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VW obtain a representation theorem for norphismcategories with enough universal
or couniversal objects which generalizes the well-known triple description of an
adjoint functor situation by adjunction, front adjunction, back adjunction.
General formal properties of solutions of universal problens can easily be
formulated in our theoiy, but we shall not do this here. W wish to point out
that action of two categories on a class is closely related to a profunctor in

the sense of Bénabou £/]? but “O shall not pursue this thene.

2. Action of categories on classes. W adopt in this note the usual con-

vention of witing all conpositions fromright to left, but nearly everything
else fromleft to right. W wite fE£JK and A" ]C if f s a norphism and

A an object of a category K . idA and Id K, or just A and K, denote
op /

an identity norphismand an identity functor, and 1C  denotes the dual (or oppo-

site) category of K.

Definition 2.1. We say that “““tegory jC acts on a class 2= fromihe

Le_f_r_--if a conposition feor ; wth values in JI.¢ is defined for sone pairs
(f,cr)" in _k«l, and satisfies the followi ng conditions.

2.1.1. If f *cr is defined for f : A—>B in K -and <sr<ejTt then
(id A) *<T is defined, and (id A * or sor.

2.1.2. |If _gf and f *cr are defined, for f, g in | and <=r€H
then (g-f)»cT and g ¢ (fe cr) are defined, and équal.

Dually, we say that K Acts.on JI fromthe right if a conposition er- f ;

witn values in 21, is defined for some pairs (<5~f) in £xK and satisfies




the dual laws of 2.1.1 and 2.1.2.

Definition 2.2. W say that a pair (_Ko ,__}i) of categories acts on a class

£if K__o acts on 21 fromthe rinit, K_l acts on 21 fromthe left, and the
two actions are conpatible; i.e. the following condition is satisfied.
2.2.1. If CI*f_ and f;e cr are defined for f <t K  and<3-<S2T,
o i -y

then f. « (cr-*f ) and (f.* or) « f are defined, and équal.

1 o X o
Remarks 2.3. Promnow on, we usually omt the dots in conpositions f'l--cr-

and <T* fo . W note the follow ng consequence of 2.1.2 without proof,

2.3.1. iet. _K —_act on X fromthe left _and let f : A—>B in K sné&

cnX, Il (idk)er is.defined then tar is.defined  [f-f<?~ Ls.defined:
then (id B)(fCT) isdefined o o

If (&, % ) actson2l » then we say that cr : 4 --2>A in2T, or t hat
créZ(ko.Al) » for crrXand A~1kKl, if o (id A ad (id k*cr are

defined. If f : Ac-—B, in K* and csr-~rAT, then we have:
1 i -1

2.3.2. erfd and flcr are both defined if and only if cr :‘Bo 4$>A1
in 5t and then f-itf = A —B _In".

Ve note that 2.1.2 and 2.2.1 are weaker than the associative |aw for a cate-
gory. But these laws are all that we need, and there are useful -exanples for

which the stronger laws are not valid. Al exanples will be found in section 4.

3" _MorphismOftegofies» |If two categories K., ]G, two functors U_ :

JL = J£ ffi*cLan action of (K .K|) onaclass X are given, then we con-

struct a category M « jTJO »2 »LLI[ °f commutative squares as fol | ows.




Objects of M are triples (AO,C',Al) with Aié igl( and o : Uo A —>

Ul A in 3. . Morphisms of M are "commutative squares"

vith &7, T in 2, f.€K, ,» and with (Ul fl)O' and -c(uo fo) defined and
equal. We write such a square as (cr,fo,fl,‘c‘) , or inaccurately as (fo,fl) :

o~ —>T. Identity morphisms and composition in M are given by the formulas
id (Ao,c‘,Al) = (o, id A, id Al,c") ,
(T ’go’gl'P )(c-)fovflv-t) = (O", gO foo 81 flyf) ’

provided of course that 8; fi is defined in ;{_l . One verifies easily that M

is closed under composition, and a category.

Definition 3.1. We call the category M = [Uo,-):,Ul] Jjust constructed a

morphism category.

RemarE__éﬁ. We put M = [EO,Z,_I_Q_J if in particular Ui =Id Ki and
acts on (K ,_‘xgl ) . The general case can be retrieved from this special case as

| 3 - ' 1 ] '
follows. Given U, : K, ~—>K: and an action of (Kn’-l'('l) on 2, we put

o.f, =o@ f) , f-0= (1),

for o°¢ Z and fié _Igl » whenever the righthand sides are defined. This
defings an action of (Eo ,_I_(_l ) on Z , and the resulting category f_}go ,Z,gl]

is the same as [UO,Z—,UJ .




4. Examples. Proofs are omitted in this section.

4.1. If K is a category, then (K,K) acts on K by composition in X .

The resulting category [_lg_,_l'_[_,g) is usually denoted by 5'2— or Mor K . More

generally, a functor F : C —> K produces categories [F,_l_(_,l_(_] and [&,;(_,F] .

4.2. Every pair (_1;0,_1_(_1) of categories acts trivially on a singleton {0} ’
by 0f =f 0=0 forall f €K . The resulting category [_lgo ,{o},gl} is

K.
-4}
isomorphic to the product category gox _l_(_l .

ﬁ;l‘ " The category 1 consisting of one identity morphiem 1 acts trivially
on every class > , by lo s> or &l =0 for every o &) . Action of 1
on 3 from the left is compatible with every action of a category K on 3
from the right (and vice versa), and the morphism category [_L ’ oy _Ig] is iso-

morphic to the category constructed in [2; ch, 2].

o
4.4. If K acts on X from the left, then 1(_‘p acts on 2. from the right

(and vice-versa), by putting o +«f = fo Wwhenever fo— is defined. Similarly,

an action of Q(_D,Ll) on > induces an action of (LIOP,LOOP) on }_ . Functors

Ui : 1(1 —> L.'L induce functors UiOP of the dual categories, and the resulting

category [UIOP,Z.UOOPJ is isomorphic to the category [UO,Z,UI]OP .

H

If K is a category, then putting fe A =B and Be f =A for

i

f : A—>B in K defines actions of K on |[K] from the left and from the
right. These two actions are not compatible, i.e. 2.2.1 is not satisfied, if X

has a morphism f : A —) B with A £B .




g. Two non-trivial examples. If R is a commutative ring with identity,
K the category of R-modules, and Z the class of bilinear mappings &= : A X B
—>C of R-modules, then (KX X, K} acts on 3. . Universal objects of the
category [_ng K,J, }_(_] ‘are tensor producté of pairs of R-modules.

If C and K are categories, then B, = id A for A< |K| and ?eg ,
and E.ot =f for f :4 —>B in K and o(@|c|, defines constant functors
E, : ¢ —>K and natural transformations Ef : EA—-—-'>EB , and hence a functor

A
E:XK ~> _129- . If C is small, then universal objects of the morphism category

r =

[_K_g KQ', E] are colimits of functors F : C —>K , and couniversal objects of

the morphism category [E, _I_(_g', .L(_Q'J are limits of functors F : C—> K .

4.7. Llet. F : _ISOOPx I_(_l—-——>Ens be a functor to the category of sets, and
let Z be a class containing disjoint copies of all sets F(Ao,Al) , Aié (_I%‘ o

For f : A —>B, and o€ in F(Bo,Al) , We put

of = F(fo,Al')(o—) , o = F(B,f)(o) .

This defines an action of (L(_o ,_Igl ) on z..
Conversely, let us call an action of (K ,}_(_l ) on a class 3 legitimate if
the classes Z(Ao,Al) R Aié: (L(_ll , are mutually disjoint sets. A legitimate
o . . OP _
action induces a functor F : K™ X K, —> Ens by F(fo,fl)(cr') = flc‘fo ,
for f. : A —>»B, in K and o in Z(Bo,Al) = F(Bo,Al) . The action of

(L(_o,;{_l) on 2 induced from F may be a restriction of the given action, but it

leads to the same morphism category [I_(O 53 ,K]].

5. Natural transformations. We consider a natural transformation A




Q
F =& iy a functor category K& as a mapping from £ to JCG , by putting

\f « (G f)(AA] = (\B)(P f) for f : A—>B in £. Then (/JL\)(g f)
» (y*g) (Af) if /U is defined in _E? and gf in £.

If K acts on a class X" ~A°"the left, then K< acts fromthe left on

c ' C
the class 21"" ofgall mappings from £ to 21 as follows. For <p£R2Z™ and

- { |
A: P—=Gin K— wedefine AA> only if (Pf)(cpa) is defined, and equal

to '<pt , for every mrphism f : A—B of £ . |In this case, we put -

(/\g))(f) = (AB)(gf) = (,\f)(?m)

for f : A—B in £. 211and 2.1.2 are easily verified for this action.
An action fromthe right is lifted in simlar fashion, and if (_Kof|_<__1) acts
£ wpC : r
on Xg then (K_—_t(:o K._—lf acts on A% Thus a norphism category Jg_th,U"f
leads to a morphiam category Uo"~, X"t Ul" "j, with natural transformations as

obj ects, by the fol Il owi ng definition,

N.02it295 Let (K .K) act on X$ let P, £—>+ K be functors,
~ =L ' :
and let dr<irdL— « We call ‘<p a natural transformation from (F:p to P , and

write «f> : CP _>p it ¥ and Ig"q_> are defined in X"~ , i.e. if
(?B)(Fo f) « ~>f » (Pl f)(;pA)
in 21 £°" every norphism f : Ae—>B in £
For the case that (IC]Q acts on K by conpositionin IC-, this is equi-
valent to the usual definition of a natural transfornation.
Let now functors U : K — K and a nor phi sm cat egory M:T'UIY,u/I :

X Tl "~1 " % O*~ |4
oe given. One sees easily that we define functors D, @ 14 -2 K, and a natural




transformation 9 : U D —tL D, by putting
o o ™11

\''qg » fy » 3g ¢ (U frcr * TT(Uq fo

for every moi phism q a (*,f bf 1~C) of M -

I'f <€) : _C —M, is a functor and BCp the conposition mapping, then aq? :

. c
U o, p—=>U V(b in T=+ Oonversely, we have

Theorem 52« Lef. '»#&_o‘ AARY as above« _For functors P - C—=K

orem.

and a natural _transformation cp: E,J

E —>U1Fl in £-7, thereis exa(_:tlv
one functor <p: £ -2 M _such that F =D (J>, f «q‘gb, a_mi. "\ =o.

This characterizes M by a universal property.

Proof. The requirenents for Op can be satisfied only if we put

Pt = (pa, Fof, Fif, ">B)

for f : A—B in C . Conversely, one sees easily that this defines a func-

tor QbZ C,—M which meets the requirements.

RemarkJ>>2»  Let #£:'£UQ9, X DlPJ . Theorem:5.2 defines a bisection

bet ween the obj ects (Fo, ’C’\tF" of TAZ and the objects of £+ Ve use this-to

identify a functor Gf) : _C. —M with the correspondi ng obj ect (IgO, c>0, quh)
cof 79?T. The bisection of 5.2 can be extended to a canonical isonorphismof the

categories #ffzand M*; but ve onit this step.

6. Universal objects and functors. W consider again two functors U.1 ;

K, —>K, and a morphism category M= J@]O,ZZH e




Definition 6.1. An obj ect (Ao, CT, A of 14 is called a universal object

N

of M at A0 if for every object (BOT' ,Ii) of M and every nor phi sm f0 :

A —. B of K thereis exactly one norphism f,, : A, =B, in KL such
that (cr¢f ,f- ,TT) EM, i.e. (IL f.)<r «TT(U f ) inX. VW& say that M
o 1 ~ 1 1 O O

has enough universal. objects if M has a universal object at every A £ |K] .

Dually, we call (A ,0"tA) a_couniversal object of M if (A%,cr,A) is
0 I -~ I 0
N N .
r 1 op OQ)
a universal object 6f °R ,2°RJ j~ , and ve say that J4 has enough couni -

versal objects if jU ,J',U 1 has enough uni versal objects*

Proposition 6»2. |f (Ao,crfA iis auniversal object of ‘M , then an

N

0obj ect (AO,5"fA-c,f of M is universal at A0 if and only if i5= (u1 uycr-

in AT tor_an isonorphism u A1_—£>A-1 of JG .

¢ onit the standard proof of this result.

Theorem6.3. ©M has enough universal objects if and only if there -is a

functor r*: K -2 M suchthat D /"» Id K and that f~*k s a universal
B — o] -0 — o]
object of M at A‘D for every Agf (jg‘

VW call a functor P with these properties a universal functor for K e

Proof. The "if part is trivial. Conversely, assune that a universal object

(A, yA, PA) of Misgiven at every AG6|KI . For f : A-2B
Oo O 0] — o '-@ 0 0 0
in K , weput yf » (v/B )U f) inJT, and the equation

u v 0 [o] O 0 0

VBo)Uofo) - /To - ,\ulpf'o)(dfho)

in 21 determines Pf : PA—5>PB in K. uniquely. One verifies easily
o] o] 0 "l

that this defines a functor P : _I<D<_>J_£3 and a natural transformationy :




10

U —xuw.p .and hence by 5.2 a functor P= (K, V, P) : K —M wth the
requi red properties.
Qur next result, which wll be needed in section 8, shows that the functor

P of the proof of 6.3 is not of sone special kind.

Proposi.tion 6.4. let P :_§ - Igl he a functor. The_norphi smcategory

. . A ) A
1\4, m[P’J—(.L’—'ﬂJ admts a universal functor FP« (idjn, |qIP, P) __é( \-/I-P

Dual | y> the norphi smcategory y\jz Fj'_('__l, J_(_i,FL admts a couniversal -functor

PP=(P, idP, IdK) :_K_ " wf .
“0 -0

Pr oof . rr-A a(A, idPA, PA) in M for AelK 1 . , andif f
— P O O o) o) "Lp o '"Dt o)
A —>B in K and T j?B —>B, in K, , then (f ,f,) : idP A >ic
o ~ o -0 . o) 1 —f Xo 1 o)
in |_t(; iff fl_ » T(Pfo) in L& . Thus PP is a universal functor.

7. Properties of universal functors. V¢ use the sane notations as before.

Theorem7.1. Afunctor P=(idK,y, PP : K—M isuniversal if and
E ¢ <
— : : : L —
only if (T, yT, PT) is auniversal ob.ject of (Ui, 21~%U. . for every

cat egory E and every functor T :“C—’\ Ro

Proof, For the "if" part, we need only the case C.=1 , identifying func~

tors T : 1 —>K with objects of K and fu-lf 523, Un)‘7_ “ith M .

For the 2only if** part, let V be a universal functor, let T : C —> K
c C ¢ ¢c— 9
be given, let 7K~ fu ~, 2I~, U.-l, and let A : T —>F in K-. and -A:
<0 @ 1A 0 _ o — f
— ) : pT —>
Uo Fo—2Vi Fe in Z~, with 2. ; C —" . Then (A°"\1 4 4

in}Jt for A. : PT—PF in R- iff
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(?3 13)(1:o )\o £f) = (CP.UO ,\0) f = (”1}‘1-’YT) f = '(Ulll £)(yTA)
in J_ for every morphism f : A —>B of C . Since ["T A is a universal
object of M , this determines /\l f:PTA -——>Fl B in ’K'l uniquely, and a
moderate amount of diagram chasing shows that the morphisms /\1 f of _}gl define
a natural transfomatxon /\l :PT—>F , with (/\O,Al) : yT — @ in 27T

for this and no other A

. C
l.PT-—-B'Fl in _I(;l .

Corollary 7.2. M has enough universal objects if and only if every morphism

category [Uo'g', Z_‘C‘, Ulg] has enough universal objects.

We consider now a second morphism category N = [vo,f,vl'l, obtained from

R ' : ' ' < : N .
functors V:L : _I_.._‘1~——->L:L and an action of (l‘wo’l‘-l) on > , with functors Di :

——

N "_;-Iﬁ and a natural transformation @ : Vo 50 -_> Vl D We call a functor

1 .
8: M —> N a morphism functor if Di@ = '1‘i Di for functors ’1'i : 51 ——>_L_i .

If this is the case, then we put_@ = [’1‘0,8‘,'1"1] for 19:5 O: M ——’)f This
mapping 19‘ behaves like a natural transformation in two variables. If we write

96~ instead of 3(;10,0',.&1) for an object (AO,O‘,AI) of M, then

(ot ,1,T) = Boyr £, 1 1,67

1

in N for a morphism (U’;fo,f

l’T} of M and @=[—To’§"r1] .

Theorem 7._2. Let ["= (1d _I_(U,X, P) : I_(D —>» M be a universal functor,.and

let Cb = (Fo,?u,'Fl P) : K —> XN for functors F, : K, —>L, and a natural

transformation SD : Vo Fo —> V1 F1 P in ZE" . Then Cp = @[ for a unique

morphisn functor @ = [F , &, F] : M —>N .
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Proof. & is determined if we know fo~ for every object (AO,G",AI)
of ‘E. » with \9'y Ao =PA0 .« Since /"Ao is a universal object of M ,
we have (id A, ha,) : yA,—>0" in M for a unique morphism h_: P A —> A
of _Igl , and then we must have

Q(on, o’ a_,a') = .(?Ao’. F‘o Ao" Fl ha-’BU,

in N . Thus we must put da- = (Vl F hc__)(}DA.o) in J_.

We have constructed &), but does @ map M into N ? In order to show
that it does, let (f ,f;) t o —>T in M, with f, : A —>B, in K .,

i =
We consider the. two cubes. (7¢4) in which.the unmarked arrows are identity mor-

A | f | | ‘@A _ =
o K ¥ 1l oy
(7.4) l : | i N
on v | £ P, hgl | fa )
SN L
. f, Ve . YR

phisins. A't left, all faces are commutative squai'ea, except}possibly the front

face. Butu J/Ao acts like an epimorphism, and thus the fronf face at left com-
mutes i_n' g;_l , by simple diagram chasing. Now the bottom face at .right commutes
since all other faces do. Thus & maps M into N , " and now one sees immedi-

ately that @ is a‘functor.

8. Applications. We obtain a representation theorem for morphism categories

with enough universal morphisms, and we use this theorém and its dual for some
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comments on adjoint functors. We use all previously established notations,

including those of 6.4. We call a morphism functor ['ro.ﬁ 1] strict if the

functors Ti are identity functors. The coinposition of two morphism functors

clearly is a morphism functor, and the composition of two strict morphism func-

tors is strict. Id M = [%, .} .1(_1] is a strict morphism functor.

Theorem 8.1. A functor [ = (IdK,), P) : K —>M is a universal func-

tor for M if and only if [ = @/—1; for a strict morphism functor & : M —>M

which is an isomorphism of the two categories.

Proof. If a strict morphism functor ©: M, —> M is an isomorphism of the
. two categories, then @ clearly preserves universal objects, and thus & r P is
a universal functor for M . Conversely, if /[ = (Id K & P) : K —M isa
universal functor, then [ = @PP and I—‘P = ///” for unique strict morphism

functors O: M, —> M and H: ¥ — N, , by 7.2 and 6.4, and then & and A/

.
are inverse isomorphisms by a standard argument.(see 6.2).
_Consider now functors T : K —»K and S : K —-—)‘Ll . These define
. T ‘wl .
mozph:.sm categories H’S = [é’;{'l ,_l_(_l) and M = [Ko ,_lgo,'l‘J , a8 well» as a univer-

M. and a couniversal functor FT & '1_(1——->f .

—s

sal functor P S : 50 >

- Proposition 8,2. A functor T : Elo——‘)l(.o has a left adjoint functor S :

. T r '
Ko -—> 1{_1 »if and only if M SL'K'O"KO’T] has enough universal morphisms.

Proof. By 6.3, ﬁT has enough universal morphisms iff there is a universal
T , :
functor ¢=‘ (14 _lgo, ?, s) : _l_(,o—-ag y 1i.e. there is a functor S 3 _lgu > K 1

and a natural transformation ¢ : Id K —> TS such:that (A @A, S &) is

HUNT LIBRARY
GARNEGIE-MELLON UNIVERS!y
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a universal object of H.? for every Aoe Ll_(u| « But this means precisely that

(f is a front adjunction for T .

Remarl_c'__g;g . We consider the adjoint situation of 8.2 further. We have seen
that a front adjunction ? s Id I_(D —>T S for T corresponds to a universal
functor (D= (14 K , P, S) for M . By 8.1, this functor satisties (D = O/ S
for a strict morphism functor @ H MS ——-)H_T « One sees easily that this fupctor
(—9 corresponds to an adjunction in the usual sense. By the dual of 8.1, & -1 [ T
is a couniversal functor W= (T,’p, 1d 1(_1)‘ for !S y and this means that ¢ :
ST —>1Id _K_l
simple connection betweeh the three aspects of an adjoint situation.

is a back adjunction for S . Thus our theory furnishes a very
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