings of [0,oo) into ^.

We call elements of Q teiiroerature gradient histories.

We suppose that there exist functions

^ : 3x1/ - R

- £ x (R

q : 3xV -• \s

which,, given any generalized strain history and temperature

gradient history, yield the Helmholtz free energy ^ : [0,cr) -* E,

generalized stress L: [0,a ) -• £ X R, and heat flux q: [Q,o) — If

*(s) = ^(r g(s))

L(a) = L(rs,g(8))

q(s) =

for some positive a.

Let us denote right-hand derivatives by superposed dots.
^ ^ #-w

We require that for all F, g the functions >£, L, q be such

that the C1ausius-Duhem inequality is satisfied:

-SKO) + L(0) •F(0) +-^q(O)-g(O) < 0 .

Here 9 the inner-product of two elements (A,s) , (B,t) e& x JR

T
is tr(AB ) + st, 9 denotes the second entry of F(0) (the temperature),
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and p is the density, p = det (1^(0) J"1 where 1^(0) is the first

entry of T(0).

We take two different approaches to the problem of determin-

ing restrictions imposed on ^S,q by the Clausius-Duhem inequality.

Let us first suppose £,q are (jointly) continuous and $ (jointly)

smooth. We suppose that for each V€^ the function #(*,v) is

equilibrated and has an instantaneous modulus -A(*,v). Then for

any (r,g)e3 X Q

Mo) = A(r,g(0))r(0) + B(r,g(O)) • g(0)

where B (F,g (0)) = 62^(r, g (0))€^. By assumption the mappings

(T,v) H 6 ^(r,v) , (F^v) r B(F,v) are continuous The proof given in

Section III that fr* a* is a continuous map establishes the

Lemma: A is continuous or 3 x \s.

Suppose now the functions T,g are specified. The linear
A

continuations P = r(r,a), g = g(T,v)
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iii) q(I\g(O)) • g(0) < O, .all r,g.

Proof: From the Clausius-Duhem inequality, it is clear that

B(I\g(O)) must be zero, and thus that % is independent of its

second argument. Hence A(F,g(O)) must be independent of g(0),

and of course *£(r,g(O)) = A (I) .

Remark: These results are similar to those obtained by

COLEMAN [1] ,[2], WANG and BOWEN ,. GURTIN , and GREEN and

LAWS. In fact it is clear that our system obeys (sufficiently closely)

postulates (A,),(A2),(A3) specified by GURTIN, and hence Theorem 3 is

a consequence of his result (p. 43}. In fact we have simply repeated

his proof. Property ii) is usually called the generalized stress

Corollary: IjE ^, L, q are as in Theorem 3_ and in addition

% jLj3 rate - independent—and hence generalized-elastic—then

!£ jjs rate-independent.

This Corollary is a consequence of Theorem 2 and the result

LCD = A(D.

As a second approach to the thermodynamic theory we suppose

that ^,l),q are all rate-independent. Given

any (r,g)€3 X Q and any rescaling function <p€$p for which <p

is continuous in a neighborhood of zero we shall write the

Clausius-Duhem inequality both for the functions

B , L(s) = 2(rg,g(s)), q(s) = s

and the corresponding quantities obtained from (Fo(p,g) , These

are

i • f(0) + -^ q(0) •



29

and

t ^ <0

since ^S,q are rate independent and since we can apply the proposition

in Section II to evaluate the derivative of $(1"*° <p,g(O)) . It

is clear that we can choose such <p with <p(0) of arbitrary

(positive) value. Hence the

Lemma; If ^,^q are rate - independent then the Clausius-

Duhem inequality is equivalent to

i) the dissipation

ad=f+i(O) - L(O)-r(o) > 0

and ii) the heat-conduct,ion i

q(O)-g(O) < 0.

If the functions >J>, L are such that a = 0 for all

(F,g)e3 X Q we say they are npn-dissipatjye. The proof of

Theorem 3 can be used to show that if ^ is generalized elastic

then v,l£ are non-dissipative. A partial converse is provided by

0St W f* **

Theorem 4: Let ^S.q be rate-independent and L be continuous.

Then if ^ and X are non-dissipative, they are both inde-

pendent of the second argument and ^ jLs generalized elastic.

Proof; If ^,i) are non-dissipative, a = o, then

i(rvv) = L(r,v)«f(O)
and D replaces A in the condition of generalized elasticity, provided
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that we can remove the second argument in each function.

Next We show that <& is in fact independent of g (0) . Let

(I\g)e3 X Q be given. For any V€^ we construct the linear

continuation g = g(T,v).

Now consider the map a H tyi?,g{o)).. Since (I°,g(a))e3 X Q

for each ae[0,T] we know that this function has at each

oe[Oyr] a right-hand derivative; on (0,T] this must be equal to

zero. But this suffices (e.g. HOBSON > P* 3 6 6) t o guarantee

that a H ^(I^^gtor)) is constant on [0,T] (the map is continuous by

the assumption on ^ and the property assumed for the norm

applied to linear continuations). Hence in particular its values

at 0 and T are equal:

$(rT,g(O) + v) - tyr,g(O)).

Since ^ is rate-independent in its first argument this means

Next, we note that ^(F) is also necessarily independent of

g(0) . Since

4(D = l{T,g{0)) • f(0),

it is clear that for any v,ue^

• f (0) = L(I» • T(0) .
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However, we can now apply the technique of linear continuations

to this equation (exactly as in the proof of the previous theorem)

to conclude that £(I7,u) =

VI. Two Examples,

In this section, we obtain expressions for the instantaneous

modulus af for two choices of 3. In addition, we will give

an example of a smooth rate-independent function which is not

an elastic function.

First, we let 3 be the set of all absolutely continu-
n

ous functions from [O,oo) into 1R , 3 all functions in 3 smooth

near the origin. In this case, we take

||f|| - J ° C j f ( 8 ) | d 8 + | f ( 0 ) | .
o

If v is a smooth function mapping 3 into Rm, we have a

representation for the continuous linear function 6ir(f J • )

(DUNFORD and SCHWARTZ p. 343)

*rr(f|g) = b f (O)g(O) + JQ bf(s)g(s)ds

where b f : [O,oo) -• £(R
n,Rm) is essentially bounded. Hence

6Tr(fj-7O = X(O)bf(O) + J Ms)bf(s)ds

o

for any absolutely continuous A : [O,oo) -• R. Thus

1 — 1 P̂
—Sir (f L ) = -b-(0) + -- b-(s)ds.
cr u r CJ J r

i rff
Consequently, af exists if and only if lim — J b-(s)ds exists,
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in which case raf = lim ~ J b f (s)ds - b f (O) .

If bf(O+) exists

af = bf(O+) - b f (0) .

As a second example, we let 3 consist of all bounded con-

tinuous functions on [0,oo) with values in Rn, 3 be all functions

in 3 which are absolutely continuous on finite subintervals

of [O,OD) and smooth near the origin. We take

||f||- sup |fi(s)|.
S€[O,CO)

The differential 6ir(f | • ) of a smooth function ir : 3 -» |Rm

takes the form (DUNFORD and SCHWARTZ p. ?44)

fcr(f|.g) = J (daf(8)).g(s)
o

where af is a function of bounded variation on [0,oo) with

values af(s) which are linear functions from Rn into Rm.

In this case, 6ir(fl?\) = I X(s)daf(s) and
o

XT
i&ir(f|La)= i J (s - a)daf(s)

o
i 0 i ra

= — af(s) (s - a) - — 1 af(s)ds
o o .

1 PCT-a£.(0) - ̂ J af(s)ds.
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in contrast to our first example, we see that since a f is of

bounded variation, the function af necessarily exists:

af = af(0) - af(0+) .

As a final note, we mention that for the set 3 in the first

example, there are many equilibrated functions. Although we give

only one example here, it is possible to generate many such

functions by integrating any given one. For example, if we

take X = \i = £ ( R \ R 3 ) , 3 the set of absolutely continuous

functions, then

7ro(f) = J tr[f(s)]f(s)ds
o

is an equilibrated function. Furthermore, it is not difficult

to show that
roo

TT1(f) = J 7To(fa)-f((T)d(7
• O

is equilibrated; one can continue in this fashion to generate

many other sucn functions.
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