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Abstract

This article is concerned with general, compressible, isotropic

materials, solid or fluid, characterized by functionals which give the

stress when the history of the strain is specified. It is shown that for

certain broad classes of motions the requirements of material symmetry

and frame-indifference greatly simplify the form of constitutive equations.

These simplifications are derived without invoking integral expansions or

other special hypotheses of smoothness for material response. Among the

motions considered in detail are those which are locally equivalent to

pure extensions and sheared extensions.
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Preface

A simple material is one for which the stress at each time t is

determined by a functional A g of the history F of the deformation

gradient F up to time t:

S(t) - i^f). (1)

The functional jflL generally depends on the choice of the reference

configuration ft . If^starting from some particular reference configura-

tion, it is found that the group of changes of reference which leave XJJQ

invariant contains all orthogonal transformations, then the simple

material is said to be isotropic." If tIL contains all unimodular

"In an early paper on materials with memory, Green and Rivlin (1957)

discuss Isotropic materials assuming that the constitutive functional

can be expressed as a sum of iterated integrals.

MM
transformations, then the material is a simple fluid.""

""These definitions, due to Noll (1958), will be explained in greater

detail in Section 2.

For certain classes of motions the constitutive equation (1)

can be simplified by making direct use of the symmetry of the material

and without calling upon integral expansions or other special assumptions
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of smoothness for A g . It is known that this is the case for particular

motions of incompressible fluids. In this essay I derive reduced forms

^Coleman and Noll (1959 a & b, 1961, 1962).

of (1) which are valid for general isotropic materials, whether solid or

fluid, and which hold for broad classes of motions. I then show that in

particular kinematical situations use of these reduced forms can greatly

simplify the dynamical equations.

No assumption of incompressibility is made in this article; the

further reductions yielded by such an assumption will be apparent to the

reader.

Chapter I of the article is an introduction to the general

theory of isotropic simple materials. The new reduced forms derived

there, in Section 2, are valid for arbitrary motions. Chapter II is

concerned with simplifications of (1) holding in motions for which the

right principal directions of stretch are constant in time at each

particle, although these directions of stretch may vary from particle to

particle and the amounts of stretch may vary in time. Such motions,

called extensions, include as special cases the inflation and stretch

of a circular tube, the inflation of a spherical shell, and the bending

of a block into a cylindrical wedge. In Chapter III I derive reduced

forms of (1) appropriate for sheared extensions, a class of motions

containing shearing motions and motions of extension as special cases.
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1. Definitions

A motion of a body (D is described by expressing the position x

at time t of a particle X as a function X of t and the position X occupied

by X in some fixed reference configuration HJ of JO :

x = X(X,t). (1.1)

The gradient F of the function X with respect to X is called the deformation

gradient:

F 7xX(X,t). (1.2)

Of course, for a given motion, F depends not only on X and t but also on

the choice of the reference configuration r£. For the same motion,

particle, and time, the deformation gradient F1 relative to some other

fixed reference configuration (ft/ is

F1 - FG"1, i.e. F - FfG. (1.3)

Here G is the deformation gradient at X of ft} relative to £ ; to indicate

this we may use the notation

R1 - 6ft. (1.4)

It is assumed that deformation gradients are non-singular.

Hence, in (1.2) and (1.4) we have det F 4 0 and det G 4 0.
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The history of the deformation gradient at X up to time t is

the function F defined by

F^s) - F(X,t-s), 0 < s < oo; (1.5)

t *

thus F is a member of the class F of all functions which map the

positive real axis [0,«>) into the set F of non-singular linear

transformations.

As stated in the introduction, for a simple material the stress

S at a particle is given by a functional /L of the history F of the

deformation gradient at that particle:

S(t) =

Q *&

)Qfi is called a constitutive functional; its domain of definitiQn is F .

In (1.6) I have not rendered explicit the understood dependence of £ and

F on X. Constitutive functionals are affected by the choice" of reference

configuration, j&tde^dl since the motion determines the stress independently

of the reference configuration, it follows from (1.3) that if (ft,

then

for all F* in P*.

In general, the functional #£ depends on the particle X under

consideration. Let us here assume, however, that there exist reference
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configurations (fl of S> which make >0n independent of X, i.e. that the

body O is materially homogeneous; these configurations JC are called

homogeneous configurations. It is easily seen that if Jt is a homogeneous

configuration of & and if G in (1.4) is independent of X, then $L is

also a homogeneous configuration of KJ • Unless a statement is made to

the contrary, whenever we consider reference configurations, let it be

understood that they are homogeneous.
* *

Let Q be the class of all functions Q whose values are
S3 os

orthogonal tensors and whose domain is [0,<»). For simple materials, the

principle of material frame-indifference" asserts that for each function

principle, |fai genero44^yj is due to Noll (1958) who called it j 1

"objectivity". See also the work of Green and Rivlin (1957) who used a

closely related principle of invariance under "rigid rotations".

* * o *
Q in Q , the functional ^ must obey the following identity in F :ft

If P/} and p^o are the mass densities in two reference

configurations (ft and fl° with ft - Gjfl°, then

Tensors H for which Idet H| * 1 are called unimodular.



The group J(L of unimodular tensors H for which

is called the symmetry group of the material comprising (D relative to

the reference configuration ft. The elements of t!L may be interpreted

"Noll (1958) called *iL the isotropy group relative to R.

as the deformation gradients of those homogeneous changes of reference

configuration, starting from Q\ , which are "undetectable11 in the sense

that they preserve both the mass density and the form of the constitutive

functional. It follows from (1.7) that a unimodular tensor H is in JZ/J

if and only if ycL obeys the equation
01

*
for all functions F in its domain.

Since &Q depends on (R. . so also does \jin . In fact, it is

easily shown that if & • G fC, then ^J?^equals the conjugate of

under the tensor G:

i.e. H is in JL if and only if H » GH°G~1 for some H° in

The following definitions are due to Noll (1958): If there

exists a reference configuration (f( of O such that \H contains the full
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orthogonal group 9 as a subgroup, then the material comprising (p is

isotroplc and uC is said to be an undistorted reference configuration of

£>• If> for some (a. **>£> • 2, then the material is an isotropic solid

with undistorted reference configuration vv,. If JL is the full unimodular

group U, then the material is a fluid. It follows from (1.12) that if

**P m a ^or one r e f e r e n c e configuration ${?, then «%/}** U for every other

reference configuration tf\, ; hence, every homogeneous configuration o_f £

fluid is undistorted.
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2- General Reduced Forms for Constitutive Functionals

There is a theorem of group theory which states that if a group

G is a subgroup of the unimodular group U and contains the orthogonal

4L

group 2 as a subgroup then either G « U or G • g." *n o u r present

^See Brauer (1965) and Noll (1965).

terminology this theorem becomes

Lemma 1: An isotropic material is either a solid or a fluid.

has observed that for a fluid A* can depend on the

ft
^(1958, eq. (21.2).)

reference configuration $ only through the mass density p^, of (ft:

Sp^). (2,1)S(t) ,4 <£)

In words: For each fluid there exists a functional ^ O . P ^ ) , depending

on only the parameter p-., which gives the stress when the history of the

deformation gradient relative to R, is known.

We have noted that every reference configuration of a fluid is

undistorted; such is not the case for isotropic solids; nor does (2.1)

hold for arbitrary reference configurations of a solid. I shall show,

however, that (2.1) does hold for an isotropic solid provided it is

assumed in advance that the configuration \fi is undistorted. That is, the

response of an isotropic solid to a given deformation history is the same

for all undistorted reference configurations having the same density. The proof
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rests on a lemma of Coleman and Noll (1964) characterizing the strain

relating two undistorted reference configurations of an isotropic solid.

A tensor G of form G = (XQ, with OC a scalar and Q an orthogonal

tensor, is called a similarity transformation.

Lemma 2: Let (ft and R°, with (ft = G&.°, be two reference configurations

of an isotropic solid. If ̂ ,° is_ undistorted, then «a necessary and

sufficient condition that (ft, also b£ undistorted i£ that G b e a similarity

transformation.

Proof^: To prove necessity we assume that *|LO and

"The proof I give here for general isotropic solids is the same as that

given by Coleman and Noll (1964, §2) for elastic isotropic solids. See

also Truesdell and Noll (1965, §85).

are both equal to the orthogonal group Q. Then, by (1.12), G must be

such that Q = GQG ; i.e. G must belong to the normalizer of Q in the

full linear group F. But, the normalizer of g in F is precisely the

group of all similarity transformations. To prove sufficiency we assume

that G - aQ with Q orthogonal. Then, by (1.12)

and, by hypothesis, ^2t:>o
 = Q- Since the conjugate of Q under any

orthogonal tensor is again Q, it follows from (2.2) that \JIJQ = Q; q.c.u.
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Theorem 1: For each isotropic material there exists «a single functional

*% such that if F is. the history of the deformation gradient relative

to any undistorted reference configuration lf\ with density pp , then

S(t) - i j f ) - JCvF11) (2.3)
(TL

where

v - 3 [ X . (2.4)

In using this theorem it should be borne in mind that for a

fluid the reference configuration f\+ may be any configuration we wish,

even the configuration at time t, while for an isotropic solid the class

This is true even if the global configuration at time t is not homogeneous,

but, the simplified terminology I use here, assuming as it does that

reference configurations are homogeneous, does not permit a demonstration.

The point is, however, easily made precise if one uses Noll's (1958)

theory of local reference configurations.

of undistorted reference configurations is limited in accordance with

Lemma 2.

Proof of Theorem 1: Let ft, be a fixed undistorted reference configuration

of the isotropic material. Let ft, with $ = G fC be another reference

configuration of the same material. Clearly, by (1.9) if we put

H - rl^ G, i.e. H - GJTT*- , (2.5)

ft
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then H is a unimodular tensor. By Lemma 1, our isotropic material is

either a solid or a fluid. Suppose first that it is a solid and that

is undistorted. Then, by Lemma 2, G must be a similarity transformation

and H in (2.5) must be an orthogonal tensor; i.e. H must be in

follows from (1.7), (2.5) and (1.11) that for all F* in F*

Suppose now that the material is a fluid; then, since H is unimodular, H

is automatically in *tfp, and the equations (2.6) hold again. If we now

define \J by the equation

the theorem follows immediately from (2.6).

Sjgorem !• With reference to an undistorted configuration

density p Q , the constitutive equation of an isotropic material

can be written in the form

S(t) =* &(F -;p ), (2.8)

where, aĝ  the notation indicates, ^ (• .p ) depends on (|\ only through p ^

Since we here have xil^ • g> t'16 functional

must obey (1.11) for all H that are orthogonal. Furthermore, by the
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principle of material frame-indifference, )$(';P«) m u s t obey (1.8).

Combining the two identities so obtained we get

*
Theorem 2: For each constant orthogonal tensor P and each function Q

in Q , the functional j$(- .p ) of_ (2.8) must obey the following identityp

*
in F :

( 2 > 9 )

Putting Q (s) = Q. a constant, and P = Q in (2.9) we obtain

the following

Corollary to Theorem 2: The functional i^(-.P^) in (2.8) is an isotropic

functional; that is, for eaph constant orthogonal tensor Q, A (•.P̂ ) obeys

the identity

The polar decomposition theorem tells us that the (non-singular)

deformation gradient tensor F can be written in two ways as the product

of a symmetric positive-definite tensor and an orthogonal tensor R called

the rotation tensor:

F = RU = VR. (2.11)

Not only R, but also the right stretch tensor U and the left stretch
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tensor V in (2.11) are uniquely determined by F. The following relations

are well known:

V = RURT,

U2 = FTF « C, > (2.12)

V2 - FFT £ £ B. J

The tensors C and B are called, respectively, the right and left

Cauchy-Green tensors.

The functions R , U , and C defined by

s) - R(X,t-s), ^(s) - U(X,t-s), Cfc(s) - C(X,t-s), 0 < s < ~. (2.13)

are the histories of the rotation tensor, the right stretch tensor and

the right Cauchy-Green tensor at X up to time t. It follows from (2.9)

with F*(s) = F^s) « £{*)£(*), P - 1, and Q*(s) « R^s)"1 that

4L
In view of (2.8), the equation (2.14) establishes7'

''The reader may find it interesting to contrast our present equation

(2.15) with Nollfs (1959, Theorem 6, p. 219) equations (20.1) and (20.2).

In his equation (20.1), K. depends in an unspecified manner on the choice

of the undistorted reference configuration (which we call fL). In our

equation (2.15), p depends on ft only through the density p^, ; the

ft
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the nature of this dependence is rendered explicit in (2.18). Noll's

equation (20.2) is, in a sense, more general than (2.15), because his

intermediate local reference configuration M need not be undistorted,

but his (20.2) involves a tensorial parameter ffT-ff more complicated

than the p* appearing in (2.15). These basic differences are related
(ft

to the fact that the proof of our present Theorem 3 employs the Lemmas 1

and 2, whereas the proof of Noll's Theorem 6 does not.

SJS2ES2 ^: The constitutive equation of £ simple isotropic material may

b<e written in the form

S(t) - i^U^Pfl), (2.15)

where

S(t) - R(t)"1S(t)R(t) (2.16)

ijL called the rotated stress, and R(t) and U are, respectively, the

rotation tensor at time t and the history of the right stretch tensor u£

to time t, both taken relative to an arbitrary undistorted reference

configuration ft, with density p^ .

The functional $ in (2.15) is the same as that in (2.8)-(2.10),

It is, furthermore, clear from the relation

id ;fc> -
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that (2.15) can be written in the form

S(t) = 'ftvuS- (2.18)

Let us call the tensor 53, defined by

g » JL F"1S(F"1)T , (2.19)

t'ie material stress tensor . If we define the functional n by

^Truesdell and Noll (1965, §43A, p. 125) refer to | as the tfsecond

Piola-Kirchoff tensor".

;p^) = |det g*(0)|u*(0)'1^(U*;p^U*^)'1, (2.20)

for all positive Q^ and all functions U in F whose values are

positive-definite symmetric tensors, then T4(*«P^) ^S also isotropic,

i.e. for each orthogonal tensor Q the identity

P^Q"1 (2.21)

holds for all functions C in the domain of "H(*jP^). Furthermore, we

have the following useful

Corollary to Theorem 3: The constitutive equation of an isotropic material

may be written in the form

f(t) = "HCCSP^), i.e. S(t) = ^-F-HCC^P )FT. (2.22)

where S(t) is the material stress tensor at time t, and C is the history
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of the right Cauchy-Green tensor up to time t, both computed relative to

an undistorted reference configuration $, with density P-* . The functional
___ __________ .____»__-________. ^^

*P )> defined in (2,20), iŝ  isotropic and depends on fo only through P- .

It follows from (2.8), (2.15), and (2.22) that the isotropy of

the functionals •^(••Po) an(* n(#*P_*) m ay be expressed as follows: For

each constant orthogonal tensor Q

F -» OF Q «*> <S(t) ->QS(t)Q~ , (2.23)

Ut ̂ Q u V 1 — > S(t) ̂ ^(tyQ"1, (2.24)

and

C -> QC Q" =«*> S(t) -»QS(t)Q" . (2.25)

Here "A-^B" means "A replaced by B", and = > , as usual, denotes an

implication.

Henceforth, whenever we discuss motions, deformation gradients,

or stretch tensors, it is to be understood that the material under

consideration is isotropic and that the reference configuration is not

only homogeneous, but also undistorted.
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II. Motions of Extension

3. Reduced Forms Valid in Motions of Extension

Since the rotation tensor R in (2.12) is an orthogonal tensor,

the right and left stretch tensors U and V have the same proper numbers

a,; these numbers are called principal stretch ratios. The tensors U and

i — _ — - ^

V are, by definition, positive-definite, and, therefore, the principal

stretch ratios are always positive. The proper vectors u. and u of U

and V are called, respectively, right and left principal directions of

stretch. The vectors u and u. are not, in general, equal; in fact, it

follows from (2.12) that

u, (t-s) - vR(t-s)u.(t-s), 0 < s < oo. (3.1)

The proper numbers a. and proper vectors s. of the stress tensor

£ are called principal stresses and principal axes of stress. The

principal stresses are also the proper numbers of the rotated stress

~ -1
S • R SR, while the principal axes of stress at time t are calculated as

follows from the proper vectors £ (t) of <S(t):

s^t) = R(t)Ji(t). (3.2)

If the right principal directions of stretch are constant in

time at the particle X-then the motion of X is an extension.
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More precisely, we say that the history of X

up to time t has been an extension if there exists (at least) one

orthonormal basis u,, independent of s, such that the matrix of the

components ojE U(t-s) with respect to u. has the form

[U(t-s)]

t-s)

0

0

0

o,(t-s)

0

0

0

OL(t-s)

(3.3)

for all s, 0 < s < oo. The vectors u. are then obviously the three right
———— ——— — *>»jL

principal directions of stretch which have been constant in time up to

the present time t, and the numbers OL. (t-s) are the principal stretch

ratios.

Note that we here make no hypothesis about the time-dependence

of the rotation tensor R; hence, by (3.1), the left principal directions

of stretch u. need not be constant in time in an extension.
~i

It follows from (2.24) that if a particular orthogonal tensor

Q commutes with U(t-s) for all s then Q must commute with S(t):

SB'S'1 U
-1

- s(t).

When the motion is an extension, U(t-s) commutes with all orthogonal tensors
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Q whose components relative to the basis u. have a matrix of the form

±1 0 0

0 ±1 0

0 0 ±1

(3.5)

But, an elementary calculation shows that a symmetric tensor S(t) commutes

with all tensors of the type (3.5) only if the components of S(t) relative

to the basis u. have the matrix'
i

.#

#,See, for example, the argument given by Serrin (1959, p. 232).

tS(t)J

0

0 a2(t) 0

0 0 03(t)

(3.6)

-1,
Hence, in an extension the proper vectors s. of S(t) = R(t) S(t)R(t)

coincide with the constant right principal directions of stretch:

(3.7)

The equations (3.7) and (3.2) yield

(3.8)

Putting s = 0 in (3.1) and comparing the result with (3.8), we see that

(3.9)
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This proves

Theorem 4: I£ the motion of an isotropic material i£ an extension, then

at each moment the left principal directions of stretch are, also principal

axes o£ stress.

Remark: It follows from (2.12) that the proper vectors of U coincide with

those of right Cauchy-Green tensor C while the proper vectors of V coincide

with those of left Cauchy-Green tensor B. Hence, to see whether the history

of a particle X has been an extension, one may compute F(t-s) at X for all

T
s > 0 and then observe whether the proper vectors of C(t-s) = F(t-s) F(t-s)

are independent of s; if they are, and if the material is isotropic, then

T
the proper vectors of B(t) f= F(t)F(t) will give the principal axes of

stress at X,

Since, according to Theorem 3, S(t) is given by a function of

J\ of QA and the history U , each non-zero component a,(t) of the matrix
^ ft ~ J

(3.6) is given by a function ^p. of p^ and the history of the three

0 J K
non-zero components of the matrix (3.3):

a2(t) =

a3(t)

0 < s < oo, i = 1,2,3. )

(3.10)
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The functionals-<< do not depend on the orthonormal basis u,,

i.e. on the direction of stretch. To see this let us note that if U and

U are the histories of U occurring in two motions of extension with

different right principal directions of stretch u., u', but with the same

t t t tf t -1

triplet OL.OL.OL of stretch-ratio histories, then U = QU Q , where Q

is the constant orthogonal tensor obeying u! = Qu., i = 1,2,3. It follows

from (2.24) that the rotated stresses, S(t) and Sf(t), corresponding

respectively to U*" and U*" = QUtQ~ , must obey the formula S1 (t) « QS(t)Q~

and hence must have the same proper numbers, which is just another way of

stating that the functions *JL. do not depend on the basis u . Since the

functions JL. are determined by >&,, they, like /0Q > can depend on the

choice of the reference configuration f£ through only the mass density p

of £ .

Because the JL. are functionals determined by }Q , i.e. by the

isotropic material under consideration, they may be called material

functionals.

Let us now take for Q in (2.24) the orthogonal tensor whose

components relative to the basis u, have the matrix

[Q] =

0

1

0

1

0

0

0*

0

1

(3.11)
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[QU(t-s)Q
-1,

(t-s)

0

0

0

Ct^t-s)

0 (

0

0

31. (t

(3.12)

while (3.6) and (3.11) yield

o2(t)

0

0

0

o1(t)

0

0

0

o3(t)

(3.13)

~ -1

Of course, by (2.24). QS(t)Q is the rotated stress corresponding to

QU Q . Hence, interchanging the functions OL and QL, with QL held fixed

results in an interchange df a, (t) and 02(t) with 0«(t) held fixed. Clearly,
this is true for all functions OL. in the domain of the functionals

and only if these functionals obey the identities

if

(3.14)

(3.15)

Similarly, on putting for Q in (2.24) the orthogonal tensor whose

components relative to the basis u. are

[Q]

0

0

1

0

1

0

1

0

0

(3.16)
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one easily shows that interchange of O. and a_ with QL held fixed implies

an interchange of a.(t) and a~(t) with a~(t) held fixed. Hence, the

functionals -£ also obey the identities

/ z i r ^ V /z^'^^V1 (3'18)

If we now put

the equations (3.10) and the identities (3.14), and (3.17) yield

a2(t) =

a3(t) -

On considering (3.14) and (3.18) [or, equivalently, (3.15) and (3.17)] we

see that JL must obey the identity

* * * n * * *
X ,p ,7 ;p ) = -f.{a ,7 ,P ;p^) (3.21)

•k "k ic
for all triplets of positive functions a ,p ,7 on [0,<»). This proves
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Theorem 5: If, relative to the undistorted reference configuration ft,,

the motion of an isotropic material is an extension, then one scalar-valued

material functional ^A , enjoying the symmetry property (3.21) and depending

J, .7
on 0(, only through the density p > gives, as in (3.20), each principal

ft

stress Q.(t) a£ <a function of the histories OL. ot_ the principal stretch

ratios.

Remark 1: It follows from (2.18) that for each isotropic material there

exists a single functional JL such that

J?{a ,p ,7 ;p-) = -^(va ,vp ,v7 ), v = -— . (3.22)

for each triplet of positive functions OC ,|3 ,7 on [0,«>).

An extension is called symmetric if two of the principal stretch

ratios, say a2 and QL, are always equal. Using the functional -£ of

Theorem 5, let us define two material functionals _£, and .yg, as follows:

(3.23)

The following remark is now an obvious corollary to Theorem 5:
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Remark 2: In a symmetric extension with Ck (s) = QL(s), the principal

stresses are given by

a2(t) = a3(t) =

(3.24)

A planar extension is an extension for which one stretch ratio

is always unity. Let us define snv and /ft, by

* * def /) * f *P ; P ) s£i ̂ (a i
Tp

def

* *

(3.25)

where 1 is the (constant) function mapping [0,«>) onto the number 1.

Clearly, another corollary to Theorem 5 is

Remark 3: In a planar extension with QL(s) = 1.

oJjp )

a2(t)

a3(t)

The functional/j^/ appearing here is symmetric in the sense that

(3.26)

. ,p ;p ) ,Ct jp (3.27)

* *
3

* *
for each pair of positive functions a ,(3 on [0,<»).
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A longitudinal extension is one for which two stretch ratios

are always unity. Of course, such an extension is both planar and symmetric.

We may now put

* def ^ * t t / * t * t

(3.28)
* \ def ^ f i "t * v 6 f * T 1" v * "I" v

'ft y ' ' ' H ' ' K A '

and observe that Theorem 5 yields

Remark 4: In a longitudinal extension with QL(s) = QL(s) = 1,

(3.29)

a2(t) = a3(t)

Let us define a material functional j by

^r* i'm ̂ r*\
(3.30)

where X> is an arbitrary positive function on [0,«>). Clearly, by (3.22)

and Theorem 5, we can assert

Remark 5: In a motion for which F is always a similarity transformation,

i.e. a motion for which U(t-s) ss V(t-s) s a(t-s)l. for all s and hence

3 ptfit 3 ptfi
= a 3(

8) sJp(t- s) '
 t h e s t r e s s i s a h y d r o s t a t i c pressure,

a l ( t ) = a 2 ( t ) = 0 3 ( t ) = ~ P(t)' (3.31)



27.

given by

P(t) - i O ^ ) , ^ 0 0 = P(t-s)"1. (3.32)

Here X) is the history of the specific volume up to time t. The

material functional J does not depend on a choice of reference configuration.
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4. Rectilinear Extensions

In this and the following two sections we employ orthogonal

coordinate systems to discuss global motions of isotropic bodies. The1

1 2 3
coordinates x y x y x of a particle X at time t are expressed as functions

1 2 3
of t and the coordinates X , X , X of X in an undistorted homogeneous

reference configuration frL :

x1 - xi(xa,t), i,a- 1,2,3. (4.1)

4L
For a rectilinear extension there exists a fixed single

"The isochbric "steady extension" considered by Coleman and Noll (1962)

for incompressible simple fluids is a special case of the motion (4.2).

So also are the "homogeneous extension" and the "simple extension"

analyzed for hypoelastic materials by Truesdell (1955a) and Green (1956).

i k
Cartesian coordinate system in which each x is independent of X for k ^ i:

1 1 1 2 2 2 1 ^ 3
x - x (X ,t), x - x (X ,t), x « x (X ,t), -oo< t<oo. (4.2)

dx1
Let us assume -~r > 0, for each i. Clearly, for such a motion

(4.3)
,

and, in the Cartesian system in which (4.2) holds, (3.3) also holds with

— - x (XL,t-s) = a. (t-s) = a^(s) (unsummed), 0 < s < «>. (4.4)

dX x x
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Hence, by (3.6)-(3.9) in this coordinate system we have

S, « S a O.o (unsummed), (4.5)

with 6 the Kronecker delta. Thus the principal axes of stress, as well

as the left and right principal directions of stretch, coincide with the

axes of the coordinate system. Furthermore, by (3.20),

a,(t) • ^(of^ijofjRg) (4.6)

for each permutation (i,j,k) of the numbers 1,2,3.

It follows from (4.2) and (4.5) that whenever the motion of an

isotropic body is a simple extension, Cauchyfs dynamical equations

div S + pb - PVJ (4.7)

with p the density at time t, b the specific body force, and v the material

time derivative of the velocity v, reduce to

+ pb. = p k — + v r — , (unsummed). (4.8)

L a t d x J
1 2 3

By (4.4) and (4.6), a,, in general, depends on x , x , and x as well as

t. Thus, even if we assume a simple form for b , the three equations

(4.8) are coupled and are difficult to discuss. There are, however, two

exceptional cases.
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(I) In those special motions called homogeneous extensions, it

is assumed that F is constant in space and hence that — r • 0 for each i.
dx1

The general theory of homogeneous motion in compressible simple materials

subject to constant and uniform body forces has been discussed by

4L
Truesdell and Noll. The interested reader will have no difficulty in

"(1965, §28, pp. 61-63), The kinematics in the earlier papers of

Truesdell (1955b) and Noll (1955) dealing with homogeneous motions in

special materials can be usefully applied to general simple materials.

See also Truesdell and Toupin (1960, §143, pp. 434-437).

working out details for isotropic bodies in pure extension, using the

present formulae (4.5) and (4.6) for the stress.

(II) For a rectilinear longitudinal extension the equations

(4.2) take the special form

1 1 1 2 2 1 3

x - x (X , t ) , x - X , x - X , -oo < t < oo. ( 4 . 9 )

Hence,

QL(S) - £ - y X 1 ( X 1 , t - s ) , c £ ( s ) S a^(s ) = 1 , 0 < S < o o . (4 .10 )
1 b JSince, by Remark 4 after Theorem 5,

' ^ ) , (4.11)

a0 = a9(x\t) = Mot:,Pa), (4.12)



31.

we here have

bo^ bo
3 - 0. (4-13)

* 2 * 3ox ox

Of course (4.9) implies

v2 - v3 » 0. (4.14)

If we now assume that body forces act only in the 1-direction, i.e. that

bx = b, b2 - 0, b 3 - 0, (4.15)

then, by (4.13) and (4.14), two of the three dynamical equations (4.8)

reduce to 0 = 0, and the remaining one becomes

bo.

which is equivalent to

OA

With the functional CL assigned, (4.17) is a functional-differential

equation for x = x (X ,t). If a has appropriate smoothness properties,

the theory of this functional-differential equation can be expected to

broadly generalize that of the quasi-linear hyperbolic partial differential
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JL
equation describing plane longitudinal motions of elastic materials.7'

1
"Qt. Coleman, Gurtin, and Herrera (1965), Coleman and Gurtin (1965),

Coleman, Greenberg, and Gurtin (1966), and Greenberg (1967). The present

proof that the equations (4.11), (4.12), and (4.17) follow from (4.9) is

that referred to by Coleman, Gurtin, and Herrera (1965, pp. 15 and 19,

ref. [15]) as "forthcoming".

One usually thinks of a rectilinear longitudinal extension as a

motion taking place in a body which has in its reference configuration the

form of a cylinder with its axis along the 1-axis of our Cartesian

coordinate system. It follows from (4.9) that such a body remains a

cylinder at all times. The forces which must be applied to the bounding

cylindrical surfaces to maintain a purely longitudinal motion are, by

(4.5), normal to the surface, and have, by (4.12), a value, in units of

force per unit area, equal to ^/(QLjp^). In the same units, £(aiJPj?)

gives the cross-sectional tension in the cylinder. In general, both the

internal tension and the normal forces vary with time and distance along

the cylinder.
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5» Inflation and Stretch of a Circular Tube

Let us now suppose that in its undistorted reference configuration

the body under consideration has the form of a circular tube which may be

"hollow", i.e. bounded by cylinders with radii R and R , or "full", i.e.

with R = 0. Let us employ a single fixed cylindrical coordinate system

with its z-axis along the axis of the cylinders and put

1 2 a 3 \
z = x , r = x , 0 = x , I

> (5.1)
1 2 3 1

z « x , R = x , e = x . J

If the equations (4.1) take the form

r - r(R, t), z = z(Z, t), 9 = 9, -» < t < <», (5.2)

then we say that the motion of the tube is a simultaneous inflation and

stretch. In such a motion the body remains a circular tube. At time t

the inner and outer radii of the tube are

rx(t) - r(R rt), rQ = r(RQ,t). (5.3)

Let e , e , e~ be the normalized natural basis at x for the
"*z ~r f%*u **

coordinate system z, r, 6. An elementary calculation, based on (1.2),

(2.12), and (5.2), yields the following expression for the matrices
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[C(ki)l and [B(k^)] of the components of the Cauchy-Green Tensors C and B

relative to &z, e^, eQ:

(5.4)

0 0

0 [&) 0

0 0

Thus, in a simultaneous inflation and stretch the right and left principal

directions of stretch lie along the coordinate lines; i.e.

H3 " H3
. 5)

Because the orthonormal basis e } e 9 e^ changes only when the ^-coordinate

changes^ it follows from (5.2) and (5.5) that this basis is constant along

the path lines of the motion. Hence, although the principal directions of

stretch u, vary from particle to particle, they are constant in time at a

given particle: the local motion at each particle is an extension. Since

2
U « C, it is clear from (3.3) and (5.4) that the principal stretch ratios

for this extension are

jr(R,t-s),

These observations, when combined with Theorems 4 and 5, now imply that

relative to the basis e , e , <e-, the components of the stress tensor £

(5.6)
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are

S(re) = S(rz> = S(z9)

S(zz) =

S(rr> =

s<ee> -

with c£(s) * |^r(R,t-s), ^(s) = f z 2 ^ 1 1 " 8 ^

Thus, the principal stresses may be regarded as functions of r, z, and t

(or R, Z, and t). Since the principal axes of stress are along the

coordinate axes, there are no shearing tractions on either the normal

cross sections or the cylindrical boundaries of the tube.

If we denote by v(r), v(z), v(G) and b(r), b(z), b(0) the

physical components, (i.e. the components relative to e y e', efl) of the

velocity v and the body force b, then}by (5.2)

v(z) = T T z(Z,t) = v(z)(z,t),

v(r) = §^r(R,t) = v(r>(r,t), (5.8)

- 0.

The dynamical equations (4.7) can be satisfied only under the assumption

that b(z) and b(r) are independent of 0 and b(0) = 0. Making this
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assumption and using (5.7), one finds, after a routine calculation, that

the dynamical equations are equivalent to the two equations

pb<z> - p ^ < z > + pv<z> |*<z> . (5.9)

+ Pb(r> . p £ « > • pv(r>

There are two important special cases of (5.2).

(I) When (5.2) takes the form

z - z(Z,t), r - R, e m 6, -oo < t <«>. (5.11)

the motion reduces to a rectilinear longitudinal extension (4.9) with

X •» Z and x = z. In this special case we must assume b(r) » 0; equation

(5.10) then reduces to 0 « 0, while (5.9) is identical to the equation

(4.16). According to (4.17) the functional-differential equation governing

the evolution of a rectilinear longitudinal motion is determined by the

material functional O of (3.28).

(II) In the inflation of £ circular tube (5.2) has the special

form

z - Z, r - r(R,t), 8 = 6 , -» < t < ». (5.12)

and (5.6) yields

a* - l+(s) — 1, 0 < s < c o . (5.13)

z
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Therefore, it follows from (3.25) that in such a motion (5.7) reduces to

S<r0) = S<rz) - S(z9)

S(zz>

S(rr>

t t

t t

with | r(R,t-s), 0 < s < « . J

\ (5.14)

The tractions on the bounding cylindrical surfaces are normal thrusts

given, in units of force per unit area, by

- S<rr)(Rrt)

-S<rr>(Rn,t) = -
t t

(5.15)

The cross-sectional tension S(zz) in the cylinder is given by (5.14).. and

need not be zero; although S(zz) is independent of z it may vary with r

and t. Let us assume that body forces act only in the r-direction. The

equation (5.9) then becomes 0 = 0 and the only equation to be satisfied

is (5.10). Since it follows from (5.14) that S(rr) and S(SG) in (5.10)

are functions of r and t (or R and t) alone, we must here further assume

that b(r) is independent of both 9 and z. In the material description,

the functional-differential equation (5.10) governing the inflation of
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JL
the tube takes the form"

"It appears that apparatus recently described by Ensminger and Fyfe (1966)

should be capable of generating in isotropic solids non-isochoric motions

obeying (5,16).



6. Inflation of a_ Spherical Shell

39.

If the equations (4.1) take the form

r - r(R,t), e = e. 0 -oo < (6.1)

in a single, fixed, spherical coordinate system with

R » X1, 8 = X2, - X
,

(6.2)

then the motion is called a spherical expansion. If in its reference

configuration the body has the shape of a spherical shell with inner

radius R , outer radius R , and center of curvature at R = 0, then

according to (6.1) it is a spherical shell also at time t with radii

r (t) = r(R ,t) and r (t) = r(R , t).

It follows from (1.2), (2.12), and (6.1) that the matrices of

the components of C and B, relative to the normalized natural basis

e ' e"» £rf>> at r> Q> $> are

(6.3)

o 4
R J

Hence the orthonormal basis e , e~, e, gives both the right and left

principal directions of stretch. Since, by (6.1), this basis is constant
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along each path line, the local motion of each particle is an extension.

Furthermore, since we here have

a i ( t " s ) a2(t-s) a3(t-s) £
R

0 < s < (6.4)

the local extensions are symmetric. It follows from Theorem 4 and Remark 2

after Theorem 5 that here

S<r0> 0, \

S(rr)

s(ee) =

with o£(s) = ^ r ( R , t - s ) , o£(s) = | r ( R , t - s ) , 0 < s < ». t

The functionals JL and Jk, are related t O s / a s shown in (3.23). .It is

clear from (6.5) that the physical components of S may be regarded as

functions of either r and t or R and t. Of course, the velocity has for

its only non-zero component

v(r) v(r)(r,t). (6.6)

If we assume that the body forces depend on r alone and act only in the r-

direction, then it follows from (6.5) and (6.6) that for a spherical

expansion the dynamical equations are equivalent to the single equation

| [S<rr> - s(ee>] + Pb(r> = p ̂ + pv(r> |j<r>. (6.7)
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This functional-differential equation is determined when the material

functionals -/O and _Jt are specified. In the material description, (6.7)

takes the form

)\R/ oR r' 0 (f{ R^ *' Q (i dR #{ jf^

with ̂  the material functional defined by the relation

* * g k -k P -k k fj -k k k j) -k -k -k

which holds for all pairs of positive functions OC ,f3 on [0,«>).
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7. A Bending Motion

In the special global motions we have considered so far the

1 2 3 1 2 3
coordinates x } x , x and X , X , X shown in (4.1) have been referred

to the same orthogonal coordinate system. For certain motions, however,

it is convenient to use different coordinate systems for the present and

reference configurations. If g and G R are the covariant components of

1 2 3
the unit tensor in the respective coordinate systems x , x , x and

X , X , X , and if we put

1 2 3
then the covariant components of C in the system X , X , X are

1 2 3
while the contravariant components of B in the system x , x , x are

B1- = F^Gf*. (7.3)

1 2 3
For the physical components of C in the orthogonal system X } X y X we have

Q

C(ap) - — P , (unsummed); (7.4)

1 2 3
the physical components of B in the orthogonal system x , x , x are

Bkm
B(km) = - , (unsummed). (7.5)

/ kk mm
g
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The general formulae (7.2)-(7.5) are well known. From them we may read

off the following observation.

Theorem 6: Suppose the motion is such that there exist two orthogonal,

1 2 3 1 2 3
possibly distinct, coordinate systems x , x y x and X y X , X relative

-oo < t <

to which the equations x = £(X,t) take the special forms

3 3, 3 _Nx1 = x1(X1,t),
2 2 2
= x Z(X%t), (7.6)

Let e.j i=l,2,3, and e y a=l,2,3, be the orthonormal bases pointing

along the coordinate directions x and X , respectively. The matrices of

the components of B relative to e.(x) and C relative to e (X) are then

given b^

CB<1J>] [c<ap>]
n

o

0

0

22

0

0

g
0

33

33

(7.7)

Thus the right principal directions of stretch coincide with the vectors

e QP which are constant along path lines, i.e. fixed at each particle,

and the motion (7.6) i£ <a motion of extension. The principal stretch

ratios are

^-rxWs) (unsummed). (7.8)

The left principal directions of stretch coincide with the vectors e.(x)

and can vary along path lines. The rotation tensor R iŝ  determined by

the relation e.(x) = R(t)e
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When this almost trivial theorem is placed alongside Theorems 4

and 5 it attains a practical significance. For an example of its use we

may consider motions describing the bending of a_ block into a_ cylindrical

4L
wedge. Let

The advantage of using separate coordinate systems at x and X for describing

the bending of a block was pointed out by Truesdell (1952, §421), who

derived, in essence, the formula (7.12). See also Truesdell and Toupin

(1960, §50, pp. 300-301).

r = r(X,t), G = e(Y,t), z = z(Z,t), -«> < t < «>, (7.9)

where the cylindrical coordinate system,

1 2 3
x = r, x = 0, x = z, (7.10)

and the Cartesian system,

X 1 = X, X2 = Y, X 3 » Z, (7.11)

have a common origin and a common z-Z axis. Since we here have G ft = 6 ,

2
g 2 2 ~

 r > gii = goo - 1, and g = 0 if k T* m, Theorem 6 tells us that

the local motion of each particle is an extension. For this extension

and the basis <e^(x), <e (x), e (x) gives the left principal directions of
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stretch at time t. This motion differs from those we considered in

Sections 4, 5, and 6 in that here the left and right principal directions

of stretch do not coincide, and thus, by (3.1), R ^ 1̂. In fact, an

analysis given by Truesdell and Toupin shows that R at r, £, z is the

tensor describing a rotation of 0 radians about the z-Z axis.

^[1960, eqs. (50.3)-(50.6) .]

Using now Theorems 4 and 5, we find that for the motion (7.9) the components

of the stress tensor S relative to the basis e (x), efl(x), e (x) are

S(r9) S(rz) = S(0z)

S<rr>

s(ee) =

S(zz)

with a (s)
rv '

|^r(X,t-s), a£(s)

In the special case

o£(s) z(Z,t-s),

we have

r = r(X,t), 9 = 6(Y, t), z = Z, < t < «>, (7.14)

(7.15)
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and employing (3.25) we find that (7.13) reduces to

S(r0) = S(rz) = S(9z) = 0,

S(rr)

s(ee>

S(zz)

ra

\(7.16)

with o£(s) 0 < s < oo.

Under the assumption that the body forces are zero, the dynamical equations

reduce to two equations which in the spatial description have the form

,
,

1 bS{99)
(7.17)

5t

If the material description is used, the functional-differential equations

(7.17) become

•(if)
(7.18)

with material functional defined in (3.25)-.
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III. Sheared Extensions

8. Reduced Forms Valid in Sheared Extensions

There are motions other than extensions for which the constitutive

equations of an isotropic material can be reduced to simpler forms. Among

these are the shearing motions to be discussed in Section 9. Both shears

and extensions are contained in a class of motions called sheared

extensions which we now define.

Let F(t-s) be the deformation gradient at a particle X at time

t-s relative to an undistorted reference configuration (ft . We say that

the history of X up to time t has been a sheared extension if

F(t-s) = P(t-s)N(t-s), 0 < s < (8.1)

where P(t-s) is_ orthogonal for each s and N(t-s) ±s_ such that there exists

an orthonormal basis h., independent of s, relative to which the components

of N(t-s) have the form

[N(t-s)] C(t-s)

0

0

,(t-s)

0

0

0

P3(t-8)

Pi(t-s) (8.2)

We call h. the canonical basis of the sheared extension.

It follows from (2.12) and the orthogonality of P(t-s) in (8.1) that

C(t-s) = {P(t-s)N(t-s)}TP(t-s)N(t-s) = N(t-s)TN(t-s). (8.3)



Therefore, if (8.2) holds then relative to h. we have

,2 „,

[C] -

V

"

0

0

0

48.

(8.4)

where the dependence of the matrix elements of t-s is understood. It is

easy to see that (8.4) is not only a necessary, but also a sufficient

condition for (8.1) and (8.2) to hold. Hence one can make the following

Remark: The history of X up to time t is sheared extension if and only

if there exists a basis h., independent of s, relative to which the

matrix of the components of the right Cauchy-Green tensor has the form

[C(t-s)]

\

i

(t-s)

(t-s)

0

1

7 2

(t-s)

(t-s)

0 7 3

0

0

(t-s)
(8.5)

j(t-s)
72(t-s) '

7.

for all s, 0 < s < oo. This basis h. is the canonical basis of the

sheared extension. Furthermore

+ c2. 73
(8.6)

or, equivalently,

(8.7)
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The following theorem gives the reduced form taken by the

constitutive equation of an isotropic material when the local motion is

known to be a sheared extension.

Theorem 7: If, relative to an undistorted reference configuration

the motion of an isotropic material up to time t i£ <i sheared extension

with canonical basis h., then, the matrix of the components, relative to

£*•> 2*L ttie material stress tensor (2.19) has the form

[S(t)J

S[U](t) S[l2](t) 0

S[2l](t) s"[22l (t) 0

0 0 ^[33] (t)

sCijJ(t) def
J^-SCtOh .

Moreover, there are three scalar material functionals si } /IS} jfc y of

four function variables, which then determine the non-zero components in

(8.8) a^ follows:

S[2ll(t) - <f[123(t) =

S[ll](t) - J.d1,

S"[223(t) = s&i^,

SC333(t) = Xd*,

(8.8)

> (8.9)

with |(t-s), 77(8) - 7. (t-s), i = 1,2,3, 0 < s < ~ .
1 l /



These functionals obey the identities,

,(-S*,7*7*7*;p.)

* *

* * * *

x re x ^
*V *V "Y • n ^ ',

,7* 7*7?;Pj0),2'

*
\m>Pjo)> >

* * * *

^t ">V V<* Vr
for all functions | ^ 7,, 1~, 7 iri their domain of definition^

50.

(8.10)

Proof: The proof rests on the Corollary to Theorem 3 and its consequence

(2.25). It follows from (2.25) that if a particular orthogonal tensor Q

commutes with C(t-s) for all s then Q must commute with the material

stress tensor S(t):

> QS(t)Q"1 = S(t). (8.11)

When C(t-s) is given by (8.5), C(t-s) clearly commutes with the orthogonal

tensor Q whose components relative to the basis h. are

(8.12)

1

0

0

0

1

0

cf
0

-1

and an elementary argument shows that the symmetric tensor S(t) commutes
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with this tensor if and only if the components S lijl(t) of £(t) relative

4L
to h. obey7'

"For the details of the argument see Coleman and Noll [1959a, p. 294,

eqs. (3.7), (3.9)-(3.11) ] or [1961, p. 696, eqs. (5.15), (5.17)-(5.19)].

S[l33(t) = S[313(t) « 0, S[23] = S[323(t) = 0, (8.13)

which gives us (8.8).

It follows from (8.8) that once the canonical basis h. is

specified, C is determined when £ and 7., i = 1,2,3, are prescribed.

Since «S(t) is given by a function ")*)(•.p ) of C , each non-zero component

of S(t) is given by a real-valued function of £ and the 7.. Hence we

have (8.9)1 and three equations of the form

Stii] (t) = yd^uSTpT^TpPO, i = 1,2,3. (8.14)

An argument analogous to that given in Section 3 after (3.10)

shows that (2.25) implies that the functionals sr, A-^, A^o, /$<£ are

unaltered if the basis h. be changed. Hence, these functionals si } A*^,

^ j, As^) depending only on p and determined by 7/, may be called

material functionals.
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Let us now take for Q in (2.25) the orthogonal tensor whose

components with respect to h. are given by (3.11). A direct calculation

using (8.14) and (3.11) gives

(8.15)t

(t-s)

(t-s)

0

s

\

(t-s)

(t-s)

0 7 3

0

0

( t - s)

Of course, (2.25) asserts that the material stress tensor corresponding

to is QS(t)Q~1. but (8.8) and (3.11) yield

(t) SC2l3(t) 0

SL121 (t) SCltf (t) 0

0 0 S[33] (t)

(8.16)

Hence, interchanging the functions 7, and 7?, with I and 7- held fixed,

results in an interchange of S[ll] (t) and S[22"3(t), with Stl2l(t) and

SC331(t) unchanged. This implies that

follows:

and must be related as

(8.17)

Since (8.17) holds throughout the domain of As, and A-~, (8.17) is

equivalent to asserting that if we put

A< = (8.18)
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then

(8.19)

Putting

(8.20)

we observe that (8.18) and (8.19), when combined with (8.14), imply

(8.9)- , -. Furthermore, since S L121 and SC33"] remain fixed when 75 and

7 9 are interchanged, the material functionals /7 and jt must obey the

identities (8,10>1 and (8.10)4. If we now take for Q in (2.25) the

orthogonal tensor whose matrix with respect to h. is

we find that

[QC(t-s)Q"1]

and

[QS(t)Q~1] =

1 0 0

0 - 1 0

0 0 1

7,(t-s) -£(t-s)

-i(t-s) 72(t-s)

73(t-s)

0

-SC123 (t) S [223(t) 0

0 0 ?C333(t)

(8.21)

(8.22)

(8.23)
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Hence, changing £ to -| with the functions 7. held fixed results in a

change of !3C12l(t) to -?Q21(t) with the diagonal elements SCii](t) held

fixed. Clearly, by (8.9), this is true throughout the domain of the

functionals <L , A* > £ ^ an(* only if these functionals obey the

identities (8.10) -; q.e.d.
z, J,co

a
Of course, an extension is sheared extension with £(t-s) = 0.

A

In fact, when 6(t-s) s 0, we have 7 (t-s) « (̂ (t-s) and h^t) - u^t),

where the a are principal stretches and the u. right principal directions

of stretch. Clearly Theorem 4 is a corollary of the present Theorem 7,

fit

but Theorem 5 is not quite a corollary. To prove Theorem 5 one must

consider an orthogonal tensor, such as (3.16), which interchanges 7- and

7~- The reader will easily verify that for a sheared extension with I

not identically zero, use of (2.25) with an orthogonal tensor of the form

(3.16) does not yield any further reductions of our material functionals.

An example of a global motion involving sheared extensions is

furnished by considering one for which there exists a single fixed

Cartesian coordinate system in which
x1 - x1(X1,t), x2 - x2(XX,X2,t), x3 - x3(X3,t), -co < t <oo, (8.24)

a i
with — T >0 for each i. It follows from (8.24) that the Cartesian
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components of the deformation gradient F have the matrix

^r 0 0

d x l atagf.

1 2

0 0

(8.25)

and the motion is, therefore, a sheared extension with its canonical basis

equal to the natural basis of the Cartesian system, with P in (8.1)

identically equal to 1^, and with

ax

or, by (8.6),

2

ox

1

r > 6 -
ox

2

2 ' ^ 3 , (8.26)

ax3

i - W
(8.27)

y m
3

Theorem 7 gives us the material stress tensor S(t) in the motion (8.24),

When written in terms of S, (4.7) takes the form

div (FS) + p b - p x ,

and in Cartesian coordinates this equation becomes

(8.28)

(8.29)
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It follows from (8.8) that for the motion we are considering the dynamical

equations (8.29) simplify considerably, arid we have, at each time t,

bx\bxl
..1

^(^4 8C1U + ^ 5121] | + 2—/ S2- S[213
dxHdx1 dx̂  y dx^Vax1 bx'

..2 \ (8.30)

Of course, the equations (8.9) and (8.27) are to be used to evaluate the

quantities JFtij"] - SCij3(t) appearing here. Thus, (8.30) is a set of

three functional-differential equations for the three functions x in

(8.24).
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9. Shearing Motions

A shearing motion, or, for short, a shear is a sheared extension

for which

P^t-s) s P2(t-s) = P3(t-s) = 1 (9.1)

JL
in (8.2), Clearly, for a shear the equations (8.6) reduce to

2

"Shearing motions are here defined relative to an unspecified undistorted

reference configuration and the derived expressions for the stress are,

of course, valid for both compressible solids and compressible fluids.

For incompressible fluids, or whenever the present configuration can be

regarded as undistorted and the density is not a parameter, the present

analysis of shears includes as special cases Coleman and Noll's analyses

of steady viscometric flows (1959a & b) and unsteady lineal shearing

flows (1961, §5, pp. 694-699).

ft - 6, 7 X - 1 + £2, 7 2 - 7 3 - 1, (9.2)

and we can make the following

Remark: The history of X up to time t is a shear if and only if there

exists a basis h., independent of s, relative to which the components of
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C(t-s) have the form

[C(t-s)]

(t-3) 0

1 0

0 1

(9.3)

Let us call l(t-s) the amount of: shear at X at time t-s, and

let us continue to call h the canonical basis at X. Of course, (9.3)

implies that p(t-s) s p^. When the history is known to be a shearing

motion, specification of the density, the real-valued function £ , and

the canonical basis h. determines C and hence, by (2.22), the material

stress tensor |>(t).

, jt to defineWe now use the three material functionals

four new material functionals

function 6 on [0,«>):

/?

UfU> U? of a single real-valued

(9.4)

e*\s) 0 < S < oo.
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The restrictions (8.10)2 ^ on

obey the identities

, £ require that y and

y(-i ,.
(9.5)

- 1,2,3;

i.e.. V is an odd functional and oOl> i » 1,2,3 an even functional.

The following theorem is now an obvious corollary to Theorem 7.

Theorem 8: If, relative to an undistorted reference configuration with

density p, the motion of̂  an isotropic material u£ t£ time t iŝ  a shear

with canonical basis h. and amount of shear |(t-s), then the components
_____ _________________ _________ <s,̂  _____ ___________ ___ _______ _____ _____
with respect t£ h. of the material stress tensor jS(t) are

S[13](t) - SC313(t) - SC323(t)

- SC213(t)

S[ii](t) o

- 0,

i - 1,2,3,

SCijl(t) - fei^SCt)!! and &t(s) - _(t-s), 0 < s < oa;

> (9.6)

here y and up are material functionals obeying the identities (9.5).
0
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10. Curvilineal Shears

Letting the spatial coordinates x and material coordinates

X in (4.1) be referred to the same coordinate system, we say that the

motion is a curvilineal shear" if it satisfies the following three

''The curvilineal shears defined here are closely related to the

curvilineal flows discussed by Noll and Truesdell (1965, §107, pp. 432-434),

Here I assume that the path-line equations take the simple form (10.1)

when a fixed undistorted configuration is taken as reference, while Noll

and Truesdell assume, at bottom, that an equation of the form (10.1) holds

whenever the present configuration is taken as reference. For fluids, the

present analysis may be replaced by theirs. Their treatment is not

directly applicable to isotropic solids, whereas the present is, although

it follows theirs in several details.

conditions:

(1) There exists an orthogonal curvilinear coordinate system

which gives (4.1) the special form

\
x1 - X1

2 2 1
x - X + T)(X ,t)

x 3 - X 3 + XCX1,t), -co < t <

(10.1)
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(2) The ratio of the X derivatives, T)1 and \f, of r\ and X do

not depend on t; i.e. these derivatives have the form

T)'(Xf,t) - f(X1)q(X1,t), X'(X,t) = h(X')q(X',t). (10.2)

(3) The covariant components gt^(x) of the unit tensor are

constant along path lines and are equal to

If, in particular, the g,, depend on only x , then it follows

from (10.1). that g^k(x) • 81^(
x ) m 8kk^X ^ anc* *ience t^iat t^ie Sui. are

constant along the curves defined by (10.1). In a similar way we see that

the g are constant along such curves if X(X ,t) s 0 and if the g,,

1 3depend on only x and x . L. E Bragg has shown that the former situation

holds if and only if the coordinate system is either Cartesian

1 #
or cylindrical with x the radial coordinate.

"As yet unpublished. See also Truesdell and Noll (1965, p. 433).

Let £ (X), a = 1,2,3, be the unit vectors along the coordinate

1 2 3
directions X , X , X at the point X occupied by the particle X in the

reference configuration. Clearly the numbers e -C(t-s)eQ equal the

physical components C(ojp) shown in the general formula (7.4) and evaluated

at time t-s. For a curvilinear shear, an elementary calculation



62.

yields

i + ^ + o,2 ^

1

0

0

0

1

with 1 /S22(X)

Let us now put

/s
S(t-s)

22 v~
+ g33(S A

(10.3)

2 + CD2 , (10.4)

V.

+ CD

CD 2 ^ 2
v + [x 1. (10.5)

Although 6 depends on t-s, it follows from (10.2) that \i and v are

independent of t-s. The basis h., defined by

h, - en(X),

62

S)> J

(10.6)

is orthonormal, and, for each particle, independent of t-s. An easy

calculation, employing (10.3), (10.4), and (10.6), shows that the
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components of C(t-s) relative to the basis h. have the matrix (9,3).

Thus, we can assert the following

Remark: In a curvilinear shear the motion of each particle is a shearing

motion with the canonical basis given by (10.6) and the amount of shear

by (10.4).

Theorem 8 tells us that the components S.4[ijl(t) of S(t)

relative to h. are given by (9.6). The physical components S(ap) of S(t)

1 2 3 —

in the material coordinates X } X 9 X , i.e. the components of S(t)

relative to the basis e_(X), are related to the components S[ijl(t)

through the formula

S<ap> (t)

with summation over k and & understood. On substituting (9.6) and

(10.6) into (10.7) we find that

S(22)(t) - \x CJ^{i^;9) + v2<k^(!t;p),

S(33)(t) - v2O>2(i
t;p) + [? tiJ^il* }t>),

S(12)(t) = S(21)(t)

S<13)(t) - S<31)(t)

S<23)(t) = S<32)(t)

4-

3), 0 < S

(10.7)

(10.8)
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and we have

Theorem 9: Lf the motion of an isotropic body, relative to an undistorted

configuration With density P, is. £ curvilinear shear (10.1), the physical

components of the material stress tensor £ are given b£ (10.8) with i> \i,

and v defined in (10.4) and (10.5).

Substitution of (10.8) into the dynamical equations (8.28) will,

in general, yield an over-determined system of field equations. Exceptions

occur when the material is incompressible and the coordinate system

1 2 3
x , x , x is either Cartesian or cylindrical. A detailed treatment of

such motions will be given in a forthcoming article.
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