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ON SUBGBJECTS AND |IMAGES IN CATEGORIES

by Hans Ehrbar and Oswald Wler*

1. Introduction

Subobj ects and i mages in categories have been defined in many ways. MaclLane

[9] proposed an axiomatic theory of "bicategories” which was sinplified by

Isbell [5J. Gothendieck [41 defined subobjects (sous-trues) as equival ence

. — = =

cl asses of nonomorphisms and suggested a definition of imges which many authors
have adopted (see e.g. CIO; 1.10J). This works well in algebra, but not in

general topology. Isbhell £&), Jurchescu and Lascu £7j , Sonner fllj and others

p—m e s B S .

have suggested categorical remedies for this situation

No "absolute" definition of subobjects and images in a category has been
proposed which is adequate for all situations. Moreover, in sone situations,
e.g. in general topology and in the theory of partial algebras, several reason-
able definitions of subobjects are possible. Thus a "relative" theory of sub-
objects and imges is needed. In the present paper, we define ._J-subobjects and
N-images in a category £ for an arbitrary class J, of norphisns-of £ . CQur

definitions are equivalent to those of G othendieck [4~L'if J. is the class of
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all monomorphisms of C . We introduce a new concept, strong J-images, and we
study J-images and strong J-images, and the resulting image functors, in sec-
tions 3 - 5.. Izg_gg's theory [5] is generalized in section 6, In sections 7 -~ 8,
we define and study direct and inverse images as strictly dual concepts, and we
discuss briefly the resulting pseudofunctors and fibrations. Examples and com-
ments are givén in section 9. Further developments and applications have been
obtained by each of us and will be published separately.

One feature of our theory is that we do not require images to be monomorphic.
There are several reasons for this. For instance, coimages in operational cate-
gories need not be epimorphic, and to require mbnomorphic images would almost
_destroy applications to reflective subcategories ([2; cap. 2] and [8]).

We shall refer by m.n to the n'th' item of section m, and the symbol ﬁ will
denote the end or absence of a proof. The notations introduced in section 2 will

be used throughout the paper.

2. Preliminaries

Throughout this paper, let C be a category and J .a class of morphisms

of C . From 3.5 on, we shall require J to be left transportable (2.6).

2.1. VWe write composition in C from left to right, so that f g means:
first £, then g . We identify C with its class of morphisms, and we denote
by {C| the class of all objects of C . We often identify an object A &.{C:|

with the identity morphism id A& C . We denote domain and codomain of a mor-




phism fE€C by fD and fD

| » 80 that (fDo)faf(fDI)zf in ¢ .

We write functors and natural transformations as right operators, with composi-
tions from left to right, Id C denotes the identity functor on € and id T
the identity natural transformation, with A (id T) =id (A T) for an object A .

QOP denotes the dual category of ( .

2.2. We denote by Cg the category with morphisms of C as objects and
commutative squares in C as morphisms. A morphism of gz- , from f EC to
g €C, is a quadruple (f,u,v,g) of morphisms of C such that fv =u g

in € . Composition in gg is given by

(f.u,v,g)(g,u' ' vh) = (fyu u',vv' ,h) o

We write (u,v) : £ —>g , and sometimes just (u,v) , for (f,u,v,g) .

We define a domain functor Do and a codomain functor D. from g—z- to C

1
by putting

(f,u,v,g) D = u , (f,u,v,g) D, = v

for a morphism (f,u,v,g) of _c_g . This agrees with the notation of 2.1 for an
object f of g—z- s i.e. a morphism f of C .

We denote by 9_3(3] the full subcategory of _C_-2- with morphisms in J as
its objects, and by I 7! _C_QLI_] —> 2_2_ the inclusion functor. A morphism of
ngi] is a commutative square in C with two opposite sides from J «  The dual
category of g_g[g_] is obtained by a variant of the usual reversal of arrows:

only the arrows from C are reversed, the arrows from J are not reversed.

2.3. For an object A of C , we denote by C/A the subcategory of _C_'2"

——




2 2

consisting of all morphisms s£C7# with sD =id A, and by H *: GA — €7
1 A

the inclusion functor. Gbjects of “OA are all norphisms a££ wth aD1 =A
Ve wite u: a<2b if (au Ab) is a morphism of ‘dAf i«e» a =ub and
ab*sbbteA in C - The product of u: a —=b and v: b—c in TA

isuv: a—=2c.

V¢ denote by j_/A the full suocategory E‘/AOC?/JI] of (_JA, and by
I o A —C/A and ikl: JA £ Cf]) jthe inclusion functors. Thus |, Hy

»H _l;. ojects of “J/A are all norphisnms j £J[ with | D. = A

32‘,__&, fS=f , for f in |C<[ =C\¢ defines a natural transfornation
§ : D0—>Dn1with the fol l owing universal property. [If,/u: (F)’—>F.1 IS a

natural transfomation of functors F.l: K.—> C. , then there is exactly one

functor M : K -> (£ such that F. » M D. (i «0, Ij and /* » M <M
' ' ' ' ' 1 ! '

If the functors F, have limits L, * kim F, , with projections k'li :

L, —> k K. for k <£[JC|, then there is a unique morphism 'm"~él_1_m.#=

L, —>L, in £ such that m (kA") = (k/\ )(kyu) in C. for every k& k| .

One sees easily that m is a limit of the functor M : IC —>(£- , with project-

tions (kAg> "A) @ m —>ku for k& |K].

25. If K_ isa category and A £|<|| , then azEa =id A, for all

¢ X f defines a constant functor E A JC —>£ . |If F: IG —p C. is a func-
tor and fuc: F —> E. a natural transformation, then F=MHA D . /M= MHACT
' A A o' A

for exactly one functor M : K —>G/A . If F hasalimit L «lim F , with
projections kA: L —>k F for k£ Jk& , then JIL has a limit m « [im yK :

L —>A , with ra« (kA)(kyn) in £ for all k£ Jke}. m s also a limit




of M in C/A, with projections kA :m —>km for k &|K]| .

2.6. Let _J:z be the class of all products u j in C with j&J and u
¢

isomorphic. We say that J is left transportable if J " =J . The class _.l_r_g

always is left transportable. Dually, we call J right transportable in (C if

J is left transportable in C F .

i.;l. We recall that a functor T : A —> B has a left adjoint functor S :
B —> A if and only if there is a natural transformation /3 ¢t IdB—>ST such
that every morphism BB, B &{B(, is universal for T, i.e. if A &|A|
and g : B—>AT 4n B, then g = (Bﬁ)(f T) in B for exactly one morphism

f:BS—>A of A. Wecall 2 a front adjunction for T .

If A is a subcategory of B and T the inclusion functor, then a univer-

sal morphism for T is called a reflection for. A in B .

3. _Images and strong images

Definition 3.1. Let f&C and (p,J) €ECXC . We say that (p,j) is a

strong J-image of f in C if (a) f=p J in C and jJ&J, and (b) when-
ever fv=uyj' in C with jJ'&J, then u=px, jv=xj'" in C for
exactly one morphism x& C . We call (p,j) a J-image of f in C if (a) is

satisfied, and (b) is satisfied for the special case v =f D We say that C

l .

has J-images, or that C has strong J-images, if every morphism of C has a

J~-image or a strong J-image respectively in C .

A morphism f& C is called J-extremal or strongly J-extremal if f has




a J,-inage or strong J.-inage (p,j) wth j isonorphic in £+ |If A€L\C,m\ :
then we may define a J-subob.iect of A to be an object of j/A; or of a suit--
abl e ékel eton of /A e

Dually, let £ be a class of norphisns of £. W say that (p,j) is a

P-coimage. > Or a_strong _P-coimage. of f in £ if (j,p) is a Primage, or a

strong Primage, of f in £ P-coextremal and strongly P-coextremal nor-

phisms, and P-guotient objects, are defined accordingly.

W usual Iy omt the prefix J] in proofs and informal discussions.

Proposition 3.2. Anorphism j of C is.in J. if and only if (j T )

is astrong J-image of j. in Cf

Proposition 3.3, It (PJ) i§£ Jlimgeof f in £, then (p'4j") Ls

f

«pug y -urtj for

a Jimgeof f in C ifandonly if j*€J and p
an isomrphism u of C#

The sane result is valid for strong images. Thus if f£C has one strong

i mage, then every imge of f is strong.

Remark 3.4* Every _J-imge in £ is a J_f—image for the class _j_f' of 2* 6,
and if f£ £ has a J_>‘7ﬁage, then f has a jJ-inage by 3.3. This is also
true for strong images. If .AE£| £]|, then __i/A and _J‘,’/Af havé._isormrphic
skel etons. Thus-we may replace J by _gf wi t hout changi ng subobj ects, inages

and strong inages essentially, and we assume fromnow on that J, is left trans-

portable. It follows by 3.3 that a norphism f 6£ is J>extremal or strongly

_Q.-extrenﬁl if and only if (f, f Dl) isa :-Jiraage or strong "J-image of f




Lemma 3.5. Let (p,j) bea J:mage of ufEf . _If. uD spx , j o»xu

—etesee mr

for sooe x££, then p is iaomorphic in £ and u'é_.z,.

Proof, If ub,»p-x, XUu«j , then p»p(xp), j =(xp) j and

hence x p «p Dl by the unicity in 3.1, Thus p is isomorphic and uf J[ 1

Proposition 3*6, Amorphism u of C is J-extremal and in *J if and

only if u is isonorphic in £ and has a J-image.

Proof* If u isextremal andin J ., then (u, uD) and (uD, u) are
" — I o]
imges of u . By 3.3, u is an isomorphism = '

Conversely, if u is an isonorphismand (p,j) animage of u , then
uDO:»px, j =xu for x=ju" } so that p is isomorphic and u £J.

by 3.5» But then | is an isormrphismtobt and u is extremal %

Proposition 3«7» |f J, _is a subcategory of £ and if (psj) ls.a J-irmge

in £, then p 8" J'extrenal.

Proof, le'aj Do isin J since J is asubcategory. If po»p!j;
with y£jj_, then j'j 6, and thus p' spx , | *x7j"j for aunique
x.££- Then p»pxj’ , j sxj'j , andthus xvy ale-by'unicity
in31 Ifalso p'*px!', p[i*xljf , then x" jYj =j ¢ and x' «x

follows. Thus (p, p.pi) is an imge of pS§

Proposition 3*8. 1f £ has_ J-inmgges» and if uv£J[ and v GjJ. inply

u BJ. whenever uv is definedin |J: _then every couple (p,j) _Ln £X£

with pDy»j D , j£J,+ and p J-»extremal. is a J-imagein C o




Proof. If (p',j') is an image of p j, then p=p'x, j' =xj for
a unique x&€C . Now x €& J by our hypothes;fxs, and p is extremal. Thus
P'=py, PD =yx for a unique y€ C . But then p' =p'xy, xy J'
=XyxJj=xJj=3", and xy==p‘l)l by the unicity in 3.1. Thus x is an
isomorphism, and (p,j) is an image by 3.3}

Proposition 3.9. Let C have strong J-images, and let u v w be defined

in . If uv€J and vw&EJ, then u&EJ.

Proof. Let (p,j) be an image of u . Then uD =pX, wv=xjv
for some xEQ_, since uv&J, and pxXu=u=pj, Xuvw=jvw
follow. But then xu =J , by the unicity in 3.1, for j' =v w . Thus uDo

=px, j=xu, and u&J by3.58

Corollary 3.10. If C has strong J-images, then J is right transportable.

Proof. If ju is defined in C with j &J and u isomorphic, then

j=(3wu) u? and wt (u no) are in J , with 3,6, Thus jué&J by 3.98

4. Llocal and global image functors

Proposition 4.1. Let f =pJj and fD =4 in C, with jE&J .

1l
4.1.1. (p,j) is a J-imege of f in C if and only if p : f—a j is a

reflection for J/A in C/A .

4.1,2. (p,j) is a strong J-image of f in C if and only if (p,id A) :

f ~> j is a reflection for _c_g[_.;] in g;z- .




Proof. Both statements follow immediately from the definitions @

Definition 4.2. A local J-image functor for C , at an.object A of C,

is a pair (\fA. imA) consisting of a functor im, : C/A —> J/A , left adjoint
to the inclusion functor I, , and a front adjunction t, : Id C/A —> im, I,

A global J-image functor (SVJ, imJ) for C consists of a functor imJ- : gg-

—_ _C_g{i ], left adjoint to the inclusion functor I 5 and a front adjunction

2
9;1 s Idg-——)mili such that f"ibl =id (f 1_)1) for every f&C .

let fEC and fD =4 . By4.l, (nyA, f mA) is an image of f if
(l,UA, imA) is a local image functor at A , and (pf, f iml) is a strong image
of f for p.= f,ui D if (7@ imi) is a global image functor.

If _(y»i, iml) is a global image functor, then :un I D n1 and «,u_‘I Dl

J1
=1id D, . This is easily verified, If A& lc], it follows that im maps
C/A into J/A , and thus H :uni im, HA 7’ HA\[:lz y; B, for a local image

functor (%', mA) at A .

'_I‘_rleoreg_i_z. C has J-images if and only if there is a local J-image

functor ()UA, imA) for C at every object A of C.
Proof. This follows immediately from 4.1.1 and the definitions

Theorem 4.4. The following three statements are logically eguivalerit.

4.4.1. C has strong J-images.
4.4.2. C admits a global J-image functor.

4.4.3. J is right transpbrtgble and contains all isomorphisms of C , and

_Qg[_{] is a reflective subcategory of C2 .
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Proof., 4.4.2 = 441 by 4.1.2 and the definitions, and 4.4.1 ==" 4.4.3
follows imediately from3.10, 3.6,.and 4.1.2. Assune now that 4.4.3 is valid.
If fE£, let (pr,u) : f —=i'y, with yi£J., be areflection for
2 . . _ . y )
g[g_]m _%E gince (¢f. ff R ¢f 2R |'”§~ and f D £J[, we have

(f, £ DJ * (pu)(jr,v) in & for some (jr,v) : 1 —fA~ . Now
(f, £ D)(u,u) . (pr,u)(jE, uby) : f —>uDy

in C7¢ and thus (jr,V)(usu) a(j*% ub jt:.—_>uD1, by the uni versal

)
property of (p*tu) . It follows that u is isomorphic in & with inverse v

and that |, *j'fv in C.e+ As J[ isright transportable, 3~fii o But then

fy::!'. = (pf’ fnl) = (pftu)(pf Dlr V) : f“éjf
2
defines a reflection f % for Q_%’\' in £ 7. Using the reflections f’\ll in
the usual way to construct a left adjoint functor im_ of | _, wth fim =j,
o _ 2 . , :
for f€£t andafront adjunction U§£. ld g |mlI£, we obtain an inmage

functor (W imj . Thus 44*3 =£ 4.4.20

‘Theoxrem 4.5. Let C. have strong J-images and let F':.: K_*~£> C. be func-
‘tors-with limits L. (i s0, 1) » If yic: F '— F, is a natural transformation

such that kyuf£ .l for all k<£ JK \; then I‘iﬁr_n_"LL: I_o —> Ll isin L .

Proof. If i) has these properties, then the functor M of 2.4 maps 1C
e ' A . 2 , .
into stUL) andhasalimit 'mgn " £T 7 By 4.4 and [I0; V.53, M hasa
[imit m in Cz~ with m£J . But then limu=um v~1 in C for isomor-

phisns u and v of £; and LLrﬂw. isin J, by 3108
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Theorexgzi;g. Let C have J-images, let F : K —>C be a functor with a

limit L , and let JEN F -—->EA be a natural transformation, where EA is a

constant functor (2.5). If kp.é:g_ for all k& lX|, then é_i_m,,(: L—>A

is in J .

Proof. Similar to that of 4.5, using 2.5 and 4.3 fi

We note the most important special case of 4.6.

Corollary 4.7. Let C have J-images, and let A be an object of C .
If a family (ik)k cx ofobjects of J/A has an jntersection (fibred product)

p={)3, in ¢, then peif

5. Miscellaneous results

Results proved in this section for J-images are also valid, with only minor
changes in proofs, for strong J-images, We denote by P and g“'t the classes

of all J-extremal and of all strongly J-extremal morphisms of (C .

 Proposition 5.1. Let pq be defined in C . If J consists of monomor-

phisms of C and (paq, j) is a J-image, then (q,)) is a J-image.

- Proof. If q j=q' j' with j'€J, then pq' 2pqgqx, J=xj' for
some xEC. Then gqx j=q' j', and q x =q' since j' is monomorphic.

x is unique for the same reason B

Proposition 5.2. Let pq be defined in C . If (pgq, j) is a J-image
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and p _an epimorphism of £ then (qrj) isa Jdmage«

Proof, If gqj *q" j* with j"£J; then q »qx, j«xj' in £

iff pg«pgxe | «x j' in Q. The latter is true for exactly -one x6 £@

Corollary 5.3* 1f, (Pid) _s a _J-image._and if up v-~:t is defined in. £
for_isomorphisms u;y of C , _then (up oy j) s a J-image«

Proof. (u~l up, j) isanimage and thus (u p, j) s an image by 5.2,

Nov (up v}f v j) is an image by 3.3 fl

Proposition 5.4. let pq be defined in € , with pé.ft « Then
t t
PAER <= qg&P gnd pqeEl 4=" q £p° .

Proof, This result (which we do not use in the present paper) is a special

case of 7.4;' Iet. K 5,1, j2 be identity morphisnms ©

Proposition®, if P _is defjned in £, with p€£S" «Ji ifl>
/ \ St

then \vgj) is astrong J-image and a strong £ -coinmage.

———

Proof. This follows imediately from the definitions |

Proposition 5%6* |f every nmorphism f of C has a factorization f »e j

in £ with e epinorphic in £ and j'£J.f then jP consists of epinorphisns

of £; and all equalizers in £ arein J[ ¢

Proof, If p<€2 and p»ejo jAL¢ then px «ey xj»pD. for

ome X ££¢ and then e j x »e « If e is epimorphic, then jxmele




and thus j is isomorphic and p epinorphic in £ .
If m is an equalizer of norphisns fk in £ andif m»e | wth e
epinorphic and j € J, $ thenall products j f are equal, and hence j »x m

w

for some x ££ . But then ex m»m, and thus e x =mDe. As e s epi-

nmorphic, it follows that e is isonmorphic. Thus m€: £ %

Proposition 5«7* 1f £ has equalizers and all equalizers of £ are in_J[ ¢

then jP _consists of epimorphisns of £ ¢

Proof, Let p£jP; andlet pf »pg in £¢ |If j £<J is an equali-
zer of f and g in C, then p«uj for some u6: £. But then u «p X

lemxj for sone x££ . It follows that f *x | f =x ] gsgf

Proposition 5*8. 1f £ consists of monomorphisms of £+ then_all - coequa-

. , . . A8t
lizers in £ are in j?2 " .

Proofs Let q be a coequalizer of morphisns ff: in £, andlet qv
s«uj in £ wth j £J*e Since | . is nononorphic, all products fku are
equal , and_thus u»qx foraunique xXEE. Nw gqvagqgxj', and (gqP) v

sx j follows. Thus (g, qDl) I's a strong inage of Q@

6« Self-dual theories

Let P, be a right transportable class of norphisns of £ o

Proposition 6.1. The following two statements are |ogically equivalent.

HUNT LIBRARY
CARNEGIE-MELLON  UNIVERSTY
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6.1.1. C has J-images, and every J-image in' C is a P-coimage.

has
6.1.2. C has P-coimages, and every P-coimage in C is a J-image [}

We say that C has (P,J)-decompositions if C satisfies 6.1.1 and 6.1.2.

Theorgg_g._:_g_. If C has (P,J)-decompositions, then P is the class of all

J-extremal morphisms of C , J is the class of all P-coextremal morphisms

of C, J and P are subcategories of C', gﬂ JdNP 1is the class of all

isomorphisms of C .

Proof. p &P & (p, p Dl) is a P-coimage &=> (p, P Dl) is a J-image
& p is J-extremal. Dually, J is the class of all P-coextremal morphisms.
Now J NP is the class of all isomorphisms by 3.6.

Let now (p,j) be a J-image of uv in C with u and v in J . Then
u=px, J=xy forsome x&C . Since u is P-coextremal, we have
uDO-py y, X=yu for some y&C . But then uD =py, yuvs=yj,

and uvE&Jd by 3.5. Dually, P is a subcategory of C

Theorem 6.3

b ] °

.The following five statements are logically equivalent.
6.3.1. Every f &C has a factorization f =p j in C with p& P and

JEJ. If wy=pv in C with JEJ and pEP, then u=px, ve=xj

in C for exactlyone xE(C .

6.3.2. C has strong J-i 8, J is closed under composition in

cH
and P is the class of all J-extremal morphisms of C .
6.3.3. C has (P,J)-decompositions, and if p j =p D,=jD in C with

PEP and j&J, then p and j are isomorphiems of C .
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6.3.4. C has J-images, P is closed under composition in C , and if
pJ is defined in C , then (p,j) is a J~image in C if and only if pEP
and JE€J -

6.3.5. P and J are cloged under composition in C , every f&€C hasa
factorization f =p J in C with P€PR and J&J, and if p j=p' j' in
C with p, p' in B and §, 3 in J, then p' =Px, J=x)' in C
for exactly one morphism x € C,

We say that ¢ has strong (P,J)-decompositions if these five statements

are valid.

Proof. If 6.3.1 is valid, and if f =p J in C with (p,j)EPX I .
then (p,j) clearly is a strong J-image and a strong P-coimage of f .,
With 6.2, this shows that 6.3.1 ==> 6.3.2.

If 6.3.2 is valid, then (p,j) is a J-image iff p j is defined in C ,
p&P, and j&J, by 3.7 and 5.5, and then (p,j) is a P-coimage by 5.5.
This proves, with 3.6, that 6.3.2 ==> 6.3.3.

We show next that uv&J and v &J imply u & J if 6.3.3 is valid.
Let (pyj) ve a J-image of u , with p €P . Since (uDo,uv) is a
P-coimage, we have uD =px , jVv=xuv for some x€C. Let (p',3')
be a J-image of x , with p'€ P . Then p p' j' ==uD° , and pp'€pl
by 6.2. Thus j' is isomorphic, and xE€ P . Now jv €J by 6.2, and thus
(le, :jv) is a P-coimage of j v . But then le-—.xy y uv=yJijv for
some y&€C . Thus p ié isomorphic with x =p-l , and u€ J .

Now 6.3.3 == 6.3.4 by the preceding paragraph, 3.8 and 6.2.
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Let now 6.3.4 be valid, 6,3.5 is valid if J, is closed under composition.
Thus let u v be defined in £ with us v in J, , and let (p,j) be a
Jr-image of uv . Then uapx, jaxv for some x££. Let (p'j') be
a J-image of x . Then pp'feP , and (p p*t y) is a _JMLmage of u "E o
Thus p p* y au I% , yu»j' for an isomorphism vy of £ . But Ithen

p'yuvap?® j! v«J, and uvE£J_by 3.5. Thus 6.3.4 «#* 6.3.5.

Finally, let 6.3.5 be valid. If uj«pv with p6JP_, j~J], then

let u*p' ", vep" j'"¢ with pt , p" in jp and 'y , j™ in £. Then
p* «pp"B , 3" *zy i foralmique z~C,; and u»px; v*xj for
_x«p" zj? If also uapx., V. »xljf let X «p; i.,1 with Py™ P_,
ij 6i . Then p'" app zV, "az» j'" , and goapr z" ¢ " » 2" N
for morphisms z' ; z* of £. Nw ptapp' 'z, jrazMzZ y | and
thus z" z' az . But then x, ap» z' 2" j! ax; and 6.3.5 => 6.3.11

Corollary 6.4. 1f £ has -(P>J)Hleconpositions_and jJ consists of mono-

morphisns of £¢ then £ has strong (Bxi)-deconpositions,

Proof. The hypothesis inplies 6.3*38

Remark 6.5. :If £ has strong (P, "-deconpositions, then £ has strong

Prcoimates AS wel| as strong jP-images. £ is an Isbellabi category "5} if PR

consi sts .of epinorphisns and J. of nononorphisns of £« It seens that very

little in-1sbell's theory depends on these additional assunptions.
p
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Z‘_ Direct and inverae imag_gg .

Definlt_l_o_r_lJ_/__eé, Le (j,f)EJX<L, , with j Dy * f Do . We say that

(fl’j 1) is a direct J_-imaqe or a grong direct J-image of (j,f) in £ if
(f-itj") laa  grimage o a grong .Jdmage respectively of j f in C.

Thus (fl.tj is a strong direct image of (j,f) iff (@) (fi«f) : j—>J«

?
in fiffji] t and (b) whenever (u, fv) : j —>j" in £F[jjt then u * f; x
in C. and (x,v) : jl, —>j" in g?r[ji;l‘. NOT exactly one X£C, e Fo a direct

image, we require (a), and (b) only for v »f Dl .

Definition 7.2. Le (f,j)€; CX J, with jD..«f D... We say that

(thAJ is a gtrong_inverse J-image of (f,j) in _C. if (& (fif) : *"—>j
in _Q??'j] and (b) whenever (u, v f) : j' e—>j in _C_%A[J, then U « X fl

in C ad (X,v) : j'—%$>jx in _8’,:.53' for exactly one x££ . We say that

(jl'fl) is an inverse J-image of (f;j) in C if (a) is satisfied, and (b) is

satisfied for v sf D
o
‘ -

I nverse images and strong inverse images are dual i n -(TT/‘.]'TT‘ to direct i mges
and strong direct images. Except for 7.7 and the self-dual 8.3, every result of
sections 7 and 8 has a dual in this sense which we do not state.

[f ~3 contains all isonorphisnms of £, then a strong inverse J"image is

L'»vD in7.2, (b). W note also that inverse

apull back in C; put |
' o]

("-images'in £ are the same as pullbacks in £. Direct inmages are images, and

every image is a direct image if J[ contains all isonorphisns of £ .

Proposition 7.3 LL (f,") isadirect J-image of (j,f) i C ¢ Lhen
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(f\j") Ls adrect J-image of (J:f) in £ if_ard onl\zivf.f- -fluf

it BU'lj , Lo £ for an isomorphism u Qf £ £9°

This result and its dual are also valid for strong direct and inverse images.

Theorem;éz Let (f1>j1) be a strong direct J-immge of (j,f) jln £5
and let (vysv) @ A~—2J, in SrflJe Then UM ") isadirect J-image or
a strong direct J-image of (dy>v) in £ ifandonly if (f~ Ve ™

direct J-immge or a strong direct J-immge respectively of (j, f v)

S a

The dual of this general izes a wel | -known result for pul | backs*

Proof, (u, fv) @ j —>y in _Grgjj iff u.Ay in G (yiv) @ A
3>y A £"[2kjt fo a unique y ££; since (f'tj;')l is a strong direct
imege. But then u«f ¢ X, j «j’ in £ for exaetly on® x €£ iff

y MVy X «x j" in £ for exactly one x ££. Thus (fyeq 92> isa

I 9
direct image iff (Vlsz) is adirect imge.

The proof for strong images is exactly anal ogous*0

Theorgn 7.5« kel (j.f) £EXEt with JDj.fD_. L C has
7*5.1. (“jy) isastrongdirect kimgeof (jif) .
7.5%2. fl jl. *jof_Ln £ _,iJ_"L, and whenever f v s defined in £

M GOj.fJg) adrect J-image of (dy¢v) ¢ then (™ vir J»> is.a d.irect

J-imge of (j, fv) in C.

Proof. 75«1l «5" 7.5.2 by 7.4. For the converse, let jf v«uj' in £

)" €i t and 1st (vij.) be adirect imge of (;Lv) . Then u»fle
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vmxj' in £ iff x *vyy for some y with: u*fe s yt_,k*yjf .

If 7.5.1is valid, then there is exactly one such y £ £, and thus (f'ltj'i) IS

jl
a strong direct inagef]

Proposition, 7.6* 1f £ has strong inverse J-imgea, fhen every direct

J-image in £ [s astrong direct J-inage»

Proof. Let (f*") be adirect image of (j,f) . If jfve«ujl in £,
ySi f ' (d®w'') *@ astrong inverse image of (v,j') . Then Jf »e ¥,

us «» 2 vt for a unique z£ £, and also s-fl_yf j.1 «y |" for a unique

1

yE£. Then u»f yvt, i_lv«yvl'jl.

Conversely, if u»fo o x. gy
«x j' ¢ then x «y' vl . yl j" for sone y'6.£ . But then flyf %
mz vt/ foy" jB2*2j" , and thus fly1 »z , yrij" »jl# I't follows that

1 %

y-ry , X «* f1 y , and (.fl"tji) Is a strong direct image of -(j¢f) ©

The following result has no dual for direct images.

Theoreml7. 7. _Let (jl."j be a pullback of - (f2,) in g, _with j~J.
£ an,g_q;imggg then $1£J[_, and_ (jj~f") is_a strong inverse
J-imge of (f.)) in G,

Proof> W nust only show that ji N1 . Thus let (pe,;}') bea strong
i mage of !

% -1 % . . . . )
Then fl p- x , j-f *x | for some x ££. Since (Jitfi)

iy -
is apullback, y my”* , x"y” for aunique y££ -+ Now p‘yjl«_jl,

1

pl y fo «fy , and thus p*y »~ Dy, y ™ *jf . But then i.f by 3.5§




8. Direct and inverse image functors

Definition 8.1. Let f : A—3B in C', and let f_ : J/A—>J/B bea

functor and L//f : HA, J —> £, HB, J a natural transformation such that
;jl/)f Dl =f for every Jé(_._I/Al . We put ‘Pf I_._I_Db =% ,» and we say that the
pair (‘7?, f*) is a direct J-image functor at .f if (j cpf, J f*) is a direct
J-image of (j,f) for every j& |J/al .
Dually, let f* : J/B —>J/A be a functor and (P, : f* H —> By
f Ad L
a‘natural transformation such that j¢)f Dl =f for every jé]._I/Bl . We put
" .
= inverse J-image functor
* IJ. D0 ff , and we say that (f*, ¢}) is an inverse J-image functor at f

if (3 f*, Jff) is an inverse J-image of (f,j) for every j& [J/B\.

Proposition 8.2. If C has J-images, then there is a direct J-image

functor (‘l‘;, f,) atevery f&C.

Proof. let f:A—>B. For J& |J/al, let (¢, §f,) be a direct
2
image of (j,f) , and let 3‘7”1. = (J Wps £) : § —>j f, in Q—[J_J. For u :
J—>J" in J/A, wehave u (§'yp) = () x, §f, =x(§'f,) in C
for exactly one xég . Weput x =u f* tJ f* —> ' f, in _g/ « One veri-
fies easily that this defines a functor f_, and a natural transformation qu

with the required propertiesE

Theorem 8.3. Let f&€C . If (‘f—f’., f,) is a direct J-image functor and

(f*,¢f) an inverse J-image functor at f , then f, is left adjoint to f* .,

*

Proof. Let f : A—»B . For objects a of J/A and b of J/B,
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we consider the equations

(1) a=u(bf*) , u(bb¢f)=(aylf)v , af, =vb

in €. If wra—>Dbf* in J/A, then (u(bgy), f):a-—>b in 02-[_{].
Since (a W a f,) is a direct image of (a,f) , (1) is satisfied for exactly
one morphism v :af,—>b of J/B. Dually, if v:af,—>»b in J/B,
then (J.) is satisfied for exactly one morphism u : a —>b f* of Q/A . Thus

putting u = v7a v if (1) is satisfied defines a bijection
?

’yab : J/B (af,, b) —>J/A (a, b *) .

One verifies easily that 7a b is natural in a and in b%
?

Theorem 8.4. If C has J-images and a direct J-imege functor (¥, f,)

is given at every f é C , then the equations

A By o) = 4, 5, W (e B = Y, W),

for A€|c| and f g defined in C, with g D, =C, determine natural

transformations c, : (id A), —>1d J/A and S (f g), —>f, g, . These

.

natural transformations satisfy the coherence relations

(£, cg’h) ,

®g,n Crg M) = Cp o
Cpr (cA £f,) = idf, = Cr 3 (f, c]}.) ,

for f : A~>B and fgh defined in C .

Proof. For j €& ! _.Z/Al s the first two equations mean that

Gy)le) =32, » (g )Ge ) = () )
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in ¢ for morphians | % 1A, —2) of JJ/A and i F'g ) gy —e-»

j fo0s tit UC . Since Gy, JAY and (j"~g.Jd (f 9)y) aredirect

images of (i,k) and of (j, fg , ad

()i £, y»é)

in £r:(J"IT9 these conditions determne | Gy and | cfg uni quel y.
(™ ] *

The renai nder of -the proof is straightforward di agram chasing0
¢ note that JCA is an isomorphismfor '$(\£]k\ , by 3.2 and 3,3#

Thus ¢, : A, — I'd LA is a natural equivalence for every A" CAl

Theorem 8.5. £ has strong J-immges if and only if £ has J-inaffea and

Cr gl (£ g),~>f. ga is anatural equivalence whenever .f g is definedin C*
’

Proof, W test 7*5.2. If jf v is definedin £ with j€J_, andif
(fisix) is adrect imge of (j,f) and ~"jg) one of (jifv) ¢+ then
FlagVE*X S ITx™ps VI x AL ¥ gy » Jj Ve *yID:
«

X A1 oAk (dEgyaxtha f (x Ve ) (d) Yen % fy V

in £ for isonorphisms x and y of £ . It follows that
f1V| (J Yt JZ v J(fv)x *Zj2

in £ for %m(j ¢t )(xvs) y. Now (f* vy J,J is adirect imge of
4
(j¢ fv) iff z is anisonorphismof £, and thisis the case iff | c. i's
mn ffV
an iaomorphismﬂ

Remark 8.6. If £ has strong J*inages and £. consists of norionor phi sns

of £ then we obtain a global direct imge functor f f-—2f _ as follows.
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V¢ assune that _J has a subclass _% such that every | ££ has exactly one

factorization | =u | in C wth j £J and u isonorphic in C . Then
0 -~ 0 0 —

every norphismof £ has exactly ope j-o-inage, and it follows that there is a
unique direct J -image functor (1;/'\: JIA—-J/B for f: A—=B in C
One verifies easily that f I—-f, defines a functor on £ .

)

If £ has strong inverse I mages and Jn consists of mononor phi sns of £
then we obtain a global inverse image functor f Y-~fe on C in the sane way.
0 o

R.EE‘ZL.I(_.S. 8. 7* Conparing 7*1 anq 8.1 with the definitions of [3; § I_]» one
sees easily..that giving a direct image functor, (Vli » fu) at every f££ is
the sane as giving an opcl eavage for the functor IJ q :_CTQII- —> £, except
that the natural transformations c” are equi valznces only if C has strong
imges. Dually; inverse inmage functors (f*; (El) at every f~NE£ define a
| cl eavage for the functor I.D £ with the.correspondi ng reservation.

In the termnology of [Ij, especially fl; 5.6] and {"l; 8:\]9 the data of 8.4
define a pseudofunctor F/ : _D__@ —» Cat® and a transformation *4A: c,P Q‘ Py
of pseudofunctors, where Cat is the bicategoiy of categories (denoted by Jac

in[il)f and F is a constant strict pseudofunctor, with f F » Id CFfj"l for

f A£ . The pair (M,F"J may be called a direct J-image pseudofunctor.

Dual Iy, inverse image functors (f* <£);y) , f~£, determne natural

transformations Cp ldj/A —(id Aj* and CX‘g: g* f* . —(f g)* wth the

expected coherence relations. These data define a pseudofunctor F* : DE -2

t _ & o .
fat. and a transformation Q : F r=" F* of pseudofunctors, where F° is con-

stant. The pair (F,(J)) may be called an inverse J-image pseudofunctor.
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9« Exanpl es and conpl enent s

9:1. If £* is the class of all isomorphisms of £, then £ has strong

(£,£*J-deconpositions and strong (£*¢£)-deconpositions. Inverse £+-images are
trivial; . inverse £-imges are pullbacks in £ .

9«2. W% denote by K the class of all monomorphisms and by E the class
of all epimorphisms of £ ¢ M-subobjects and Jl-images in our sénse are essenti=
ally the same as subobjects and imges in the sense of £4) and [IQ ¢ [Inverse
i mages in the usual sen.se (see LI Q- I.Ilg) are.strong inverse Ji-images in our
sense. The categories of sets and of groups, and all abelian categories, have
strong (j_ShM-deconpositions. and inverse M-inages. The category of rings has

strong (j?_14)-deconpositions for a proper subcategory £ of 1S .

9-3. If every norphism f ££ has a factorization f »e m in £ with
eNJE and mEM, then the M-extremal and E.-coextrenal -rmrbhisms in our
sense are the extremal epimorphisns and mononor phisms of C6j and [[I] and
~(esm is an Jl-inage iri our sense of f *em in £ if and only i'f e is a
coimage of f in the sense of [1].

The fol | owi ng result follows imediately from7.6 and 5. 4.

Proposition 9.4+ 1f £ has strong jnverse Minngea. and if every norphism

f Oof. £ has afactorization f »em'in £ wth ef£E - nd'm">lf t hen

the extremal epinorphisms of £ forma subcategory of £ @

9.5 The strict nononorphisms and epinorphisms of (73 are the strongly
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E-coextremal monomorphisms and the strongly M-extremal epimorphisms in our sense.
The nice properties obtained in [7] for strict monomorphisms and epimorphisms,

and their proofs, remain valid for strongly P-coextremal and strongly J-extremal
morphisms in general, without any restrictions, except for equalizers and coequal-
izers (see 5.8). If f=em in C and e is a coimage of f in the sense

of [7], then (e,m) is a strong M-image of f in our sense. C has coimages
in the sense of [7] if and only if C has strong (P,M)-decompositions in our

sense for a class P of epimorphisms of (C .

2;:2. The category of topological spaces furnishes some interesting examples
of strong (_li,g)-decompositions. We call f ¢+ A~—>B in this category coarse
if A has the coarsest topology such that f is continuous for the given topo-
logy of B, Dually, we call f : A —=»B fine if B has the finest topology
such that f is continuous for the given topology of A .

9.6.1. gl consists of all coarse injective maps, and 21 consists of all

surjective maps. J_l—subobjects correspond to subspaces.

_.[2 consists of all injective maps, and 22 consists of all fine surjective

maps. ge-quotient objects correspond to quotient spaces.

9.6.2. J, consists of all coarse maps and 24 of all fine maps.

ﬁ

is the class of all bijective maps.

4 -5

9.6.3_. _.IS consists of all closed injective maps, and P_. consists of all .

—.5

maps f : A =—>»B with f»(A) dense in B . gs-subob.jects correspond to closed

subspaces.

For two more unusual examples, see [2; 3.19_].
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N

————

O

Let C be a pointed category, and let K be the class of all kernels

of morphisms of C . K is left and right transportable.

Theorem. If C has kernels and cokernels, then C has strong K-images,

bt

and f 1mK = ker coker f , for f&C , defines a global K~image functor.

Of course, ker coker is determined only up to natural equivalence,

Proof. Let c =coker f and j=kerc . Then fc =0, and hence
f =p J for a unique morphism p& C . By 4.1.2, it is sufficient to show that
v(p,;j) is a strong K-image of f . Thus let f v =u j' with j' =ker g'
in C. Then fvg' =uj'g =0, and hence vg' =cy forsome y€C .
‘Now jvg'=jcy=0, and thus jv =xj' for some x&C . Since x is
monomorphic and px j' =p jv=fv=uj', x is unique and px=uﬂ

Our results 4.5, 4.7 and 7.7 are well-known for this case.

\O

.xB. If C 1is the category of groups and K the class of all kernels of
morphisms of C , then C has strong K-images and inverse K-images, by 9.7
and 7.7, but K is not a subcategory of C . Thus C does not have (P,K)-
decompositions for any class P of morphisms of C .

A preordered set C induces a category C consisting of all pairs (x,y)
in CX C with x €y , with composition (x,y)(y,z) = (x,z) , and with
|l =¢ . 1f ¢ ={0,1, 2, 3} with the usual order, and if J consists of all
morphisms of C except (1,2) and (2,3) , then J is a subcategory of C ,

and the conclusion of 3.9 is valid for J . One sees easily that C has

J~-images and inverse i—-imaées, but not strong J-images,




The hypotheses of our results are mostly justified by examples like these,

with one important exception. We do not have at present an example of a category

C with classes J and P of morphisms such that C has (P,J)-decompositions,

but not strong (P,J)-decompositions,

1.

7.
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UNI VERSI TAET MUENCHEN

CARNEG E- MELLON UNI VERSI TY




