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defined on the unit disk- C denotes the m-th row vector of C

and 6C = C - I where I is the identity. p
k (

c ^ represents

a polynomial which is homogeneous of degree k in the senSe

that if C = (e i ( l /^ ) 0C^) , then P k<C ) - e
ik0Pk(C) .

Garabedian, Ross and Schiffer noted that ag = P ^ Q C O where

= ^C? 9u 1^ ' v '^ ^ °'^'2 ' C b e i nS t h e Grunsky matrix

of f(z ) . They also noticed a polynomial relation pg(C) : 0 ;thus

(o) a6 = P 1 0 ( & + (i| c^ - 1M c13) P6 lo

where A and M are Lagrange multipliers. The authors

then motivated the choice A = /i = 1 and considered the more

general problem of maximizing the resulting polynomial over

the class of all symmetric three by three matrices which

satisfy Grunsky1s inequality. An application of Schur's

diagonalization theorem for symmetric matrices then showed

that in the more general setting the maximum occurs when C

is unitary•

The essential tool in our investigation is

Theorem 1. The following conditions are necessary and

sufficient in order that the normalized analytic function f(z)

map the unit disk 1 - 1 onto the complement of a set of

measure zero:

(1) The Grunsky matrix C associated with f is unitary.

(2) r - I = -i(6C ,6C ) .

mn mn 2 m n

The above theorem is due to the author [5] and was used

to show that for real a in a neighborhood of the origin,



I a4 + aao^a3 ~ 3^2^ — 4 with equality holding only for

the Koebe function. The method seems to indicate that, for

the higher even order coefficients, the unitary property of

the infinite matrix gives one all of the advantages of a

truncated unitary matrix while allowing one to retain the

polynomial relations.

Assume that f (z) defines a slit univalent mapping•

By the homogeneity of P 1 Q , it may be assumed that ag > 0

and that |Arg CL..I < TT/5 ; hence

(3) 0 < t « Re C11 < 1 and |s- J < Ot , © = tan TT/5 ,— 11 — 11 —

(4)

Theorem 2. If 0 < t < 1/4 , then ag < 6 .

This is proved by ucing (0) with u = 1 , A •* 1 together with

IC--| < 5t/4 (a consequence of (3)) and the unitary property

of C .

When t > 1/4 a more delicate analysis is required.-

Define

U = 1— 6r + — 6Co +/— (1 - M)r1Q + 2A(t2 + 0Y6C,,
V * 5 5 3 J \\ 3 13 J 1

and

V = i— 6CQ + 2t6C- .
3 J T

Here j3 is a quadratic form in C. to be chosen later. It

is an easy consequence of (2) that there exist polynomials

Q((i,A,C,C) and R(M,CfC) such that



(5) -||U|12 + Q(M,A,C,C) - 0

and

== 0
3 1J

Our approach is to combine (4), (5) and (6) and choose M

and A so that, in some sense, one obtains very good estimates

for functions with real coefficients. If r 3 < 0 we choose

A - 1/2 , [I - 0 and add (4) to (6) omitting the term -||v||2 .

When r-3 > 0 and .8 < t < 1 , we choose A = 1 , /i -= 0 and add

(4)^ (5) and (6), dropping the contributions of - l|u|| and

-||v||2 other than (Im U k )
2 , k = 1,3 , (Im V k )

2 , k - 1,3,5 and

(Re V 1 )
2 . If r13 > 0 and .25 < t < .9 we choose A - 1 ,

leave M undertermined, and add (4), (5) and (6) dropping the

contributions of -||uj|2 and ~||v||2 other than - |vi|
 2 . The

next step is to express all Grunsky coefficients in terms of the

first row CL . In the resulting expressions, there are perfect

squares of the form ~(L(C.) + M(CL)) where L is linear and

M contains no linear terms. These are estimated by

-(L(C1))
2 - 2L(C1)M(C1) . The quadratic form j8 is now chosen

so that the coefficient of r-g is zero. What remains is an

estimate of the form

(7) 6a6 < P(t) - AQ(/i,t) | r 1
3 2

Q1(t,s) + s^ Q2(t,s) + Q3(t,s)(L(t,s'

Q4(M,t,s)|r13| .



Here P(t) and A are polynomials, the Q]s are quadratic

forms in s ~- ^ s n ? si34 si5' sl7^ •• L is l i n e a r in s'-(0, s^ 3 , s 5, s 7

coefficients of the QJ s and L being polynomials in the

indicated variables. The problem of proving that 6a~ < 0 is

thereby reduced to showing that the right side of (7) is negative

subject to the condition

(8) r*3 + ||s||2 < 1 - t2 ,

the area theorem, and (3).

Let Q(t,x,y) represent a quadratic form in the variables

x = s-.., y ^ (si3,, s 5,,s 7) whose coefficients are polynomials

in t . We write

Q(t,x,y) = Qi;L(t)x
2 + 2xq(t,y) + Q(t,y)

where q is linear in y and set

Q(t,x,y) = Q(t,x,y) - Q1]L(t)x

For each t the maximum of zero and the largest eigen value

of Q is denoted by M(Q) • With © defined by (4) we let

1 - 1 2 ) ,

20||q|| t 1 - t2 + f/(Q)(l - t 2 )
*-* JL JL

vAq) = 6 Q2 + 4Hq||2 t 1 - t2 + M(Q)(1 - t 2)



and v(Q) =: min [v - -^ 2^3 •
 V 4^ ' S e t

P(Q) = ^

($) if ^ = v 2 ,

t/ \ 1 - t 2 + M(Q) if

^0 Q^ + 4||qi|2 t /2 1 - t2

if 1/ - l̂ 4 .

We are now in a position to estimate those terms in (7)

which depend only on s and t .

Theorem 3. Let 4 - M(QX) -

) + ^(Q3)!|L||
2 , c - Q 2 , n

( 1 " t2) and define *
to be the root of the quadratic equation

Cz2 - (̂  + ̂7)z + r] = 0

which lies in the interval [0,1] if 4 > ^ 5 otherwise set ij> = 1

Define a = min{i^(Q2) , C^ + v (Q2) } • Then

Q1(s) + s^ Q2(s) + Q 3(s)(L(s)) 2 < M(Q5)(1 - t2 - r2
3)

where

Q5 = Q1(s) + a s ^ + i^(Q3) (L(st

In the one case where \i was not determined fx is chosen

2
to minimize (Ao) /(A + ^(Q,.)) over /i >̂  0 .

Theorem 4. If f(z) is a normalized univalent slit

mapping in the unit disk which satisfies (4), then



P(t) - (A Q i p(Q3))|r13|
3 - (A

Q ]L

- t2)

By substituting for I^QI t h e value i'or which the cubic obtains

2its maximum or 1 - t , whichever is smaller, we obtain the

desired bound which depends only on t . Computing experiments

indicate that this bound has a graph given by Figure 1, at

least if t - .25 + k(.Ol) , k - 0,1....,75 .

We are now engaged in a program designed to convert the above

numerical procedure into a rigorous proof. It is proposed to

use the data obtained from the computer to obtain tentative

polynomial bounds for the various parameters. Proving that these

are actual bounds is equivalent to showing that each of a finite

number of polynomials is positive on an appropriate interval,

a task which can be accomplished in a finite number of steps.

If this procedure is successful, the problem will have been

reduced to proving that a polynomial with rational coefficients

is non-positive. This again requires only a finite number of

steps.

For a more complete bibliography, the reader is referred to

the papers listed below.



:>T.i)LIOGltAPI!Y

jl [ IVioberbach , I... . • Ubor die K.oof f izion ten derjenjpen Polonzreihon
v/elehe cine sehlich le Abbildung des Einheitskreises vormiLteln*
S. 3. preuss, Akad. Wiss., 138(1916) 940-955.

[2 1 Loov/p.er. X. , 'Uivlersuchungen uber schlichlo konJ"orme
Ablrildun^en des Einheitskreises, I]. Math, Ann.. 89(1923)
].0o-121-'

!"3] Garabedian. P. R. and M. Schiffer. 'A proof ol' the Bieberbach
con jeciure for the fourth coefficient1, J. Ratl. Mech. Anal..
4(1955) 427-465.

[4j Garabedian, P. R., Ross, G. G. and M. Schiffer, ?On the
Bieberbach conjecture for even n *< J. Math, Mech., 2^(1^65)
97 5-« 930.

[5] Pederson. R., ?On unitary properties of Grunsky's matrix1,
to appear in Arch. Ratl. Mech. and Anal.

CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PENNSYLVANIA


