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We obtain a representation theorem for morphism categories with enough universal

or couniversal objects which generalizes the well-known triple description of an

adjoint functor situation by adjunction, front adjunction, back adjunction.

General formal properties of solutions of universal problems can easily be

formulated in our theoiy, but we shall not do this here. We wish to point out

that action of two categories on a class is closely related to a profunctor in

the sense of Benabou £l]? but w© shall not pursue this theme.

2. Action of categories on classes. We adopt in this note the usual con-

vention of writing all compositions from right to left, but nearly everything

else from left to right. We write f£ JK and A^|]C| if f is a morphism and

A an object of a category K . id A and Id K , or just A and K , denote

op /

an identity morphism and an identity functor, and IC denotes the dual (or oppo-

site) category of K .

a category jC acts on a class 2~ from the

left if a composition f •or f with values in JT" f is defined for some pairs

(f,cr) in KXJL9 and satisfies the following conditions.

2.1.1. If f *cr is defined for f : A — > B in K and <sr<ejLt then

(id A) *<T is defined, and (id A) * or s or.

2.1.2. If g f and f * cr are defined, for f, g in | and <=r€H r

then (g f)»cT and g • (f • cr) are defined, and equal.

Dually, we say that K Acts on JT" from the right if a composition er-• f f

witn values in 21, is defined for some pairs (<5~ff) in £xK and satisfies



the dual laws of 2.1.1 and 2.1.2.

Definition 2.2. We say that a pair (K ,K) of categories acts on a class

£ if K acts on 21 from the ri^it, K acts on 21 from the left, and the

two actions are compatiblet i.e. the following condition is satisfied.

2.2.1. If CT* f and f 1 • cr are defined for f <± K. and<3-<S2T,

then f. « (cr-* f ) and (f * or) • f are defined, and equal.
1 O X O

Remarks 2.3. Prom now on, we usually omit the dots in compositions f • cr-

and <T* f . We note the following consequence of 2.1.2 without proof,o

2.3.1. iet. K, act on X from the left, and let f : A —> B in K sn&

cn^X, II (id k)cr is defined, then tar is defined. ;[£ f<?~ is defined-

then (id B)(fCT") is defined.

If (K ,K, ) acts on 21 » then we say that cr : A -—^> A in 2T , or that

cr^Xand A ^ I K J , if cr (id AQ) and (id k^cr are

defined. If f : A« -—>B, in K* and csr-̂ r̂ T, then we have:

2.3.2. erf and f cr are both defined if and only if cr : B —$> A

in 5*t and then f-i^f • A — > B in ^ .

We note that 2.1.2 and 2.2.1 are weaker than the associative law for a cate-

gory. But these laws are all that we need, and there are useful examples for

which the stronger laws are not valid. All examples will be found in section 4.

3^ Morphism 9£tego£ies» If two categories K , ]C , two functors U. :

JL —* ]£ f fi^cL an action of (K» ,K|) on a class X are given, then we con-

struct a category M, « jjJ »2I»UiI[ °f commutative squares as follows.



Objects of M are triples (A ,ar,A. ) with A. £ 1K. I and cr: U A
"" O 1 1 |-TL1 O C

U A in JS~ . Morphisms of M. are "commutative squares11

with C T , T i n l , f, £ K. , and with (U. fjcr and T ( U f ) defined and
1 "TL 1 1 0 0

equal* We write such a square as ( c r f f f f t x " ) f or inaccurately as (f ff n) :
o i o 1

cr~—±~C Identity morphisms and composition in 14 are given by the formulas

id (Ao,crfA1) =* (cr, id AQ, id A^cr) ,

(T.g^g^K^f^/r) = (or, gQ fQ, g i tvf) ,

provided of course that g. f. is defined in K. . One verifies easily that 14

is closed under composition, and a category.

Definition 3«1« We call the category M, = [U iXTtU.] just constructed a

morphism categoiy.

Remark 5.2. We put M = [1^,21,1^ if in particular U « Id K and

acts on (K fK ) . The general case can be retrieved from this special case as

follows. Given U. : K. **—> K! and an action of (Kf fK!) on 21\ we put

cr. fQ = a- (UQ fQ) , tx .V . (ux fx) a; ,

for erg 2!" an(^ f • £ K. f whenever the righthand sides are defined. This

defines an action of (K ,K_) on 5\ , and the resulting category |K fT" ,K_
~O —"I L~"t) *— "~1

is the same as |U .T'tU.l •



4* Examples. Proofs are omitted in this section.

4.1. If K. is a category, then (]CtjC) acts on K by composition in IC .

The resulting category [jCtjCfjQ is usually denoted by K~ or Mor IC • More

generally, a functor P : C , — > K produces categories JJF,]C,JC~} and f]C,jC,P] •

4.2. Every pair (K ,K ) of categories acts trivially on a singleton \p} f

by O f m f 0 m 0 for all f ± £ ^ . The resulting category £k t£o}fKj3 is

isomorphic to the product category K X IL #

4.3. The category 1̂  consisting of one identity morphism 1 acts trivially

on every class X , by lcr »cr or crl «cr for every &"&T* Action of 1.

on X from the left is compatible with every action of a category K. on 21

from the right (and vice versa), and the morphism category £l. ,21* ill is iso-

morphic to the category constructed in {2; ch. 2).

4.4. If IC acts on JT from the left, then K, acts on 27 from the right

(and vice-versa), by putting cr*f » for whenever fcr is defined. Similarly,

an action of (K ,K ) on ^ induces an action of (IC P,K P ) on JT # Functors

op
U. : K. —-> K! induce functors U. of the dual categories, and the resulting

categoxy Qj 9^9\i J is isomorphic to the category [u • H » u i ] O P •

4^5. If K is a category, then putting f # A » B and B • f = A for

f : A —•>B in K defines actions of K. on | ICj from the left and from the

right. These two actions are not compatible, i,e# 2.2.1 is not satisfied, if IC

has a morphism f : A «—>B with A ^ B .



4.6. Two non-trivial examples* If R is a commutative ring with identity,

JC the category of R-modules, and £ the class of bilinear mappings cr-: A * B

^C of Rnraodules, then (K.XK» 1L) acts on ZL • Universal objects of the

category f k x JLXt 1L\ are tensor products of pairs of R-modules.

If C. and K are categories, then E cp * id A for A ^ |]C | and cp & C. f

and E (X s f for f : A — > B in IC and ©teL|cJ , defines constant functors

E. : C, — > K and natural transformations E^ : EA —*>E_ , and hence a functor
A I A x5

C
E : IC **> Kr- . If C is small, then universal objects of the morphism category
* C C "i

~̂, fr""f EJ are colimits of functors F : £ —>IC , and couniversal objects of

E, K7t'KW are limits of functors P : £—£• 1C .
4*7* Let> P : K >< IC — > E n s be a functor to the category of sets, and

let T" be a class containing disjoint copies of all sets F(A ,A;) , A. € (K.I .<fc—• o 1 I ~i ••

For f. : A. -—=> B. and c r ^ H in P(B ,A ) , we put

or fQ = P(fo,A1)(cr) , fxcr = p(BQ,f1)(cr) .

This defines an action of (K ^ J on 21.

Conversely, let us call an action of (K ,'K,) on a class T^ legitimate if

the classes ^.(A ,A ) 9 A. ̂ (K. j , are mutually disjoint sets. A legitimate

action induces a functor P : K ° PX K, — > Ens by p(f ,f )(cr) = f (Tf ,
~t> l o i l o

for f : k±—>B. in IC and cr in X ( B Q , A ) = F(Bo,A ) • The action of

(K JK,- ) on 2T induced from P may be a restriction of the given action, but it

leads to the same morphism category £ K ,JT ,K1.

5* Natural transformations. We consider a natural transformation A •



Q

in a functor category K*" as a mapping from £ to JC , by putting

\f « (G f)(AAj = ( \B)(P f) for f : A—>B in £ . Then (/JL\)(g f)

C
» (yag)(Af) if /U~̂  is defined in R- and g f in £ .

If K, acts on a class X" ^rom the left, then K~ acts from the left on

c c

the class 21"" of all mappings from £ to 21 as follows. For <p£m2Z
m~ and

A : P — > G in K— , we define A^> only if (P f )(GDA) is defined, and equal

to <pt , for every morphism f : A —> B of £ . In this case, we put

for f : A — > B in £ . 2.1.1 and 2.1.2 are easily verified for this action.

An action from the right is lifted in similar fashion, and if (K fK ) acts

on X 9 then (K-% K.—) acts on ^"^ . Thus a morphism category JU t2T,U ^J

U "~, X""t U-""j, with natural transformations as

objects, by the following definition.

??.Ci2:ii:t?S^51l. Let (K ,K ) act on X $ let P.. : £ —>• K. be functors,
r%

and l e t d*<ir JL~~ • We c a l l <p a natural transformation from P to P , and

write <f> : P —> P , if a>¥ and P q> are defined in X"~ , i . e . if

f) « ^>f » (P

in 21 for every morphism f : A •—> B in £ •

For the case that (lC,]C) acts on K by composition in IC , this is equi-

valent to the usual definition of a natural transformation.

Let now functors U, : K. —> K! and a morphism category M = |U tY ,u/l
X Tl "~1 "—' *• O *~ I4

oe given. One sees easily that we define functors D. : J4 —^ K.. and a natural



8

transformation 9 : U D —> tL Dn by putting
o o ^ 1 1

\ q » ft » 3q * (Ux f ^ c r * T T ( U Q fQ) ,

for every moiphism q a (̂ r,f ,f ,~C ) of M. •

If <£) : C, —>M, is a functor and B Cp the composition mapping, then

U-, V-(b in T— • Conversely, we have
i 1~

Theorem 5*2« Let Jl » &o'^ f^^J as above« For functors P : C_—>K.

Cand a natural transformation cp : U F —> U F 'in £j- , there is exactly

one functor <p : £ —^ M, such that F = D (J>, F «D (b, and ^

This characterizes M by a universal property.

Proof. The requirements for Cp can be satisfied only if we put

, F Q f, F1 f, ̂ >B)

for f : A — > B in C. . Conversely, one sees easily that this defines a func-

tor CD 2 C,—>M[ which meets the requirements.

p p p
RemarkJ>>2» Let # £ = £U Q-, X^» D -J . Theorem 5.2 defines a bisection

between the objects (F , C^tF^ of T^Z and the objects of £- • We use this to

identify a functor Cjf) : C. —>M, with the corresponding object (D 0, c>0, D1

of ^9?T. The bisection of 5.2 can be extended to a canonical isomorphism of the

categories fffZand M~" f but we omit this step.

6. Universal objects and functors. We consider again two functors U. :

K. —-> K! and a morphism category M = JMLJ ,2Z»Ui^J •



Definition 6.1. An object (A ,CT,A ) of 14 is called a universal object

of M at A if for every object (B ,T. ,B ) of M and every morphism f :
— — o o 1 o

A —>. B of K there is exactly one morphism f,, : A., —> B, in KL such

that (crff ,f ,TT ) £ M , i.e. (lL f. )<r « TT (U f ) in X . We say that M
O 1 ~~ 1 1 O O ""

has enough universal objects if M, has a universal object at every A .£ |K | .

Dually, we call (A ,o"tA.) a couniversal object of M if (Â ,cr,A ) is
o l -~ l o
r- op ^- Op7

a universal object of |JJ ,2-*U ĵ  , and we say that J4 has enough couni-

versal objects if jU. ,J",U. 1 has enough universal objects*

Proposition 6»2. If (A ,crfA ) is a universal object of M, , then an

object (A ,5"fA-,) of M is universal at A if and only if i5r=t (u u)cr-
o 1 — — o — 1

in ̂ T for an isomorphism u : A1 —£> A of JC .

We omit the standard proof of this result.

Theorem 6.3. M, has enough universal objects if and only if there -is a

functor r*: K —^ M such that D /""*» Id K and that f~*k is a universal
—o — o "-o — o

object of M at A' for every A Q £ (jC^ .

We call a functor P with these properties a universal functor for K •

Proof. The "if11 part is trivial. Conversely, assume that a universal object

(A , y A , P A ) of M is given at every A 6|K I . For f : A —^ B
O o O O — O '—Ol 0 0 0

in K , we put yf » (v/B )(U f) i n J T , and the equation
u v 0 o O 0 0

V B o ) ( U o f o ) - / f o - ^ U l P f

in 21 determines Pf : P A 5> P B in K. uniquely. One verifies easily
o o o ""I

that this defines a functor P : K < >IC and a natural transformation y :
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U — x u p and hence by 5.2 a functor P = (K , V, P) : K — > M with the

required properties.

Our next result, which will be needed in section 8, shows that the functor

P of the proof of 6.3 is not of some special kind.

Proposition 6.4. Let P : K —^ K be a functor. The morphism category

ML m [P,K ,Kl admits a universal functor F « (id j^, id P, P) : K —^ VL .

Dually> the morphism category W = Fj( ,JC ,Pi admits a couniversal functor

P P = (P, id P, Id K ) : K ^wf .

Proof. rn A a (A , id P A , P A ) in M_ for A e IK I , and if f
P O O O O "~P O ' " D 1 O

A — > B i n K a n d T j ? B — > B , i n K , , t h e n ( f , f n ) : i d P A > i
o ~ o -o • o 1 —1 f x o 1 o
in |C iff f » T (P f ) in K . Thus P is a universal functor.

7. Properties of universal functors. We use the same notations as before.

Theorem 7.1. A functor P= (id K ,y , P) : K — > M is universal if and

P C C*

only if (T, y T, P T) is a universal ob.ject of (U —, 21 ~% U.—). for every

category C and every functor T : C —^ K .

Proof. For the "ifH part , we need only the case C. = 1_ , identifying func-

tors T : 1 —>K with objects of K and f u - f 5Z~, Un^7 with M .

For the ?tonly if11 par t , le t V be a universal functor, le t T : C —> K

— —o
be given, l e t 7K~ fu ~, 2l~, U . - l , and l e t A : T —>F in K- and A:

<-o 1 ^ o o — f

UQ FQ — ? V 1 F± in Z~ , with ?± : C. —> ̂  . Then (^

in }Jt for A : : P T — > P in K - iff
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Ao f) =

in JET for eveiy morphism f : A — > B of £ . Since p T A is a universal

object of JM , this determines A f : P T A — > F B in IC uniquely, and a

moderate amount of diagram chasing shows that the morphisms A f of IC define

a natural transformation A. * P T — > ? 1 , with (A f^) : y^ — > <2> in

for this and no other ^ : P T —»F in K
Q

: P T — » F in K —

— has enough universal ob.iects if and only if every morphism

p C C i
category [U —f 2LT"» ̂  J has enough universal ob.iects.

We consider now a second morphism category N » FV ,2T»v/l> obtained from
L O XT

functors V : L. •—•> L! and an action of (Lf,L?) on 51 t with functors D. :

N •*-? L, and a. natural transformation ^ : V D —> Vn 5. . We ca l l a functor— —a oo 11

6): M —^ N a morphism functor if 5. 0 = T. D. for functors T. : K. —>• L, .
— — i l l I ~i "~1

If this is the case, then we put Q » (T f ^ , T . l for 1^*3 0 : M —=7.27. This
*-" o I-1 —

mapping v* behaves like a natural transfonnation in two variables. If we write

i^CT instead of v{k ,crfA^) for an object (A ,or;A ) of M . then
o 1 o -1 **"

^ ) ( ° r > f o f f l f T r ) " ( ^ To V T l fi

i n N for a morphism (<7%f ,f , X ) of M and (9 = pP ^ . T
— o 1 — L o 1

.tl* M t P « (id K ,^f P) : K —^jfl be a universal functor.,and

let d> s (F ,cp , "F. P) : K — ^ N for functors F. : K. — > L, and a natural
— T - O / 1 "10 "" '— 1 "TL ~"1
transformation (3> : V F —> V, F̂  P in JL~-° . Then d? « QT for a unique

7 o o 1 1 — * v*̂  -̂̂ ^
morphism functor Q» JF •^>F~I : M.
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Proof. 0 is determined if we know &&* for every object (A ,©%A_)
_ w O l

of with Since is a universal object of* tf>A . Since A A

we have (id A , h ) : }fk —>CT in to for a unique morphism h ^ : P A .—> A

of K, 9 and then we must have

^ v w ^ - {?v po Ao» pi v ^
in |£ . Thus we must put $<T « (V P h )(<pkQ) in Z .

We have constructed <£) f but does & map ML into ]i ? In order to show

that it does, let O^ifj.) l cr

We consider the two cubes (7*4) in which the unmarked arrows are identity mor-

in Jl t with f • : in K̂, f

(7.4)

phisms. At left, all faces are commutative squaresf except possibly the front

face. But i/A acts like an epimorphism, and thus the front face at left com-

mutes in K. , by simple diagram chasing. Now the bottom face at right commutes

since all other faces do. Thus & maps jM into N. , and now one sees immedi-

ately that © is a functor.

8. Applications. We obtain a representation theorem for morphism categories

with enough universal morphisms, and we use this theorem and its dual for some
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comments on adjoint functors* We use all previously established notations,

including those of 6.4. We call a morphism functor \T ,V ,T 1 strict if the

functors T are identity functors. The composition of two morphism functors

clearly is a morphism functor, and the composition of two strict morphism func-

tors is strict. Id M » £k ,3 9JLl is a strict morphism functor.

Theorem 8.1. A functor P « (id K , V9 P) : K — ^ M , is a universal func-

tor for M if and only if F ** & F for a strict morphism functor Q : ML — > M,

which is an isomorphism of the two categories.

Proof. If a strict raorphism functor O : jML — ^ M , is an isomorphism of the

two categories, then © clearly preserves universal objects, and thus 'Qf~* is

a universal functor for H . Conversely, if T a (id K , y9 P) : K •—>|[ is a

universal functor, then f~ m (z) I' and f* » H l~* for unique strict morphism

functors 0 i ML — > H and Hi ]£ — > JL , by 7*2 and 6.4, and then Q and H

are inverse isomorphisms by a standard argument.(see 6.2).

Consider now functors T : jK — > K and S : K — > |L • Kiese define

morphism categories ML » [s>K fK,1 and M[ » nC ,K fT| , as well as a univer-

ri ,-. rp , fp

: K «—^ML and a couniversal functor / : j L — ^ M [ .

Proposition 8.2. A functor T : K has a left adjoint functor S :

K *-̂ » IC if and only if M[ »I K ,K ,TM has enough universal morphisms.

T
Proof. By 6.3, M, has enough universal morphisms iff there, is a universal

functor <£>« (id K^, /p, S) : K^—$> MT , i.e. there is a functor S i K —>> jK

and a natural transformation <p : Id K — - > T S such: that (A , a>k , S A ) is
/ "T) O / 0 O

HUNT LIBRARY
SARHEGIE-MELLON UNtVEBSITV
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a universal object of & for every A £ JK \ . But this means precisely that

Cp is a front adjunction for T .

Remarkj8.3. We consider the adjoint situation of 8.2 further. We have seen

that a front adjunction (p i Id K — > T S for T corresponds to a universal

functor <pm (Id J^»0>* S) for JftT . By 8.1, this functor satisfies 0 « 6 ? / ^

JO T

for a strict morphism functor Qy : JjL — ^ Yi • ° n e *ees easily that this functor

0 corresponds to an adjunction in the usual sense. By the dual of 8.1, Q ~ f9

is a couniversal fUnctor r « ( f i ^ I*JL) for ML , and this means that ys x

S T — > Id ]L is a back adjunction for S . Thus our theory furnishes a very

simple connection between the three aspects of an adjoint situation.
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