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1. Introduction.

In this paper we consider linear differential systems of

the form

(1.1) £< (z) = P(z)X(z)

where y(z) is the column vector (y, (z),...,y (z)) and P(z)

is the nxn matrix [p^fz), , where the n analytic functions

p., (z) are regular in the domain D. Following Schwarz [8],

we shall say that (1.1) is_ disconjugate in D i_f_ for every

choice of n (not necessarily distinct)points z,,z~,...,zn

in Dj the only solution of (1.1) , which satisfies y. (z.) = 0

i = 1,2,...,n i^ the trivial one y(z)= O.

Various aspects and applications of systems disconjugancy

were considered by Nehari [6], Schwarz [8], London and Schwarz

[3], and Kim [1]. Considering disfocality of second-order dif-

ferential equations Nehari pointed out that following principle

[6, Theorem 1.1] which we state here as a necessary and suffic-

ient condition for disconjugancy of the differential system

i = pU)y 2, y'2 = q(z) Y l,
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where p(z) and q(z) are regular functions in the doamin D,

Let

u, (z) u (z)

where u = (u,,uo) and v = (v,,v_) are linearly independent

solutions of (1.2) . The system (1.2) is_ disconjugate in D if

and only if f(z) and g(z) are 'relatively schlicht' in D,

i.e. if.

(1.4) f (Z;L) ^ g(z2)

for every choice of z-^z^eD.

If u and v are replaced by a different set of two

linearly independent solutions of (1.2), then, according to

(1.3), f and g are replaced by Tf and Tg, where T is

given by

(1.5) Tf = ^ ^ g , AD - BC £ 0 .

It is therefore necessary, that any relation between the

coefficients p(z) and g(z) of (1.2) and the functions

f(z) and g(z) will remain invariant under the mapping

f -» Tf, g -» Tg. Two combinations of f and g with this

invariance property are

(1.6) *[f,g] = f'ql

(f-g)2

and
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f'1 o i i 2(f<+ a M

(1.7) *[f,g] = V " V " f-g '

The relations between the coefficients p(z) and q(z) of

(1.2) and the functions $[f.,g] and ^[f,g] are given by

(1.8) -p(2)q(z) = *[f,g]

and

( 1 - 9 ) t \ i \

p(z) q(z)

Now, for functions f(z) and g(z) which are 'relatively

schlicht1 in |z| < 1 it is known [5, p.281, 6, Theorem 7.1]

that

( l . i o ) |$ [ f ,g] | = | f l ( z ) q ' ( z U < T T T T > lzl < x •
f(z)-g(z) | 2

Utilizing this result one obtains the following necessary con

diton. ~L£_ (1.3) iŝ  disconjugate in |z| < 1 then

(1.11)
d-|z|2)

Our principal aim in this paper is to generalize these

results of Nehari to differential systems with n >̂  3. The

ideas are also related to a recent paper by the author [2],

where some function-theoretic aspects of disconjugancy of n-th

order linear differential equations were considered.
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2. Mappings onto domains with empty intersection.

L e t Xk(
z) = <vik(z)' Y2k ( z )' '"' ynk ( z ) ) k =

be n linearly independent solutions of (1.1), then the matrix

Y (z) = [y-^tz)], is a fundamental solution of the matrix dif-

ferential equation

(2.1) *' (z) = P(z)Y(z)

corresponding to (1.1), i.e. the determinant det[y., (z) ] - ̂  0

for all zeD. Without loss of generality we may assume that

y. (z) f 0 i = l,2,...,n , and define the functions

yik(z)

(2.2) fik ( z ) = y (z) ' i,k = l,2,...,n

which are meromorphic in D. Furthermore

(2.3) det[yik(z)]
n = 7T y i n (z) det [f ± k (z) ]

 n .
i=l

Hence, d e t [ f i k ( z ) ] n ^ 0 for a l l zeD.

Let

n-1
H i(z;a1 , . . •,an_1) = S ^ f ^ C z ) , i = l , 2 , . . . , n

and denote by D.(a,,...,a _.) the image of D given by

H. (z;a,, ...,a ,) . We state now:

Theorem 1.

(1.1) is_ disconjugate in D i^ and only if for every
n-1

choice of complex constant a-, , . . . ,a .. , such that 0 < £ I a, |< co,
l n-i k _ ^ k
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n
(2.5) 0 D (a.,..., a .) = 0

i=l 1 x n-L

holds.

As pointed out by Schwarz [8, Theorem 3], disconjugancy

of (1.1) in D is equivalent to the fact that for any funda-

mental solution [y-v(
z)li1 °f (2.1), we have det [y., (z .) ], ^ 0

XJC X ' XK. X X

for every choice of n (not necessarily distinct) points

zl ) Z2'"' ) Zn 6 D l According to (2.3) it follows now that discon-

jugancy of (1.1) in D is equivalent to

for every choice of z,,...,z eD. Thus if y. (z) ̂  0 (i=l,2,...,n)

for all zeDj the functions f., (z) defined in (2.2) are

regular in D and Theorem 1 follows from [8, Theorem 3]. But

if we do not assume that y. (z) ̂  0 the result does not fol-

low immediately, and it is exactly the zeros of y. (z) that

cause the difficulty in the proof of Theorem 1. To handle this

we shall require the following two lemmas.

Lemma 1.

Given a set of n points z,,z~,...,z of D there
_ _ _ _ __— _ ^____ x z n —

always exists a solution y(z) of (1.1) such that y.(z.) ̂  0,

Proof.

By the existence theorem there exists a solution u(z)

such that u. (z..) = 1. Suppose u_ (z?) = 0, then by the same

argument there exists a solution v(z) such that v2 (zj) = 1.

If v. (z,) = 0 then y(z) = u(z) + tv(z), t ̂  0, is a solution
xx ~ ~ ~
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of (1.1) which satisfies Y±(ZT) ^ °> V2^Z2^ ^ °' Assume now

that u(z) and v(z) are solutions of (1.1) which satisfy

u±(zi) = a± ^ 0 i = l,2,...,j < n, u..+1(z_.+1) = 0,
 vi*zi) * °>

v±(zi) = j8± / 0 i = 2,...,j+l. If t ̂ -ai/3i"
1, i =2,...,j+l, then

y(z) = u(z) + tv(z) will be a solution of (1.1) which satisfies

yi(zi) / 0 i = 1,2,...,j+l.

Lemma 2.

If (1.1) is not disconjuqate in D, and if y. (z) f 0
•"•"••" "' ^ — • — — — .I — — i n

i = l,2,...,n, then there exists a non-trivial solution £*(z)

of (1.1), such that yf (zf) = 0 for zfeD, and y^Uf) ^ 0,

i = 1,2,...,n.

Proof.

Since (1.1) is not disconjugate in D, there exists a non-

trivial solution y(z), such that y.(z.) = 0 for z.eD

i = l,2,...,n. If y. (z.) = 0 for some 1 < j < n, then
Dn 3 ~ ~

apply a perturbation y (z) = y(z) + eu(z), where u(z) is

a solution of (1.1) which satisfies u.(z.) / 0 i = l,2,...,n,

and e is a complex parameter. By making a proper choice of

e, say € = e*, we obtain y*(z) = y * (z) , and y* (z?) = 0,
where z*eD, i = l,2,...,n. Furthermore, e* is chosen in

such a way to guarantee that y. (z*) j4 0.

We are ready now to prove Theorem 1.

Proof of Theorem 1.
n

(i) Suppose b e n D.(a,,...,a ,) for some choice ofi=1 1
a,,..., a ., such that O < E [a, | < co, then there exist n
x n"± k=l K

points z,,z,,,..., z eD such that
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n-1
(z±) = b

If b = cx> then y. (z.) = 0 and (1.1) is not disconjugate

If b ^ oo then

n-1

Indeed, if y. (z.) ̂  0 then evidently y.(z.) = 0 , and if
l n x 1 x n-1

y. (z.) = 0, then it follows from b / oo that E

and we have again y.(z.) = 0 . Hence, disconjugancy of (1.1)

in D implies (2.5).

(ii) Assume (1.1) is not disconjugate in D, i.e. there
n

exists a non-trivial solution y* (z) = L a, y, (z) of (1.1)

such that y* (z*) = 0 for zfeD i = l,2,...,n. By Lemma 2

we may assume that y. (z*) ̂  0. Hence

yf(zf) n-1
v (I*) = S a^fik(z|) + a = 0,yin^ziJ k=l K 1K 1 n

n
and -a e 0 D.(a,,...,a , ) . This completes the proof of

Theorem 1.



3. Relations between the coefficients p., (z) and the functions f., (z)

Replacement of v. (z) (k = l,2,...,n) by another set of

fundamental solutions w. (z) (k = l,2,...,n) results in a

transformation

wlk(z> ^ V ^ j (Z ) i ,k- l ,2 , . . . ,n
(3.1) f.k(2) - F.k(z) = J S j g - J=i , d e t [ a s t , J ^

applied to the matrix [f., (z)]n. Hence, any relation between

the entries of the matrices [p-k(z)]
n and [f..(z)], must

remain invariant under mappings of the type (3.1).

Without loss of generality we may assume that

(3.2) Pii^z) s ° i = 1*2,...,n ,

since this can be achieved by means of a transformation [8, p.489]

(3.3) u. (z) = T . (z)y. (z), T. (z) =c.exp | p. .(C)dC, i=l,2,...,n,
X X X X X 0 11

zo

which leaves f., (z) unchanged. Assuming (3.2) it is still
XJC

possible to apply (3.3) with T.(Z) = C. £ 0 where c. are

arbitrary constants. This results in
(3.4) u'(z) =R(z)u(z), R(z) = [rik(z)]J

where

ck
(3.5) rik ( z ) = Pik ( z )c^ i,k = l,2,...,n.

Therefore, the. coefficients p., (z) can be determined by the

functions f-k(z) up to a re]

easily verified by (3.5) that

functions f., (z) up to a relation of the type (3.5) . It is
_LJC



(3.6) cr^ (z) = pi^(z)p^i{z) , i ^ j, i,j, = l,2,.

and

P\A (Z)
(3.7) TJ. .(z) = J , x , i ^ j, i,j = 1,2, ...,n

are independent of the constants c.. Next we prove that

O. . (z) and 77. . (z) can be expressed in terms of the functions

f., (z) , and therefore remain invariant under the group of trans-

formations of the type (3.1). According to (2.2) we have

y., (z) = f., (z)y. (z) . Differentiating and using (1.1) we
XJC lie in

obtain

n y.
(3.8) £ p. . -l£[f., - f . , ] = f ' k = 1,2, . . .,n-l.

• i ID y4ri Dk l k l k

Thus for every fixed 1 <̂  i <̂  n we have (n-1) linear
y.

equations for the (n-1) unknown p. . —^— j ^ i, j = l,2,...,n.
1:1 yin

The (n-1) X (n-1) matrix n w ^ z ) = f-k(z)- f±k(z)

j = l,2,...ji-l, i+lj ...,n j k = l,2,...,n-l , satisfies

det [m., (i,z) ]

(3.8) we get

det [m., (i,z) ] = (-1) n+1det [f .. (z) ] ? ^ 0 for all zeD. Solving

y. det[h
(3.9) p JS

y'in det[fgk(z)]'i

where

hjk(i,j,z) = f!k(z)

Setting now

j, I s,k = 1,2, . . . ,n

* j 7* i, i> j = 1,2, . . .,n,

(3.10) B l i U ) - o .
det[hJ

SJC
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it follows from (3.9) that

cr..(Z) =

(3.11) ^ det[hsk(i,j,z)]det[hsk(j,i,z))]

(det[fsk(z)])
2

and

pj^(z) B'.(z) n
(3.12)

By Theorem 1, any condition for the functions f., (z)

k = l,2,...,n to satisfy (2.5), which may be expressed in

terms of cr. . (z) and rj. . (z) , is equivalent to conditions

for disconjugancy of (1.1). For n=2, a known result in the

theory of functions, namely inequality (1.10), was applied to

yield the necessary condition for disconjugancy (1.11). Yet,

for n > 2, we do not know of any necessary condition for the

functions f., (z) to satisfy (2.5). Conversely, in Section 7

a condition of this type will be deduced from necessary condi-

tions for disconjugancy obtained in Theorem 5.
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4. A family of 'relatively schlicht1 functions.

Another way to generalize Nehari's principle [6, Theorem

1.1] is by generating a family of relatively schlicht1 functions.

Let

u. (z) Uk*2)
(4.1) g.. (z) = v | ( z ^ , gk(z) = v (z) , j A , j,k = 1,2, .. .,n

j k

where û  = (u,,...,u ) and v = (v.,...,v ) are linearly

independent solutions of (1.1), which satisfy

(4.2) ui(zi) = vi (zi) = 0, i^j,k i = l,2,...,n, zi6D.

Denote by S. the set of common zeros of u (z) and v.(z)

t = 1,2,. ..,n. We assume that

(4.3) S t c D, S t ^ D t = j,k.

In case S. = D, 1 <_ t < n, we do not define <?t(z) •

Evidently there always exists at least two linearly

independent solutions of (1.1) which satisfy (4.2). (This is

an immediate consequence of the existence of a fundamental set

of n linearly independent solutions.) Moreover, if z. = aeD,

i ^ j * k J i = Ij2,...,n^ then there exist exactly two linearly

independent solutions such that u.(a) = v.(a) = 0 , i ^ j,k

i = l,2,...,n. But in the general case, where some of the z.

may be distinct, it does not follow from the existence theorem

that any three solutions of (1.1) which satisfy y.(z.) = 0

i ^ j , k i = l , 2 , . . . , n , are linearly dependent. In Lemma 3,

we discuss this situation.
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Theorem 2.

Let g. (z) and 9],(z) be defined by (4.1), where u

and v are any two linearly independent solutions of (1.1)

which satisfy (4.2) and (4.3) . In. order that the system (1.1)

be disconiuqat e in D, it. is. necessary and sufficient that for

every choice of n points (not necessarily distinct) z,,z_,...,z

of D f and every pair of functions g. (z) and <?k(z)

(4.4) g.j(Zj) ? 9k(zk)j J ^ k> j,k = 1,2, ...,n

will hold i.e. disconjugancy of (1.1) i_s_ equivalent to the

'relatively schlichtness' of all pairs of functions g.(z)

and g^ (z) , j ^ k.

For the proof of Theorem 2 we require some preliminary

prepositions which we state as a lemma.

Lemma 3.

Suppose there exist three linearly independent solutions

y(z), v(z) and w(z) , which satisfy yi (z.̂ ) = v.̂  (z^ =w i(z i)=

i = l,2,...,n-2, z.eD then

(i) (1.1) i§. not disconjugate in D.

(ii) There exists a_ pair of functions g. (z) and g, (z)

j ^ k which are not 'relatively schlicht' in D. i.e. g.(C•)=

gk(Ck) for some £j,CkeD.

Proof.

(i) Let z ., z eD, There always exists a non-trivial

solution jj(z) = a,^(z) + a?v(z) + a_w(z) which satisfies

u ,(zn_i) =
 u (z ) = 0 . Hence (1.1) is not disconjugate in D,

since u. (z.) = 0 i = l,2,...,n.
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(ii) We first make the following remark. Since

and v(z) are linearly independent solutions, then at least

one component of each solution, say y (z), and v (z), 1 < s,
S III "™"~

m <_ n, s ̂  m are not identically zero. Hence, we may assume

that at least two components of v(z) are not identically

zero. Suppose now that

(4.5) v
n - l

( z ) ^ °> V n ( z ) ̂ °> zeD

and let z _,,z eD be such that v ,(z _,) £ 0 and

v (z ) / 0, then the functions g ,(z) and g (z), wheren n (z) n-1 n

gt(z) = r-\ t = n-l, n are not 'relatively schlicht1 in D

since g ^ U ^ ) = gn<zn) = 0.

In case (4.5) is false and y , (z) = v , (z) = w , (z) = 0

we assume that v, (z) f 0, v (z) f 0. Let C-i,C eD be such

that ^(Cj^) ^ 0, vn(Cn) ^ 0. Proceeding as before there

exists a non-trivial solution u(z) = a,y(z) + a_v(z) + a-,w(z)
~ J-~ £.~ 3~

such that ^(C-^ = 0, u±(zi) = 0 , i = 2,...,n-2, u n l (z) = 0,

un ( Cn } = °> a n d gl ( Cl ) = 9n
(Cn} = °* I f Y t ( z ) = v t ( z ) H w t ( z ) =

for t = n-l, n we may assume that v,(z) f 0, v«(z) f 0 and

proceed as before.

Proof of Theorem 2.

(i) Necessary. Suppose g.(z.) = g, (z, ) = j3a~ , then
3 3 K K

ŷ (z) = Ofu (z) - 0v(z) satisfies y.(z.) = 0 i = l,2,...,n.

(ii) Sufficient. Suppose there exists a solution u(z)

such that u.(z.) = O i = 1,2,...,n, z.eD. Let v(z) be a

solution of (1.1), which is linearly independent on u(z) and

HUNT LIBRARY
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satisfies v. (z.) = 0 i = 1, 2, . . . ,x\-2 Now if

<4'6> vn-l<zn-l> *°> vn<zn> *°

then g ,(z _,) = g (z ) - 0, So suppose (4.6) is false and

v ,(zn_i) - 0. Assume S / D, where S denotes the set of

common zeros of u (z) and v (z) and let £ j£s . There

exists a non-trivial solution y(z) = a,u(z) + a_v(z) such

that Yn(Cn) = 0 and yi(zi) = 0 i = l,2,...,n-l. More-

over there exists another solution w(z), which is linearly

independent of y(z) and satisfies w.(z.) = 0 i=3,4,...,n-l,

wn(Cn) = 0. Now wt(zfc) / 0 t = 1,2. Because, if w (z»)= 0

then u.(z.) = v.(z.) =w.(z.) = 0 i = 2,...,n-l and by

Lemma 3, it follows from the 'relatively schlichtness1 in D

of every pair of functions g. (z) and g, (z) that w(z) =

j8iJi(z)+ P?X.(z) • But since w(z) and ŷ (z) are linearly

independent it follows now from w (£) = y (C) = 0 that

u (C ) = v (C ) = 0, which contradicts our assumption that

£ /S . So wo(zo) ^ 0 and similarily w,(z,) / 0. Consider-n n 2 2. , } 1 1

ing now the functions g. (z) = j—r- t = 1,2, it follows
X. W, \Z)

that g, (z,) = g_(z?) = 0 . If S = D, we may assume that

S, ̂  D and proceed as before.
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5. Quantities invariant under the mapping f -• Tf, q -» Tq.

Our next goal is to establish relations between the coef-

ficients p., (z) of the system. (1.1) and the functions g.(z)
IK J

and q, (z) defined by (4.1) . As has become by now a standard

procedure, we have to find out first what kind of transforma-

tions may be applied to g. and g, without affecting their
3 K

relations with the coefficients P-T,- If Ji(z) an<^ X^z)
are replaced by the linearly independent solutions Au(z) + Bv(z)

and Cu(z) + Dv(z) respectively, then according to (4.1), g.

and g, are replaced by Tg. and T g ^ where T is the

linear transformation (1.5). Therefore any relation between

the coefficients p., and the functions g. and g. should
*ik ^j k

be expressed by quantities which remain invariant under the

transformation g. -• Tg t = j,k.

This brings up the following question. Given two raero-

morphic functions, f(z) and g(z), in a domain D, what com-

binations of f(z) and g(z) and their derivatives remain

invariant under the transformation f -» Tf, g -» Tg. Two

combinations of this type were given by Nehari, namely $[f,g]

and ^[f,g] which are defined by (1.6) and (1.7). By differ-

entiating ^[f,g] and $[f,g] it is possible to derive more

quantities with this invariance property. One combination of

this type which will be of interest later is

firf al - H I M i - i *' ff'q1
KJ[f,g] - f i - fT^ " J *[fg]

(5.1) KJ[f,g] - f i - fT^ " J *[fg]

In the following theorem we shall prove that with some

restrictions on the functions f(z) and g(z), every combination
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of f(z) and g(z) with the desired invariance property can

be derived from $[f,g] and Q[f, g].

Denote by RC(D) the restricted class in D (see [7],

p. 159), namely the class of functions (f(z)} which are

meromorphic in D with simple poles at most and which satisfy

f'(z) ^ 0 for all zeD. Note that if f belongs to RC(D)

so does Tf.

Theorem 3 .

Let f(z)eRC(D), and let g (z) be a meromorphic function

in D such that

(5.2) f(z) / g(z), zeD.

Let E[f(z) ,g(z)] = E(f(z),...,f (n) (z) ,g(z) , . . .,g(n) (z)) be

a_ combination of f (z) and g(z) and their derivatives up to

order n. I£ E(f(z),g(z)] remains invariant under the trans-

forma ton f -. Tf, g -» Tg, i.e. ,

(5.3) E(Tf(z),Tg(z)] = E[f(z),g(z)] = I (z)

where T is defined by (1.5), then E[f(z),g(z)] may be

derived from $[f(z),g(z)] = co(z) and (j[f (z) ,g (z) ] = 6(z),

and

(5.4) I(z) = E[f(z),g(z)] = E* [«P(z) , e (z) ]

where E* i_s_ a_ combination of <p(z) and Q (Z) and their

derivatives up to order n-1.

Prdof.

Let z eD. Without loss of generality we may assume that



-17-

f(z ) = 0, f' (z ) = 1, f'' (z ) = 0, since this situation may

be achieved by means of a transformation f -• Tf, g -• Tg, [2,

Th. 2] which, according to (5.3), leaves I(z) unchanged. It

follows now from (5.2) that <?(zo) = y ̂  0. If y £ co, then

by applying the transformaton f - [l-y~ f ] , g_[l-y~ g] , we

obtain

(5.5) f(zQ) = 1, g(zo) = 0 , f'(zo) 7* 0, f"(zo) = 0 .

Setting now z = z in (5.1) and (1.6), it follows from (5.5)

that

9(z ) 2«p(z
(5.6) f ( z ) = - — - ^ ~ ji 0,

D i f f e r e n t i a t i o n of (1.6) and (5.1) gives us

(5.7) <p(m)(z) =

and

, v .(m+2) , , N [f (z) ,g(z) ]
(5.8) Q(m) (z) = r

 f,,J
Z} + — jrpr r r i , m = l , 2 , . . . ,

11 Kz) [ f ( z ) - g ( Z ) ] m + ± [ f ' ( z ) ] r a + i

where M and N are polynomials of f (z), f'(Z ),...,f
v / (z),

and g(z),g'(z),...,g (z). By ellimination and induction it

follows now from (5.5), (5.6), (5.7) and (5.8) that

(5.9) g ( m + 1 )(z ) = -2(P . *° + R [9(zo),..., Q
{m\zo),rp(zo),...,o y iz ) m \j o o

O

m=0,1,2,...,

and

29(m\z-) / ,,
f ( m + 2 ) ( z o ) = -o ) = - 9 ( Z J + R m [ e ( Z o ) , . . . , e \ 2 o ) j ( p ( z o ) , . . .

m = l , 2 , . . . ,
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where P^ and R are rational functions whose denominators

are powers of 6 ( Z Q ) . Insertion of (5.6),(5.9) and (5.10) in

E[f(z),g(z)] yields

(5.11) Kz o)= E[f(zo),g(ao)]= E* [9 (ZQ) , . . ., 6
 (n-1)(zo) ,<p(zQ), ...,(p

 {n"1

In case we have f (zQ) = 0, f' (zQ) = 1 , f' ' (zQ) = 0, g(z )= co

for zQ€D, then by applying the transformation f(z) - [ l - f ( z ) ]

g(z) -. [ l - g ( z ) ] ~ we ob ta in

(5.12) f(zQ) = 1, f (zQ) = 1, f " ( z o ) = 2, g(zQ) = 0 .

Setting now z = z in (5.1) and (1.6) we obtain according to

(5.12)

(5.6-) 6(zo) = 0 , (0(zo) =g'(z o).

The derivatives of f(z) and g(z) at the point z = z , may

be eliminated successively from (5.7) and (5.8) as before.

This leads us now to

(5.9') g(m+1)(zQ)= <p
(m)(zo)+ Mm[e(zo),<p(zo)], m=l,

and

(5.10') f(m+2)(zo)= 9
(m\z)+ Nm[e(zo),<p(zo)], m=l,2

where H and N are polynomials of the arguments 9^

and <p*s\zQ) s = 0,1, . . . ,n-l. Insertion of (5 .12) , (5.6 ') ,

(5.9') and (5.10') in E[f(z),g(z)] yields a relation of the

type (5.11) .



-19-

RemarX.

It is easily confirmed that for f(z) and g(z) satisfying

the assumptions of Theorem 3, <p(z) = $[f(z),g(z)] and 9(z) =

[f(z),g(z)J are regular functions in D. Moreover, <p(z) jt 0

for zeD, if and only if in addition to the assumptions of the

theorem we have g(z)€RC(D). For f (z) ,g (z) eRC(D) satisfying

(5.2), the function j|)(z)= ^[f (z) ,g (z) ] is also regular in D and a

theorem similar to Theorem 3 may be established with L/[f,g]

replaced by
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6. A subfamily of 'relatively schlicht' functions.

For the applications it is useful to consider only a sub-

family of functions of the type (4.1); namely:

u. (z) VL (z)

3

where JJ, and y, are linearly independent solutions of (1.1),

satisfying

(6.2) u.(a) = v.(a) = 0, i ^ j,k i = 1,2,...,n, aeD.

Before taking the problem of establishing relations between

the functions (6.1) and the coefficients p. (z) of (1.1),

we first make the following remarks.

(i) As laready discussed in Section 4, there exists

exactly two linearly independent solutions satisfying (6.2).

Therefore any other solution of (1.1) which satisfy y.(a)= 0

i ^ j>^s i = lj«..,n-2 is a linear combination of u and v.

Hence, replacement of u and v by another set of two linearly

independent solutions £,w satisfying y. (a) = w. (a) = 0

i ^ j,k i = l,2,...,n, results in a transformation

g. (z,a) -. Tg. (z,a) t = j,k, where T is defined by (1.5) .

It follows that the relations between the functions (6.1) and

the coefficients p., (z) must stay invariant under the trans-
iJ^

forma ton g. -» Tg t = j,k.

(ii) Since the transformation (3.3) leaves the functions

(6.1) unchanged we may assume that p..(z)= O i = 1,2,...,n.

In this case the coefficients p., (z) can be determined by the

functions (6.1) only up to a relation of the type (3.5) .
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Theorem 4.

Let p.. (z) i,k = 1,2, . . . ,n be_ regular functions in D and assume

(3.3) Pi:L(z)= 0 • i = 1,2,...,n.

Let the functions g. (z,a) and g, (z, a) be_ defined by (6.1)

where u and v are linearly independent solutions of (1.1)

satisfying (6.2) . Ijf

(6.3) <p., (z,a)= $[g(z,a) ,g (z,a)] = -

and

(6.4) e.. (z,a) =6fg, (z,a),g. (z,a)]
<3\ g j " %

where ?t = dz" tgt*z'a*] ' fc = ^ k t h e n

(6.5) <pjk(a,a)= -p (a)pkj (a) , j^k, j ,k = 1,2, ...,n, aeD

and if p.fc (a) ^ 0, then

• / \ £ p . . (a) p., (a)
p' (a) •_•! Di 71^ikx '

(6.6) 8. (a,a)= 1 K
( , + ^ ^ , j A , j,k=l,2, . . . ,n, aeD

J Pjkv P ( a )
Pjk(a)

Proof.

Let u(z) and v(z) satisfy

(6.7) u. (a)= 6,. , v. (a)= 6. ., j/k, 1=1,2, . . .,n, 1 < j,k < n.

According to (1.1) and (6.1) we have
n
£ P t i (z ) [u± (z) vfc (z) - u t (z) v ± (z) ]

(6.8) g^(z,a) = i=i = .

Therefore,
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n n
Ep..[u.v.-u.v.] Sp. [u v. - u, v ]
• •, 3 1 1 3 3 1 i ks l s k 1c sJ

(6.9) <p-,(z,a) = i=± §^±

and (6.5) follows now from (6.9) and (6.7). By setting t=j

and z=a in (6.8) we obtain g'. (a^a) = p., (a) . Hence if
3 3*

Pjk(a)^ 0 for a€Dj g.(z,a) belongs to the restricted class

of functions in some neighborhood N(a) a D of the point a.

Obviously both g.(z,a) and g, (z,a) are meromorphic functions
3 K

in D. So, we conclude now that 8 ., (z,a) is regular in N(a) .
3*

By differentiating (6.8) and using (6.7) we obtain (6.6).

Since any solution of (1.1) which satisfies y.(a) = 0

i^jjk i=l,2,...,n , is a linear combination of the normalized

solutions u(z) and v(z) which satisfy (6.7)^ a different

choice of the two solutions would replace g. by T<?tJ (t=j,k)

where T is of the form (1.5). But (p(z,a) and e(z,a) are

not affected by this transformation, hence (6.5) and (6.6) hold

for any choice of the solutions u(z) and v(z) regardless of

the normalization (6.7).

Remarks.

1. Note that (6.5) holds even without the assumption

(3.3), but in this case p..(z) are not determined by the

functions (6.1).

2. If Pjk(z) ^ 0 for all zeD, j^k, j,k=l,2,...,n,

then (6.5) and (6.6) are the 'fundamental relations' between

the functions g.(z,a) and g (z,a) and the coefficients
3 K

pjk(z) of (1.1) .
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7. Necessary conditions for disconjugancy in the unit disk.

Theorem 5.

Let p., (z) j,k=l,2,...,n be regular for. |z| < 1. If

the system (1.1) _is_ disconjugate in |z| < 1, then

(7.1) |p (z)p (z) <

Proof.

By Theorem 2 disconjugancy of (1.1) in |z|< 1 implies

the 'relatively schlichtness' in |z|< 1 of every pair of

functions g-(z) and gv(z) defined by (4.1) . In particular
j K

g.(z,a) and g, (z3a) defined by (6.1) are 'relatively schlicht'
J K

Applying (1.10), it follows that

(7.2) |<pik(z,a) | = |*[g. (z,a),gk(z,a)] | <
 1

 2 , |z|<l

holds for every j ,k=l, 2, . . . ,n j^k^ and any | a. |< 1. Setting

z=a in (7.2) we obtain by (6.5)

| P j k(a)p k j(a)| = k>jk(a,a)l <
 X , |a|<l.
v J-- | a I )

W e add the following remarks.

(i) Since \J[g • (z,a) } g, (z,a)] cannot be bounded without
J K

the further assumption that g. (z,a) is univalent in z for

|z|< 1, (6.6) does not yield a necessary condition for discon-

jugancy. Moreover, in order to obtain a bound for

^[9-; (z,a) ,g, (z,a) ], one has to assume that both g.(z,a) and
D K D

g, (z,a) are univalent in |z|< 1, besides being 'relatively

schlicht' there [6., Th. 7.2].

(ii) Let ^-v^) i,k=l,2, . . .,n be regular in the domain
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and consider the differential system

(7.3) ;

where <o(0 = [^ (C) , ̂  (C) , .. ., 0>n (C) ] and T/(C) = [irik(C)]J.

If A is conformally equivalent to D, i.e., if there exists

an one-to-one regular function C(z) which maps D onto A ,

then (7.3) may be transformed by y. (z) = to. [£(z)] j=l,...,n

into the system (1.1) and

(7.4) Pjk(z)pkj(z) =

holds. Furthermore, (7.3) is disconjugate in A if and only

if the transformed system (1.1) is disconjugate in D. Thus,

in view of (7.4), Theorem 5 yields a necessary condition for

disconjugancy in any domain A which is conformally equivalent

to the unit disk.

We conclude this section with the following corollary.

Let f. (z) i,k=l,2,...,n be regular functions in the

unit disk D, such that f. (z) s 1 i=l,...,n, and

det [f±k(z) ]
n ̂  0 for zeD. Let H± (z;ax, . . . ,an_1) be defined

as iji (2.4), and denote by D.(a,,...,a ,) the image of D

given by H. (z;a,,...,a , ) . I_f_

n
(2.5) n Di(a1,...,anl) = 0

for every choice of the constants a.,...,a ,, such that

n-1
0 < L la. I < oo , then

k=l ^

t i z.\ I n (rr\n I r,\ I <? i •; J-k i -i — i », I ~ I << I
\ I . o ) | c . . ^ z ; j t s . . ^ z ; | 2 i r> o > i - r J > 1 ^ J - ' - j » « - * n j z i ^ •"-*

( 1 - | z I )
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where B..(z) are defined by (3.10).

Proof.

By Theorem 1, (2.5) implies the disconjugancy of the

corresponding system (1.1). According to (3.11) and (6.5)

the result follows.

Remarks. (i) (7.5) is a generalization of (1.10) for the

case n >2. (ii) Since B..(z)B..(z) remains invariant when

f., (z) is subject to a transformation of the type (3.1), our

result may be generalized to meromorphic functions F., (z),

i,k=l,...,n, which are obtained from f., (z) by means of (3.1)
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8. Disfocality of n-th order differential equations.

In the special case where

0 0

(8.1) P(z) =

o
0

o

1

0

0

1 0

0

-q.

the column vector y(z) = [y, (z) , . . . ,y (z) ] of (1.1) becomes

[w(z) ,w' (z) , . . . ,vln" (z) ] and (1.1) is equivalent to the

differential equation

(8.2) w
(n)(z) + q1(z)w

(n-1)(z) + ... + qn(z)w(z) = 0.

In this case disconjugancy of (1.1) in D is equivalent to

disfocality of (8.2) in the same domain D. (8.2) is_ called

disfocal in D i_f for every choice of n (not necessarily

distinct) points z.,...,z o_f_ D, the only solution of (8.2)

satisfying w(z,) = w1 (z2) = . . . wv ~ \z ) = 0, is_ the trivial

one w(z) = 0. (See [6]).

Let <3T,(Z) k=l,2,...,n be regular functions in |z|< 1

If (8.2) is disfocal in |z|< 1, it follows from (6.5) and

(8.1) that

i / \ i -̂ 1(8.3)
U-M 2) 2'

z < 1.

But (6.5) does not yield bounds for the other coefficients of

(8.2), since by (8.1) p. (z)= 0 for i=l,2,...,n-2. Yet such

bounds may be obtained by slight modifications of Theorem 4

and 5.
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Theorem 6.

Let q, (z) k=l,2,...,n be regular in the domain D. and

let u (z) and v(z) be_ linearly independent solutions of

(8.2) which satisfy

(8.4) u*s\a) = v*s\a) = 0, s=O,l,...,n-l, s^j-l,j 1 < j < n-1, aeD,

Let

u(8.5) g.(z,a) = V J , gi+,(z,a) = ,J)
3 v ^ " 1 ^ ) D + 1 v(D)(z)

If

(8.6) <p. . (z,a) = *[g. (z,a),g . + 1(z,

and

(8'7) 9n-l,n(z'a) = 8[gn_1(z,a),gn(z,a)] = ̂ 1 _ _ V i _ _

then

(8.8) <Pj^+1(a,a) = <p^ j + 1 (a,a) = . . . = pjnj+£2\a,a) = <O

(n-i-1) f j=l,2,.»,n-l
(8.9) <pK /+i (a,a) = qn_ j + 1 (a) >

and

(8.10) 9 n ( a , a ) = -q (a) .
J . 1 ™™ - L • 1 X - L

All derivatives are with respect to z.

Proof.

Since (8.6) and (8.7) remain invariant under the transforma-

tion gt - Tgt t=j,j+l, where T is given by (1.5), we may

assume that

(8.11) u(z)=w j ( z )^ v(z)= w j + 1 ( z ) , 1 < j < n-1
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where w. (z) t=l,2,...,n is a fundamental set of solutions of

(8.2) which satisfy

(s-1)
(8.12) w t (a) = 6 , s,t=l,2, ...,n.

This assumption results in simplification of the calculations.

According to (8.5) and (8.11) we obtain now

'7\ L (z)
g ' (Z,a) = -^ l±i 3 Hi . _J

K

[w(j)(z)J2 - [w(:)

Hence

(8,

By

.13)

(8.12) we obtain

*j,j

for

+ 1(z,

z=a

,a) =
K.

L.

(z)

(z)

( 8 . 1 4 ) L j ( a ) = - 1 , K j ( a ) = K ^ ( a ) = . . . = K^'^ ~2\a) = 0, j = l , 2 •, . . . , n - l

a n d

(8.15) K:f
n':3"1)(a) = wjn)(a) = - q n j + 1 (a) ,

(8.8) and (8.9) follow now from (8.13), (8.14) and (8.15).

In a similar way, it is easily verified that

L n
e n n(z,a) = .

Ln_l(z)

Setting z=a, (8.10) follows.

We apply now Theorem 6 in order to obtain necessary condi-

tions for disfocality of (8.2) in the unit disk.
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Theorem 7.

Let q, (z) k=l,2,...,n be regular in the unit disk. If

equation (8.2) iss. disfocal in |z|< 1, then

(8.16) |qv(z)|< S-S-TT k=2,3,...,n, |z|<l

where - ~

(8.17) A2= 1, ^ = (k-2)l (̂ ±£) (£±|) , k=3,4,...,n.

We require the following elementary result for the proof

of Theorem 7.

Lemma 4.

L e t h , ( z ) , k = l , 2 , . . . , b e a r e g u l a r f u n c t i o n i n | z | < 1.

I f

( 8 . 1 8 ) 1 V Z > I < n , 1 , 2 , k > I Z I < ] - ^
( l - | z | )

then

(8 .19) | h ^ S ) l ^ ^ | |

where C(s,k) are constants depending only on s and k.

Proof.
oo

Let h, (z) = £ b.z-1, then by Cauchy inequality
k j=0 J

|b. | < r^Mfr) , M(r) = max
I z *~

By (8.18) M(r) < (1-r2) ~k, therefore

, , , <. ,. -—; k ™^ j/2

(8.2O) |b.| < min r J(1-r )"̂ = ml

Set
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(8.21)

z (C) is a mapping of |C|< 1 onto |z|< 1* and therefore
CO

(C) = L (i.Z^ is regular in |C|< 1. Moreover, since
j=0 3

, , , ,2
idzi 1- z

ru

1 - I C I

it follows from (8.18) that

(8.22)

Consequently

(8.23)

d-|C| 2) k '

Differentiation of (8.21) leads us to

, , ,r k+1
(8.24) h,(z) = 77 (C) (%̂ ) +

It is easily confirmed that

V '(z) | < 2lz

dz

(1- z )
z|< 1,

and by setting now C=0 in (8.24) we obtain

(8.25) |h. (a) | <

1 !
To obtain a bound for |h,(z) \, one can either apply (8.19)

to h
k(

z) o r differentiate (8.21) twice. Higher derivatives

may be obtained in a similar way.

Remark.

If

(8.26) =h R(a)
(s-1)

(a) = 0, 3=1,2,
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1^(0)

then for z=a we have

(8.27) (s) 1 ^ 1
k " (l-|a| 2) s + k " (l-|a|2)

Proof of Theorem 7.

Since (8.2) is disfocal in |z|< 1, it follows from Theorem 2

(and may easily be verified directly) that for every 1 < j < n-1

and any | a | < 1, the functions g.(z,a) and <?-+1 (z,a), defined

by (8.5), are 'relatively schlicht' in |z|< 1. Consequently,

(8.28) |cp (z,a)| = |*[g. (z,a),g.

We utilize now the relations between the functions co • -,-, and

the coefficients q . ,, established in Theorem 6. For

j=n-l, it follows immediately from (8.9) and (8.28) that

T
- | a

For 1 <. j <. n-2 we apply Lemma 4 to (p. . , (z,a) with k=2
D ) 3 ' •*-

and s=n-j-l. By (8.9) and (8.19) we conclude that

Moreover, according to (8.8) and to the remark following Lemma 4,

2 n-j-1

^ (n-j-1) ;m(n-j-l,2) = (n-j-1) 1 ( ^ j ^ g £ f

which completes the proof of the theorem.

We add the following remarks:

(i) (8.1O) cannot be utilized to yield a bound for |q,(z)|,

since a bound for 9 , (z,a) may be obtained only if



^32-

g , (z,a) is univalent in |zj < 1, which is more than we can

conclude from our assumptions.

(ii) The technique of differentiating the functions <p, may

also be applied in the general case when the matrix P(z) does

not take the special form (8.1). Assume now that (1.1) is discon-

jugate in |z|< 1 and that (3.3) holds. By differentiating

(6.9) once and setting z=a, we obtain

(8.29) <Ojk(a,a)= - p ^ (a) p k j (a) - p j k (a) P ]\ (a)

n
- iSi[Pji(a)pik(a)pkj(a)+ P k i (a) P ± . (a) p j k (a) ] .

According to (7.1) and (7.2) we may apply Lemma 4 to p>k(z)pk.(z)

as well as to w., (z,a) . It follows now from (8.19) that

|cp-k(a,a) | <

|p' (a)p (a)+ p (a)p' (a) | < C^^2\ , |a|< 1
J J J J (1-la )

which by (8.29) yields

(8 . 30) | J i [Pjk (a) p.k (a) p k i (a) + p k ± (a) p. . (a) Pjk (a) ] | < ^ ^ 3

|a|< 1

For n=3, j=l, k=2 (8.30) reduces to

|det[P(a)] | <

By taking the second derivative of (6.9) at the point z=a,

it is possible to obtain sums of products of 4 coefficients of

the matrix P(z) (n >_ 4) , and similar results for higher deriva-

tives. The actual calculation is somewhat cumbersome.

We end with the following corollary for second order equations
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If q2 (z) is_ regular in |z|< 1 and if the differential

equation

(8.31) w"(z) + q2(z)w(z) = 0

is disfocal in |z|< 1, then it is also disconjugate in |z|< 1

We recall that a second-order differential equation is called

disconjugate in a domain D, if the only solution that vanishes

twice in D is the trivial one. As for the proof of the

corollary, since (8.31) is disfocal in |z|< 1, it follows

from (8.16) that

which is sufficient to guarantee the disconjugancy of (8.31)

in |z|< 1 . (See [4]) .

We note that this result holds only if q,(z)= 0 and is

not true in the general case of second order differential equa-

tions of the type (8.2). Considering the differential equation

y (z) - (m+l)y (z)+ my(z) = 0, m > 1

London and Schwarz [3] showed that, in general, disfocality

neither implies disconjugancy nor is implied by it.

In view of the fact that disconjugancy of (8.31) is equiv-
w (z)

alent to univalence of f (z) = j—y- , where w (z) and wo(z)
W_ \ Z / X c.

are linearly independent solutions of (8.31), our last corollary

may be stated as a univalence criterion.

Theorem 8.

Denote by D the d isk | z - b | < R, 0 < R < oo , and l e t f(z)
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be a, meromorphic function in D. l_f

2 [ f (z ) ] 2

(8.32) f ( Z l ) - f , , ( z ^ * f(z2)

for every pair of points (not necessarily distinct) z.,z?eD,

then f (z) j ^ univalent in D and

< 5 5
(R 2 - | z -b | 2 ) 2

zeD

where

{f(z),z} = ft(z)' - jt jr | ^ ]

is the Schwarzian derivative.

Proof.

Without loss of generality we may assume that D is the

unit disk, since this situation may be achieved by means of a

z—btransformation C(z) = , which does not violate (8.32).

Consider now the second order differential equation

(8.33) w»(z) +q1(z)w'(z) +q2(z)w(z) = 0 .

According to (8.9) and (8.10) we have

_gi(z) = a

where

w (z) w (z)
(8.34) ((,) . ^ s r . g(z) = 4 ^

and ŵ . (z) and w (z) are linearly independent solutions of

(8.33). If q1(z)= 0, it follows from (5.1) that

(8 .35) g (z ) = f (z) - 2 r f ' ( * H 2

f " ( z )

, q2(z) = *[f(z),g(z)]
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and

$[f(z),g(2)] = ~{f(z),z}.

In view of (8.35), formula (8.32) takes the form g(z,)j^ f(z_),

which by (8.34) is equivalent to the disfocality of the differ-

ential equation

(8.36) w"(z) + \{f (z),z}w(z) = 0 .

By Theorem 6, disfocality of (8.36) in the unit disk implies

(8.37) |{f(z),z)|< 2
 2 2 , |z|< 1,

which is a sufficient condition for disconjugancy of (8.36)

in |z|< 1. Since disconjugancy of (8.36) is equivalent to

the univalence of f(z) [4], our proof is accomplished.

Acknowledgement. I am grateful to Professor Z. Nehari for his

valuable advice offered during many discussions.
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