
ON SUBOBJECTS AND IMAGES IN CATEGORIES

Oswald Wyler

and

Hans Ehrbar

Report 68-34

November/ 1968

University Libraries
Carnegie Mellon University
Pittsburgh PA 15213-3890



ON SUBOBJECTS AND IMAGES IN CATEGORIES

by Hans Ehrbar and Oswald Wyler*

1. Introduction

Subobjects and images in categories have been defined in many ways. MacLane

[9]] proposed an axiomatic theory of "bicategories" which was simplified by

Isbell [5J. Grothendieck [41 defined subobjects (sous-trues) as equivalence

classes of monomorphisms and suggested a definition of images which many authors

have adopted (see e.g. CIO; I.10J). This works well in algebra, but not in

general topology. Isbell £&), Jurchescu and Lascu £7j , Sonner fllj and others

have suggested categorical remedies for this situation.

No "absolute" definition of subobjects and images in a category has been

proposed which is adequate for all situations. Moreover, in some situations,

e.g. in general topology and in the theory of partial algebras, several reason-

able definitions of subobjects are possible. Thus a "relative" theory of sub-

objects and images is needed. In the present paper, we define .J-subobjects and

^-images in a category £ for an arbitrary class J, of morphisms of £ . Our

definitions are equivalent to those of Grothendieck [4~\ if J. is the class of

• Research supported in part by N.S.F. Grant GP-8773.
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all monomorphisms of £ . We introduce a new concept, strong .J-images, and we

study J^images and strong J.-images, and the resulting image functors, in sec-

tions 3 - 5 . Isbell's theory [$\ is generalized in section 6. In sections 7 - 8f

we define and study direct and inverse images as strictly dual concepts, and we

discuss briefly the resulting pseudofunctors and fibrations. Examples and com-

ments are given in section 9. Further developments and applications have been

obtained by each of us and will be published separately.

One feature of our theory is that we do not require images to be monomorphic.

There are several reasons for this. For instance, coimages in operational cate-

gories need not be epimorphic, and to require monomorphic images would almost

destroy applications to reflective subcategories ([2; cap. 2} and [&\).

th m

We shall refer by m.n to the n item of section ra, and the symbol H will

denote the end or absence of a proof. The notations introduced in section 2 will

be used throughout the paper.

2. Preliminaries

Throughout this paper, let £ be a category and £ a class of morphisms

of £ . From 3.5 on, we shall require J. to be left transportable (2.6).

2.1. We write composition in £ from left to right, so that f g means:

first f , then g . We identify £ with its class of morphisms, and we denote

by J£J the class of all objects of £ . We often identify an object A 6-(£|

with the identity morphisra id A £ £ . We denote domain and codomain of a mor-



phism f £ £ by f D Q and f ^ 9 so that (f DQ) f » f (f 1^) * f in £ .

We write functors and natural transformations as right operators, with composi-

tions from left to right. Id £ denotes the identity functor on £ and id T

the identity natural transformation, with A (id T) « id (A T) for an object A

£ P denotes the dual category of £ .

2
2.2. We denote by £- the category with morphisms of £ as objects and

2
commutative squares in £ as morphisms. A morphism of C7 9 from f £. £ to

g £ C , is a quadruple (f*u,v,g) of morphisms of £ such that f v « u g

2
in £ . Composition in Of* is given by

(f,u,v,g)(g,u\vf,h) « (f,u u\v vf,h) .

We write (u,v) : f — > g , and sometimes just (u,v) , for (f,u,v,g) .

2
We define a domain functor D and a codomain functor D. from Cr to C

_ o : 1 —. —

by putting

(f ,u,v,g) D Q * u , (f ,u,v,g) D 1 » v

for a morphism (f,u,v,g) of O7 . This agrees with the notation of 2.1 for an
2

object f of £- 9 i.e. a morphism f of £ .
2 2

We denote by £rGl3 the full subcategory of £- with morphisms in J[ as
2 2

its objects, and by I : £"£J3 — > £T the inclusion functor. A morphism of

^s a commutative square in £ with two opposite sides from Ĵ  . The dual

category of £r[ij is obtained by a variant of the usual reversal of arrows:

only the arrows from £ are reversed, the arrows from J[ are not reversed.

2.3. For an object A of £ , we denote by C/A the subcategory of £-



2 2
consisting of a l l morphisms s £ C 7 with s D = id A , and by H : C/A —> C7

1 A

the inclusion functor. Objects of C/A are all morphisms a £ £ with a D = A

We write u : a •—̂  b if (a,u,Afb) is a morphism of C/A f i«e» a = u b and

a D s b D e A in C. • The product of u : a —> b and v : b —> c in C/A

is u v : a — ^ c .

We denote by j/A the full suocategory C/A O C7/JL] of C/A , and by
I : j/A — > C / A and HA T : J/A —^ C-fjl the inclusion functors. Thus I. HAA "̂  A,J, — k-J A A

» H IT . Objects of J/A are all morphisms j £ J[ with j D = A •

2,4, fS=f , for f in |C~| = C^ f defines a natural transformation

§ : D —> Dn with the following universal property. If /u: P —> F. is a
o 1 ' o 1

natural transfomation of functors F. : K —> C. , then there is exactly one

functor M : K -> (£ such that F. » M D. (i « 0, lj and /^ » M <^ •
" " " " • 1 1 *

If the functors F. have limits L. * lim F, , with projections

L. -—> k F. for k <£|]C| , then there is a unique morphism m ~ li

L — > L in £ such that m (kA^) = (k / \ )(kyu) in C. for every

2
One sees eas i ly that m is a l imit of the functor M : IC —>(£-• , with project-

tions (kAQ> ^A±) : m —>k/u for

2.5. If K is a category and A £| <l| , then a> EA = id A , for a l l

f defines a constant functor E : JC — > £ . If F : ]C —-p C. is a func-
tor and fuc : F —> E. a natural transformation, then F = M H A D . /M.= MHAcT

' A A o ' A

for exactly one functor M : K -—>G/A . If F has a l imit L « lim F , with

projections kA: L — > k F for k £ JK\ , then JJL has a l imit m « lim yK :

L —>A , with ra.« (kA)(kyn) in £ for a l l k£ JK } . m is also a l imit



of M in C/A , with projections k A : m — > k ^ for k £ JJC

2,6« Let jj be the class of all products u ,j in £ with j £ J, and u

isomorphic. We say that jj is left transportable if J, =* J, * The class J^

always is left transportable• Dually, we call J, right transportable in £ if

jj is left transportable in £ .

2.7. We recall that a functor T : A — > B has a left adjoint functor S :

B. — > 4 if and only if there is a natural transformation {*> : Id B. — > S T such

that every morphism B ̂  9 B £|B.l , is universal for T , i.e. if A €? |A,|

and g : B •—>A T in B. , then g ** (B^g)(f T) in B for exactly one morphism

f : B S — > A of 4 . We call yS a front adjunction for T .

If A is a subcategory of ]8 and T the inclusion functor, then a univer-

sal morphism for T is called a reflection for ĵ  in B. •

^ ^ ^ L ^ l ^ Let f & - and ^Pf^ e £ X C. . We say that (pf j) is a

strong J-image of f in £ if (a) f « p j in £ and j ̂  J. , and (b) when-

ever f v » u jf in £ with j f 6 J , then u » p x f j v « x j1 in C for

exactly one morphism x ^ £ . We call (p,j) a J-image of f in £ if (a) is

satisfied, and (b) is satisfied for the special case v = f T> . We say that £

has J-dmages» or that £ has strong J-imagea, if every morphism of £ has a

jj-image or a strong Ĵ -image respectively in £ .

A morphism f £ £ is called J-extremal or strongly J-extremal if f has



a J,-image or strong J.-image (p,j) with j isomorphic in £ • If A€L \Cm\ ,

then we may define a J-subob.iect of A to be an object of j/A f or of a suit-

able skeleton of j/A •

Dually, let £ be a class of morphisms of £ . We say that (p,j) is a

.> or a strong P-coimage. of f in £ if (j,p) is a Primage, or a

op
strong Primage, of f in £ . P-coextremal and strongly P-co extremal mor-

phisms, and P-quotient objects, are defined accordingly.

We usually omit the prefix J[ in proofs and informal discussions.

Proposition 3.2. A morphism j of C is in J, if and only if (j T>o9 j)

is a strong J-image of j in C fi

3.3. It (PJ) i§-£ J-image of f in £ , then (pf
fj

f) is.

a J-image of f in C if and only if j1 € J. and pf « p u 9 y - u^1 j for

an isomorphism u of.

The same result is valid for strong images. Thus if f £ C. has one strong

image, then every image of f is strong.

Remark 3.4* Every .J-image in £ is a JT-image for the class jf of 2*6,

and if f £ £ has a J>image, then f has a jJ-image by 3.3. This is also

true for strong images. If A £ | £ | , then j/A and J;/A have isomorphic

skeletons. Thus we may replace J by J without changing subobjects, images

and strong images essentially, and we assume from now on that J, is left trans-

portable. It follows by 3.3 that a morphism f 6£ is J>extremal or strongly

J.-extremal if and only if (f, f D ) is a -J-iraage or strong ^J-image of f •



Lemma 3 . 5 . L e t ( p , j ) b e a J - i m a g e o f u £ £ . I f . u D s p x , j » x u
— — — — — — — — — —"•—•» — • * • — • • • mm* . mmm I Q

for some x £ £ , then p is iaomorphic in £ and u

Proof, If u D » p- x , x u « j , then p » p ( x p ) , j = (x p) j f and

hence x p « p D by the unicity in 3.1. Thus p is isomorphic and u £ J[ 1

Proposition 3*6, A morphism u of C is J-extremal and in ^J if and

only if u is isomorphic in £ and has a J-image.

Proof* If u is extremal and in J . then (u, u D.) and (u D , u) are
" — l o

images of u . By 3.3, u is an isomorphism.

Conversely, if u is an isomorphism and (p,j) an image of u , then

uD = » p x , j = x u for x = j u " f so that p is isomorphic and u £ J,

by 3.5» But then j is an isomorphism toof and u is extremal %

Proposition 3«7» If J, is a subcategory of £ and if (pfj) is a J-image

in £ , then p iŝ  J^extremal.

Proof, p D a j D is in J since J is a subcategory. If p » p1 jf f

with y £ jj , then j1 j 6j[ , and thus p1 s p x , j * x jf j for a unique

x ££ • Then p » p x jf , j s x j1 j , and thus x y a p D by unicity

in 3.1. If also p ' ^ p x 1 , p D * x1 jf , then xf j1 j = j f and xf «x

follows. Thus (p, p.p.) is an image of p §

Proposition 3*8. If £ has J-images» and if u v £ J[ and v G jJ. imply

u BJ, whenever u v is defined in jJ f then every couple (p,j) in £X £

with p D1 » j D, , j £ J, f and p J-»extremal. is a J-imagein C •
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Proof. If (p'tj1) is an image of p j , then p « p* x , jf ~ * j for

a unique x £ £ • ^ ° w x £ JI by our hypothesis, and p is extremal. Thus

p1 « p y , p D 1 = » y x for a unique y £ £ • But then p1 •* p1 x y f x y j1

x x x y x j s r x j a j 1
 f and x y s p1 D by the unicity in 3.1» Thus x is an

isomorphism, and (p,j) is an image by 3.3 fl

Proposition 3.9. Let £ have strong J-images. and let u v w be defined

in £ . If. u v 6 J and v w e j , then u

Proof. Let (pfj) be an image of u . Then u D s p x h u-v s x j v

for some x & (J, , since u v ^ J , and p x u = u = p j , x u v w = j v w

follow. But then x u a j f by the unicity in 3.1 f for j f « v w . Thus u D
o

» p x , j = x u , and u ̂ .J by 3.5 @

Corollary 3.10. If £ has strong J-images. then J[ is right transportable.

Proof. If j u i s defined in £ with j £.J and u isomorphic, then

3 a (j u) \T and u" (u D ) are in J, f with 3.6. Thus j u £ J[ by 3.9

4. Local and global image functors

ProposiUon 4.1* Let f = p j and f D » A in £ , with j 6 J .

4 .1 .1 . (p,j) i s a J-image of f in C i f and only i f p : f - ~ > j i s a

reflection for j/A in C/A .

4.1.2. (p,j) i s a strong J-image of f in £ i f and only i f (p,id A) :

f *-> j i s a reflection for £^[ l ] in C^ .



Proof, Both statements follow immediately from the definitions ©

Definition ^ 2 . A local J^image functor for £ t at an object A of £ ,

is a pair (^, im ) consisting of a functor im : C/A — > J/A f left adjoint
'A A A

to the inclusion functor I , and a front adjunction ijJ : Id C/A — > im I .

2
A global J-image functor (<//_, im ) for £ consists of a functor im : Cf̂

— > C ~ " T j l f left adjoint to the inclusion functor I , and a front adjunction

if : Id C7 — > im I such that f p D m id (f D ) for every f £ £ •

Let f £ C, and f D « A . By 4.1, (f ifJ 9 f im.) is an image of f if

(u> , iin ) is a local image functor at A , and (p«f f imT) is a strong image
»A A 1 J.

of f for p = f \V D if (y/, im ) is a global image functor.

If (ip t im ) is a global image functor, then im I D » D and y^ D

« id D. . This is easily verified. If A£- |£l , it follows that im maps
1 A.

C/A into J/A , and thus HA imT « im HA T 9 HA V̂ r * ^ H/ for a local image
A • i A AjJ, A "jj 'A A

functor (U/f i^u) at A •

Theorem 4,3> £ has J-images if and only if there is a local J-image

functor (y^ f im.) for C at every object A of C •
/A A ~~~ "" —* •"*

Proof. This follows immediately from 4,1.1 and the definitions §|

Theorem 4*4* The following three statements are logically equivalent,

4«4*1. £ has strong J-images.

4.4«2. £ admits a global J-image functor,

4.4,3, J[ is right transportable and contains all isomorphisms of £ f and

2
is a reflective subcategory of £- •



10

Proof. 4.4.2 =^ 4.4.1 by 4.1.2 and the definitions, and 4.4.1 ==^ 4.4.3

follows immediately from 3.10, 3.6, and 4.1.2. Assume now that 4.4.3 is valid.

If f£ £ , let (pf,u) : f —> i'{ , with yf £ J. , be a reflection for

P p

£ Si (f f D J f f D i C~in <£- . Since (f, f D J : f —*• f D in C~ and f D £ J[ , we have

(f, f D1J * (pf,u)(jf,v) in Or for some (jf,v) : JJ. —> f ^ . Now

(f, f D1)(u,u) . (pf,u)(j£, u D 1 ) : f — > u D x

in C7 f and thus (jf,v)(ufu) a (j*, u D ) : j• —> u D , by the universal

property of (p^tu) . It follows that u is isomorphic in C/ with inverse v f

and that jr * j' v in C, • As J[ is right transportable, J^fii • But then

p 2
defines a reflection f % for 0 7 ^ ' i n £- . Using the reflections f^L in

the usual way to construct a left adjoint functor im of I , with f im = j

2
for f € £ t and a front adjunction Us : Id Cf* — ^ i m I , we obtain an image

functor (\1/T9 i m j . Thus 4.4*3 ==£> 4.4.2 0

Theorem 4.5. Let C. have strong J-images, and let F. : K *~£> C. be func-

tors with limits L. (i s 0, l) • If ylc : F '—> Fn is a natural transformation

such that kyu£ .J for a l l k<£ JK \ f then lim L̂L : L —> L is in j; .

Proof. If i\. has these properties, then the functor M of 2.4 maps IC

2
into STUL] a n d h a s a l i m i t l i m / ^ i n £T • By 4.4 and [lO; V.5.lJf M has a

limit m in C~ with m £ J . But then lim u = u m v~ in C for isomor-

phisms u and v of £ f and lim yu. is in J, by 3.10
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Theorem 4.6* Let £ have J-images. let P : IC ~ ^ £ be a functor with a

limit L , and let JLK : P — > E be a natural transformation, where E is a

constant functor (2.5). If. k y u ^ J for all keljCJ, then lim fx : L

is in I •

Proof. Similar to that of 4.5, using 2.5 and 4.3 I

We note the most important special case of 4*6.

Corollary 4/7. Let £ have J-images. and let A be an object of £ •

If a family (^.i^^ic °* ° ^ e c ^ 8 °^ l/& has an intersection (fibred product)

k in £, then p^if

5. Miscellaneous results

Results proved in this section for J^images are also valid, with only minor

stchanges in proofs, for strong J^-images. We denote by P. and £ the classes

of all .J-extrferaal and of all strongly J^extremal morphi sins of C ,

Proposition 5*1> Let p q be defined in £ # If J, consists of monomor^

phisms of £ and (p qf j) is a J-imaffe, then (qf j) is a J-image^.

Proof. If q j m qf y with j1 € J, t then p q1 * p q x > j « x j1 for

some x £ £ • Then q x j « q f j1 , and q x « q1 since jf is monomorphic.

x is unique for the same reason ©

Propositi<Mi'5#2> Let p q be defined in £ . If (p q, j) is a J-image
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and p an epimorphism of £ f then (qf j) is a J-dmage«

Proof, If q j * qf j1 with j ' £ J f then q' » q x , j « x j ( in £

i f f p q « p q x 9 j «x j1 in 0. The latter is true for exactly one x 6 £ @

Corollary 5.3* If, (Pid) is a J-image . and if up v~ is defined in £

for isomorphisms uf y of C , then (u p • , v j) is a J-image«

Proof. (u~ u p, j) is an image, and thus (u p, j) is an image by 5.2,

Now (u p v~ f v j) is an image by 3.3 fl

5 4 ^ " £PB

Proof, This result (which we do not use in the present paper) is a special

case of 7.4; let jf .1, j be identity morphisms ©

P r o p o s i t i o n ^ ^ , i f P j i s defined i n £ , w i t h p € £ S t « J i i £ l >

/ \ St

then \v9j) is a strong J-image and a strong £ -coimage.

Proof. This follows immediately from the definitions |

Proposition 5^6* If every morphism f of C has a factorization f »e j

in £ with e epimorphic in £ and j £ J. f then jP consists of epimorphisms

of £ f and all equalizers in £ are in J[ •

Proof, If p <£P. and p » e j 9 j ^ j; f then p x « e f x j » p D . for

some x ££ f and then e j x » e • If e is epimorphic, then j x m e D f
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and thus j is isomorphic and p epimorphic in £ .

If m is an equalizer of morphisms f, in £, and if m » e j with e

epimorphic and j €. J, $ then all products j f are equal, and hence j » x m
JtW

for some x £ £ . But then e x m » m , and thus e x = m D . As e is epi-

morphic , it follows that e is isomorphic. Thus m €: £ %

Proposition 5«7* If £ has equalizers and all equalizers of £ are in J[ f

then jP consists of epimorphisms of £ •

Proof. Let p £ jP f and let p f » p g in £ • If j £ <J is an equali-

zer of f and g in C , then p «u j for some u6: £ . But then u « p x ,

p D m-x j for some x£ £ . It follows that f * x j f = x j g s g f

Proposition 5*8. If £ consists of monomorphisms of £ f then all coequa-

lizers in £ are in j?

Proofs Let q be a coequalizer of morphisms f • in £ , and let q v

s« u j in £ with j £ J^ • Since j is monomorphic, all products f u are

equal, and thus u » q x for a unique x £ £ . Now q v a q x j , and (q P^) v

sx j follows. Thus (q, qD ) is a strong image of q@

6« Self-dual theories

Let P, be a right transportable class of morphisms of £ •

Proposition 6.1. The following two statements are logically equivalent.

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY
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6.1.1. £ has J-images, and every J-image in G is a P-coimage.

6.1.2. £ has P-coimages. and every P-coimage in £ is a J-lmage 0

We say that £ has (P«J)-decompo8itions if £ satisfies 6.1.1 and 6.1.2.

Theorem 6.2. If £ has (P. ̂ -decompositions* then P. is the class of all

J-extremal morphisms of £ f J, is the class of all P-coextremal morphisms

2L £ t .£ and J? are subcategories of £ f and jJ n £ is the class of all

isomorphisms of £ •

Proof, p £TjP 4**£> (pf p D ) is a £-coimage 4 » ^ (p, p D . ) is a ^-i

p is .J-extremal. Dually, J[ is the class of all F-coextremal morphisms.

Now jJOP, is the class of all isomorphisms by 3.6.

Let now (p,j) be a jJ-image of u v in £ with u and v in J . Then

u » p x- f j a* x y for some x £ £ . Since u is F-coextremalf we have

u D * p y , x » y u for some y ̂  £ . But then u D « p y , y u v t j ,

and u v £J[ by 3.5• Dually, £ is a subcategory of £ |j

Theorem 6.3. The following five statements are logically equivalent.

6.3*1. Every f £ £ has a factorization f « p j in C with p € £

i €*L • 11 u j a p v i n £ with j £-J[ and p £ P. , then u -» p x f v * x j

in £ for exactly one x £:£ •

6.3»2. £ has strong J-images. jJ is closed under composition in £ f

and jP is the class of all J-extremal morphisms of £ .

6.3.3« £ has (p. ̂ -decompositions, and if p j * p D « j D in £ with

and j ^ J , then p and j are isomorphisms of £ .
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6.3.4. £ has. J-images, P. is closed under composition in £ , and if

P i I* defined in £ , then (p,3) \B a J-image in £ if and only if p € £

6.3.5- P. flSi £ are closed under composition in £ , every f £ L £ has a

factorization f » p i in C with p € P SB&. j &1 • and if p j ~ pf j f in

£ Uitk Pr P! ia £. SSd j, ;}• in £ , then p* * ? X , j « x j f ^i £

for exactly one morphism x £ £,

We say that £ has strong (P.Jdecompositions if these five statements

are valid.

Proof. If 6.3.1 is valid, and if f * p j in £ with (pfj)€ ZK 1 •

then (p9j) clearly is a strong J^image and a strong P^coimage of f .

With 6.2, this shows that 6.3.1 *=£> 6.3.2.

If 6.3.2 is valid, then (p,j) is a J^image iff p j is defined in £ f

p ̂  JL » and i € 1 t by 3.7 and 5.5$ and then (p,j) is a P-coimage by 5.5.

This proves, with 3.6, that 6.3.2 »=^ 6.3.3.

We show next that u v ^J, and y &£ imply u f e j if 6.3*3 is valid*

(p,j) be a JMjnage of u , with p 6 P . Since (u T* , u v) is a

P-coimage, we have u D » p x , j v a r x u v for some x € £ . Let (p1 f j
1)

be a J-image of x f with p f £ P . Then p p 1 j 1 * u D , and p pf £ P

by 6.2* Thus j f is isomorphic, and x £ P. • Now j v €i. by 6.2, and thus

(p I>T t A v ) is a jP-coimage of j v . But then p D ^ x y , u v = * y j v for

some y € £ . Thus p is isomorphic with x « p" , and u £ J[ •

Now 6.3.3 ^ ^ 6.3.4 by the preceding paragraph, 3.8 and 6.2.
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Let now 6 . 3 . 4 be v a l i d , 6 , 3 .5 is v a l i d i f J , i s c lo sed under composit ion.

Thus l e t u v be defined in £ with u f v in J, , and l e t (p , j) be a

J^-image of u v . Then u a p x , j a x v for some x £ £ . Let ( p 1 , j 1 ) be

a J^-image of x . Then p p ' f e P , and (p p* f y) is a JMLmage of u ^£ •

Thus p p* y a u D , y u » j1 for an isomorphism y of £ • But then

p ' y u v a p 1 j 1 v « J , and u v £ J b y 3 . 5 . Thus 6 . 3 . 4 «=#* 6 . 3 . 5 .

F i n a l l y , l e t 6 . 3 .5 be v a l i d . I f u j « p v with p 6.JP , j ^ J [ , then

l e t u * p ' jr , v « p" j l f
 f with p1 , pfl in jP and y , jM in £ . Then

p 1 « p p M B , 3" * z y i f or a \mique z ^ C , f and u » p x f v * x j for

x « p" z j1 . If also u a p x]L , v. » x j f let Xj « p1 i with P 1 ^ P. ,

ij 6 i . Then p' a p Pl zV , ^ a z» j' , and P]L a p» z" f j" » zw ^ j

for morphisms z1 f z" of £ . Now p1 a p plf zlf zf , j" a zM zf y j f and

thus z" z1 a z . But then xx a p» z
fl 2f j1 ax f and 6.3.5 => 6.3.11

Corollary 6.4. If £ has (P>J)HJecompositions and jJ consists of mono-

morphisms of £ f then £ has strong (P«j)-decompositions.

Proof. The hypothesis implies 6.3*3 §

Remark 6.5. If £ has strong (P,^-decompositions, then £ has strong

P^coima^es AS well as strong jP-images. £ is an Isbell bicategory ̂ 5} if P,

consists of epimorphisms and J. of monomorphisms of £ • It seems that very

little in Isbell's theory depends on these additional assumptions.
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Z*

i t ionJ/a, Let ( j , f ) £ J[X<L , with j D][ * f DQ . We say that

(f ,j ) is a direct J-image or a strong direct J-image of (j,f) in £ if

(f-itj^) ia a Jrimage or a strong .J-image respectively of j f in C .

Thus ( f . t j , ) is a strong direct image of (j,f) iff (a) ( f l t f ) : j — > Jx

in firfji] t and (b) whenever (u, f v) : j — > j f in £r [ j j t then u * f 1 x

in C. and (x,v) : j, —-> jf in Cr[ji1 ^ o r exactly one x£C. • For a direct

image, we require (a), and (b) only for v » f D .

Definition 7.2. Let ( f , j )€; C X J , with j D. « f D. . We say that

(jnt^J is a strong inverse J-image of (f , j ) in C. if (a) ( f l f f ) : ^—>j

in C7"[j] , and (b) whenever (u, v f) : j1 •—>j in C7^[J , then u « x f

in C. and (x,v) : j 1 —$>jx in C^FJI for exactly one x £ £ . We say that

(j ,f ) is an inverse J-image of (ff j) in C if (a) is satisfied, and (b) is

satisfied for v s f D .
o

Inverse images and strong inverse images are dual in CT/J,! to direct images

and strong direct images. Except for 7.7 and the self-dual 8.3, every result of

sections 7 and 8 has a dual in this sense which we do not state.

If ^J contains all isomorphisms of £ , then a strong inverse J^image is

a pull back in C ; put j1 » v D in 7.2, (b). We note also that inverse

"" o

(̂ -images in £ are the same as pullbacks in £ . Direct images are images, and

every image is a direct image if J[ contains all isomorphisms of £ .
Proposition 7.3. If. ( f , ^ ) is a direct J~image of (j,f) in C, f then
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(f\j f) is a direct J-image of (Jtf) in £ if and only if f• • f u f

j1 BU j in £ for an isomorphism u o£ £ £9

This result and its dual are also valid for strong direct and inverse images.

Theorem 7.4» Let (f,>j,) be a strong direct J-image of (j,f) jln £ f

and let (vlfv) : ^ ~—^J 2 in Sr[lJ • Then U^j^) is a direct J-image or

a strong direct J-image of (d1>v) in £ if and only if (f^ v.f j^) is a

direct J-image or a strong direct J-image respectively of (j, f v) in £ .

The dual of this generalizes a well-known result for pullbacks*

Proof, (u, f v) : j —> y in Cr£jj iff u . ^ y in Cf (yfv) : ^

—3> y ^ £"[kjt for a unique y £ £ f since (f-tj.)- is a strong direct

image. But then u « f v x , j «x j1 in £ for exaetly on^ x € £ iff

y m v1 x f j « x jf in £ for exactly one x ££ . Thus (f • t J2> is a

direct image iff (v f j ) is a direct image.

The proof for strong images is exactly analogous*0

Theorgn 7.5« Let (j,f) ££X £ t with J D j . f D . If C has

J-images, then the following two statements are logically equivalent.

7*5.1. (^tjy) is a strong direct J-image of (jff) .

7.5*2. f j. * j f in £ f i ^ J , and whenever f v is defined in £

Mi Cvj.fJg) a direct J-image of (dlfv) f then (^ vlf J2> is a direct

J-image of (j, f v ) in C .

Proof. 7^5 «1 ««5^ 7.5.2 by 7.4. For the converse, let jf v « u j1 in £ f

•)f € i t and 1st (v1# j2) be a direct image of (;Lfv) . Then u » f x f
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j v m x jf in £ iff x * v y for some y with: u * f • • y t L *y jf •

If 7.5.1 is valid, then there is exactly one such y £ £ , and thus (f-.tj..) is

a strong direct image f]

Proposition,7.6* If £ has strong inverse J-imagea, then every direct

J-image in £ is a strong direct J-image»

Proof. Let (f^^) be a direct image of (j,f) . If j f v « u j1 in £ ,

y Si f let (d% v f) *©: a strong inverse image of (v,jf) . Then J f » e j11 ,

u• «• 2 v1 for a unique z£ £ , and also s • f y f j. « y j" for a unique

y £ £ . Then u » f y v1 , i v « y v1 j1 . Conversely, if u » f. x , j y

«x jf f then x «y 1 vf f j * y1 jw for some y f6.£ . But then f yf vf

m z v1 / fx y
f j11 * 2 j" , and thus f y1 » z , y1 j" » j # It follows that

y1 * y , x «* f y , and (f^tj,) is a strong direct image of (jff) ©

The following result has no dual for direct images.

Theorem J7.7. Let ( j . ^ j be a pullback of (f>i) in g , with j ^ J .

If £ has strong J-images> then $ £J[ , and (jj^f^) is a strong inverse

J-image of (f,j) in C ,

Proof> We must only show that j , ^ 1 . Thus let (p•,;}') be a strong

image of j . Then f * p1 x , j1 f * x j for some x ££ . Since (j.tf.)

is a pullback, y m y ^ , x ^ y ^ for a unique y ££ • Now pf y j « j ,

p1 y fx « fx , and thus p1 y » ^ DQ , y ^ * jf . But then i±^£ by 3.5
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# Direct and inverse image functors

Definition 8.1. Let f : A —^B in £ , and let f# : j/A —^ j/B be a

functor and V^ • HA T —-> f' BL T a natural transformation such that

d i/> Di *f for every j £ I i A I • We p u t *Pf ij D * Vf »
 and we say that the

pair (V̂ > f # ) i s a direct J-image functor at f i f (j ip , j f#) i s a direct

Jt-image of ( j , f ) for every j £ \jjk\ •

Dually, le t f* : J/B —^ j/A be a functor and (£L : f* HA T —T> H_ T

a natural transformation such that jrf l D =» f for every j ^ J J / B | . We put

(P- ITT) « 0> , and we say that (f*# CD.) i s an inverse J-ima#e functor at f
i J, o / i i

i f (j f*f ia>f) i s an inverse Jrimage of ( f , j ) for every J < ~ / J / B \ .

Proposition 8.2. If £ has J-imagest then there i s a direct J-image

functor (H^f f#) at every f 6 £ .

Proof. Let f : A —*>B . For j <& |J/A( , let (j 4^f, j• f#) be a direct

image of ( j f f ) , and let j S^ » (j ^ f f) : j — > j f# in Crjfj J. For u :

j —->j' in J/A , wehave u ( j ' jp f ) , ( j ^ f ) x , j f ^ x ^ f j i n £ .

for exactly one x £ £ . We put x = u f# : j f# —^ j * f# in j/B • One veri-

f ies easily that this defines a functor f# and a natural transformation P

with the required properties,®

^ . Let f £ • £ • If (V£, f^) i s a direct J-image functor and

) an inverse J->image functor at f f then f# i s left ad.ioint to f*

Proof. Let f : A —^ B . For objects a of j/k and b of
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we consider the equations

(1) a = u (b f*) , u (b<pf) . (a ff) v , a f# - v b

in £ • If u : a — > b f* in j/A , then (u (bpf), f) : a — ^ b in

Since (a ̂ , a ff) is a direct image of (a,f) t (l) is satisfied for exactly

one morphism v i a f# — > b of j/B • Dually , if v : a f# — > b in ĵ/B f

then (p.) is satisfied for exactly one morphism u : a — > b f* of j/A . Thus

putting u = v<# if (l) is satisfied defines a bisection
/ a b

(a f#f b) — > J/A (a, b f») .

One verifies easily that 1[7 , is natural in a and in bQ

Theorem 814* IjT £ has J-images and a direct J-image functor (SPft f̂ .)

is given at every f £ £ f then the equations

for A C |£J and f g defined in £ , with g D ss-C f determine natural

transformations c : (id AL — > Id j/A and c_ : (f g) —>*V&,. • These
' A * tg * * *
natural transformations satisfy the coherence relations

cfg,h
 (cf,g

 h*} - cf,gh
 (f* c

CA,f (°A f*} • id f* = Cf,B (f* V '

for f : A -—^ B and f g h defined in £ .

Proof. For j £ | j/A | f the first two equations mean that
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in C for morphisms j c. : i A . —>j of JT/A and i c. : j (f gV—•
"" A * x f,g *

j f# g# tit J/C . Since (j y^, J A#) and (j j ^ g . J (f g)#) are direct

images of (i,k) and of ( j , f gj , and

in £r(jlT 9 these conditions determine j c and j c uniquely.

The remainder of the proof is straightforward diagram chasing 0

We note that Jc is an isomorphism for '$(~\£]k\ , by 3.2 and 3#3#

Thus c : A# —> Id j/A is a natural equivalence for every A^/C^l •

£ has strong J-images if and only if £ has J-imaffea

f. gA is a natural equivalence whenever f g is defined in C *

Proof, We test 7*5.2. If jf v is defined in £ f with j € J. , and if

(flfix) is a direct image of (j,f) and ^ ^ j g ) one of (jlfv) f then

fl a & Vf * x > j f* m x h ; vl * ̂ l ¥ $ y » Ji v» * y J2 ;

x ^ 1 ^ * (d f»/V^ x V*̂  f (x V*)(dl V*̂  * j f• V«

in £ for isomorphisms x and y of £ . It follows that

f1 Vl ~ (j YtJ Z ' J (f v)* * z j2

in £ for % m (j cf ^)(x v#) y . Now (f^ v1# J2J is a direct image of

(jf f v) iff z is an isomorphism of £ , and this is the case iff j c is
"" f fv

an

Remark 8.6. If £ has strong Ĵ -images and £ consists of monomorphisms

of £ 9 then we obtain a global direct image functor f f—^f as follows.



We assume that .J has a subclass J such that every j £ £ has exactly one

factorization j =u j in C with j £ J and u isomorphic in C . Then
o -~ o o —

every morphism of £ has exactly one J -image, and it follows that there is a

unique direct J -image functor fA : J /A —> J /B for f : A —> B in C •

One verifies easily that f I—> f# defines a functor on £ .

If £ has strong inverse J^images and J^ consists of monomorphisms of £
then we obtain a global inverse image functor f Y-^ f• on C in the same way.

o —"

Remarks 8.7* Comparing 7*1 and 8.1 with the definitions of [3; § l]» one

sees easily that giving a direct image functor (Vi» f#) at every f ££ is

the same as giving an opcleavage for the functor I D : CTQTI — > £ t except

that the natural transformations c^ are equivalences only if C has strong

images. Dually, inverse image functors (f*f (fl) at every f^ £ define a

cleavage for the functor I D f with the corresponding reservation.

In the terminology of [lj, especially fl; 5.6] and {"l; 8J 9 the data of 8.4

define a pseudofunctor F^ : D C —» Cat3 and a transformation *4^: P =^ P#

of pseudofunctors, where Cat is the bicategoiy of categories (denoted by Tac

in [il)f and F is a constant strict pseudofunctor, with f F » Id C7"fj"l for

f ̂ £ . The pair (M^,F^J may be called a direct J-image pseudofunctor.

Dually, inverse image functors (f*,<£)f) , f^ £ , determine natural

transformations c : Id j/A —> (id Aj* and c : g* f* .—>(f g)* with the
A x, g

expected coherence relations. These data define a pseudofunctor F* : D £ —^

Cat and a transformation Q) : F r=^ F* of pseudofunctors, where F° is con-

stant. The pair (F*,(J)) may be called an inverse J-image pseudofunctor.
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9« Examples and complements

9.1. If £* is the class of all isomorphisms of £ , then £ has strong

(£,£*J-decompositions and strong (£*f£)-decompositions. Inverse £•-images are

trivial; inverse £-images are pullbacks in £ .

9«2. We denote by K the class of all monomorphisms and by E. the class

of all epimorphisms of £ • M,-subobjects and Jl-images in our sense are essenti

ally the same as subobjects and images in the sense of £4j and [lOj • Inverse

images in the usual sense (see LlOt I.llJ ) are strong inverse Jt-images in our

sense. The categories of sets and of groups, and all abelian categories, have

strong (jS,M)-decompositions and inverse Mf-images. The category of rings has

strong (j?,14)-decompositions for a proper subcategory £ of IS .

9-3. If every morphism f ££ has a factorization f » e m in £ with

e ̂  JE and m £ M , then the M^-extremal and E>-coextremal morphisms in our

sense are the extremal epimorphisms and monomorphisms of C6j and [llj f and

(efm) is an Jl-image iri our sense of f * e m in £ if and only if e is a

coimage of f in the sense of

The following result follows immediately from 7.6 and 5.4.

Proposition 9.4• If £ has strong inverse M-imagea. and if every morphism

f o£. £ has a factorization f » e m in, £ with e £ E. and m ̂  >[ f then

the extremal epimorphisms of £ form a subcategory of £ @

9.5* The strict monomorphisms and epimorphisms of (73 are the strongly
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jS-coextremal monomorphisms and the strongly Jt-extremal epimorphisms in our sense*

The nice properties obtained in [7J for strict monomorphisms and epimorphisms,

and their proofs, remain valid for strongly j^coextremal and strongly J^extremal

morphisms in general, without any restrictions, except for equalizers and coequal-

izers (see 5»8). If f = e m in £ and e is a coimage of f in the sense

of [7jf then (e,m) is a strong Jl-image of f in our sense• £ has coimage3

in the sense of f73 if and only if £ has strong (P,,JM)-decompositions in our

sense for a class jP of epimorphisms of (J, •

9*6* The category of topological spaces furnishes some interesting examples

of strong (£,M)-decompositions. We call f : A — > B in this category coarse

if A has the coarsest topology such that f is continuous for the given topo-

logy of B • Dually, we call f : A —^> B fine if B has the finest topology

such that f is continuous for the given topology of A •

9.6.1. JL consists of all coarse injective maps, and P. consists of all

surjective maps. J-subobjects correspond to subspaces.

JL consists of all injective maps, and I> consists of all fine surjective

maps. PL-quotient objects correspond to quotient spaces.

9.6.2. Jg. consists of all coarse maps and P. of all fine maps. JT »JL

is the class of all bijective maps.

9.6.3* JL consists of all closed injective maps, and f> consists of all

maps f : A -~~>B with f(A) dense in B • J-subobjects correspond to closed

subspaces.

For two more unusual examples, see [2; 3.19] •
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9.7. Let £ be a pointed category, and let JC be the class of all kernels
~~~ mmm

of raorphi8ms of £ . IC is left and ri^ht transportable.

Theorem. If £ has kernels and cokemels, then £ has strong K-images,

and f inr, = ker coker f , for f £ £ f defines a global K-image functor.

Of course, ker coker is determined only up to natural equivalence.

Proof. Let c » coker f and j = ker c . Then f c = 0 , and hence

f * p j for a unique morphism p £ £ . By 4.1.2, it is sufficient to show that

(p,j) is a strong IC-image of f • Thus let f v » u jf with jf » ker gf

in £ . Then f v g f » u j' gf « 0 f and hence v g1 « c y for some y 6 C, •

Now j v g 1 » j c y e O , and thus j v a x j1 for some x (~ £ . Since x is

monomorphic and p x j ' s p j v s r f v a u j 1 , x is unique and p x = u |

Our results 4.5> 4.7 and 7.7 are well-known for this case.

9.6* If £ is the category of groups and K, the class of all kernels of

morphisms of £ f then £ has strong K-images and inverse ]C-imagesf by 9.7

and 7.71 but IC is not a subcategory of £ . Thus £ does not have (H,]C)-

decompositions for any class jP of morphisms of £ .

A preordered set C induces a category £ consisting of all pairs (x,yj

in C X C with x < y , with composition (x,y)(yfz) = (x,z) , and with

|£| = C . If C « (of 1, 2, 3 } with the usual order, and if J[ consists of all

morphisms of £ except (l,2) and (2,3) , then J[ is a subcategory of £ ,

and the conclusion of 3.9 is valid for Ĵ  # One sees easily that £ has

J^-images and inverse jj-images, but not strong J.-images.
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The hypotheses of our results are mostly justified by examples like these,

with one important exception. We do not have at present an example of a category

£ with classes J[ and £ of morphisms such that C. has (j?f<j)-decompositionsf

but not strong (]?,jj)-decompositions.
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tori de completare. Studî L Cere. Mat. 18, 219 - 234 (1966)

®* Kennison, J. F. Full reflective subcategories and generalized covering

spaces. Illinois J. Math. 12., 353 - 365 (1968).



28

9* MacLane, JS. Duality for groups. Bull. A.M.S. ̂ 0., 485 - 516 (1950).

10. Mitchell^^. Theory of Categories. Academic Press, New York, 1965.

11. Sonner^ J. Canonical categories. Proceedings of the Conference on Categor-

ical Algebra — La Jolla 1965. Spiinger-Verl&g New York, 1966.

12. Wyler,jO. Operational categories. Proceedings of the Conference on Cate-

gorical Algebra — La Jolla 1965. Springer-Verlag New York, 1966.

UNIVERSITAET MUENCHEN

CARNEGIE-MELLON UNIVERSITY


