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Abstract

Kolmogorov in 1965 proposed two related measures of

information content (alternately, measures of complexity)

based on the size of a program which when processed by a

suitable algorithm (machine) yields the desired object. The

main emphasis was placed on a conditional complexity measure.

In this paper a simple variation of the (restricted) condi-

tional complexity measure investigated by Martin-Lof is noted

because of interesting characteristics not shared by the

measures proposed by Kolmogorov. The characteristics suggest

situations in which this variant is the most desirable measure

to employ. The interpretation of the measure offers some

desirable general qualities; also the measure is relatively

advantageous when working with entities of low complexity and

maintains the important properties of the Kolmogorov conditional

complexity measure when concerned with high complexity.

to
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1. We consider the measures of complexity introduced by

Kqlmogorov (1965) . The domain of entities of concern here is

the domain X of finite binary sequences. A finite (binary)

sequence of length n is denoted by x with subscripts

employed when it is necessary to distinguish among sequences

of length n. Likewise, p denotes a finite binary sequence

(we omit the length denotation here) and -t (p) = length of p,-—

so i> (x11) = n. The capital letters A and B denote

effectively computable functions from X to X (or X X N to

X in proper context, where N is the set of positive integers)

It is convenient to regard A as either a recursive function

having as an argument a suitable encoding of p, or as a com-

puting machine with input sequence p; the choice is determined

by context.

The Kolmogorov complexity of x with respect to algorithm

A is given by

K,(xn) = min
A (p) =x

if there exists a program p such that A(p) = x ; otherwise

KA(x
n) = oo.

Likewise, the (restricted) Kolmogorov conditional complexity

(or, simply, the conditional complexity) of x n with respect

to algorithm A is given by

KA(x
n|n) = min I (p)

A (p, n) =xn
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if there exists a program p such that A(p,n) = x ; otherwise

KA(x
n|n) = co.

Kolmogorov suggested that the finite sequences of relatively

high complexity should be considered random sequences (if the

algorithm A is of a suitable "universal" class, see below) and

that this identification conforms to our intuitive concept of
n

the phrase "random sequence". In an important paper Martin-Lof

(1966) outlined a mechanism using what we shall call Martin-Lof

tests whereby many important properties of randomness could be

shown to hold for finite sequences of sufficiently high condi-

tional complexity. We shall assume the reader is familiar with
n

the Martin-Lof (1966) paper which shall be sufficient background
for reading this paper. Other than in the brief discussion below,

n

we will not consider further (nor does Martin-Lof) the (non-

conditional) Kolmogorov complexity measure. (A complexity measure

similar to the Kolmogorov complexity measure is independently

introduced and studied by Chaitin (1966 and forthcoming paper)).

We recall a key property, here stated for the conditional

complexity but true for all variants to be discussed. There

exis_t_s a_ universal algorithm A such _that _fo_r arbitrary algorithm

B
KA(x

n|n) < KB(x
n|n) + cB

where cB i_s_ a_ constant independent o_f x n |iri_d n. A proof

of this is given in Kolmogorov (1965). As a corollary, we have
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|K,(xn|n) - KR(x
n|n) | < c

a

for any two universal algorithms A and B, where c is

dependent only on A and B. Because the complexity of

x with respect to an algorithm A is sensitive to the

choice of A only up to a constant, we follow the convention

of Martin-Lof by choosing a fixed universal algorithm as

standard and dropping notational reference when convenient;

thus, we write K(xn|n) for K (xn|n) .
\

A second corollary of the stated key property is the

existence of a constant c such that

. K(xn|n) < n + c

for all x . This follows from the existence of an algorithm

A such that A(x ,n)"= x . By a counting argument we

derive the other basic relationship: sequences of length n

for which

K(xn|n) < n - c

n —care less than 2 in number.

If i,j are positive integers then by x 1 -< we mean



that i <. j and x consists of the first i bits of x-1 .

x is then the i-prefix of x-̂  . We now introduce the modified

conditional complexity which we shall label the uniform complexity.

by

uniform complexity of x with respect to A is given

K (xn;n) = min I (p)
A nD(A,xn)

where D(A,xn) = {p | A(p,i) = xX, x 1 .< xn, all i < n} if

D(A,x ) is non-empty; otherwise,

KA(x
n;n) = oo .

This type of "uniformity" condition is a frequent condition in

mathematical definitions. Before discussing the interpretation

of this modification, we note several basis properties.

The key property, the existence of a universal algorithm A

such that for any algorithm B

where cR is independent of x and n, is still valid. The

essential point of Kolmogorov's proof of this property for

conditional complexity measures is the existence of a universal

algorithm A which can simulate any algorithm B given a proper

"translation" program. Thus to a sequence (or program) p such

that Bfp^n) = x there corresponds a sequence of form bp,

that is, a (binary) sequence b followed by p, such that

A(bp,n) = x . Here b depends only on A and B. Because b

does not depend on p or n, there is a fixed sequence q, which
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is bp, such that B(p,i) = A(q,i) = x , i ;< n so q e D(A,xn)

if p e D(B,xn) and l(q) < I (p) + cB>

1 Again, it follows as a corollary that the choice of universal

algorithm alters the uniform complexity measure by at most an

added constant. From the manner of construction of a universal

algorithm just outlined, it is clear that an algorithm universal

with respect to both the conditional complexity and the uniform

complexity exists. We choose one such algorithm as standard for

both complexity measures. Again, in the complexity notation we

will in general omit reference to the underlying algorithm.

Because the underlying universal algorithm is the same for both

the conditional and uniform complexity measures, the inequality

. K(xn|n) < K(xn;n)

holds. This follows from the definitions. Moreover, there .

exists a constant c such that K (x -n) ;< n + c for all x ;

this follows as before as the pertinent program satisfies the

uniformity condition. " The analog to the last basic property

n —cstated for conditional complexity, that less than 2 sequences

x n have K(xn-n) < n-c, follows from the same property for

conditional complexity using the above inequality.

Each of the three variant measures express a slightly

different quality of the sequence x in assessing its informa-

tion content. The quantity K (x ) , measured with respect to

some universal algorithm, gives the (minimum) length of programs

for x which must contain in addition to the distribution of

characters, here O's and l's, in x n also information about
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the length n. The integer n can generally be expected to

use about length log2n of the binary sequence p which is a

"program" for x11. However, for values of n quite easy to

compute the requirement is much less. (Hereafter, we write

Log n for log2n) . The quantity K (x111 n) reports the minimum

length of a program which need not contain information on the

length n but "merely" determine the distribution of O's and

l's in x11. K(xn) has appeal intuitively because it reports

the "entire information content" necessary to generate x

(with respect to the given standard algorithm). It must then

suffer this property as a disadvantage when concern centers on

the distribution (of O's and l's) and when for reasons determined

by context the length n can be assumed known. This distinction

is dramatic at the low complexity end of the scale where the

information'needed to determine the distribution is less than

Log n. Comparison between X-, and x ? as to distributions

may then be lost by K (x11) in the need to "report" that each is

of length n. This aspect should be far less troublesome in the

higher complexity region. Also, for mathematical reasons it is

interesting to consider infinite sequences, either for their

own sake or as an "approximation" to very large finite sequences.

If we denote by x an infinite binary sequence and let x

denote its n-prefix, then we can discuss the information content

of x using the measures introduced by associating with the

information content of x the function K (x11) (resp. ,K (xn |n) or

K(x ;n)) viewed as a function of n. In this instance we are

clearly interested solely in the distribution of O's and l's



-7-

(the "pattern") in any n-prefix. The measure K(x |n) is then

preferable to K(x ) in this instance. It should be made clear

that no stand is being taken here as to whether the length of a

sequence is or is not to be an integral part of the information

content associated with the sequence. This seems a matter of

context.

If we agree that our interest is in measuring the pattern

of O's and l's without concern for the_ length of the

then we should choose between K(x |n) and K(x ;n). Here the

latter has distinct advantages. Recall that the existence of a

program p such that A(p,n) = x is sufficient to assure

K(x | n) <_ t (p) . But here p may make heavy use of n in gen-

erating the pattern as well as determining the length of x .

For example, there is clearly a program p such that

A(p ,n) = nOO...O = x11 where n is the binary expansion of

integer n. The string of following O's has length determined

to meet the length requirement for x . Such a sequence we

shall call an n-string. For example, the n-string for n=5 is

10100. All n-strings have an upper bound of I(p ) , a constant,

on their conditional complexity measure although the patterns

are intuitively becoming more complex. (This is more dramatic

if instead of trailing zeros, x consists of n" iterated

sufficiently often to fill the length requirement. A program

p1 exists which accomplishes this.) This measure also has the

somewhat counter intuitive property that a given pattern may be

judged considerably more complex than the same pattern followed

by a finite sequence of O's. For choose any sequence x with
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K(xn|n) » I (p ) such that the first bit of x11 is a 1.

Then x = r for some integer r. The r-string x =

rbo..-O satisfies x11 •< xr and K(xr|r) « K ( x n | n ) . (This

should not be confused with "density of information" measures

such as K/n, where K is the complexity of a sequence of

length n. It is to be expected that the information density

of x should be less than that of x if x is an extension

by O's of x ).

The uniform complexity avoids these characteristics in an

obvious way. If p e D(A,xn) then A(p,i) = xX -<" xn, i < n

which assures that n explicitly influences the pattern itself

for at most the last bit. Thus n as the second argument in

A(p,n) serves solely to determine the length of the sequence.

It is clear that no single program that generates all n-strings

is acceptable for the uniform complexity measure. We show below

that no constant c exists such that K (x ;n) <̂  c for all

n-strings x . Also, if n < r and x -< x then K (x ;n) <_

K(x ;r). The objections mentioned previously are thus not

valid here. To summarize, when concern is centered on the

pattern (shape) exclusively, the interpretation of the uniform

measure seems more satisfying than the interpretation of the

conditional measure of complexity.

Let us look further at the behavior of K(xn|n) and

K(x • n) when x is of "low" complexity. It is almost immed-

iate that i_f there exists a constant c £uch that, for every

n"il^lLi.^ x 9f SJ! infinite_ sequence x, K(x *n) <_ c then

x is effectively computable (recursive). It suffices to show



- 9 - •

there exists a single program p., such that for any n

A(p, ̂n) = x where x -C x. There are less than 2 pro-

grams p such that I(p) <_ c. Thus for each n we know that

A(p^i) = .x •< x , all i < n for some program p of a finite

number of programs. Then at least one program p1 satisfies.

A(p',i) = x 1 -< xn, all i < n for infinitely many n, hence

for all n. Then p' = p-,. Thus we also know I (p,) £ c.

The statement above also holds for K(x |n) although in

general I (p,) K c for the desired program p, . The last sec-

tion gives a proof due to A.R. Meyer that the statement holds

for K(xn|n) .

The justification above of the statement concerning K(x ;n)

yields a stronger statement. If there exists a constant c such

that for infinitely many n-prefixes x11 o_f an infinite sequence

x, K(xn;n) < c then x ±s_ effectively computable (recursive).

This does not hold for the measure K(x |n). In fact, we have

the following theorem.

There exists a constant c such that the set o£ infinite

sequences x fo_r which K(xn|n) £ c for infinitely many n-

prefixes x n has the cardinality of the continuum.

The theorem is proven by .providing a 1-1 map from the sub-

sets of the positive integers to the infinite sequences x such

that K(xn|n) < c infinitely often. We choose c = I(p ) , i.e.

the length of a program which generates all n-strings. Let

*: N -• X be the function that maps integer n into the binary

sequence formed by placing a 1 to the right of every symbol

in the binary expansion of n. For example, 2 = 1101. If

b € X and the first bit of b is a 1 , let (b) denote the
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n-string formed by adding a correct number of O's to the right

of b. Thus (2*) = 1101000000000. Let P C N . Let m ^ m ^ . . .

be an enumeration of the elements of P. If P is finite let

m, be the last element enumerated. For P infinite form the

infinite sequence . . . ( ((m-j* ) m2~
x') m^* ) . . . where (a)b is the

concateration of sequences (a) and b. This infinite sequence

is uniquely associated with P as the numbers m. may be

determined from the sequence by noting that consecutive O's

act as spacers between subsequences denoting the m* . If P

is finite the finite sequence (. . . ((m^* ) m2* ) . . .) itî* ) is

formed and the desired infinite sequence then defined to be

this finite sequence followed by a sequence of O's. In each

case, P finite or infinite, K (x111 n) < c holds for infinitely

_. nmany n-prefixes x .

We now'establish a statement made earlier and derive an

interesting corollary from the method of proof.

For no_ constant c does. K(xn;n) < c for all n-strings

xn. Choose k >_ 2. Consider the set W of n-strings with

Tc-1 Tc2 < n < 2 . Note that n has a k-bit binary expansion within

this range. Let S c W denote the subset of n-strings which

also have a 1 in the k — bit; S has 2 ~ members. However,

no program acceptable for the uniform complexity measure (accept-

able programs are hereafter called "uniform programs") can compute

two members of S. In order for a uniform program to compute two

members of S one member of S must be a prefix of another mem-

k-2
ber of S which is impossible. Thus 2 distinct uniform
programs are needed to express the members of S. As the total
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number of (binary) sequences of length less than k-2 is less

k-2

than 2 at least one program of length k-2 is needed to

express a member of S. But. k was chosen arbitrarily. This

establishes the statement to be proven. As a corollary, we

have the following statement.

There exi_st_s a_ constant c .sucJl that for infinitely many_ n

K(xn;n) - K(xn|n) > Log n - c

for some sequence x . For each k chosen for the above argu-

k-1 kment, a (different) n-string of length between 2 and 2

is obtained which requires a uniform program of length at least

k-2. This infinite collection of n-strings are the x <s which

satisfy the corollary. Recall that K (x111 n) < c for an appro-

priate c for any n-string x .

This is as strong a divergence between these measures as

one could expect for if there is a program p such that

A(p^n) = x where p uses n^ a uniform program q can be

built from p which includes the integer n as information.

This adds at most approximately Log n to the length of p.
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2. We now shift our attention to the characteristics of

the uniform complexity measure in the region of high complexity.

Much is known about the qualities of sequences x whose con-

ditional complexity is high from the work of Martin-Lof (1966).

Such complex sequences exhibit properties of "randomness". We

show that sequences of sufficiently high uniform complexity

also share many properties associated with randomness by show-
ii

ing that the technique developed by Martin-Lof for establishing

this quality for sequences of high conditional complexity carries

over to the uniform case. In doing so we establish that for

every c > 0 there is a_ c-, > 0 such that

(xn|K(xn;n) > n-c} c {x
n|K(xn|n) > n-CjJ holds for all n e N.

This is from one viewpoint an unexpected result. Recall

the measures differ by approximately Log n for some sequences

x at the low end of the complexity scale; at the high end of

the complexity scale where a difference of Log n is small

relative to the complexity of the sequence itself, the theorem

asserts that the difference between K(x ;n) and K(x [n) is

no longer a function of n.

Before we give the proof of this theorem (which includes

some remarks concerning the randomness properties associated

with sequences x such that K (x |n) >_ n-c), we mention

another property of the measure K(xn;n). The property follows
it

from a result of Martin-Lof (unpublished). Consider given the

infinite sequence x and a function f defined on N such

that E 2" f' n ) = co . Then K(xn;n) < n - f (n) for infinitely

many n-prefixes x n of x. For example, K(xn;n) < n - Log n
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for infinitely many n e N. This property was shown by Martin-

Lof for the complexity measure K (x11) . However, • we have

K(xn;n) < K(xn) + c as for any algorithm A we have an algor-

ithm B such that if A (p) = x n then B(p,i) = xx, all i < n.

B merely acts as A and allows only the first i bits to

"printout". So Kg(xn;n) < K ( x
n ) . But K(xn;n) < K B (x

n;n) + c,.

some constant c. This constant is easily absorbed in the

function f to give the result for the uniform measure.

(Chaitin (forthcoming) establishes a similar but less strong
11

result than that of Martin-Lof's used here).

We will need the notion of a uniform test which is a special

type of Martin-Lof test. We recall the definition of a Martin-

n

Lof test.

A Martin-Lof test V is a subset of N x X with the

following properties:

1. V is recursively enumerable,

2 • Vm+1 £ V wfiere

Vm = [xn|(m,xn) € V, all n e N},

3. The number of sequences of length n in V m is <_ 2

If V is a Martin-Lof test and xne V m then x n is

termi_na_l of class c at_ m, c = n-m, if there does not exist

/ , . such that xn-d yn+1. Let T
m+1 • • J- c

a yn+1e V ,, such that xn -d yn+1. Let T (V) denote the

set of terminal sequences in class c in V. Let T (V) denote

the set of terminal sequences in class c at r for 1 <_ r < m,

in V. The number of sequences in a set S is notated S

while S denotes the number of sequences of length n in S.

We now can write the added condition for a uniform test.

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSIT1
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A Martin-Lof test is a uniform t.e_st if:

4. ^"v + #Tm(V) < 2 n" m for m > 2 where c = n-m.

; Condition 3 for the Martin-Lof test, V < 2 , is
in —

subsumed by condition 4. This is immediate for all values of

m except m=l for condition 3. The m=l case should become

clear after consideration below of the intuitive meaning of

the four conditions. It thus suffices to show conditions 1, 2

and 4 to establish a set of finite binary sequences is a uniform

test.

Martin-Lof defined for any test. V the set V Q to be the

set X. This is convenient when working with the critical

levels. We do the same for the uniform test. This definition

is compatible with the requirements of uniform test as condition

4 is void at m=0. The definition of T^(V) (and T c (V)) are

not extended to include sequences terminal at m=0.

Condition 4 is chosen so that uniform tests relate to the
ii

uniform complexity measure as Martin-Lof tests relate to condi-

tional complexity. The condition is forced if a key theorem

relating Martin-Lof tests and the conditional complexity measure

is to be preserved. This condition along.with conditions 2 and

3 can be illustrated by presenting a partial "picture" of a

test V given by Figure 1. Each box represents for a fixed n

and m the set of x n in V . V is the union of all boxes
m m

in the m — row from the bottom; the set of x in V is given

by the n — column from the left. The number in the lower left-

hand corner of each box gives the maximum number of sequences

permitted in the box. This expresses condition 3. Condition 2
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demands that any sequence in a box B appear also in the box

below B. Condition 4 is a condition on the diagonal line of

boxes containing the same left-hand corner number. A sequence

x is a terminal sequence if the next higher diagonal box

does not contain an extension of x . To satisfy condition 4,

the number of sequences in a box plus the number of terminal

sequences "below" it on the diagonal must not exceed the left-

hand corner number. In figure 1 boxes m=l, n=2 and m=2,

n=3 together present a violation of condition 4. Boxes m=l,

n=3 and ra=2, n=4 together also violate condition 4 and ill-

ustrate the reason condition 4 implies condition 3. The proof

is left to the reader.

m

11,01 111,110,101

2 |4 PiliPi^k.
2 3

n
Figure 1

The properties shown to hold for Martin-Lof tests in Martin-

Lof (1966) also hold for uniform tests. Proofs of statements

below are similar to the proofs for the corresponding results

for Martin-Lof tests.
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There exists a universal uniform test U such that for

every uniform test V

V , <=• U m=l,2,3, . . .
m+c — m

where c is a £°_n£t̂ .llt. (d£PeTidervt: on U and V) .

Recall that the critical level function ™v(x
n) i s defined

it

for each Martin-Lof by

m^(xn) = max m

For all xn, 0 < mT7 (x
n) < n.

— v —

The following fact follows directly from the theorem on universal

tests.

If U is a universal uniform te_st then given uniform test V,

there exists a. c such that
11) < ^(x11) + c.

If U and V are universal uniform tests then |mv(x
n). - mu (x

11) |< c

for a suitable constant c, so the critical level function depends

on the choice of universal uniform test only as to addition of a

constant. We choose some universal uniform test as a standard

and again suppress the indication of the test when the standard

is used. We indicate that a uniform universal test is the stan-

dard by writing the critical level function as m.

The important theorem that ties the conditional complexity

measure to Martin-Lof tests carries over to the uniform case.

The uniform tests are defined as such to enable this theorem to
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go through.

There exists a constant c such that |n-K(x ;n) - In (x ) |<_ c,

all binary £trinc[s_ x . In one direction, we define

V = [(m,xn) |K(xn;n) < n-m} .

It is easily checked that this defines a uniform test V. We

then obtain

n - K(x ;n) - m(x ) <_ c,

for a suitable c,, in the same manner as for Martin-Lof tests.

For the converse inequality, we assume given the standard uni-

versal uniform test enumerated by a recursive function

f: N-> N X X. (The function f is total but not necessarily 1-1) .

We give the s — stage in defining an algorithm A. The algorithm

will be seen to be an effectively calculable function with domain

a subset of N X X. .

th .s — stage:
\ •

1) Evaluate f (k) = (m. ,x ) , k < s.
n n

2) If there exists a k < s such that x S 4 x and

n - m = n, - m, then go to stage (s+1) .

3). If 2) doesn't hold and if there exists a k < s such
n, n

that x -< x s with ng - mg = ru - nu, let p denote
nk

the program such that A(p,ru ) = x . Define A(p_,i) =
i ix for n, < i < n where x -£ x

K "*~ S

4) If 1) and 2) do not hold choose the first binary sequence

p of length n - m • not assigned at an earlier step
s s

and define
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i i ns
A (p̂  i) = x , 1 < i < n ^ where x -< x

This completes the definition of algorithm A. Condition 4 of

the uniform test is used to insure an available sequence p

exists of length n - m if step 4) of stage s requires
S 3 '

such a p. It is here that the form of condition 4) is deter-

mined. It follows that

KA(x
n;n) = n - m(xn)

or K(xn;n) < n - m(xn) + c-} so -c2 <_ n - K(x
n;n) - m (x11)

for a suitable c~. The theorem follows.

Let s denote the number of l's in x . Let f(m^n)

be determined so that |2s - n| > f(m,n) holds for less than

2 ~ sequences x but that f(m^n) cannot be decreased with-
it ti

out violating this condition. Martin-Lof uses the Martin-Lof

test V = { (m3x
n) I2s

n~
 nl > f(m>n)} t o establish that for

sequences x with conditional complexity naar n, |2s - n|

has a bound of the order of Yn. More precisely, for an arbitrary

constant c if G = (xn|K(xn|n) >_ n-c] then any sequence
n, n~ n.,
x, } x2 , x3 , ... of members of G such that n. < n. ,

yields

lim sup 12s - n. I < k Vn. ' n. I ' —
i-»oo

where k depends on c. We shall label this property of G

the "weak central limit property".

Many other limit properties of probability theory such as

the law of the iterated logorithm or von Mises' "impossibility
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of a successful gambling system" axiom can be shown valid for

sequences of high conditional complexity by using the same

technique as referenced above. It is certainly desirable,

therefore, to establish the same property for sequences of

high uniform complexity. We undertake this now. Let

H = [xn|K(xn;n) >_ n-c}. Then the following theorem holds.

For any_ constant c there exists a_ constant c, such

that H c G .
— c - Cl

We already have observed in section 1 that G c H as

K(xn|n) < K(xn;n) under the assumption that the underlying

universal algorithm is the same.

As an example of the use of this theorem we note that the

weak central limit property holds for every H . In a similar

manner all such statements that hold for the class of Gc sets

also hold for the class of H sets.
c

1!

The theorem is established by relating Martm-Lof tests to

uniform tests. We might remark here that the Martin-Lof tests

formed to establish individual properties are usually not

uniform. For example, the test V = {(m,xn)||2sn~ n| > f(m,n)}

is not a uniform test. It does not seem that the formulation of

(a) uniform test (s) from V is any easier in this singular case

then the general method we consider in the proof we give now.

The basis of the proof is to represent any given Martin-Lof

test V by an infinite collection of uniform tests V(b) each

of which faithfully represents a particular "subset" of V, namely

V, ,. The tests are then put together in a manner similar to

constructing a universal test.
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Given Martin-Lof test V we define uniform test V(b)

defined from V with base b, b >_ 1, to be the uniform test

satisfying

1. V (b) is empty if m. > h,

2. If m < b then xn€ Vm(b) if any only if x n e Vfe+1.

We must justify that V(b) is a uniform test. Condition 1:

V(b) is recursively enumerable as V is given recursively enum-

erable. Condition 2: to show V ,(b) c v (b). This is immediate

=#nCondition 4 (which implies condition 3): to show V (b) +

^Tm(V(b)) < 2n~m, where c = n-m. We first consider m < b.c — —

We have "v (b) <, 2~ • . The number of sequences x terminal

in class c at m' is < 2 k~^ b + 1^. Thus

*Tm(V(b)) < ̂  2 ( n~ j )- ( b + 1 ) where m > 2.
• • c ~ j=l

Putting both estimates together we have

(b) + V
c j=o

2n+l

^ «n-m _ ~ n<, 2 for m < b.

For m > bj let us define k by m-n = k-b = c. Then

(b) + * T b
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Thus V(b)is a uniform test.

We make use of the following lemma.

For each universal uniform test U arid each Martin-Lof test V

there exists a_ monotone increasing function.. c (m) such that

V , , x c u , all m.
m+c (m) — nr

To prove this lemma we construct a uniform test V* such

that for any test V

V , , . c: v *m+c, (m) — m

where c,(m) is monotone increasing. However, for each univer-

sal uniform test U there is a constant c such that

V c u 3 all m. Putting these two inequalities together

gives the lemma. It therefore suffices to construct V*.

First, a set T*, a subset of NX N XX, is defined. Recall

that Martin-Lof(1966) proves a lemma stating there exists a

recursively enumerable set T c N X N X X such that V is a

Martin-Lof test if and only if V = { (m,xn) | (i^m^x11) e T} for

some i=l,2,... . By V we shall mean the Martin-Lof test

1 2

with index i as determined by T. Thus V ,V ,... is a

(repetitive) effective enumeration of the Martin-Lof tests.

We consider a different effective enumeration of the V1's

for the definition of T*. The rule of formation is: v occurs

at the i place in the enumeration if and only if i = (k-l)+ 2 n

where n is chosen such that k £ 2 n. The enumeration begins

(indicating indices of V) 1,1, 2,1, 2, 3,4,1, . . ., 1,Q, 1, 2, . ... .

However, in place of V at position i in the enumeration just given
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enter uniform test V (i+j), the uniform test defined from

k '

V with base i+j. Here j is the number of occurrences of

V (b), any b, to (and including) position i. In particular,

the first occurrence of a V (b) is v\(i+l) . We define

(i,m,xn) € T* «r=> (m,xn)e Vk (

where j and k are determined from i as stated above.

We now define V* as follows:

(m.,xn) € V* £=» (i,i+m,xn) e T* for some i > 1.

It is easily checked that conditions 1,2 and 4 hold for V* so

k k
V* is indeed a uniform test. Because V b + 1 = V^(b), using the

definition of V* (and T*) it follows that for each j > 0,

k > 0,

for some i depending on j. For fixed k, i increases as

j increases. We write i(j) for i to emphasize dependency

on j. Then the function c(j) such that

V . / • v c V .
D+c(j) :

is given by c(j) = i(j) + 1 which is monotone increasing in j.

This establishes the lemma.

Let V be the "standard" universal Martin-Lof test and let

U be the "standard" universal uniform test. To complete the proof

of the theorem we seek a relation between the critical levels

m (x ) of V and m(x ) of U for arbitrary x . Let c (m) be
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a function such that

V , v c U . all m,
! m+c (m) — m} '

assured by the above lemma. Fix x . Let

m = max{m |m + c (m) <_ m (x ) } .
o

Then x n e V m + c. ^ so x n e U m by the lemma. Thus

m(x ) >_ m . Because

m + c(m ) < m(xn) < m + 1 + c (m + 1)o o — o o

we have

m(xn) < in(xn) + c (mQ+ 1). Now,

c(m(xn) + 1) >_ c(mQ+ 1) because c (m)

is an increasing function. We have

m(xn) < in(xn) + c (in (x11) + 1) = c2 (m)

for an appropriate increasing function c2(m) which depends

only on m(xn) (and on the choice of "standard" tests U and V)

Consider a given H = {xn|K(xn;n) >_ n-c) . Using the

relation |n - K(xn;n) - in(xn| < c, for a suitable c~} we

observe that if x 6 H then m(x ) <̂  c + c, = cA. Then

m (x ) <̂  c^ (c.) as c?(m) is increasing in m. Now using

In - K(xn|n) - m(xn) | < c,., we have n - c, (cA) - c, < K(x
n|n) /

or, with c± = c2(c4)+ c^, x n e Gc = (xn|K(xn|n) > ri-c^} .

The theorem is proved.
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Martin-Lof (1961) also introduces the motion of sequential

test as an extension of the notion of (Martin-Lof) test for the

purpose of defining "random sequence" as applied to infinite

sequences. The sequential test differs from the Martin-Lof

test by the addition of the condition that if x e V andJ m

x n -< yU+1} i=l,2,3,... then yn e V . . The development of the

calculus for sequential tests parallels that for Martin-Lof tests.

A "standard" universal sequential test is chosen and the

level m(x ) defined. We define the critical level m(x) for

an infinite sequence x as m (x) = litn m (xn) where x11 is the
n-co

n-prefix of x. Here the extended value oo is permitted in

the range of m(x). The limit is well-defined (in the extended

sense) due to the added condition imposed on sequential tests.

Martin-Lof defines an infinite binary sequence as random if

m(x) < oo .

The concept of uniform test can be extended to uniform

sequential test by addition of the same condition. The critical

level m(x ) and m(x) are defined in the analogous manner.

It may be shown by an argument directly parallel to the preceding

work that m(x) = GO ̂  m (x) = oo . Thus in the formal definition

of infinite random sequence as given by Martin-Lof it makes no

difference if the sequential test or the uniform sequential test

forms the basis of the definition.
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3. We now give the proof of the theorem on conditional com-

plexity stated in section 2. The proof given here is a modi-

fication . of the proof originally given by A.R. Meyer.

If x is an infinite binary sequence for which there exists

a constant c > 0 such that K(x |n) < ĉ  all n, then x is

recursive.

Let A be the underlying universal algorithm for K(xn|n).

Then A is a recursive function. By hypothesis, there exists

a set of programs P-,,..-.,P such that for each n > 0,

A(p.3 n) = x for some i < m^ where m < 2 . We let x

denote the n-prefix of the given sequence x. Also we denote

A(p.,n) by x. if A(p.,n) is defined. We must prove there

exists a single program p such that A(p/n) = x , all n.

We construct (non-uniformly from Pp...,p ) such a program p.

First we need some definitions.

Let k(b) denote the number of distinct x. defined at b

for 1 < i < m. Let k = lim sup k(b). Let r be an integer
b-»co

chosen so that r £ b implies k(b) <_ k. Define S =

{bjr <_ b and k (b) = k} . Then S is an infinite recursively

enumerable set. We say programs P-!.,... ,p/ S-define y with

prefix z if for all b e S satisfying b >_ h there is an

i <. k such that A(p!,b) = y and z -< y . The programs

P]>-««JP clearly S-define x with prefix x .

We show that there exists a t > 0 such that programs

PjL^-*'^Pm S-define only x with prefix x . For suppose

P p . . M p S-defines d+1 distinct infinite sequences

xjyi3"-jYj with the empty prefix requirement. Then there
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exists a w such that x ,Y-,, • • .yd are all distinct for all

s e S such that s > w. Because only x satisfies x -< x

we may choose t=w.

We now present an outline of the computation of A(p,n),

which determines the desired p. First, for n < t set

A(p,n) = x where t is chosen so that PT_> • • ' >P-m S-defines

only x with prefix x . We enumerate S and show how to

define A(p,b) for each b e S not already determined. We

note that if A(pjb) is determined then so is A(p_,n) for

all n < b. There are two possibilities for A(p,,b) with

b e S and b > t. If only one x. satisfies (i) x •< x.
" " " X X

and (ii) for every d e S so for enumerated, either x. -< x.

or x. -< x. for some j} 1 ;< j <. m, then x. = x and

A(p,b) is determined. The second possibility is that there

exist more than one x. satisfying the conditions, just mentioned,

But it is then simply necessary to keep enumerating S until

condition (ii) holds for only one x. such that x -< x. .

This must occur for otherwise more than one infinite sequence

will be S-defined with prefix x . This contradicts our assump-

tion. Thus x and A(p,b) .are determined. This concludes

the proof.

The author would like to thank Albert Meyer for discussions

which aided his understanding of the behavior of the complexity

measures.
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