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defined on the unit disk- Cﬁ denotes the mth row vector of C
and 6C=C- | where | is the identity. P,(°~ represents

a polynom al which is honmbgeneous of degree k in the senSe
that if C = (e'(!/A)0cAYy | then Py<C) - e'X°P,(C)

Gar abedi an, Ross and Schiffer noted that a4 = PAGCO  where

&= a 2 +19U AN 1 VA A ez Cobelng the Gryunsky matri X

of f(zz) . They also noticed a polynomial relation pg(C\f 70 ;thus
(00 @as=Pio(&: (i| c”- 1Mci3) R®H = po 0n, 0

where A and M are Lagrange nultipliers. The aut hors
then notivated the choice A =/i =1 and considered the nore
general problem of maxim zing the resulting polynom al over
the class of all symetric three by three matrices which
satisfy Grunsky's inequality. An application of Schur's
di agonal i zati on theorem for symetric matrices then showed
that in the nore general setting the maxi mum occurs when %
IS unitarye

The essential tool in our investigation is

Theorem 1. The followi ng conditions are necessary and
sufficient in order that the normalized analytic function f(2z)
map the unit disk 1-1 onto the conplenment of a set of
measure zero:
(1) The Gunsky matrix C associated with f is unitary.
(2) r -1 =-i(6C,6C)

hn m 2 m n

The above theoremis due to the author [5] and was used

to show that for real a in a neighborhood of the origin




| %4 * 2%0n83 ~ 3”‘2_"" <* with equality holding only for
t he Koebe function. The nethod seens to indicate that, for
the higher even order coefficients, the unitary property of
the infinite matri x gives one all of the advantages of a
truncated unitary matrix while allowing one to retain the
pol ynom al rel ations.

Assune that f (z) defines a slit univalent mappinge
By the honobgeneity of |'5'1Q , It may be assuned that ag > 0

and that |Arg O‘ill < TT/5 ; hence

(3) O0<t «Re C:E‘:l.l <1 and |S'1‘l-<—0t , ©=tan T1/5 ,
(4) bag = Re(P 5(8,2,C) - Pyo(u, 2, 1))

Theorem2. If 0<t <14, then a; < 6 .
This is proved by ucing (0) wth , =1, Ae+* 1 together with
ICﬂ| < 5t/4 (a consequence of (3)) and the unitary property
of C.

Wen t > 1/4 a nore delicate analysis is required.-

Defi ne

\
U =1— 6 + 2t +/— 1 - Mo + 2A(t> + 0Y6C,,

\3
and
V=_!§ 6Q%+ 2t6C—T
Here j3 is a quadratic formin C;l to be chosen later. It

Is an easy consequence of (2) that there exist pol ynom al's

Q(i,ACT and R(M GC) such that




(5) [lU2? + QMACC - 0

and

(6) _(t2 4 B r o) ivli2 + R(u.C,©) =0 .
3

Qur approach is to conbine (4), (5 and (6) and choose M
and A so that, in sone sense, one obtains very good estimates
for functions with real coefficients. | rys < 0 we choose
A- 1/2, [l -0 and add (4) to (6) omitting the term -||v||? .
When r-s >0 and .8 <t <1, w choose A=1, /i -=0 and add
(4)™ (5 and (6), dropping the contributions of - ||q|2 and
-|1v||? other than (ImU,)?, k=13, (ImV)?, k- 1,3,5 and
(RRVy)?2 . If riy3>0 and .25 <t < .9 we choose A- 1 ,
| eave M undertermned, and add (4), (5 and (6) dropping the
contributions of -||uj|® and ~|v[|*> other than - |vi|? . The
next step is to express all Gunsky coefficients in terns of the
first row 01 In the resulting expressions, there are perfect
squares of the form ~(L(C1) + l\/(Ck)) where L 1is linear and
M contains no linear terns. These-are estimted by
-(L(Cy1))?- 2L(C)OMC,) . The quadratic form j8 is now chosen
so that the coefficient of r-9 Is zero. \Wat remains is an

estimate of the form

(7)  6asg < P(t) - A{li,t) | r_31f3 - Al(u,t)ri3 + Az(#,t)]r13l

+ Q(t,s) + s Q(t,s) + Q(t,s)(L(t,s" ))?

+ Qu(Mt,s)| r__13|




Here P(t) and A are polynomials, the Qs are quadratic

forms in s ~ A°n7i 3% 5 %78 e Lislinearin g.(Q 573, 55,7 4 )slhe
coefficients of the Qs and L being polynomals in the

i ndi cated variables. The problemof proving that 6ag <0 is

t hereby reduced to showing that the right side of (7) is negative

subject to the condition
(8) rys + |Isl)P < 1. t?,

the area theorem and (3).
Let Q(t,x,y) represent a quadratic formin the variables
X =S4, Y A (Suﬁ, ﬁ;a,%j) whose coefficients are polynomals

in t . W wite
Qt,xy) = Q) x? + 2xa(t,y) + Qt,y)
where q is linear in y and set
Qt.x,y) = Qt.xy) - Qu(t)x?

For each t the maxi mum of zero and the |argest eigen value

of Q is denoted by M(Q) ¢« Wth © defined by (4) we et

L@ - t2)

It

vl(Q)

i

v,(Q =,Qp,0°t F e -12),

va(@ = Q.07 + 20gll t 1 - € + QU - t?)

JL JL

VAGD) =6 Q% + 4HgP t  1- £+ MQ@ - t?)




and v(Q = min[vy-~,"38eV4n " Sel

P(@:,u.(Q) it v o=~ ,

K($) if N =v,,

'“ﬁ“qu E/\l-t2+M6 if V=V3’

AD QN + 4|gif t/2 1 - %+ p(@Q)
if 1 -,
VW are now in a position to estimate those terns in (7)
whi ch depend only on s and t

Theorem 3. Let 4 - MQ) - ”((51) - Q1,33 - u(éﬁz) .
M= B@ - B@) Q)L |7, C - Qnllrt2) anddefine «

to be the root of the quadratic equation

Cz?- ("+"7)z+r] =0

which lies in the interval [0,1] if 4 >~ 5 otherwise set ij>=1.

Define a=min{ir(Q) , C +v(&)} « Then
Qi(s) + s QzAs) + Qsz(S)(L(8))* < M(Qe(L - t* - rf3)
wher e
Q = Q(s) +as” +iNQ) (L(st )2 .

In the one case where \i was not determined fx is chosen
tomnimze (A)Z/(A +~Q.)) over /i 30 .
Theorem 4. If f(z) is a normalized univalent slit

mapping in the unit disk which satisfies (4), then




- 2
Sag < P(1) - (Ao P(Q)) I r1al® - (A + w(x))ry

+ Ay v (@) Irygl + k() (A - t7)

By substituting for [12Ql '"®V3 ye '™ which the cubic obtains

oF

its maxi mumor 1 - t 2., whi chever is snmaller, we obtain the
desired bound which depends only on t . Conputing experinents
indicate that this bound has a graph given by Figure 1, at
least if -t - .25 +k(.O) , k- 0,1....,75

W are now engaged in a program designed to convert the above
nunerical procedure into a rigorous proof. It is proposed to
use the data obtained from the conputer to obtain tentative
pol ynom al bounds for the various paraneters. Proving that these
are actual bounds is equivalent to showing that each of a finite
nunber of polynomals is positive on an appropriate interval,
a task which can be acconplished in a finite nunber of steps.
If this procedure is successful, the problemw || have been
reduced to proving that a polynomal with rational coefficients
is non-positive. This again requires only a finite nunber of
st eps.

For a nmore conpl ete bibliography, the reader is referred to

the papers listed bel ow
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