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l. Introduction.

In this paper we consider linear differential systems of

the form
(1.1) y'(z) = P(z)y(2)
where Z(z) is the column vector (yl(z),...,yn(z)) and P(z)

is the nxn matrix [pik(z)?’ where the n2 analytic functions
pik(z) are regular in the domain D. Following Schwarz [8],

we shall say that (1.1) is disconjugate in D if for every

choice of n (not necessarily distinct)points Zy5Zgs 0032y

in D, the only solution of (1.1), which satisfies yi(zi).= o)

i=1,2,...,n 1is the trivial one Z(Z)E 0.

Various aspects and applications of systems disconjugancy
were considered by Nehari [6], Schwarz [8], London and Schwarz
[3], and Kim [l1]. Considering disfocality of second-order dif-
ferential equations Nehari pointed out that following principle
[6, Theorem 1.1] which we state here as a necessary and suffic-

ient condition for disconjugancy of the differential system

(1.2) Y1 = p(2)y,, v, = alz)y,,
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where p(z) and g(z) are regular functions in the doamin D.

Let
ul(z) u2(z)
(L.3) f(z) = ;IT;T s g(z) = ;;Ea

where u = (ul,uz) and v = (vl,vz) are linearly independent

solutions of (1.2). The system (1.2) is disconjugate in D 1if

and only ig' f(z) and g(z) are ‘'‘relatively schlicht' in D,

(1.4) " £(z)) # 9(z,)

for every choice of zl,zzeD.

If u and y are replaced by a different set of two

linearly independent solutions of (1.2), then, according to
(L.3), £ and g are replaced by Tf and Tg, where T is

given by

Af + B

(1.5) Tf=a-f——+—5,

AD - BC # 0

It is therefore necessary, that any relation between the
coefficients p(z) and gq(z) of (1.2) and the functions
f(z) and g(z) will remain invariant under the mapping
f - Tf, g - Tg. Two combinations of £ and g with this
invariance property are
(1.6) o(f,9] = T4,

(£-9)

and




_ £t g'! z(f'+ gt)
(1.7) ‘I’[f:g] = T FE T g' - f-g :

The relations between the coefficients p(z) and g(z) of

(1.2) and the functions &[f,g] and ¥Y[f,g] are given by

(1.8) -p(2)g(z) = @[£f,q]
and
(1.9) p!(z) _ ﬂ.le_) = V[£f,q].

p(2) a(z)

Now, for functions £f(z) and g(z) which are 'relatively
schlicht' in |z| < 1 it is known [5, p.28l, 6, Theorem 7.1]

that

(1.10) |e[f,q)| =E@a @] 1 __ ;<
|£(2) -g(2) |2 T (1-]2|%)?

Utilizing this result one obtains the following necessary con-

diton. If (1.3) is disconjugate in |z| < 1 then

1
(1.11) p(z)g(z) | £ —————~, z| < 1.
| <ot el

Our principal aim in this paper is to generalize these
results of Nehari to differential systems with n > 3. The
ideas are also related to a recent paper by the author [2],
where some function-theoretic aspects of disconjugancy of n-th

order linear differential equations were considered.
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2. Mappings onto domains with empty interséction.

Let xk(z) = (ylk(z), yék(z), cees ynk(z)) k =1,2,...,n,
be n linearly independent solutions of (1.1), then the matrix
Y(z) = [yik(z)]? is a fundamental solution of the matrix dif-

ferential equation
(2.1) Y1 (z) = P(z)Y(2)

corresponding to (1.1), i.e. the determinant det[yik(z)]g #0

for all =zeD. Without loss of generality we may assume that

yin(z) O i=1,2,...,n , and define the functions
Yix (2) .
(2.2) fik(z) = mz—) , i,k =1,2,...,n

which are meromorphic in D. Furthermore

[ =

(2.3) detly;, ()17 = 7 vy, (z)detlfy (2)17.

i=1
Hence, det[fik(z)]? # 0 for all zeD.
Let

n-1
Hi(z;al,...,an_l) = kflakfik(z), i=1,2,...,n

and denote by Di(al,...,an_l) the image of D given by

Hi(z;al,...,an_l). We state now:

Theorem 1.

(L.1) 4is disconjugate in D if and only if for every
n-1

such that 0 < I Ia.k|< 00,
k=1

choice of complex constant al,...,an_1 s




( 2.5)

N oB

i
holds.
As pointed out by Schwarz [8, Theorem 3], disconjugancy
of (1.1) in D is equivalent to the fact that for any funda-
mental solution [yik(z)]g of (2.1), we have det[yik(zi)]g # 0
for every choice of n (not necessarily distinct) points
zl,zz,...,zneD. According to (2.3) it follows now that discon-

jugancy of (1.1) in D is equivalent to

n
n
T ¥yn(z)det £y, (2,01 #0
i=1
for every choice of z;,...,z eD. Thus if yin(z) #0 (i=1,2,...,n)

for all =zeD, the functions fik(z) defined in (2.2) are
regular in D and Theorem 1 follows from [8, Theorem 3]. But
if we do not assume that Yin(z) # O the result does not fol-
low immediately, and it is exactly the zeros of yin(z) that
cause the difficulty in the proof of Theorem 1. To handle this

we shall require the following two lemmas.

Lemma 1.

Given a set of n points 2152950052, of D there

always exists a solution y(z)_of (1.1) such that vy, (z;) # O,
i=1,2,...,n.
Proof.

By the existence theorem thére exists a solution u(z)
such that ul(zl) = 1. Suppose u2(zz)‘= O, then by the same

argument there exists a solution v(z) such that v2(z = 1.

2)
If Vl(zl) = 0 then X(z) = E(Z) + tx(z), t # O, 1is a solution




of (1.1) which satisfies yl(zl) # 0, y2(z2) # O. Assume now
that u(z) and v(z) are solutions of (1.1) which satisfy

ui(zi) = a, A0 i=1,2,...,3 <n, uj+l(zj+1) = 0, Vl(zl) = 0,

. . -1 . o
vi(zi) = Bi #0 i=2,...,3+1. If t #-aiﬂi , 1 =2,...,5%1, then

x(z) = E(Z) + tv(z) will be a solution of (1.l1l) which satisfies

yi(Zi) #0 i = 1,2,.--,j+ln

Lemma 2.

If (1.1) is not disconjugate in D, and if vy, (z) 2O

i=1,2,...,n, then there exists a non-trivial solution X*(z)

of (1.1), such that v¥(z}) = 0 for =z¥eD, and yin(zi) # 0,

i=1,2,...,n.

Proof.

Since (1.1) is not disconjugate in D, there exists a non-
trivial solution X(z), such that yi(zi) = 0 for zieD
i=1,2,...,n. 1If yjn(zj) =0 for some 1 < j < n, then
apply a perturbation Ze(z) = Z(z) + eg(z), where u(z) is
a solution of (1.1l) which satisfies ui(zi) A0 i=1,2,...,n,
and € 1is a complex parameter. By making a proper choice of
€, say € = €%, we obtain y*(z) = Xe*(z), and y;(z;) = 0,
where z;eD, i=1,2,...,n. Furthermore, ¢* 1is chosen in

such a way to guarantee that yin(z:) # 0.

We are ready now to prove Theorem 1.

Proof of Theorem 1.

n

(i) Suppose b e N Di(al,...,an_l) for some choice of
i=1 n-1

ay5..+58 1, such that 0 < ZT [akl < oo, then there exist n
k=1

points zl,zﬁ,...,zneD such that




n-1 ‘
Hi(zi;al,...,an_l) = kiaakfik(zi) =b i=1,2,...,n.
If b = o0 then yin(zi) = 0 and (l1.1) is not disconjugate.
If b # o then

n-1
yi(zg) = Z ¥y (z;) - Py, (z;) = 0.

Indeed, if yin(zi) # O then evidently yi(zi) =n0i and if
Yin(zi) = 0, then it follows from b # oo that z akyik(zi)= (o]
k=1

and we have again yi(zi) = 0. Hence, disconjugancy of (1.1)

in D implies (2.5).

(ii) Assume (1.1) is not disconjugate in D, i.e. there

n
exists a non-trivial solution y*(z) = Z akzk(z) of (1.1)
~ k=1

such that yi(zi) = 0 for =z¥eD i=1,2,...,n., By Lemma 2

we may assume that yin(zi) # 0. Hence

y?(z?) n-1
= X f..(z¥) + a_ =0 i=1,...,n
yinZzi) k=1 A tik 21 n ’ ’ 200
n
and -a ¢ ingi(al,...,an_l). This completes the proof of

Theorem 1.
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3. Relations between the coefficients pik(z) and the' functions fik(z)'

Replacement of zk(z) (k = 1,2,...,n) by another set of
fundamental solutions yk(z) (k =1,2,...,n) results in a
transformation

n
Z oo, E. . .
W (2) j=lajkf13(z) i,k=1,2,...,n
(3.1) £y () = Fye (@) =G )= * et (o )T #o
p a.nfi.(z)
j=1 J J

applied to the matrix [fik(z)]?. Hence, any relation between
. . n n

the entries of the matrices [pik(z)]l and [fik(z)]1 must

remain invariant under mappings of the type (3.1).

Without loss of generality we may assume that
(3.2) pii(z) =0 i=1,2,...,n,
since this can be achieved by means of a transformation [8, p.489]

pA
(3.3) u,(2) = 7, (2y; (=), 7,(2) = c exp l p;; (DAL, i=1,2,...,n,
(o]

which leaves fik(z) unchanged. Assuming (3.2) it is still
possible to apply (3.3) with Ti(z) = cy # O where c; are

arbitrary constants. This results in

(3.4) 4'(z) = R(z2)u(z), R(z) = [ry (2)]]
where

“x
(3.5) rik(z) = pik(z)EI i,k =1,2,...,n.

Therefore, the coefficients pik(z) can be determined by the
functions fik(z)' up to a relation of the type (3.5). It is

easily verified by (3.5) that
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(3.6) Uij(z) =

and

(3.7) N, . (2) =£J!:j‘('i), i#3, i,j =
ij p;4(2)

=p;y(@py; (2, i AF, 1,3, = 1,2,...,n

are independent of the constants I Next we prove that

g. .
1]

(z) and nij(z) can be expressed in terms of the functions

fik(z), and therefore remain invariant under the group of trans-

formations of the type (3.l1l). According to (2.2) we have

yik(z) = fik(z)yin(z). Differentiating and using (1.1l) we

obtain

n Y.
(3.8) T p.. —1E[fjk- £,.] = £, k =1,2,...,n-1.

j=1 *J Yin

Thus for every fixed 1 <i<n we have (n-1) linear

Y.

equations for the (n-1) unknown p.. 2 4 ¢ i,

1J Yin

The (n-1)X(n-1) matrix mjk(i,z) = fjk(z)- £

j=1,2,...,i-1, i+l, ...,n , k =1,2,...,n-

det [myy (i,2)] (-l)n+idet[fjk(z)]? £0 for

(3.8) we get
P n
Yin detlhy, (i,3,2)],

(3.9) p,. 2=
13 Yin det[fsk(z)]?

i#3,
where

hsk(iJj)z) = fSk(z) S # jJ } S.’k

hyy (i,3,2) = £, (2)

Setting now

ix (2)

j = 1,2,7..,n.

1 , satisfies
all zeD. Solving
i’j = 1:230":n

= 1,2,...,0

det[h (i,3,2)]

(3.10) B..(z) = 0, B,.(z) =
\ 11 1] det [£_, (2)]

’i?éj:

i,3

j#£i, i, =1,2,...,n.

1,2,..

.,n
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it follows from (3.9) that
oij (z) = Pij (Z)Pji(z) = Bij (Z)Bji(z)
(3.11) det(h_, (i,j,z)]det[h_, (j,1i,2z))]
= sk sk , ig§ , i,3=1,2,...,n,
(det[f  (2)])?

and

_ pJI.] (Z)— BJ'.:L(Z) n o o
= pij(z)_ Bij12)+ kiﬁ[Bik(z)— Bjk(z)L i#j, i,j=1,...,n.

(3.12) M55 (z)

By Theorem 1, any condition for the functions fik(z)
k =1,2,...,n to satisfy (2.5), which may be expressed in
terms of Oij(z) and nij(z), is equivalent to conditionsl
for disconjugancy of (1.1). For n=2, a known result in the
theory of functions, namely inequality (1.10), was applied to
yield the necessary condition for disconjugancy (1.11). Yet,
for n > 2, we do not know of any necessary condition for the
functions fik(z) to satisfy (2.5). Conversely, in Section 7

a condition of this type will be deduced from necessary condi-

tions for disconjugancy obtained in Theorem. 5.
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4, A family of 'relatively schlicht' functions.

Another way to generalize Nehari's principle [6, Theorem

1.1] is by generating a family of 'relatively schlicht' functions.

Let

u. (z) u, (2)
(4-1) gj (z) = 'G;"(ET D gk(z) = Vk z) J#k: i,k = 132:°"’n
where u = (ul,...,un) and vy = (Vl""’vn) are linearly

independent solutions of (l1.l1l), which satisfy
(4.2) ui(zi) = Vi(zi) = 0, i#j,k i=1,2,...,n, zieD.

Denote by St the set of common zeros of ut(z) and Vt(z)

t=1,2,...,n. We assume that
(4.3) S¢ © D, S¢ #D t = j,k.
In case S =D, 1< t<n, wedonot define 9, (2) .

Evidently there always exists at least two linearly
independent solutions of (l1.l) which satisfy (4.2). (This is
an immediate consequence of the existence of a fundamental set
of n 1linearly independent solutions.) Moreover, if z;, = aeb,
i#3,k, i=1,2,...,n, then there exist exactly two linearly
independent solutions such that ui(a) = vi(a) =0, 1i# 3,k
i=1,2,...,n. But in the general case, where some of the zg
may be distinct, it does not follow from the existence theorem
that any three solutions of (l1.1l) which satisfy yi(zi) =0

i# 3,k i=1,2,...,n , are linearly dependent. In Lemma 3,

we discuss this situation.
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Theorem 2.

Let gj(z) and gk(z) be defined by (4.1), where u

and v are any two linearly independent solutions of (l.1l)

which satisfy (4.2) and (4.3). In order that the system (1.1)

be disconjugate in D, it is necessary and sufficient that for

every choice of n points (not necessarily distinct ZysZgseetsZy

of D, and every pair of functions gj(z) and gk(z)
(4.4) g] (ZJ) # gk(zk)’ j #k, j,k=1,2,...,n

will hold i,e. disconjugancy of (1.1) is equivalent to the

'relatively schlichtness' of all pairs of functions gj(z)
and g, (z), 3 # k.

For the proof of Theorem 2 we require some preliminary
prepositions which we state as a lemma.
Lemma 3.

suppose there exist three linearly independent solutions

y(z), v(z) and w(z), which satisfy yi(zi) = vi(zi) = wi(zi)= 0

i=1,2,...,n-2, zieD then

(i) (1.1) is not disconjugate in D.

(ii) There exists a pair of functions gj(z) and gk(z)

j # k which are not 'relatively schlicht' in D. i.e. gj(Cj)=

gk(Ck) for some Cj,CkeD.

Proof.

(i) Let z _1s 2,€D. There always exists a non-trivial
solution u(z) = alx(z) + azx(z) + a3g(z) which satisfies
un_l(zn_l) = un(zn) = 0. Hence.(l.l) is not disconjugate in D,

since ui(zi) =0 i=1,2,...,n.
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(ii) We first make the following remark. Since y(z)
and v(z) are linearly indépendent solutions, then at least
one component of each solution, say ys(z), and vm(z), 1 <s,
m<n, s #m are not identically zero. Hence, we may assume
that at least two components of x(z) are not identically

zero. Suppose now that

(4.5) vn_l(z) F o, vn(z) # O, zeb
and let z _1:2,€D be such that Vn-l(zn—l) # 0 and
vn(zn) #uoithen the functions gn_l(z) and gn(z), where
gt(z) = ;fjgb t = n-1, n are not 'relatively schlicht' in D
since gn-l(zn-l) = gn(zn) = 0.
In case (4.5) is false and yn_l(z) = vn_l(z) = wn_l(z) =0

we assume that vl(z) # 0, vn(z) # 0. Let Cl,CneD be such

that vl(Cl) # 0, vn(Cn) # 0. Proceeding as before there

exists a non-trivial solution u(z) = alx(z) + azx(z) + a3z(z)
such that ul(Cl) = 0, ui(zi) =0, i=2,...,n-2, un_l(z) = 0,

u () =0, and g, (&) =g (§) =0. If y (2) =v.(2)=w.(2)=0
for t = n-1, n we may assume that vl(z) # 0, vz(z) £ 0 and

proceed as before.

Proof of Theorem 2.

Ba_l, then

(i) Necessary. Suppose gj(zj) = gk(zk)
z(z) = ou(z) - Bv(z) satisfies yi(zi) =0 i=1,2,...,n.
(ii) Sufficient. Suppose there exists a solution u(z)
such that ui(zi) =0 1i=1,2,...,n, zieD. Let v(z) be a

solution of (1.1), which is linearly independent on u(z) and

HUNT LIBRARY
GARNEGIE-MELLON UNIVERSITY
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satisfies vi(zi) =0 i=1,2,...,n-2. Now if
(4.6) vz, 1) #0, v (z) #0

then gn-l(zn-l) = gn(zn) = 0, 80 suppose (4.6) is false and
vn_l(zn_l) = O. Assume S # D, where S, denotes the set of
common zeros of un(z) and vn(z) and let Cnﬁsn. There
exists a non-trivial solution vy(z) = alu(z) + azv(z) such

that yn(Cn) =0 and y;(z;) =0 i=1,2,...,n-1. More-

over there exists another solution w(z), which is linearly

independent of y(z) and satisfies wi(zi) =0 i=3,4,...,n-1,
wn(Cn) = 0. Now wt(zt) #0 t =1,2. Because, if wz(z2)= o}
then ui(zi) = Vi(zi) = wi(zi) =0 i=2,...,n-1 and by

Lemma 3, it follows from the 'relatively schlichtness' in D
of every pair of functions gj(z) and gk(z) that w(z) =
312(2)+ Bzz(z). But since w(z) and y(z) are linearly
independent it follows now from wn(Cn) = yn(Cn) = O that
un(Cn) = vn(Cn) = 0, which contradicts our assumption that

Cnﬁsn. So w2(zz? # 0 and similarily wl(zl) # O. Consider-
Y (2)
w

ing now the functions gt(z) = ) t =1,2, it follows
t
that gl(zl) = gz(zz) =0 . If S, = D, we may assume that

S # D and proceed as before.
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5. Quantities invariant under the mapping f - Tf, g - Tqg.

Our next goal is to establish relations between the coef-
ficients Pik(z) of the system (1.l) and the functions gj(z)
and gk(z) defined by (4.1). As has become by now a standard
procedure, we have to find out first what kind of transforma-
tions may be applied to gj and Iy without affecting their
relations with the coefficients Pix- If u(z) and v(z)
are replaced by the linearly independent solutions Au(z)+ Bv(z)
and Cu(z) + Dv(z) respectively, then according to (4.1), gj
and 9, are replaced by ng and Tgk, where T is the
linear transformation (1.5). Therefore any relation between
the coefficients Py and the functions gj and 9y should
be expressed by quantities which remain invariant under the
transformation g - Tgt t = j,k.

This brings up the following -question. Given two mero-
morphic functions, f(z) and g(z), in a domain D, what com-
binations of f£(z) and g(z) and their derivatives remain
invariant under the transformation f - Tf, g - Tg. Two
combinations of this type were given by Nehari, namely ®[f,g]
and VY[f,g] which are defined by (1.6) and (1.7). By differ-
entiating V¥[f,g] and ¢&[f,g] it is possible to derive more
quantities with this invariance property. One combination of

this type which will be of interest later is

(5.1) Ote, a1 = L4 - -3 g'[ga?l + Y[£,q]

In the following theorem we shall prove that with some

restrictions on the functions f(z) and g(z), every combination
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of f(z) and g(z) with the desired invariance property can
be derived from ®[f,g] and e[f,g] .

Denote by RC(D) +the restricted class in D (see [7],

p. 159), namely the class of functions {f(z)} which are
meromorphic in D with simple poles at most and which satisfy
f'(z) # O for all zeD. Note that if f belongs to RC(D)

80 does TE.

Theorem 3.

Let f(z)eRC(D), and let g(z) be a meromorphic function

in D such that

(5.2) £(z) # g(z), =zeD.

Let E[£(z),9(2)] = E(£(2),...,£™ (2),9(2),...,a™ (2)) be

a combination of £f(z) and g(z) and their derivatives up to

order n. If E(f(z),g(z)] remains invariant under the trans-

formaton f - Tf, g - Tg, i.e.,
(5.3) E[Tf(2) ,Tg(2)] = E[£(2) ,9(2)] = I(2)

where T 1is defined by (1.5), then E[f(z),g(z)] may be

derived from ®[£(z),9(z)] = o(z) and O[£(2),9(z)] = 8(2),

and

(5.4) I(z) = E[f(z),g(2)] = EX[{¥(z),0(2)]

where E* 1is a combination of ¢(z) and ¢(z) and their

derivatives up to order n-l.

Proof.

Let zoeD. Without loss of generality we may assume that
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f(zo) = 0, f'(zo) =1, f"(zo) = 0, since this situation may
be achieved by means of a transformation £f - Tf, g -~ Tg, (2,
Th. 2] which, accorxding to (5.3), leaves 1I(z) .unchanged. It
follows now from (5.2) that g(zo) =y #0. If ¥ # oo, then

by applying the transformaton f a[l-y—lf], g.a[l-y-lg], we

obtain
(5-5) f(zO) =1, g(zO) = 0, f! (ZO) # o, £ (ZO) = 0.
Setting now z = zZ in (5.1) and (1.6), it follows from (5.5)
that
6(z)) 20(z )
1 3 — —_— -
(5.6) £ (Zo) > # 0, 9‘(20) '—ETZ;T .

pifferentiation of (1.6) and (5.1l) gives us

5.7 o (g - e (e, Ml 9(2)

, m=0,1,2,...,
[£(z)- g(2)]1°  [£(z)- g(z)]1™"? |
" and
(m+2) N _ [f(z),g9(z)]
(m) _ £ (z) m B
(5.8) ] (z) = £ (2) + —T =1 m=1,2,...,

[£(z) - g(z)] [£1(z)]

where M.m and Nm are polynomials of £f(z), f'(zo),...,f(m+l)(z),

and g(z),g'(z),...,g(m)(z). By ellimination and induction it

follows now from (5.5), (5.6), (5.7) and (5.8) that

(m)
(.90 g™ oy o 22 gy, e (m-1)
. g Zo = - e(zo) m 6 zo Seeny (ZO) J‘D(Zo):--':(p (Z)]
m=0,1,2,...,
and
(m) ‘
20 4(z)
(5.10) ¢ (m™+2) (z,)= "_97?39— + R _[8(z) ,...,G(m'l)(zo),@(zo),---, f-1) (z,)]
O o

m=1l,2,...,
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where Rm and §h are rational functions whose denominators
are powers of 9(20)., Insertion of (5.6),(5.9) and (5.10) in

E{f(2),g9(z)] yields
(5.11)  I(z)= E[f(z,),9(z,)1= EX[8(z),...,0 Pz ) ,0(z), 0@ Az ).

In case we have f(zo) = 0, f‘(zo) =1, f"(zo) = 0, g(zo)= o
for zoeD, then by applying the transformation f£(z) - [1_f(z)]‘1

g(z) - ['.L-g(z)]'l we obtain

(5.12) f(zo) =1, f'(zo) = 1, f"(zo) = 2, g(zo) = 0.
Setting now z = z, in (5.1) and (1.6) we obtain according to
(5.12)

(5.6") ®(z,) =0, olz)) =g'(z).

The derivatives of f(z) and g(z) at the point z = zo,'may
be eliminated successively from (5.7) and (5.8) as before.

This leads us now to

(5.91) g™z )= 0™z )+ B 10(2,) s0(z)], m=l,2,...,
and
(5.10) £2); )= o™+ § _(0(2) ,0(2)1, n=l,2,...,

where ﬁh and ﬁﬁ are polynomials of the arguments 9(s)(zc))
and w(s%zo) s = 0,1,...,n-1. Insertion of (5.12), (5.6!'),
(5.9') and (5.10') in E[f(z),g(z)] yields a relation of the

type (5.11).
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Remark .
It is easily confirmed-that for £(z) and g(z) satisfying

the assumptions of Theorem 3, ¢(z) = P[£(z),g(z)] and 8(z) =

[£(2) ,9(2)] are regular functions in D. Moreover, ¢(z) # O
for zeD, if and only if in addition to the assumptions of the
theorem we have g(z)eRC(D). For £f(z),g(z)ecRC(D) satisfying
(5.2), the function Y(z)= ¥Y[f(2),9(z)] is also regular in D and a
theorem similar to Theorem 3 may be established with B[f,g]

replaced by VY[f,g].
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6. A subfamily of 'relatively schlicht' functions.

For the applications it is useful to consider only a sub-

family of functions of the type (4.1); namely:

u. (2) uk(Z)
(6.1) gj(z,a) = ;jTET s 9 (z,a) = ;;T;y s> 3 #Kk,

where u and y are linearly independent solutions of (1.1),

satisfying

(6.2) ui(a) = vi(a) =0, i#3j,k i=1,2,...,n, aeD.

Before taking the problem of establishing relations between
the functions (6.1) and the coefficients pik(z) of (l1.1),
we first make the following remarks.

(i) As laready discussed in Section 4, there exists
exactly two linearly independent solutions satisfying (6.2).
Therefore any other solution of (1.1l) which satisfy yi(a)= o
i#3j,k, i=1,...,n-2 is a linear combination of u and v.
Hence, replacement of u and v by another set of two linearly
independent solutions y,w satisfying yi(a) = wi(a) =0
i#3,k 1i=1,2,...,n, results in a transformation
gt(z,a) - Tgt(z,a) t = j,k, where T is defined by (1.5).

It follows that the relations between the functions (6.1) and
the coefficients pik(z) must stay invariant under the trans-
formaton gy "~ Tgt t = j,k.

(ii) Since the transformation (3.3) leaves the functions
(6.1) unchanged we may assume that pii(z)E o i=1,2,...,n.

In this case the coefficients pik(z) can be determined by the

functions (6.1l) only up to a relation of the type (3.5).
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Theorem 4.

Let pik(z) i,k = 1,2,...,n be regular functions in D and assume

(3.3) pi;(2)= 0 i=1,2,...,n.

Let the functions gj(z,a) and gk(z,a) be defined by (6.1)
of

where u and v are linearly independent solutions (1.1)

satisfying (6.2). If

‘ glg!
(6.3) ¢y (z,2)= @95 (z,2) L9, (z,a)] = —L1E—
and
gl 2g!

= = _J S

(6-4) ejk(z’a) —@[gj (Z:a)agk(z:a)] = ; - g.- gk
3 J
d .

where gé =35 [9:(z,a)], t =3,k then

(6.5) Pyx (3,3) = —ij(a)pkj(a), j#k, 3,k =1,2,...,n, aeD

and if pjk(a) # O, then

n
bl (2) iflpji(a)pik(a) | |
(6.6) ejk(a,a)= S CV s J7k, Jj,k=1,2,...,n, aeD.
Jk pjk(a)
Proof.

Let u(z) and x(z) satisfy

(6.7) ui (a) = &ik’ Vi(a)= 613)

According to (1.1) and (6.1l) we have

n
.Zapti(z)[ui(Z)vt(Z)— u (z) vy (2)]
l=

(6.8) g, (z,2) = 5
vy (2)

Therefore,
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n n
Zp..[u.v.- u.v. -
i=lpjl[ulv3 ujvl] E&pks[usvk ukvs]
(6-9) <pjk(zsa) = 5= ’

[u.v, - ukv.]2
Jk J

and (6.5) follows now from (6.9) and (6.7). By setting t=j

and z=a 1in (6.8) we obtain gﬁ(a,a) = pjk(a). Hence if
pjk(a)# 0 for aeD, gj(z,a) belongs to the restricted class
of functions in some neighborhood N(a) € D of the point a.
Obviously both gj(z,a) and gk(z,a) are meromorphic functions
in D. So, we conclude now that ejk(z,a) is regular in N(a).
By differentiating (6.8) and using (6.7) we obtain (6.6).

Since any solution of (1.1l) which satisfies yi(a) =0
i#j,k i=1,2,...,n , 1is a linear combination of the normalized
solutions wu(z) and yv(z) which satisfy (6.7), a different
choice of the two solutions would replace J: by Tgt, (t=3,k)
where T is of the form (1.5). But ¢(z,a) and 6(z,a) are
not affected by this transformation, hence (6.5) and (6.6) hold
for any choice of the solutions u(z) and v(z) regardless of

the normalization (6.7).

Remarks.

1. Note that (6.5) holds even without the assumption
(3.3), but in this case pii(z) are not determined by the
functions (6.1).

2. If pjk(z) # 0 for all zeD, 3J#k, 3Jj,k=1,2,...,n,
then (6.5) and (6.6) are the 'fundamental relations! between
the functions gj(z,a) and gk(z,a) and the coefficients

pjk(z) of (1.1).
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7. Necessary conditions for disconjugancy in the unit disk.

Theorem 5.

Let pjk(z) j,k=1,2,...,n be reqular for |z]| < 1. If

the system (1.1) is disconijugate in |z| < 1, then

1

— . z)< 1.
(1-1z|*)

(7.1) ijk(Z)pkj(z) <

Proof.
By Theorem 2 disconjugancy of (1.1) in |z|< 1 implies

the 'relatively schlichtness' in |z|< 1 of every pair of

functions gj(z) and gk(z) defined by (4.l1). 1In particular

gj(z,a) and gk(z,a) defined by (6.1) are 'relatively schlicht!'.

Applying (1.10), it follows that

-
3

lz]< 1
(1-]z

(7.2) oy (z,2) | = |®lg4(z,3) g (z,2) 1] <

holds for every 3j,k=1,2,...,n 3j#k, and any J|a|< 1. Setting

z=a in (7.2) we obtain by (6.5)

1

2,2 °

— 1 . lal< 1.
(1-]al®)

Py P @ | = o (a,2) | <

We add the following remarks.

(i) Since e[gj (z,a), gk(z,a)] cannot be bounded without
the further assumption that gj(z,a) is univalent in =z for
|z|< 1, (6.6) does not yield a necessary condition for discon-
jugancy. Moreover, in order to obtain a bound for
W[gj(z,a),gk(z,a)], one has to assume that both gj(z,a) and
gk(z,a) are univalent in |z|< 1, besides being 'relatively
schlicht!' there [6, Th. 7.2].

(ii) Let vik(C) i,k=1,2,...,n be regular in the domain A,




~24 -

and consider the differential system
(7.3) w(&) =TT(C),@(C)
where w({) = [oy () ,wz(C) Yo ,wn(C) ] and ‘”/(C) = [wik(C) ]2-

If A is conformally equivalent to D, i.e., if there exists
an one-to-one regular function {(z) which maps D onto A,
then (7.3) may be transformed by yj(z) = aﬁ[C(z)] j=1l,...,n

into the system (1.1) and
2
(7.4) Py (2 Py (2) = 7oy [E(2) 17y 5 18(2) ] (§9)

holds. Furthermore, (7.3) is disconjugate in A if and only
if the transformed system (1.1l) is disconjugate in D. Thus,
in view of (7.4), Theorem 5 yields a necessary condition for
disconjugancy in any domain A which is conformally equivalent
to the unit disk.

We conclude this section with the following corollary.

Let fik(z) i,k=1,2,...,n be reqular functions in the

unit disk D, such that fin(z) =1 i=1l,...,n, and

det[fik(z)]? # 0 for =zeD. Let Hi(z;a be defined

l""’an-l)
as in (2.4), and denote by Di(al,...,an_l) the image of D

given by H,(z3a;,...,a ;). If

n
(2.5) iQlDi(al,...,an_l) =g
for every choice of the constants By5ce5a 15 such that
n-1 o |
o< Z < oo, then
Ke1 |k ’

1 . g .
——————5;5 , i#j, i,3=1,...,n, |z|< 1,

(7.5) IBij(z)Bji(z)[ < -z
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where Bij(z) are defined by (3.10).

Proof.
By Theorem 1, (2.5) implies the disconjugancy of the
corresponding system (1.l1). According to (3.11]) and (6.5)

the result follows.

Remarks . (1) (7.5) is a generalization of (1.10) for the
case n >2. (ii) Since Bij(z)Bji(z) remains invariant whenv
fik(z) is subject to a transformation of the type (3.l1l), our
result may be generalized to meromorphic functions Fik(z)’

i,k=1,...,n, which are obtained from fik(z) by means of (3.1).
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8. Disfocality of n-th order differential équations;

In the special case where

(0] 1l o] . . . . 0] 0]
0] o 1 o . . . o 0]
(8.1) P(Z) = . . T e . . . ° . .

0 O . . . . . o) 1

L—qu _qn_l - . . . . “q2 "ql

the column vector X(z) = [yl(z),...,yn(z)] of (1.1) becomes
[w(z),w'(z),...,dn_v(z)] and (1.1) is equivalent to the

differential equation
(8.2) w(n%z) + ql(z)w(n_l%z) + ...+ qn(z)w(z) = 0.

In this case disconjugancy of (1.1) in D is equivalent to
disfocality 6f (8.2) in the same domain D. (8.2) is called

disfocal in D if for every choice of n (not necessarily

distinct) points z;,...,z, of D, the only solution of (8.2)

satisfying w(zl) = w'(zz) = ... w(n_lkzn) = Oy is the trivial

one w(z) = 0. (See[6]).

Let q(z) k=1,2,...,n be regular functions in lz|< 1.
If (8.2) is disfocal in |z|< 1, it follows from (6.5) and
(8.1) that

1

3

But (6.5) does not yield bounds for the other coefficients of

(8.3) |q2(z)| < lz|< 1.

(8.2), since by (8.1) pin(z)E O for 1i=1l,2,...,n-2. Yet such
bounds may be obtained by slight modifications of Theorem 4

and 5.
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Theorem 6.

Let qk(z) k=1,2,...,n be reqgular in the domain D, and

let u(z) and v(z) be linearly independent solutions of

(8.2) which satisfy

8.4) u'®a) = v(®}a) = 0, s=0,1,...,n-1, s#j-1,5 1 < j < n-1, aeD.

Let
(3-1 (3
(8'5) gj (Z,a) = E(—j__ik'é)_ ) gj+l(z’a) = u_(:T)k_z_)-; j=l)2:"',n'l'
v %z) v (z)
1f
gl'g!
+1 .
(8.6) wj’j+l(z,a) = ¢[gj(z,a),gj+l(z,a)] = (J -] )2 j=1,2,...,n-1
957 9511
and
t ! 2g|
8.7 6 Z,a = Z.a Z_,a — n-l _ n-—l
(8.7) 9, 1,n(z:2) éB[gn_1< »a) ,9, (z,a) ] 31, 3. .- 9.
then
- o' _ _ (n-j-2) _
(8°8) (pj,j+1(a,a) - ‘Pj’j+l(a,a) T ee . T (pj,J+l (a,a) - O:
(n—j_l) j=132,-n,n—1
(8.9) 5,541 (@,a) = q, 4, ()
and
(8.10) en-l,n(a’a) = -ql(a).

All derivatives are with respect to z.

Proof.

Since (8.6) and (8.7) remain invariant under the transforma-
tion g — Ty t=j,j+l, where T is given by (1.5), we may

assume that

(8.11) u(z)= Wil(z), v(z)=wy1(2), 1<3<n-l
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where wt(z) t=1,2,...,n 1is a fundamental set of solutions of
(8.2) which satisfy

(s 1)

LA (a) = 5st’ s,t=1,2,...,n.

(8.12)
This assumption results in simplification of the calculations.
According to (8.5) and (8.11) we obtain now

vz w1z w‘J Dizywi3) (2) L (2)

g{(z a) = j+1 J+1 -
J 2
[W(J l)(Z)] ;111%2)]
e v w2 - wBlewiii ) k()
g. zZ,aj)= - *
i+l wid) 212 [w§1}(z)]2
Hence
K. (2)
(8.13) 03,301 (2:2) = =
J

By (8.12) we obtain for z=a

1 -2 .
(8.14) Lj(a)= -1, Kj(a)= Kj(a)= . ;n 1- % )= 0, j=1,2,...,n-1
and
(8.15) K;n_J—l%a) = wén%a) = -, 541 @ j=1,2,...,n-1.

(8.8) and (8.9) follow now from (8.13), (8.14) and (8.15).

In a similar way, it is easily verified that

L (z)
) (z,a) = n-1_ .

n-1,n
Ln—l(z)

Setting z=a, (8.10) follows.

We apply now Theorem 6 in order to obtain necessary condi-

tions for disfocality of (8.2) in the unit disk.
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Theorem 7.

Let qk(z) k=1,2,...,n be regular in the unit disk .

equation (8.2) is disfocal in |z|< 1, then

(8.16) lq (2) | £ —F =+ k=2,3,...,n, |z|< 1
k (1_|Z|2
where k.2

(8.17) A=1, A = (k-2) . (kzz) (t+§)

R k=3,4,...,n.

£

We require the following elementary result for the proof

of Theorem 7.

Let h, (z), k=1,2,..., be a regular function in [z|< 1.

If
(8.18) Ih (2) | < ——?TLTE;E , lzl< 1,

then

(8.19) Ih(s)(z)l < Cls.k) lz|< 1, s=1,2,..

('I l2 s+k

where C(s,k) are constants depending only on s and k.

Proof.
@® :
Let hk(z) = X bjzj, then by Cauchy inequality
j=0
.| < rM(r), M(r) = max |h (z)].
] ’ |z |=r<1 "

By (8.18) M(r) < (1-r2)-k, therefore

(8.20) |b,| < min r I (1-r?) ®= m(,k)= (2k+1) (2T
] 0<r<1 3

Set
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{+a

k
(8.21) m (X)) =n [(2@1GH , 2(0) = T3, Jal< 1.

z({) is a mapping of |{|< 1 onto |[z|< 1, and therefore

@ .
h (D) = T BjCJ is regular in |{|< 1. Moreover, since
j=0
2
| | __.l_l_
1-1¢)?

it follows from (8.18) that

1

(8.22) Im, @)] < ——=—=—, |C|< 1.
Consequently
(8.23) lﬂjl <m(j, k), j=1,2,...

Differentiation of (8.21) leads us to
k+1 2
' _ C dC d«g

It is easily confirmed that

€1 (2) | < (_AJIAIIT)—z , lzl< 1,

and by setting now =0 in (8.24) we obtain

1
| ©O) [+ 2k|a|[n, (0) | Lm0+ 2k c(lk)
- = .
(1-[a| %"+ (a-lalH* @-jalhFH

(8.25) |hk(a)| <

To obtain a bound for ]hk%z)l, one can either apply (8.19)

: .
to h or differentiate (8.21) twice. Higher derivatives

K (2)

may be obtained in a similar way.

Remark.

If

1 (S—l)
(8.26) hk(a) =11k(a)= ... =h (a) =0, s=1,2,...,
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then for z=a we have

(s) |nésk0)| < s'm(s,k)

(8.27) h (a) < <
k (l_lal2)3+k (1_|a|2)s+k

Proof of Theorem 7.

Since (8.2) is disfocal in |z|< 1, it follows from Theorem 2
(and may easily be verified directly) that for every 1 < j < n-1
and any |a|< 1, the functions gj(z,a) and gj+l(z,a), defined

by (8.5), are 'relatively schlicht' in |z|< 1. Consequently,

(8.28) l(pj,j+l(z’a)| = ch[gj (Z:a):gj_*_l(zga)]l ﬁm: |Zl< 1.

We utilize now the relations between the functions o and

J,3+1

the coefficients established in Theorem 6. For

In-j+1°
j=n-1, it follows immediately from (8.9) and (8.28) that

(a,a) | < L

——— ., la|< 1.
n-1l,n (1-|a|2)2

lay(a) | = |o

For 1 < j < n-2 we apply Lemma 4 to wj (z,a) with k=2

,J+1
and s=n-j-1. By (8.9) and (8.19) we conclude that

Apeqel

(n-j-1) .
l 2) n-j+1

(@) ] = lo; - (a,a) | <
l I J:J+]— (l-—lZ

'qn-j+l j=1,2,...,n-2,

Moreover, according to (8.8) and to the remark following Lemma 4,
5 n-j-1

< (n-3-1) Im(n-j-1,2) = (n-j-1) . (B3 (2:}fi> 2,

An-j+1
which completes the proof of the theorem.
We add the following remarks:
(i) (8.10) cannot be utilized to yield a bound for |ql(z)|,

since a bound for en 1. (zs2) ‘may be obtained only if
T
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gn_l(z,a) is univalent in |z] < 1, which is more than we can
conclude from our assumptions.

(ii) The technique of differentiating the functions ¢, may
also be applied in the general case when the matrix P(z) does
not take the special form (8.1). Assume now that (1.1) is discon-
jugate in |z|< 1 and that (3.3) holds. By differentiating

(6.9) once and setting z=a, we obtain

!

(8.29) o4 (a,a)= -py (a)py, (2) - Py () py 5 (a)
n
- iEl[pji(a)pik(a)pkj(aH pki(a)pij(a)pjk(a)]-
According to (7.1) and (7.2) we may apply Lemma 4 to pjk(z)pkj(z)

as well as to mjk(z,a). it follows now from (8.19) that

' c(1,2)
|04y (a,2) | < , lal< 1
jk (l'lal2)3
1 ! c(l,2 l
ijk(a)pkj(a)+ ij(a)ij(a)| < < é 3~ |al< 1
(1-1al)
which by (8.29) yields
(8.30) | g [Py, (2) (a) (a)+ p . (@) p, . (a)ps ()] ] < 2c(1,2
y i Py @/ Pip @) Pyy ki i3 ik - =112l
la|< 1.
For n=3, j=1, k=2 (8.30) reduces to
lget[p(a)]] < —2&2 o aj< 1.

1-lal®)
By taking the second derivative of (6.9) at the point z=a,
it is possible to obtain sums of products of 4 coefficients of
the matrix P(z) (n > 4), and similar results for higher deriva-
tives. The actual calculation is somewhat cumbersome.

We end with the following corollary for second order equations.
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1f aq,(z) is regular in |z|< 1 and if the differential

equation

(8.31) w''(z) + a,(z)w(z) =0

is disfocal in |z|< 1, then it is also disconjugate in |[z|< 1.

We recall that a second-order differential equation is called"
disconjugate in a domain D, if the only solution that vanishes
twice in D is the trivial one. As for the proof of the
corollary, since (8.31) is disfocal in |z|< 1, it follows

from (8.16) that

1
— . lz|<1
1-]z|% 2

which is sufficient to guarantee the disconjugancy of (8.31)

la,(z) | <

in |z|< 1. (see [4]).
We note that this result holds only if ql(z)s O and is
not true in the general case of second order differential equa-

tions of the type (8.2). Considering the differential equation
y”(z)- (m+l)y‘(z)+ my (z) = O, m> 1

London and Schwarz [3] showed that, in general, disfocality
neither implies disconjugancy nor is implied by it.
In view of the fact that disconjugancy of (8.31l) is equiv-
' w, (2)
. 1
alent to univalence of f(z) = W;TEY , wWhere wl(z) and w2(z)

are linearly independent solutions of (8.31), our last corollary

may be stated as a univalence criterion.

Theorem 8.

Denote by D the disk |z-b|< R, 0 < R < o, and let £(z)
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be a meromorphic function in D. If

2(£ (2,)1°
(8.32) f(zl) - f"(zl) # f(zz)

for every pair of points (not necessarily distinct) zl,zzeD,

then f£(z) is univalent in D and

2
{£(z),z}]| < zeD
where
fui(z 3., £(z 2
(f(z),2} = FTZ(TL - 5l f—1§;§- ]

is the Schwarzian derivative.

Proof.
Without loss of generality we may assume that D is the

unit disk, since this situation may be achieved by means of a

transformation {(z) = Zéb , which does not violate (8.32).

Consider now the second order differential equation

(8.33) wh(z) + ql(z)w'(z) + qz(z)w(z) = 0.

According to (8.9) and (8.10) we have

/
-qp (2) = f}[f(Z),G(Z)], d,(z) = ®[f(2),g(2)]

where

(8.34) £(2) vy (2] (z) wi(Z)

8. 2) = =+, g(z) = —
w,(2) W, (2)

and wl(z) and wz(z) are linearly independent solutions of

(8.33). 1If ql(z)E O, it follows from (5.1) that

' 2
(8.35) glz) = £(z) - 21E (21"

£1(z2)
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and

®[£(2) ,9(2)]1 = S{£(2),2].

In view of (8.35), formula (8.32) takes the form g(zl)# f(zz),
which by (8.34) is equivalent to the disfocality of the differ-

ential equation

(8.36) w' (z) + %{f(z),z}w(z) = 0.

By Theorem 6, disfocality of (8.36) in the unit disk implies

2

(1-1z|% 2"’

which is a sufficient condition for disconjugancy of (8.36)

(8.37) [{£(=2),2)]| < lz|< 1,

in |z|< 1. Since disconjugancy of (8.36) is equivalent to

the univalence of f£f(z) [4], our proof is accomplished.
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valuable advice offered during many discussions.
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