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1. Introduction

Recently GURTIN and WILLIAMS [1] established an axiomatic

foundation for the thermodynamics 'of stationary continua, com-

plementing an earlier work on the mechanics of continua by

NOLL [1]. The present paper originated a a proposal for a

slight restatement of the second law as given by Gurtin and

Willaims to a form which seems more in fitting with

the usual verbal statements of classical thermodynamics. The

difference between this and the previous statement is signifi-

cant only when the body involved suffers internal radiation,

that is, radiation between particles of the body.

In order to examine this question properly it was necess-

ary to treat more carefully than was done by either Noll or

Gurtin and Williams the characteristics of the internal inter-

actions of continua; that is, quantities such as internal radia-

tion or mutual body forces. Accordingly Sections 2 and 3 of this paper

consist of an examination of internal interactions. I consider

a modification of the basic assumptions used by Gurtin and

Williams and Noll to require that the heat flux (force, entropy

flux, ...) to a portion of the body from another be small not

only when the volume of the affected element is sfiall but that

it should also be small when the volume of the ef rective element

is small. Making an assumption of this sort I proceed to obtain

the results of Noll and Gurtin and Williams and farther deduce (Section 3)

Cf. the more general treatment which combines mechanical and
thermodynamic theories by GURTIN, NOLL and WILLIAlIS. See also

othe extension of the work of Gurtin and Williams by FISHER and
^LEITMAN, and the kinematical theory of NOLL [2].
CM
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that the effect on an element 6 in the body due to a disjoint

element C can be written in terms of a density r as

//rdVdV.

GC

The treatment of the other effects, the area-continuous effect

and the external effect is slightly more general than that in

the previous works.

In Section 4 I return to the main topic of the paper, the

statement of the second law of thermodynamics for continua.

The basic statement of a bound on entropy production is inargu-

able; the distinction between the statement here and that of

Gurtin and Williams lies in the definition of what is meant

by thermal isolation. I propose here that the entropy flux

into an element G from an element & be required to vanish
A

when the heat flux into each element G of G from each
A

element & of $ is zero; Gurtin and Williams require this
A

vanish when just the net heat flux into each G from & is

zero. With the revised statement it is clear that the conduc-

tive transfer and the external radiative transfer are governed

by exactly the same relations established by Gurtin and

Williams; for internal radiation I show that there exists a

temperature function 0 such that the internal radiation of

entropy is given by

dVdV

'GC

where r is the density of internal radiation. I then examine

the consequences of this for the local form of the second law.
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One should note that the treatment is sufficiently general

that it applies not only to the theory of a single continuous

body but also to theories including interacting, diffusing

collections of continua (cf• GURTIN, NOLL and WILLIAMS).
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2. Internal Interactions; Continuity Assumptions

The system we consider is a continuous material body B

and a collection of subbodies to of B. We shall "for con-

venience regard B as a subset of three-dimensional Euclidean

space: the more general case where B is a differentiable

manifold is easily obtained. The subbodies of B are regular

closed subsets of & (regular in the sense of KELLOGG) and to

is presumed a (closed) Boolean algebra under the operations

GVC = GUC

GHCGAC =

(the closure is actually of no significance). Note also that

G\C =TT- C .

We suppose that to has the properties described by GURTIN and

WILLIAMS [1] • The axioms they take are reproduced in the

Appendix: the important features are that the sets of to are

numerous enough to generate the Borel sets B(B) of B and

that they can serve to define in the limit any regular surface

B e

element. We adjoin to to an unstructured set B 9 the exter-

ior of B, and denote by to the material universe for B^ the

set of all finite unions from {to ,Be) . We write G for B\G,
Regarding B as a compact differentiable manifold of class

two diffeomorphic to a region in Euclidean space, one need make
only the following alterations to the theory: change the axioms
on to"* (Appendix) by requiring e.g. instead of 4 that for some
chart x, the image under Tt"1 of any parallelipiped be in to®,
etc.; induce "volume1' and "area" measures in B via x and
verify that the measures induced by various charts are Lipschitz-
equivalent, so that the assumptions below are independent of the
choice of x,. The entire theory can then be carried over unaltered,
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A Lebesgue area measure. We here wish to make a stronger

assumption: that H(G,$) not only tend to zero as the volume

of G and the area of Gflfi become small but also that it

tends to zero with the volume of £. (In physical terms, e.g.,

we wish to assume that the radiation into G from & can be

non-zero only if & has a finite volume.) We in fact assume

more than this: we suppose that the first bound as above

tends to zero with the product V(G)V($) and that it does

so in a uniform manner, which is expressed below in terms of

sums over collections of pairs in ft . Thus we assume:

£. There exists a. scalar j8 and for each (G,$) eft <a

scalar a(G,$) such that

a is. such that there exists <a scalar 77 with

0 < a(G,«) < <W(G) for all (G,&) in ft

and such that

N N
L a(Gi,&i) - 0 as EV(C.)V(«.) - 0

for all collections {(G.,fi.))N in ft6.

This condition is implied by the much simpler assumption

Lipschitz continuity: 3 OL, j8 such that

|H(G,«) I < tf

if G,6 are separate subbodies and

Note that in light of the lemma below this continuity assumption
suffices to guarantee that H(-,$) can be extended to B(&k) and
there satisfy the same bounds. Hence this theorem guarantees such
an assumption is equivalent to the starting assumptions on heat
flux used by GURTIN and WILLIAMS [1].
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similar argument based on the volume bound implies that this

limit is the same regardless of the choice of the sequence ( G
n).

We shall now establish that it depends only upon <3L . Suppose

that SQ = SQ^ . It is a consequence of the properties of to

that SQ = ^ Q A Q * in these circumstances. The fact that the

limiting value is independent of choice of sequence then implies

for sequences t** 1, {Q• }

lim a(Gn) = lim a(GnA G*) = lim a(G*) .
n-»oo n-»oo n-*oo

Thus we can unambiguously define

a(SQ) = lim
 a(G

n)j {Gn}
 i n G as above.

Then we set

. S(g ) = iim a(a\G ) .
n-oo

It should cause only slight confusion if we also write

o(G) % G

On the set to = {GndlB|Geto } we induce a Boolean struc-

ture from that on to . Then a on to and a on to are separ-

ately additive. We prove this for o? as follows: if ^ p ^ \ a ^ e

•separate, we can suppose G $̂ are also. SGMfi
= SQU *JV which means

SGU V - * < W
n~»oo

1 p\jQ

Cf* the discussion of such collections as to by FISHER and
LEITMAN.
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where {C } is taken in GUJS) as above. This says

= lim (a(CnA G)
n-*oo

since S ^ C A ®. Sr c C A G for each n and the sequences
w n u n ^

clearly satisfy the other requirements. This implies that both

a on to and a are separately additive. From the construc-

tion of OL,OL it is clear that

|S(»G) I < dA(SQ)

|o?(G) | < cV(G),

GURTIN and WILLIAMS [1, Appendix] prove that a separately

additive function on to satisfying the latter condition has a

unique extension to a countably additive measure on B ((&) , the

extension having the same bound. Since we shall have occasion

to refer to this later we briefly outline their procedure.

Define the field consisting of all half-open parallelepipeds

and finite unions of such parallepipeds; we denote by F^ the

field consisting of all intersections of & with the original

field. Then the closure of the interior of any element of F^

(8
is in to (axiom 4 in the Appendix). We define on FQ an

additive set function by taking the value for A€(F|Q that the

original function gave to A. The extension to B(6) then

follows via a standard argument since IF̂  generates B(B) ; the

bound is not difficult to establish. Thus we can extend a

to B (») .
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It is not difficult to see that the same procedure can be

applied to a on tU : F̂ fl dft generates B (dft) and the closure

of the (relative) interior of any element of F^ 0 dft is a member

of to . We note that if a (a third usage) is so defined on

we may define (a fourth)

on B(B) . Then we define for any P

+ a(P)

It clearly is an extension of the original a.

The uniqueness is trivial: if a* is any measure extend-

ing a we define a* and oc* exactly as we defined 7i,0i: since

these agree with a, a. respectively on the appropriate sets we

have that they are unique and obey the Lipschitz bounds. These

bounds imply that a* = "or* + a* is a Lebesgue decomposition

with respect to volume (which is unique).D

We note that we have proved more than stated: the extended

measure can be decomposed uniquely into a measure on ft and a

measure on dft.

Applying the lemma to the function H(»,$) (replacing ft

by fi ) one obtains the first half of

Prgjoo^t^gfi ̂ : For each fiefo there exists <a unique pair

of measures !*(•,$) and Q(*,$) on B($ ) such that
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for a l l PeB($ ) , and for each Geto separate from &

fl) = Q(G,«) + R(G,JS) .

NT IB

Moreover R satisfies, for all {(G.,$.)} in h s

N N
|L R(G.,«.) | -» 0 as S V(G,)V(*,)-. 0.

X 1 ———" 1 JL

Proof: As noted we have already proved the first half of

this Proposition, For the remainder recall how R is defined

in terms of H from the previous proof and note

N N
ER(G.,«.) = lim SH(G.\(G.) ,*.)

1 1 n-co x x n 1

N
< lim sup E a(Gi\(Gi)n,*i) .

n -» oo

N N

But E V(Gi\(Gi)n)V(*i) < Lv(GjL)V(*i) so that if the latter

is small then the limit superior above is small; hence R sat-

isfies the volume-continuity condition.u

The function Q(*,A) can be shown to depend only upon the

(oriented) surface d$ in question, so that a function Q(§)

can be defined consistently for any surface S which is part

of the surface of a subbody. Finally for any such surface §

we have a function qg on S such that for any & with S

a positively-oriented segment of d&

Q(*,«) = Q<*> =

S

For details of this procedure one is referred to NOLL [1] and

GURTIN and WILLIAMS [1].
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Regarding R, it is clear that for any P€B(6) if

are separate and P c (fi-U &2) then

In particular R on ft is bi-separately-additive, so that if

Bec $ we write

R(G,fi) = R(G,«A6) + R(G,fie) .

The function R(*,f& ), since B is unstructured, is clearly

voluiae-continuous on B((B) . Thus we deduce the existence of

r : <B -» (R such that
e

/r= / r
e
d v-

This completes the theory for the external effect R( #,6 e).

Henceforth then we need concern ourselves only with the internal

interaction, the map (Ĝ fi) M* R(G,$) on the set ft of separate

subbodies.

We could go on to extend the function R(P,•) for any

to a class of Borel sets but this is inconvenient and

unnecessary; we really need only the existence of R on ft and

the volume-continuity on ft to establish the desired result.

We first note the useful and easily proved

If H satisfies the Lipschitz condition then

for: all (G,fi)€nB

|R(G,fi) | <
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Now we shall extend the function R(Gj&) to (some of)

B((BxlB) . Let us fix separate subbodies G5C^ denote subsets of
A A

of G by G (subbodies) A, subsets of C by C,C.

Z: There exists ^ unique countably-additive

volume-continuous measure A on B(GxC) such that for all

Proof: Let us recall that FQ is the intersection with G

of the collection of unions of half-open parallelepipeds• We

define a function R on F-.X F^ in the expected way:

R(A,C) = R(A,C)

(AjC are subbodies). It is not difficult to verify that R is

bi-additive, and that

N N
£ RfA^C^) - 0 as £ V(Ai)V(Ci) - 0.

Now let £ denote the set of all finite disjoint unions of

sets of the form AXC (of course the AXC!s include the

collection of half-open 6-intervals intersected with flixtS) . £

is a field and its generated cr-field is B(G*C) . Following

exactly the technique of construction of product measures (cf.

HAHN* and ROSENTHAL pp. 223-227) one can construct a unique

additive map A: £ -» R which agrees with R on sets AXC; of

course

N N
M U A±X C±) = £ R(Ai,Ci) .

HUNT LIBRARY
GARNE6IE-MELL0N UNlVEflSITTT
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Clearly A is volume-continuous on E (we use "volume11 and

the symbol V for both the usual volume in 3-space and its

product with itself) so that it is regular. Since GXC is

compact and A bounded it follows that A has a unique count-

ably-additive extension to IB (GXC) (e.g. DUNPORD and SCHWARTZ

p. 138) which we also denote A. Since A is volume-continuous

on S it follows that it is volume-continuous on IB (GXC) (e.g.

DUNFORD and SCHWARTZ, p. 171) .

A A
We must now verify that A agrees with R on sets GXC.

N
We note that for all B = U A±x C^eL

1R(G,O- A(GXC) I < |R (G,O- E RflL,^) I + | M B ) - A(£xc) |.

It is then easy to see that we can choose B such that both

|MB) - MGXC) I

and

|V(BAG C) I

are arbitrarily small ( A denotes the symmetric difference).

But we can clearly write

|R(G,C) - £ R(A.,C.) | = |E L (!
i j

& f i

The volume of this miscellany of sets is exactly that of
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. A A
BAGXC; hence the entire quantity can be made arbitrarily small

by taking this volume small. Thus we conclude |R(G,C) - A(GxC) |
A A A A

arbitrarily small whence the desired conclusion: A(GXC) = R(G,C)

The uniqueness of the extension is easily shown since

A(AXC) = A(Ax6) for all such extensions.D

We shall when necessary write A as Ar n to emphasize

its dependence on (G^C); there exists r^ ^: GxC -• IR such that

dV'

if. H i§. Lipschitz continuous then ^jrQ n

obeys

|A(A)| < a V(A) 3 all AeB(GXC)

lrG c' — ̂ *> V " a'e> •

That A satisfies this bound on £ is trivially true; the

fact that it is true on B(GXC) follows as in GURTIN and

WILLIAMS [1, Appendix] and the bound on r^ ^ is then obvious

Central to the remainder of our work is the

A A
Lemma: If G,C . G.C are subbodies, G.C separate and

A A
G c G, C c C then

A * v - a.e.

A A A
Proof: Let £ be the field defined by G,C. For any

A A
G*,C* with G ^ c G , C* c C

G C(G*,C*) = R(G^,C^) = A
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It follows that AQ Q and A* A agree on TJ and hence on

A A *
B(GXC) . This means in turn that r^ r = r^ A V-a.e. on

A A n ' M
GXC.D

We wish to construct an integrable function which will

yield R(G^C) for any separate subbodies, G^C. The above

result makes it clear that we may expect to do so. The eas-

iest way to define this function is by means of taking success-

ively refined sequences of partitions of 0.

If F denotes any partition of B into subbodies, i.e.
Nr = {G.} where G. are separate and sum to &, we define an

integrable function r-p on <Bxl& as

N
rr = .J. XG.XG.rij

where r.. = rr r . and X^ is the characteristic function for

the set A.

Lemma; For any partion F = { G . ) if G = U G.,

C = U G. are separate
A> x

R(G,C) = J r^V.
GxC

Proof: We have

R(G,C) = J ra cdV.
GXC >

But GXC = U G x G and on G x G rn r = rn n = r r L n

1 3

by the definition of rT; this yields the desired result.D



-.17-

These two lemmas suffice to establish the desired result

as follows: Consider a sequence (F ) of partitions, each a

refinement of the previous one, such that

diam G . ' <_ 1/n

for all G. eT (it is clear that there exists at least one

such sequence). We write r = r and note that (cf. Figure 1)
n *n N

r and r , agree almost everywhere in U G. x G ;n', or,

less precisely, outside the set

3T-V

(cf. Figure 2). This creates a very simple sequence of functions

fr ). If B is the null set of Bxft - A on which r failsn n n

to equal r ... it is clear that outside U B U A one has r .= r^ n+1 p n n+i n
p=n

for all integers i. Hence it is clear that

r(x,y) = lim r (x,y)
n-oo

exists for almost every (x,y)GBXB - the excluded set is
oo

{(x,x)|xeB} U U Bn^ We set r=0 on this set; since r is the

point-wise almost-everywhere limit of a sequence of integrable

functions it is measurable. It is in fact, integrable on any

set included in a set of the form U G. X G.n' or, less

precisely, any set at a finite distance from {(x,x) |x€i&} .

It remains only to show that we obtain the same function

regardless of our choice of partitions. If ( F ) , {r } and
A A A

[T }, {r } are sequences yielding r,r respectively we denote
* A *

by F the common refinement of T and F . If r is the
u n n n n



-18-

• *

function defined by T it is clear that
•* n

rn - rn * *n a'e' on ftXfl " V

from the definition of T and the lemma above. Hence
n

r = r V-a.e.

Considering the way r is defined it is clear that given any

G5C in h the integral of r over GXC is R(G^C)^ for we

can always find a sequence of partitions such that G and C

are both finite unions of collections from partitions in the

sequence. We summarize our results in the next section.



H—I 1
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Figure 2
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3. Representation for R

We have proved in Section 2

Theorem 1̂: There exists ja unique (V-<a.ê ) measurable

&
function r: ftxilJ - R such that for any G,CeX\

R(G5C) = Ir dV.
GxC

In fact r is. integrable on any set A c ftx6 which fails to
N fl

intersect the interior of some set of the form U G. x G. , G. etU

Of course we can use this to define R(P,Q) for any Borel

ft
sets which are separated by an element of to .

In the case that | R (G, C) | < a V(G)V(C) then all of the

functions used in constructing r: r n>rr> r J a r e bounded

by a so that r is also. Hence the

Corollary: If H is Lipschitz continuous then r is

integrable on iJxft and |r| <_ a V-a^.£.

Combining Theorem 1 with the earlier results we obtain,

if 8ec *,

rdV +
G

where &^ = JS \ &e, so that

H(G,fl) = I q^^dA + f rdV + /r dV.

(To fix terminology we note that if H denotes heat flux then

describes the heat conduction through S, r the internal
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radiation, r the external radiation or heat, supply. If H

denotes forces then these are respectively the contact force

across §, the mutual body force and the external body force •)

It may often happen that the original function H is

balanced, i.e. that for each G,C in ft

H(G,C) = -H(C,G) .

This balance is^ for example, true for body forces as a conse-

quence of the law of balance of momentum (NOLL [1, p.275]) and

for heat flux in an immobile body the first law of thermodynamics

requires it hold (GURTIN and WILLIAMS [1, p. 9]). 1 If H is

balanced, then it is easy to show that R also is balanced.

In this case the previous analysis is greatly simplified. The

easiest procedure is to start at the beginning and define a new
— IB IB.

function R on all of to x to by

R(G,C) = R(G\C,C) + R(GAC,C\G).

It is clear that R(G,C) = R(G,C) if G and C are separate

and that R(G,G) = 0 . A short but messy calculation serves to

•— B (ft
verify that R is balanced (on all of to X to ) .

Lemma: R is separately bi-additive and for any f(G.JA.)}
N

i n to X to

N _ N
2 RCG^SL) - 0 as E V(Gi)V(*i) - 0

Proof: Let Ĝ Ĉ fi be any subbodies, with G and &

separate. Then

In general balance of heat flux is not to be expected; in the
presence of internal radiation the entropy flux is balanced only
in pathological cases.
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= R((GU*)\C,C) + R((GUJ5)AC,C

= R(G\C,C) + R(«\C,C) + R(GAC,C\(GU&))

+ R(AAC,C\(SU*))

= R(G,C) + R"(S,C) - R(GAC,)&AC)

= R(G,C) +

since R is balanced. Similarly R(C,GU*) = R(C,G) + R(C,fl).

We need only note, to establish the volume continuity,
N N

that E V(G.\C.)V(C.) <EV(G.)V(C.) and
N X X X N X X

E V(G.A C )V(C.\G.) < E V(G-)V(C.) .D
1 1 1 1 1 1

•32££E£ffl £• L e t H be. balanced. Then there exists a,

unique (V-ja.e^) inteqrable function r: (UXfl -• IR such that for

each (G •&) eft

-s r dV.

Moreover for V-almost every (x,y), r(x,y) = -r (y^x) •

Proof: The technique of extending R is exactly the same

as that for R but simpler, since we do not have to contend

with the problem of separation. Thus R can be extended to a

unique volume-continuous function on B(BX(S). This yields the

existence of r (the uniqueness is clear since there is only

one way to construct R from R). Since R is balanced

Jr dV = - fr dV
GxC CxG

for all G,Ce\b®; FU is sufficiently rich in sets that this

guarantees the essential anti-symmetry of r.D
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A result due to GURTIN and WILLIAMS [1, p. 93] says that

if H is balanced there exists a function r on IS such that

for all Getn

R(G,Ge) = ft dV.
G

Noting that R(G,Ge) = R(G,G ) + R(G,fce) one has for almost

every

r(x) = re(x) + jx(x,y)dV
B

with r as in Theorem 2. This is easily proven by noting

r dV = 0.

GxG e v e n

Finally let us note thatAif H is not balanced we are still
/•

often interested in evaluating 7jfjn\ / r dV as V(G)-+ 0 in

order to derive local forms of the various balance laws. If r

is integrable over BXB we can write

/ rdV = / rdV - f rdV
* b ' J

GXG GXB GXG

= ffrte,Y)

Since r(x,•) for almost every x is integrable we obtain

dVydVx
GXQ

Projgosition .3: Îf r i^ integrable then for V-^.e. x

and any sequence {G } in til converging to {x}

VTGTn-*oo n
(x) .

Remark. We may replace the assumption £ by the stronger

assumption that for some yeR, for all (G,$)eft
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|H(G,»)| < yi ff—l-z dV dV;
y

d v x

and for all Geto

|H(G,Be) | < y(V(G) +

In this case one obtains £ as a consequence and in addition that

r is essentially bounded by the function (x^y) f-» L—^—r-
|x-y)

which implies r integrable. The motivation for this is that

most internal effects are usually assumed to obey a reciprocal

distance law; the 3-6 power limitation ensures integrability.
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4. The Second Law and Internal Radiation

We now consider the modification of the second law of

thermodynamics previously mentioned. We will omit discussion

of the physical motivations for the basic definitions of entropy,

heat flux and entropy flux, referring the reader to GURTIN and

WILLIAMS [1] for such a discussion. We only note here that the

results of this section apply not only to rigid heat conductors

but to general continua since mechanical interactions do not

occur in the second law - the only change is that one should

then consider B a manifold, and as pointed out previously

this introduces only notational inconveniences. We do not

assume the heat flux balanced.

We suppose that the rate of change of entropy of any sub-

body G is given by S (G) , where S is a real-valued function
jQ

on IT\ and that the heat flux and entropy flux from fiefU into

GetU are given by H(G,$) and M(G,$) respectively, where H

and M are both bi-separately-additive and obey condition I of

Section 2.

As pointed out by Gurtin and Williams the statement of the

second law (for non-isolated systems) actually consists of two

statements: first that the production of entropy of the system

(growth of "internal11 entropy less the net influx of entropy)

is non-negative and second that entropy is not transferred into

a thermally isolated system. The first is simple to formulate;

for the second one, one must examine what is meant by thermal

isolation.
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For a continuous body it seems clear that the first should

be (GURTIN and WILLIAMS [1]):

Tl. For all

S(G) > M(G,Ge) .

Gurtin and Williams take as the second part

T2. Ij[ &e\[i, PeB(fib) are such that

H(p',«) = 0 for all. P'cP then

M(P,fl) = 0.

This statement is concise and mathematically convenient. On

physical grounds however it is more acceptable to restate this

in terms only of elements of to; T2, is equivalent to the state-

ment:

For each e there exists ja 6 such that if (G,&) et\ and

|H(G,JS) I < 6 for each subbody G c G then |M(G,fi) | < e.

Thus this requires that as the amount of heat accepted from &

by each subbody in G decreases to zero so does the entropy

accepted by G from &. In particular, if there is no heat

flux into any such element from & then there is no entropy

flux into G from $.
Such a statement may be too restrictive, however. Thus

one has the possibility that & can be written as the separate

union &JJ &2
 w h e r e each of & T J $ 2

 h a s c o n si d e r a t >l e intercourse
A A A

with each subbody G in G, but HfG,^) = -H(G,&2) so that
A A
( $ ) = 0 for all G c G and thus M(G,S) = 0 . This means

that T2 requires the entropy flux vanish even though there is
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a significant amount of thermal interaction between G and fi.

It seems more consistent with the verbal statement of the second

law to assume instead that the entropy flux from $ into G be

required to vanish only when there is no such thermal interaction,

i.e. only when there is no heat flux into any subbody in G from

any subelement of A.

To formalize this we must unfortunately have recourse, as

in £, to ensure a certain degree of uniformity by making a

statement in terms of finite collections in ft. Thus we propose

£2*• For each e there exists 6 such that if

{(G.,&.)}eh satisfy

N
S |]

for a l l G±c Q i n tT\B, ILc fl i n to then

N

Of course if there is no internal radiation, i.e. if H(G,$) = 0

for all disjoint pairs of subbodies then it follows that

G,fii) = HflJ^,*^) for some Gi (since G.^5. have contact only throû i

.n dfi. and fle has no subelements), and thus T2* is only

a slightly strengthened form of T2.

This remark indicates also that the distinction between T2

and £2* must have effect only upon the internal radiation and

not upon the conductive (area continuous) and external radiative

heat transfers. Proposition 4 below verifies this, and we there-

after turn to the question of consequences of T2* upon the
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internal radiation.

Suppose that the decompositions of H and M are

H(G,ft) = R(G,ft) + <

M(G,ft) = K(G,ft) + J(Gfldft) .

We will call a surface S in B a material surface if it is

of the foam dGfift for some Ĝ fteto. The following does

not use the fact that the functions can be extended to Borel

sets.

JProjgQgjj^QQ &: T2,* JLŜ  equivalent to the two statements:

i) fo*: each e there exists 6 such that E |R(G.jft.)|< 6
A (B A

for each G .c G. in, to , ft.c ft ija to implies
N \
| E K (G . , ft.) I < e;

N A .
ii) for each e there exists 6 such that E |Q(*.)|< 6

A N
for each set of material surfaces S.c: S. implies |E J(S.) |< e .

Proof: Let i), ii) hold. For any given e let 6 satisfy

both of i),ii). Suppose {(G.^ft.)} eft are such that

E |H(6.,ft.)I < 6 for all fi.c G.,ft.c ft.. Then it must also be
N . A A . N t A ,

be true that E |R(GiJ,fti) | < 6 and E \Q(&±) \ < 5 for all

§.c Q. n dft̂ . To show this for R: suppose there exist

A A ,N
{G.jft.J such that the sum exceeds 6̂  say by an amount A.

l l
f̂ j A f**

For each i we can choose G.c: G. such that G. is disjoint

from ft. and |H(G..ft.) -• R(G. ,ft.) I < — (recall how R is
l ' i i i i 1 N

defined in terms of H) . Thus |S |H(2'i,Si)|- E I R ^ , ^ ) | | < A,
N - A .

so E H(Q.,ft.) > o. a contradiction. One can argue in a
'II 1

similar manner to establish the bound on Q. Thus i) and ii)
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imply

N N N
| ( i , f i i ) | < |S K(Gi,«i) | + |E J(Gin a«±) | < 2e

whence £2*.

N
Conversely suppose T2* • Let {&.} be any collection of

material surfaces. We can choose {(G.,$.} in ft such that

G.fl Sfi . = 8. for each i and we can further assure their
1 1 1 KT

N A A
v o l u m e s u f f i c i e n t l y s m a l l t h a t b o t h £ |R(G.^£>.) | and
N A A A A

EK(G.,,&.) for all G . C G . , &.<= «. are arbitrarily small,

since both R and K obey the volume-continuity condition of

Section 2. (We need in fact only the bounds |R(G,fl) | < cflf(G) ,
A A

|K(G,fl) | < QV(G) •) Then for all G±c: G^, A^cz &^ we noteN A A N A N AA
1

A A ^A
when * . = G . n S f i . c g . .

1 1 1 1

Now suppose € > 0 is prescribed. We choose 6 as given

N N A
by T2* and suppose that {S^} are such that ElQf^) |< 6

A j$

for all S.c1 S. . Then we can choose {(G.^fi.)} as above and
by taking them of sufficiently small volume assure

N , A A .
| ) | 6

A A
for all G.^G.^ fi.cfi.. Thus from T2*

JL J_ JL JL /^**"N^

N N N

and if the (G.̂ fi.) have been properly chosen we conclude

N
|£ J(*±) I < €,



establishing ii).

Condition i) follows by an analogous argument which we spare

the reader.Q

An immediate consequence of this Proposition is that as

measures on B(6) J is absolutely continuous with respect to

e e

Q and K(*^B ) absolutely continuous with respect to R(#,8 ) .

(Of course i),ii) are in fact stronger than necessary for these

conclusions.) Thus we can deduce the existence of functions 9

and (for each material surface §) <p« on (B and §• respectively

such that

K(G,Be) = f -gS. dv.
G

We have established in this way the existence of conductive

temperature functions <0g and an external radiation temperature

9 . Conditions which lead to the existence of a single con-e

ductive temperature field <P and which lead to the conclusion

that 9 = <p in the absence of internal radiation are given

by GURTIN and WILLIAMS [1, Section VIII] and [2].

We now immediately establish the main result of this section.

Theorem ^: There exists <a function 9 on Bxfi such that

"e" i§. measurable and for each pair of separate subbodies

K(G,C) = |f dV.
GxC

CHEN and GURTIN call 9 the thermodynamic temperature.
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In fact -Q- ijs inteqrable over any set in RxR not inter-
N B

secting the interior of some set of the form U G. x G. _, G. eto .

Proof: Recall the nomenclature of Section 2 (Proposition 2)

Consider first any fixed (G,C)eh . Let AO,AV denote the

measures induced on B(GXC) by R and K respectively•

We now show that \r-

is absolutely continuous with respect to ~h on the field L,
R

which implies that this is also true on B(GXC) .
N

Suppose BeL is given as B = U A.X C. where A.GFQ,

C.eFp, and that |An|(B) < 6 (where lA-J is the total vari-
X v> K K

ation of the measure AD) . For any G.c A., C.^ C. clearly
i\ X X X X

N N
2 | R ( G . C ) | = S | A p ( G . X C . ) | < | A p | ( B ) < 6 .

XX Jt\ X X I \

Hence, i f 6 i s properly chosen we can ensure that

N w _
|AK(B; I - I IJ K(A^^C^; I

is arbitrarily small. Thus there exists 9r n such that

T dv

A 3

whenever A c QXC. We extend 6 to all of (BX(B exactly as

in the material preceeding Theorem 1.Q

Remark: It is clear that the assumption T2* is stronger

than is necessary to establish Theorem 3; it was chosen as the

physically most appealing of several unappealing possible

assumptions. The weakest possible assumption would be: for each
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M A A
€ there exists 5 such that £ ^ ( G ^ C ^ ) ^ 6 for all

A A M M A A N N

{(G^C^)} with U G±X c ±
c U G±X c± implies |L M(Gi,Ci) |< 6.

Note that 0 is defined only A^-almost everywhere, and

may be infinite-valued. If M satisfies the volume Lipschitz-

condition then TT is V-essentially bounded and 6 must be

A^-essentially non-zero.
As pointed out previously it is unreasonable to require

that K should be balanced. Hence it cannot be true in general

e
that Q -• K(G,G ) can be expressed in terms of a single density.

However we may use Proposition 3 to verify that i_f -g- is

integrable then for almost every x ijn B

a i u} V(G) " I e(x^} y ee ( x ) '

Now let us consider an interesting side-light of this

result. Let us suppose that -|- is integrable on BXB, that

dA where ^ is a class C vector field (cf.

GURTIN and WILLIAMS [1, pp. 106-110]) and that lim -iprSfG^ s (x)

G{x] V(G)

exists with s an integrable function. Then we derive the local

form of the second law: for V-almost every x

r (x)
s(x) > div i(x) + -frff + / f ^ dVy.

Now let us integrate this over a subbody G; we obtain

/s dV > J(SG) + K(G,ft) + K(G,G) + / §
G

s dV > J(SG) + K(G,fte) + K(G,Gb) + / § dV

or
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or

/sdV - / § dV > j(dG) + K(G,Ge) = M(G,Ge) .

G GxG

Thus /sdV - / ~ dV is an upper-bound for M(G,,Ge) . This

strongly suggests - although it by no means proves - that

G -• S(G) should not be required to be separately additive but

that it should take the form

-fiS(G) = /s dV + Sb(G)

where Sb(G) = fr(V(G)) as V(G) - 0 and

/ f dV.
GxG

Compare this to the presentation of the second law - including

a second law for interactions - as presented by GURTIN, NOLL and

WILLIAMS.
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Appendix

The axioms which characterize to are given by GURTIN and

WILLIAMS [1] as

1. Each element of to is a regular region.

2. Geto implies G eto .

3. G,Ceto implies GljCeto .

4. If C is a solid circular cylinder or a solid prism

then

5. If Geto and S- is any regular surface included in

dG there exists a monotone sequence {G } in to 3
oo

G c G such that n G = S.n n
B

6. If Geto and â  any vector then G+<a contained in

to implies
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