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1. Introduction

We here study the nonlinear eigenvalue problem

A x + F(x) = \x (1.1)

where A : R _ R is self adjoint and linear and F(-) is the

gradient of a potential Y ; i.e.

F (x) - VxY(x) . (1.2)

It is well known that the nontrivial solutions of (1.1) of fixed

2
amplitude r (i.e. x«x = r ) are the critical points of

1 2
0(x) = — A x-x + y(x) on x-x = r . Moreover, if y is such a

critical point, then the eigenvalue X(y) is given by

us

It is no loss in generality to assume that

•|AX*X^= E \±X±
2 ; (1.4)

in this case 0 takes the form

n 2

0(x) s X X x + Y(x) . (1.5)
i = 1 i i

Our interest is in showing that if appropriate conditions are met,

then the nontrivial solutions of (1.1) (eigenvectors of A + F) may be

parameterized smoothly by r.

We also obtain results about the maximal extension of a given branch

of eigenvectors.
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2. Statement of Results

Let 0 be given by (1.4) and assume that the numbers

{ X,., j = 1,2, . ,.,n} are distinct and indexed in decreasing

order (X. > X. 1) . In addition assume that the

map x _ Y (x) : Rn _ R is smooth (C will suffice) and satisfies

iD^YCx) | 2 ) 1 / 2 < K|jx]|3~j , j - 0 , 1 , 2 . (2 .1)

In (2.1) D stands for any derivative of order j and IU|j for

the Euclidean norm.

The assumption that the X.'s are distinct implies that the

vectors

j-l j n-J

± r £j > tj = (°»".«>°>l>°> ••-,°) y J = 1,2,...,n»,

n 2 2
are the unique critical points of 0 = £ X.x. on x«x * r

o i = 1 i i

For each 0 < e < 1 we let

*

T) +<il,6) = / v v. =
 +

} |/l - E v
2 , \ v2 < €2 \ . <2'2)

^ k=l k=l J
^ 1 xv ̂  l

For our purposes we will want two numbers 0 < e, < e < 1 such that

*or equivalently nj
+(")(l,€) s j v | ||vj|2 = 1 , ||v ̂  e} f <
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the neighborhoods {T|. ̂  '(1,6..) , j = l,2,...,n} are disjoint on

the unit sphere while the neighborhoods ( 7|. (l,e_), j = 1,2, ...,n]

cover the unit sphere.

Theorem 1 (Local Existence and Uniqueness Theorem)

There is an r > o such that for any refo.r ] the function

o v ' o
2

0 has exactly 2n critical points on the sphere x-x = r . These

points may be labeled in pairs (x. (r) x~ (r)) = r (v.(r), vT (r))

according to the scheme

(r) e T|t ( l , € l ) and vT (r) e T]T ( l , e , ) . (2.3)

The functions r -» v. (r) (respectively r _• v. (r)) are

C (0 < r < r ) and satisfy

limy^.(r) = ê . and lim vT (r) = -e^. , j = l,2,...,n. (2.4)

In order to state the global existence theorem it is necessary

to introduce some additional notation. For each v -̂llvll = 1

we let V(v) be the n-1 dimensional vector space

V(v)= {u € Rn I u • v = 0 ] (2.5)

Q

For each r > 0 and v^-||vj| = 1 we define the symmetric bi l inear

form B(rv ; • , • ) : V(v) x V(v) - R by

2

2
0 (r(v + su + tw))

r
s=t=O

- (vx0(rv) • v) (u.w) (2.6)
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lB(rv) : V(v) _, V(v) is the linear operator associated with the

bilinear form B(rv ; •,•) .*

Theorem 2 (Global Existence of a Given Branch of Critical Points)

For each j it is possible to extend the function

r -• v.(r) from [o,r ] to some maximal interval [o,R. ) in such

a way that the function x.(r) = r v. (r) is a
~J ~J

2 +
critical point of 0 (or x>x = r ) . The function v.(-) is
extended as the unique solution of the initial value problem:

(2.7)

B(rv) v(r) = F(r,v) , r > r

^ ro> s 4 <ro> •

The initial data r v.(r ) is the unique critical point

2 + +
of (A on x-x = r such that v.(r ) e Tl.(l,e), and F(r v) e V(v)

is defined by

F(r ,v) = 3 )l v Y(r v) - (v Y( r v) • v) v

The number R. is characterized as the first r > 0 such that the

quadratic form B(rv.(r); u.u) has zero as a critical value on the
~J ~ ~

unit sphere V(v.(r)>. For all r < R"t the quadratic has j-1

positive and n-j negative critical values on the unit

+
sphere V(v.(r)) .

The following example shows that Theorems 1 and 2 are the

best that may be expected.

* For any <a € V(v) B(rv)^u = [VxVx0(rv) ]£ - (^

- ~ (V 0(rv) • v)u .
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Let

and

2 2
= x + 2y

o ? ? 2 2
= 2 x - (xZ + y )(xZ + 2yZ) ,
3

0 = 0o + Y .

If we introduce the polar coordinates

x = r cos 8 and y = r sin 0 }

then T](r,9) = 0 (r cos 0, r sing) takes the form

2 2 2 3
7](r?9) = (1-r ) (cos 9 + 2 sin e) + 2 r cos e .

3

A simple computation shows that the critical points of f] on

2 2 2
x + y = r are those numbers 0 e [O,2TC) which satisfy

2
5-T) ( r , e ) = sin29 (!~ r - r cos e) = 0 .
SB

It is clear that for all r > 0 the numbers

•x, and 3rt, are critical points of T]. For

1.,

Y 5 - 1 < r < y 5 + 1 there are two additional critical points— 2~ T—p-

0, e (O,jt) and 9 e (JT,2jt) which satisfy

cos 0. = 1 - r2 , T / 5 - 1 < r < v £ ± _ l , i = 1,2 .
1 r T 2 2~

finally, for r > V5 + 1 the numbers 0 = 0,3t,rt, and 3jt are again the
2 2 2
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only cr i t ical points.

We now analyze these cr i t ical points in more detai l . For

0 < r <\/5~ - 1 the points 0 = 0 and it correspond to relative
T 2

minima of T\ while 9 = «.- and 3rt. correspond to relative

i— 2
maxima. At r = i / 5 - l ( the poin t where 3 T| = 0 ) the

2 o 9 2 | 9 = 0

po in t 9 = 0 becomes an i n f l e c t i o n p o i n t , and for a l l

r > y5 + 1 i s a maximum.
2

For -y5 - 1 < r < 1 the points 9, e (0,rt. ) and 9 e (3Tt,_,2rt)

correspond to relative minima of T] and the character of the points

9 = £> rt> an<* 3rt.? is as before. At r = 1 (the point where
2

2 2
2J J| = ^ f| = 0 ) the point 9.. coalesces with jt/0

2 2 •

08 I 9 = «, 2
 a e I6 = 3 T C/2

and 9̂  with 3rt/o. For 1 < r < VfT+ 1 0 = it and 3% become relative
2 /2 —2— - T

minima, the points 01 e (jt,3rt. ) relative maxima. 0 = « is still

a relative minimum. At r = V5~+ 1 (the place where
2

2
^ T\ = 0) 91 = 0 = « is an inflection point of Tj. For

3 e
2 l e - «

r > V 5 + 1 the critical points 0 = 0 and it correspond to relative
2

maxima of T] while 9 = «»„ and 3rt#9 correspond to relative minima.
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3. Proofs

To establish Theorem 1 we look at 0 in neighborhoods of the critical

n 2 2
points of 0 s E A.-X. on x«x = r . Clearly, it suffices

o ^_^ ii

to look at 0 in a neighborhoods of re.. .

We now let 0 < € < e < 1 be two numbers such that the

neighborhoods T|. (l,e ) , j = l,2,...,n are disjoint on

v.v = 1 while the neighborhoods TJ. ( 1 , O , j = l,2,...,n

cover v.v = 1 . We set x = rv , v = (v.,v ,...,v ) and introduce
r*~> t^> • **^ *^ *^ l z n

local coordinates:

" k s 2
 Vk

n 2 2
where E v < e~ . (3.1)

k=2 k l

The function 0 becomes r 0 (r,v) where

,,v3, ..., vn;r) . [Xx + S p k v k ]

1. Y(r l/l - E
9 ' !,= •;

v , rv ..., rv ) , (3.2)
r2 ' k=2 k 2 n

a n d

To obtain Theorem 1 it suffices to show that for r sufficiently

small (< some r )

(A) There exists a unique n-1 tupple (v ,v ..., v ) with

a
£ v\ < e 2 such that
k=2 l
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2' 3 n
;r)

(r |/1 - E vfc,
k=2

r |/ 1 - E v
k=2 V

..., rv ) I
n | vi

1/ 5 7
+ 1 Y (r V I - E v rv ..., rv ) = 0,

r Xi f k=2 ^
i = 2,3,...,n . (3.3)

(B) The (n-1) tupple (vj,vj,...,vj) satisfying (3.3) is the

2 2
only solution in the larger sphere E; v < e0 ; and

k=i

(C) the map r ̂  (v^(r),v^(r),...,v^(r)) is C (0 < r < rQ) and

satisfies

lim (v+(r),v+(r),...,v+(r)) = (0,0,...,0). (3.4)
r_»o

The growth condition on Y implies that

(r

k=2

- E v
k=2 '

< K r (3.5)
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and

n
E

1=2

X i r k=2 K 2 n
2.1/2 < (3.6)

for a l l satisfying

S v 2 <k —k=2 R (3.7)

Eqiiation (3.5) implies that if

min
i I (3.8)

and if (3.7) holds, then the operator

P = diag (P1,P2,...,Pn)

with

1 1/ n
J i = 2H ~ Yx ( r V1 ' Z

1 * Xl r k=2

is invertible and

.-In <
(3.9)
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It now follows that solving (3.3) is equivalent to solving

Vi H Ti(v
2'

V3^-*'Vn;r)' i = 2>3>-">n (3.10)

where

T,

"Xl

iv v|/- ~ S v, , rv ,...,rv ) (3.11)
xi f k=2

We now observe that for r < r and (v ,v , . . . , v ) satisfying (3.7)

S T 2 ) 1 / 2 < - ^ 4 — ' (3.12)
k l/l

Equation (3.12) implies that for

K
(3.13)

no 2 n 2 2
T ( ' , r ) : S v j < e / - . S v. < e z ; ( 3 . 1 4 )

k=2 k 2 k=2 k L

n 2 2
hence for r < r2 any fixed point of (3.10) in 2 v, < e

k-2 2

n 2 2must be in E v, < €1 . The smoothness of Y implies that

k=2 k " 1

T(»,r) is C in (v ,v ,...,v ) and hence Browers Theorem
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guarantees (for all r < r ) the existence of at least one solution

of (3.10)(and hence (3.3)) in £ v 2 < & 2.
k=2 k

To establish uniqueness, it suffices to show that for some

r < r and all r in [o,r ] the maps T(-,r) are contractions on

n 2 2
£ v, < e . This computation follows from (2.1).

k=2 k 2

V n 2
1 - s v (r ) ,v ( r ) , . . . , v (r) )

/~i , _ _ K L n

follows from the smoothness of x _ y(x). We find that for o < r < r

v.(r) = d v.(r) exists, is continuous, and satisfies
1 dr L

n
S Bij(v2,v3,...,vn,r) tf (r) - F^v^Vg, .. .,vn;r) , i=2,3,...,n, (3.15)

where

•I 2\i. - n 2

v=2 k

k = 2 k

, rv9,...,rv )
l"i J' f k=2 "

x. x. i x,Xj j^ y , „ K z n
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n 2 "i/2
(1 - Z v V / 2

k=2 k

X 1 X 1 k=2 2

i 1 " k=2
r v , . . . , r v ) ; i, J - 2,3,-...,n ,

Z n

and

F i(v2 ,v3 , . . . ,vn ; r) =

(3.16)

1

7

x,

S 2- E v,
k=2

S 2
- E v rv .,rv ))

n

1=2 XlXi •'
Y x x +

 J / j

1 1 Vl - E v2
U ' r v 2 , . . . , r v n )

r | r k=2 x i x i j=2 x i x j J J
n 2
Z V kk=2

i = 2 ,3 , . . . , n . (3.17)

To obtain the limiting relation (3.4) we simply make use of

the estimate (3.12).

To establish theorem 2 it again suffices to work with a particular

branch of critical points of 0 . We shall extend the branch
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x (r) = r vn (r) , r e [o.r ]. It is clear that if we extend

v, (r) as a solution the initial value problem (2.7), then

+ + 2
x (r) H rv (r) will be a critical point of 0 on x«x = r

It is also clear that the initial value problem (or any of its

representations) has a (have) unique solution(s) provided the

operator ^(rv^r)) : V(v1
+(r)) _ V(v1

+(r)) is invertible.

d l L

The condition for the lack of invertibility |B along rv1 (r)

is simply that the quadratic B(rv1(r) ; u,u) have 0 as a

critical value on the unit sphere V(vn (r)). That B(rv.. (r) ; u,u)

has no positive and n-1 negative critical values for r < R1

follows from the fact that &{rv (r)) is symmetric and invertible for

r < R and the fact that & = lim ©(rv-, (r)) = diag (M,O ,LIO .....

> r_>o c °

maps V(en) -• V(e ) and has no positive and n-1 negative eigenvalues.


