QUASI-INVERTIBILITY IN A STAIRCASE DIAGRAM

Walter Noll

Report 68-37

University Libraries
Carnegie Mdlon Universty
Pittsburgh PA 15213-3890




QUASI - I NVERTIBILITY IN A STAI RCASE D AGRAM
by Véalter Nol | *
V¢ deal with objects and norphisnms in an abei ian category, e.g.,

wi th nodul es and rodul e- honornor phi sns.  Any norphism a: A-»B has a

standard factorization

wher e <)1( is injective (i.e., a nononorphism and (>§ surjective (i.e., an

epi nor phi snj .

Definition: Anorphism ai A-»B is said to be guasi-invertible if it

satisfies any one of the follow ng equival ent condi ti ons]'):
(i) There is a norphisma®: B->A such that
co'a °* a
(iit) There is a norphism a B->A such that
opaa - a and aria « a (1)

*The research leading to this paper was supported by the (ffice of Naval
Research under Contract NCONR 760( 30).

DCI. [I], p. 264, Prop. 5.1, where, inadifferent context, the term
"all owabl e" is used for what we call quasi-invertible.
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(iii) a. has a left inverse, and a has a right inverse.
S

rm

(iv) ker a has a left inverse, and coker a has a right inverse.

If a satisfies (1) we call it a guasi-jnverse of a.

For mononor phi sms, quasi-inverses coincide with left inverses,
i.e., nononorphisms are quasi-invertible if and onl y' if they are left-
invertible (or "coretractions'!). For epinorphisnms, quasi-inverses
coincide with right inverses, i.e., epinorphisnms are quasi-invertible
if and only if they are right-invertible (or "retractions).

The purpose of this note is to state and prove the follow ng
result, which was needed in an investigation of annihilators of

differential operators[2], but nay have other applications.

Theor em Consi der the "staircase" diagram
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seen that 6 is a right inverse of 6 and that 7 is a left inverse of 7,

but this fact will not be needed.

Let 0 be a quasi-inverse of 67, so that

67067 - 67,

and put

f m a(le706)p.

By (4) and (5) ye then obtain

Bc,Ba = ooyl

- 6677-6670677) a.

£i .

B

It follows from (6) that the last two terns cancel and hence that

(pa)*0a) - pa. Therefore, pais quasi-inyertible. QED. -

Proof of Theorem The upper end of the staircase diagram (2) can be

used for the construction of a cross diagram

' 0
—-aT——:» s

E 706) p>a = p(l 9" 06) ag- 7* 6) Ue- YY) a

where the single arrow horizontal morphismis the cokernel of the double

arrow horizontal norphism It is clear that the hypotheées of the lemma




are satisfied. The conclusion of the |lemma and commtativity inply that

the hypotheses of the lemma are satisfied for the cross diagram centered

at E,. Proceedi ng by induction, we see that the conclusion of the |ema

hol ds for the cross diagramcentered at En i.e. that Ai is quasi-invertible.
Since p. is surjective, we can use Prop. A to conclude that \ nmust be

quasi -invertible. QE. D
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Ln which dots denote unnamed objects. Assune that fhe diagramis

conmmutative« that all rows and colums are exact, and that the norphisns

indicated by double arrows are quasi-invertible. Then XjLs also

quasi -invertible.

The follow ng facts will be needed:

Proposition A |f ap is. guasi-invertible and p surjective, thenais

guasi -invertible.

Proposition B: |f. ap is. quasi-invertible and a iniective, thenp iS.

quasi -invertible.

If aand p are quasi-invertible, we cannot conclude that pa is
al so quasi-invertible. However, the following lenma allows us to draw

this conclusion under an additional condition

Lemma:  Consider the "cross" diagram

c
by
A_NE__>D (3)
A
B

Assunme that row and colum are exact, and that Ot,p and 67 are

QUési-invertible. Then pa is. also guasi-invertible.




Proof: Consider the standard deconpositions 7 ¢ 7.7 and 6 ¢ 6,6 .

L —— IS IS
Snce 67 - (646 7¢)7 is quasi-invertible, it follows by Prop. A that
A S L S
6.6 7- * 6.(6 7.) is also quasi-invertible. By Prop. B we can conclude
I S 1 Sl.
that 6 7. is quasi-invertible. Noting that in7 - Im7 and

S1 . ' i
Ker 6 = Ker 63, we see that there is no loss of generality if we assume

that 6 is surjective and 7 injective. In viewof the exactness of the

i row and the colum of the diagram we may actually assune that
7 « ker p, 6 - coker a.
xf Now let a be a quasi-inverse of a, so that
*4 (L—aa)a = a- aaa « O.
£ _

It follows that Ig —CO annihilates a and hence nust factor through
coker a » 6. Thus, the exactness of the row of the diagram (3) is

expressed by

L ua e L Gha %L

6a - O, 1¢ - 05 - 66, (4)

where 6 D-»E. Simlarly, one can prove that the exactness of the

colum of the diagram (3) is expressed by

P7 = 0 le- pp - 7Y (5)

where p is a quasi-i nverse of pand 70 E-»C Incidental ly, it is easily




