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SUBDIRECT IRREDUCIBILITY AND EQUATIONAL COMPACTNESS
IN UNARY ALGEBRAS <A;f>.

Giinter H. Wenzel*

In [6] M. Yoeli characterizes the subdirectly irreducible

unary algebras G = <A;f> with a finite carrier-set A, a

unary operation f and a connected f-graph (mentioning its

significance for the problem of synthesizing automata by para-

llel composition). We intend to give a different proof based on

a very simple criterion for subdirect irreducibility for a more

general result (namely the characterization of all irreducible

unary algebras) in |l. We couple this with a few simple remarks

which seem nevertheless of some independent interest. In $2

we study equationally compact unary algebras G = <A;f> and give

a complete characterization of them. Finally, in $3 we show that

every equationally compact algebra G = <A;f> is a retract
V

of its Stone-Cech-compactification (in case of algebras G = <A;f>

with f (x) / x for all n and x this follows, of course,
V

from the fact that the Stone-Cech compactification 3 G of G

is an elementary extension of G; see [ 10] \ The results in £2

and $3 contain all the answers concerning unary algebras that are

usually asked in this line of questioning for specific classes

of universal algebras (see [4],[10],[12],[14]). I want to express

my appreciation of numerous stimulating discussions with Dr. R.

Alo.

We use the standard terminology (see, e.g., [3],[12],[15])

and assume familiarity with basic results (see [2],[3],[12]).

*This research was supported by an NSF M Center of pxcelJLency" grant
awarded to the department of mathematics of Carnegie-Mellon University.
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We recall that G = <A;f> is called " connected'1 if for any two

elements a,b e A there exist n,m e N = N U { 0 } (N = set of
O ""•

natural numbers) such that fn(a) = fm(b). Each unary algebra

G = <A;f> is in a unique way the disjoint union of connected

unary algebras Ĝ ^ = <Ai;f><, i e I, called the ff connected com-

ponents of G" . Finally, U and n denote the set-theoretic

operations f! union11 and " intersect ionTl (U means disjoint

union), V and A denote the lattice-theoretical operations

lf cup11 and M meet" . A universal algebra G = <A;f> is then

subdirectly irreducible if fl(8.;i€l) = co always implies

9. =0) for some i el (0. are congruence relations on C,
o

0) = identity relation) .



§1. Subdirect irreducibility.

As well-known, an arbitrary universal algebra G of type r

is subdirectly irreducible if and only if it has only one

element (i.e. G = 1 ) or the congruence-lattice C(G) = <C(G);

V,A> is atomic and has exactly one atom (see [1],[2] and [3]).

One also knows that if a,b are two different elements in A

there exists a congruence relation */r , e C(G) which is maximal
a5D

with respect to the property a ^ b(t/j , ) and there exists a
a,D

congruence relation 9 , £ C(G) wjiich is minimal with respect
a,ID

to the property a s b(8 . ). Thus, since 0(0 , *a / b and
a , D a y JD

(a,b) € A x A) = co, we conclude that the subdirect irreducibility

of G ]4 1 implies the existence of two different elements

a,b € A such that 0 , = 60 ( = identity relation) • On the other
a,D

hand, since the congruence lattice of the factor algebra G/0 ,
a , iD

i s a t o m i c w i t h t h e u n i q u e a t o m */) ^ V O T ^ / 0 ^ i n c a s e G / 1
a , I D a , D a , I D x

we conclude that the existence of two different elements a,b e A

such that if) , = co implies the subdirect irreducibility of G.

We state this simple observation in the next remark.
Remark 1: If G 4 1 is a universal algebra then it is sub-

T
directly irreducible if and only if ib , = & for some a,b e A.

a, ID

We could immediately apply the above remark to determine the

subdirectly irreducible ones among the unary algebras G = <A;f>

but prefer to mention first anothqr simple observation on subdirect

irreducibility in unary algebras:
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Remark 2; Every subalgebra IB of a subdirectly irreducible

unary algebra G = <A;F> (F = set of unary operations)

is subdirectly irreducible.

The proof of the last remark is quite clear since every

congruence 0 e C(H) can be extended to 0' e C(G) by specifying

that a^ = a2(0') holds if and only if a.. = a2(A) or ai = a9 #

Thus, if 6 is the unique atom in the atomic lattice C(G) then

6O (= 6 restricted to B) is the unique atom in the atomic lattice

C(6) unless |B| = l(in which case the matter is even simpler).

To attack the problem of characterizing the subdirectly

irreducible unary algebras G = <A;f> we prove the following

fundamental lemma which reduces the problem to the case of connected

unary algebras.

Lemma 1: The unary algebra G = <A;f> is subdirectly irreducible if

and only if either G is connected and irreducible or G is the dis-

joint union of G and Go where G is connected and irreducible and
\A2\ - X.

proof: Whenever ft is a subalgebra of G we know that f)

(defined by x = y(0_) if and only if x,y € B or x = y) is

a congruence on G. Thus, if G would have more than two connected

components G^ say G ^ G ^ , . . . then 0 UA fl 9 y 0 P =

co together with 0 .. / co for i / j implies that G
i D

is not subdirectly irreducible. Thus, G = G , or Q = G. U G

where G,,G2 are connected components. If C = G. U G. and

|A-|,|AO| ^ 2 we get the contradiction 0 n A = w Q ^ ^
J- ^ A- A^ A-

0« / 0% Hence, say, |A | = 1. The remainder of the proof is

clear. q. e. d.
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We proceed to derive another simple observation after which

the main-result has the character of an easy corollary:

Lemma 2: If aT*a2 a r e t w o different elements in the unary alge

bra G = <A;f> such that f(a±) = f(a2) and | [f (a^ , a r a2} | =

3 then G is not subdirectly irreducible.

proof: , * , . , * We c a n assume without loss of
ffa^ = f(a

2)
\ generality that a. jl [a2]

(<[a2];f> is the subalgebra
a- a9
x generated by a2) . Since

x s y(0 ) is equivalent to x = y or [x,y} = [a. ,a } we
al>a2 X 2

conclude that 0 , = co implies {a,b} = {a-,a }, i.e. tf> =
a^D xz î  2

0); this is impossible since a- ^ ao(^r=, i )
 a n d ^r^ I ^ ^

1 z La2J *• 2
Thus, 0 - ^ (0 for all a^b € A which (in view of remark 1)a, D

settles the matter. q. e. d.

Thus, if we want to find the subdirectly irreducible connected

algebras G = <A;f> we are left with the following possibilities

(we describe the structure by the associated f-graphs):

Qo

- ""i •n+l A

t

* n+l
* 2

* n »>
f \

tt
io ii
«h t•00
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j (j ) is subdirectly irreducible since 0, , -|(0r* i) = °°00 n,n— JL 0, JL

in case h ^ 1.

j is not subdirectly irreducible since for arbitrary n / m,

n,m ̂  o, the relation n * m(9 [ m a x (^ m } ]) is true and 0 [ m a x [ n j m ) ]

co? thus, 0 / a).n,m
00 00

j is not subdirectly irreducible since j is (up to iso-
00

morphism) a subalgebra of j^ (we use remark 2) .

Every congruence on C is (as easily seen) of the form 9

(m divides n) defined by a. = a.(0m) if and only if m/i-j.

Thus ib = a) is equivalent to a. = a.(0 ) for all divisors
ai'aj x 3

m of n; i.e. 0 =60 is equivalent to the divisibility of
i "• j ky aH divisors m of n. Since this is equivalent to

ki = j(mod n) or n = p (p = prime number, k e N ) we conclude

that 0 = a) for a. ^ a . can hold if and only if n = p .
ai,aj i D

Hence, (* are exactly all subdirectly irreducible algebras of
PK

the form C .n

We sum up our results in the following theorem:

Theorem 1; The (up to isomorphism) only subdirectly irreducible

algebras of type r = <1> are C9 (h J> 1), j ,C v (where k e N
p K

and p is a prime number) and j U 1 9 .9 \) 1 , p. , U 1
T °° T nk r

We realize that all subdirectly irreducible algebras but

j and j U 1 are finite, hence equationally compact (for the
00 00 <j-

concepts see, e.g. [12]). As we will see in the next section,

j U 1 is also equationally compact while j is not. We

therefore turn our attention now to the characterization of the

equationally compact algebras G = <A;f>.
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. Equationally compact algebras G = <A;f>

To state and prove our main-result it proves useful to

enrich our language by a few suggestive concepts? An element

x e A is called stagnant if f(x) = x; st(G) denotes the

set of stagnant elements in G. If n e N and a € A

then the n-periphery IV;(a) of a in G is defined by nr(a) =

(b;b e A, fn(b) = a and fn"1(b) 4 a] (in case n = 0, the

last condition becomes void). Thus, a e ^(a) is equivalent

to <[a] ;f> = C for n J> 1, he Ou(a) is equivalent to b = a,

and a e lG(
a) is equivalent to a e st(G). The following

observation is equally clear: If n,m e N, n / m and b € A,

then b e *Vj(a) fi ItVi(a) is equivalent to m - n J> 2, f (b) = a

and <[a];f> = cd with 2 ^ d5d/m-n.

We denote by Ii the language of first order logic with

identity and countably many variables x- of type r=<l> associated with

the class of all unary algebras G = <A;f>, We use the well-known

concept of satisfiability of a formula 0 e L (see, e.g., [11])

and recall that the algebra 8 = <B;f> is an elementary extension
— aoof G = <A;f> if and only if an arbitrary a e A satisfies an

arbitrary formula $ e L in G if and only if it satisfies the

same formula in H. We then have the following lemma:

Lemma 3: If B is an elementary extension of G = <A;f> then

we have the following relationships:

(1) st(G) = <f) is equivalent to st(<R) = (f>

(2) For every a e A, nQ(a) = ^ is equivalent to nfi(a) = <f>.
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(3) B contains a subalgebra isomorphic to r» if and only if

contains such an algebra.

proof;

(1) follows from the fact that (3x)(f(x) = x) is a sentence in

L which is true in G if and only if it is true in 8.

(3) follows for the same reason from the sentence (3x)(f (x) =

x A fn""1(x) / x) . To see (2) we take the formula $ = (axQ)

(fn(x ) = xn A f
n"1(x ) ^ x.). If we assume that n^a) j4 <b

OX O X B» f

then a = (a^a^a, ) e A ° satisfies $ in B; hence a

satisfies $ in G, i.e. there exists a. e A such that f (a.)

a, f (a-) ^ a. In short: ru(a) ^ (J). q. e. d.

Lemma 4: C is retract of every extension B = <B;f> that

contains no subalgebras (isomorphic to) c unless n divides

m.

proof; We prove the result for convenience's sake for n = m.

The general case can be easily adjusted. We assume as before that

C = [a ,a.5.#.,a ^j with f(a.) = a. (all indices are deter-

mined modulo n). Evidently we can define homomorphism component-

wise. If B is connected then for every b e B there exists

a unique smallest m(b) e N such that f '(b) e C 9 say

f ' (b) = a . ,-v . We define <p(b) = a . ,- . . . and easily verify

that <p : B -• C is a retraction. If B is not connected and

B, is a connected component disjoint from B then we have two

possibilities; Either iTU contains a subalgebra C* = f in

which case we have a retraction <p-: 8, -• es and an isomorphism
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0: C9 -• C , i.e. a homomorph ism tj)o<p-9 or 6. contains no

subalgebra C , m > 1. In the latter case we pick some b e B.
m •*" o 1

and map it via <p to a € C . . Then we have for every b € B

a unique m(b) e NQ such that fm(b) (b) e [hQ] , say fm(b) (b) «

f ' ' (b ) . We complete the definition of <p by requiring that

<p(b) = aT./b\ /b\ (where the index of a is again determined

modulo n) . It is again easy to check that <p: B-. -* C defines

a homomorph ism. q. e. d

We should remark that to construct <p in the above lemma we

in effect applied an algorithm due to Novotny [9].

To derive the next crucial lemma we again facilitate matters

by suitable concepts: The element a e A is an element of

order n (n e N) if (1) fm(a) / a for all m e N and (2) n^

contains a minimal element b, i.e. there is no c e A such

that b = f(c). The element a e A is an element of infinite

order if (1) fm(a) / a for all m e N and (2) there is an

infinite chain a ^ a ^ a ^ , a ^ such that a = a ,

am " ^itH-l) a n d ai * aj f o r i * j*

Lemma 5: If C = <A;f> is a unary algebra with at least one

subalgebra (isomorphic to) C for some n e N in which every

element whose finite orders approach infinity is of infinite order,

then G is equationally compact.

proof: We know from a result by Weglorz [12] that a universal al-

gebra is equationally compact if and only if it is a retract of

every elementary extension. So let B = <B;f> be an elementary
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extension of G and let us prove the existence of some retraction

(pi B -> A. We know from lemma 3 that cyclic subalgebras C of

(B which are contained in B\A have isomorphic copies contained

in A. We therefore conclude with lemma 4 that every connected

component $. of 8 which is disjoint from G can be mapped

into G via a homomorphism <p.. So let [ [G] ] = <[ [A] ] ;f> be

the subalgebra of H each of whose connected components inter-

sects A. Then n
ft(

a) ^ nrrcii^a^ holds true for every a e A

and n e NQ; therefore,, [[A]] = U(nfi(a);n e N ,a e A). Really

a bit more is true: If we call an element a e A a branch-

element if l B(a)\ lG(a) / </ j
i-i II/ / \v /\ ^\ - % a a = = b r a n c h - e l e m e n tand call U(nfi (a) \ r^ (a) ; n e N) **£ S o l i d g r a p h £A

^ T. r. r: -^ , ^ *£' \ Dotted graph c B\A
the branch of a, say br(a) ,** ' * —

(see diagram)^ then [ [A] ] = # ^ \

U(br(a); a runs through all branch-elements a e A) U A. We,

of course; define <pL = identity and fix now an arbitrary branch-

element a € A. Our aim is to define a homomorphism <p : A U
a

br(a) -• A such that (p | A = <pL = id. There are three possibilities:

(1) <[a] ;f > = cm for some m e N, say [a] = C^ = f a = = a o^
ai^ • • • ̂ a

m.
If then b e br(a) H n_(a) then we define 0 (b) = a (indices.

H a -n
recall, count modulo m) . (2) f (a) ^ a for all m ̂ > 1, but there
exists some n e N such that n^(a) j4 (f> while k (a) = d> for

all k ̂  n+1. Then, by lemma 3, nr(a) / (̂); say z e n (a) .

In this case we define cp on br(a) as follows: If 0 <£ k <; n

and b € br(a) n ko(a) then, o (b) = fn"k(z ). (3) For every
ft a o
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n there exists n > n such that a is of order n^ in G.
o "̂ o

In this case our assumption implies that a is of infinite order;

i.e. there exists a sequence a = a ,a_, ,a ,• of elements

in A such that a = f(a .) (equivalently, a e np(a)). We

then map every b e br(a) n no(a) via <a to <0 (b) = a . Thus,
" a a n

.
in each of the possible three cases we defined to on A U br(a)

a

as homomorphsim into A which is the identity on A. If we do

this for every branch-element a e A in the manner indicated

then it is a matter of simple verification that the locally defined

homomorph isms <p : A U br(a) -+ A patch up to a retraction
a

(pi [ [A] ] - A. q. e. d.

Since the proof would proceed in a quite analogous fashion

we only state the following analogous result:

Lemma 6; If G = <A;f> is a unary algebra with a subalgebra

(isomorphic to) j* in which every element whose finite orders

approach infinity is of infinite order, then G is equationally

compact.

An analysis of the proof of lemma 5 brings to light the fact that

the meat of the matter consisted in showing that an algebra G = <A;f>

is retract of every extension ft = <B;f> which essentially under-

lies the conditions of lemma 3 (which, in view of that lemma, is

granted by elementary extensions). We state that observation in

the following remark.

Remark 3: If G = <A;f> contains some ^ ' ^ J> 1* then it is re-

tract of every extension ft = <B;f> with the following properties:
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(1) n~(a) = ^ is equivalent to ^(a) = <0 for all a e A and

n € N.

(2) n. c B implies the existence of e c Q such that n
in ••— n

divides m.

(3) Every element a € A whose finite orders approach infinity

is of infinite order.

We now have collected what is the meat of the following

characterization-theorem:

Theorem 2; The unary algebra G = <A;f> is equationally compact

if and only if

(1) For every a e A, lim(n;n = order of a) =0 implies that

a is of infinite order.

(2) G contains either some subalgebra r» (n J> 1) or the

subalgebra j^.

proof: Lemmas 5 and 6 state that (1) and (2) imply the equational

compactness of G. Vice versa, let G be equationally compact,

then lim(n;n = order of a) =O implies that the infinite set

T = [a = f (x.) ,x = f(x2),....,x = f (x ) , } of equations

is finitely solvable, Jience solvable. Thus, a is of infinite

order verifying (1). To verify (2) assume that G contains no

cyclic subalgebra r*:•• Hien |{fn(a),fn~ (a),....,f(a),a}| = n+1
n

for every n e N and a € A. Thus, the infinite system of

equations T = { X Q = f (x^ ,xx = f (x2) , , x n
= f ( x

n + 1 ) > ) is

finitely solvable, hence solvable. If (a ,a ,...,a ,...) e A

is a solution of V then evidently <{a ;n € N }U{f (a );n e N ); f>
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= j* is a subalgebra of Q. q. e. d

We now turn our attention to the obvious next question in this

line of investigation: Is MMycielskifs conjecture" (see [8],

[12]) true in the class K(<1»? We will give an affirmative

answer in the next section. In other words: We will show that

every equationally compact unary algebra G = <A;f> is the alge-

braic retract of some topologically compact Hausdorff algebra

B = <B;f>.

CMNE6IE-MELL0N
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V

On the Stone-Cech Compactification of G = <A;f>.

If G = <A;f> is a unary algebra, A is endowed with the
V

discrete topology and pA is the Stone-Cech compactification of the

topological space A then f: A -> A is a continuous mapping and

has, thus, a unique extension f: pA -• pA. The unary algebra
V

= <pA;f> is then called the Stone-Cech compactification of the

algebra G (Evidently we can construct pG for arbitrary unary

algebras <B;F> in the same fashion). If G has no cyclic

subalgebra C then fn(x) / x for all n J> 1 and x e A.
n V

It was shown in Pacholsky and Weglorz [10] that the Stone-Cech com-

pactif ication pG of such G is always an elementary extension of

G. Hence if G, in addition, is equationally compact then it is

a retract of pG. But even if the equationally compact G has

cyclic subalgebras C there exists a retraction <p: pG -> G . To

establish the result we need the following decisive lemma:

Lemma 7: If G = <A;f> is a unary algebra and c is a subalgebra

of pG then there exists a subalgebra (• of G such that n

divides m.

proof; Let us make a few preliminary remarks: If y e pA\ A then

y = lim a where (a,q*D>J>) is a net in A (i.e., D is a
d e D a d

directed partially ordered set, shortly directed poset, with res-

pect to ^ , and ad e A for every d e D). Since A is a dense,

-discrete subspace of pA we know that A-,A c A and A- PI A2 =
implies Â ^ fl A2 = Jlf (where Â ^ is the closure of A. in pA),

for A1 c A is an open and closed set in A, thus A and
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are complementary open and closed sets in pA (see, e.g., [5],

chapter 6.9). Thus, if A= (a ;d e D} and y = lim a, such that
d €D

AH fm(A) = / for some m^ 1 [of course, fm(A) = (fm(ad);

ad € A)], then A ft fm(A) = <f implies that y /[ fm(A), i-e.

y / fm(y) = lim fm(a ).
d € D

So assume that (• £ G for every divisor d of some m e N

and let x e pA\A. We then have to show that f (x) / x to

end our proof. Let G.,i e I, be the connected components of G.

The carrier set of every G., since, by assumption, it has no
1 • 2 * 3

stagnant element, can be represented as A. = A. U A. U A. such

that A? ft A* = <f> for j ^ k and f(A^) ft A? = 0, i,j = 1,2,3.

If G . is in the class lr\ of unary algebras without cyclic

subalgebra then this is a lemma by Ryll-Nardzewski (seeflol). If*

on the other hand, Gi has a cyclic subalgebra C f .,, n(i) J> 2,

say c
na\

 = fa ^ aT*^«^ a /-\ i)* then we first subdivide C ...

as follows: If n(i) is even, we take C ,.. = {a ,a,...,a },
n(i) o z n(i;-z

2 ^ 3 x
C = fa-5a^,...,a /<x -J. C ,.x =(p; if n is odd, we take
n(i) l V 3' 9 n(i)-lJ' n(i) Y

C 1 = fa a ... a } C 2 = fa a ... a 1 c 3

n(i) o^ 2' * # *' n(i)-3 ' n(i) V 3' # * #' n(i)-2 ^ n(i)
(a ... , } . In either of the two cases we define A. = C j.. U

[a;a € A.\C ... and a e (2k) (c) for some c e C-* . . ) ,
i r\( cn(i) n u j

j = 1,2,3. It is an easy matter to check that A. , j = 1,2,3,

thus defined, satisfies the conditions stated at the beginning.

1 * 2 # 3
Thus, the carrier set A of G satsifies A = A UA U A ,

A n A2 = A1 n A3 = A2 n A3 = 0, A1 n f^A 1) = A2 n fm(A2) =

n f m ( A 3 ) = <f> i f A j = U ( A ? ; i e l ) , j = 1 , 2 , 3 . H e n c e , p A =
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A U A U A , and we can now assume that x e A for some

j <£ 3. In other words: x = lim a where (a ,D, >̂) is
d e D

a net in A^. Since A^ 0 f™^) = (f) we conclude that fm(x) =

lim fm(a,) € eAXA3, i . e . fm(x) ^ x. q. e. d.

d € D a

Appendix: The triple-division of A which we used in the last proof

was stated as Ryll-Nardzewskif s lemma in [10] for the case G €lrv

It should be noted that in case G e 'K there are actually already

two subsets A T * A 2
 s u c^ that A = A, U K~, A.. (1 A2 = $ and f(A^)fl A-

f(A2) H A2 = (J). The proof, of course, remains elementary.

We can now prove our last result:

Theorem 3: If G = <A;f> is an equationally compact algebra then
V

it is the algebraic retract of its Stone-Cech compactification pG#

proof: We can assume that G contains some cyclic algebra '(• ,

d ̂  1. In light of the last lemma, remark 3 and theorem 2 we

only need to show that ru(a) = (f is equivalent to n (a) = <p
Li (W

for every a e A and n € N. So let x e (pA\A)flnp(a) for some

a e A. Then there is a net (a-,D J>) in A such that x =
3

lim a^. Hence, a = fn(x) = lim f n(aj . Since a e A is an

isolated point in pA there exists d e D such that f n(aj = a

for all d J> d . This settles the matter if at least one of the

a^ is in xu(a); this is quaranteed unless a is a stagnant ele-

ment. If a were a stagnant element and none of the a, was in
a

rigfa) we would conclude that fn- (a ) = a for all d J> d , i.e.

a = lim fn"1(a ) = fn"-1(lim a ) = fn"-1(x) ^ a. This contradiction
d e D d d e D d

finishes the proof. q. e. d.
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