BOUNDS FOR THE GIRTH OF SPHERES
 Juan Jorge Schäffer

Report 68-40

December, 1968

University Libraries Carnegie Mellon University Pittsburgh PA 15213-3890

Let X be a real normed linear space with norm $\|j\|$, and let T; be its unit ball, with the boundary BE. Assume $\operatorname{dim} \mathrm{X} \geq 2$. These notations and assumptions will be maintained throughout the paper. In [1] we defined the girth of S to be $2 m(X)$, where $m(X)=\inf \{6(-p, p): p e d F\}$ and 6 denotes the inner metric of $d £$ induced by the norm or, equivalently, $m(X)=\inf [L\{C): c$ a rectifiable curve in $5 £$ with antipodal endpoints\}. If $\operatorname{dim} X<\diamond>$, then these infima are attained, and $m(X)>2$ [1; Lemma 5.1, Theorem 5.5]. The purpose of this paper is to sharpen this inequality to $m(X) \geq 2\left(1+n^{-1}\right)$, where $n=$ $\operatorname{dim} \mathrm{X}$, and to remark that this bound is best possible when $\operatorname{dim} \mathrm{X}$ is even.

In [4] the following property of a space X was defined, for a given positive integer n and a given real $\mathrm{p}, \mathrm{0}<\mathrm{p}<1$:
$\left(J_{n, p}\right):$ There exist $x_{*} \quad$ e $£, k=1, \ldots, n$ such that
 such that every -1 , 弲 any, precedes each +1 , if any.

1. Lemma ([4; Theorem 3.2]). .If $m(X)<2 / B^{{ }^{1}}$, then X satisfies (J). —n, p

Proof. Under the assumption, there exists a rectifiable curve in $d \mid 5$ with endpoints, say, $-p^{\wedge} p^{*}$ and length $t<2 p \sim$. Let $\mathrm{g}: ~[0,1]$-* hji be its parametrization in terms of arc-length. For a given positive integer n, set $\mathrm{pr}_{1}=\mathrm{g}(\mathrm{kn} \sim I), \mathrm{k}=0, \ldots, \mathrm{n}$ so that $P_{0}+P_{n}=-P+P=0 . \quad$ Set $x^{\wedge}=1 \sim n\left(p_{k} \sim p_{k-1}\right), k_{j}=l_{n} \ldots, n$.

$\left(J_{n, \dot{p}}\right) \quad$ holds.
2. Theorem. If $\operatorname{dim} X=n<»$, then m^{\wedge}.2.(l+n~1.

Proof. Assume that $m(X)<2\left(1+\mathrm{n} \sim^{1}\right)$; by Lemma 1 , X satinfoes (J, , ..-1). Let then x, e $£, k=0, \ldots, n$, be such $\mathrm{n} \sim \mathrm{f}-j \mathrm{jx} \backslash \mathrm{rn} \sim \mathrm{x})$ K.
that
(1) $\quad \underset{\mathrm{O}}{\mathrm{j}-1}-\frac{\mathrm{S}}{\mathrm{S}} 3^{\wedge}+\underset{\mathrm{j}}{T} \mathrm{X} \mathrm{j}^{\wedge} \mathrm{jl}>\mathrm{n}(\mathrm{n}+1) \sim^{\mathbf{1}}(\mathrm{n}+1)=\mathrm{n}, \quad \mathrm{j}=0, \ldots, \mathrm{n}+1$.

Since $\operatorname{dim} X=n$, there exist real numbers $a_{\boldsymbol{k}}, k=0, \ldots, n$, not all 0 , such that
(2)

$$
\underset{\sum_{\mathrm{k} \mid c}}{\mathrm{n}} \underset{\mathrm{a}_{1}}{ }=0 .
$$

We may assume without loss that

$$
\begin{equation*}
\max ^{\wedge} 0^{\wedge} 1=1 \tag{3}
\end{equation*}
$$

and that, say, $|c-|=$.1 for some $h, 0 £ h £ n$. Then
 $21 \underset{\sim}{e x}, 1=2$. Setting $j=h$ or $j=h+1$ and replacing every $a, ~ b y ~-a v ~ i f ~ n e c e s s a r y, ~ w e ~ m a y ~ c o n s e q u e n t l y ~ a s s u m e, ~ w i t h o u t ~$ invalidating (2), (3), that

Combining (1) for that value of j with (2), (3), (4), we obtain
 a contradiction.

In [2] it was shown that, if $\operatorname{dim} X=n$ and j is a parallelotope (i.e., X is congruent to I_{n}^{m}), then $m(X)=$ $2\left(1+(n-1) \sim^{1}\right)$; it was further shown that, if n is odd, there is a subspace Y of co-dimension 1 such that $m(Y)$ is still $2\left(1+(n-1) \sim^{1}\right)$. (We remark that exactly the same results obtain if X is taken to be congruent to $K \gg_{n}^{1}$ instead of to $i{ }_{n}^{o o} n^{\prime}$ but we omit the proof.) Thus Theorem 2 yields the best lower bound for even dimension.

This conclusion is best stated in terms of $\mathrm{m}^{\wedge}(\mathrm{n})=$ $\min \{m(X): \operatorname{dim} X=n\}, n=2,3, \ldots$, a sequence of numbers introduced (and shown to exist) in [1].
3. Theorem. $m^{\wedge} \cdot(n)=2\left(1+\sim^{1}\right)$ if n is even, $2\left(1+n^{1}\right) \underset{\sim}{£} m^{*}(n) \underset{\sim}{£} 2\left(1+(n-1) \sim^{1}\right)$ if n is odd.

Proof. Theorem 2 and [2; Theorem 7].
This theorem confirms one-half of the conjecture at the end of [2]; the other half, asserting that $m^{\wedge} .(n)=2\left(1+(n-l) "^{1}\right)$ when n is odd, has so far only been confirmed for $n=3$ (see [3]).

References.

1. Schäffer, J. J.: Inner diameter, perimeter, and girth * of spheres. Math. Ann. 173, (1967) 59-79.
2. \qquad : Addendum: Inner diameter, perimeter, and girth of spheres. Math. Ann. 173 (1967) 79-82.
3. \qquad : Symmetric curves, hexagons, and the girth of spheres in dimension 3. Israel J. Math.
4. \qquad and K. Sundaresan: Reflexivity and the girth of spheres.
