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1. The systems to be considered in this paper are of the

form

(1.1) y! = Ay ,.

where A = A(x) is a continuous n x n matrix on an x-

interval R , and y is an n~dimensional column vector.

We shall assume that the elements of A are real, and we
f

shall consider only real solution vectors of (1.1). This is

not an essential restriction since, in the complex case, (1.1)

can be replaced by an equivalent real system with a 2n x 2n

coefficient matrix.

We shall say that a nontrivial solution vector y = (y.,...,y )

of (1.1) is oscillatory on R if each of its components takes

the value zero at some point of R , i.e., yir^xk^ = ® > xk €^ '

k = l,...,n . The system (1.1) itself will be said to be

oscillatory if it possesses at least one oscillatory solution

vector. If there is no such solution vector, i.e., if every
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expressed in terms of a fundamental (i.e-, nonsingular)

solution matrix Y of the matrix-matrix equation

(1.4) Y' - AY

corresponding to (1.1). Since the general solution of (1.1)

is of the form y = Ya , where a is an arbitrary constant

vector^ condition (1.2) is equivalent to c*Y*(s)Y(t)a > 0 ,

i.e., to the condition that the symmetric part of the matrix

Y*(s)Y(t) be positive-definite for all seR , teR . In

particular, if we choose a fundamental solution Y of (1.3)
s

which reduces to the unit matrix I for x = s , the condition

becomes aY (t)a > 0 . With the help of this version ofs

condition (1.2) it is easy to establish the following property

of suborthogonal systems.

If the system (1.1) is_ suborthogonal, so is the adjoint

system

(1.5) w! = -A*w

Indeed, if the matrix W (x) is the fundamental solution
s

(with W (s) = I ) of the matrix-matrix equation correspondings

to (1.5), we have

(W*Y ) ! - -W*AY + W*AY = 0
s s

and therefore W*T = I . Hence, if ft is an arbitrary
s s

constant vector, and we set a = Y""1(t) j3 = W*(t)j3 , we have
s s

0W_(t)0 = /3W*(t)j8 = aYo(t)a > 0 . Since s,t and thes s s



constant vector j3 were arbitrary, the assertion follows.

2. The principal aim of this paper is to obtain conditions —

expressed in terms of the coefficient matrix -- which guarantee

the nonoscillation of the system (1.1) on a given interval.

All these conditions will follow from two basic inequalities,

which we state here in the form of a theorem.

Theorem 2.1. Let y and w be nontrivial solution vectors

of the systems:

(2.1) y1 = Ay ,

(2.2) w1 = Bw ,

respectively, where the n x n matrices A,B are continuous

on the interval [a,b] . If u,v are the unit vectors

(2.3) u = -X- , V--3L-

llyll l|w||

and C ijs an arbitrary constant orthogonal matrix, then

(2.4) [arc sin[u(b)Cv(b) ] - arc sin[u(a)Cv(a) ]j < f (||A|| + ||B||)dx ,
a

where ||A|| denotes the norm sup ||Aa|| .

If one of the systems (2.1), (2.2) i£ oscillatory on

[a,b] , (2.4) can be replaced by the stronger inequality

b

(2.5) Jarc sin[u(b)Cu(b) j + (arc sin[u(a)Cu(a) ] j < C (|jA|j + |B| |)d x



Proof. Differentiating (2.3), we obtain

ui = y' _ y(yy'>

llyll bf
and a similar expression for v! . In view of (2.1) and (2.2),

this leads to

(2.6) u? = Au - u(uAu)

and

(2.7) v! = Bv - v(vBv) .

If C is a constant orthogonal matrix, we have

(uCvV = u!Cv + vfC*u

and thus, by (2.6) and (2.7) ,

(2.8) (uCv)! = [Cv - (uCv)u]Au + [C*u - (uCv)v]Bv .

Hence, since u and v are unit vectors,

| (uCv) ! | < ||Cv - (uCv)u|i ||A|| + ||C*u - (uCv)v|| ||B|1 .

Because of

||Cv - (uCv)ul|2 = ||Cv||2 - (uCv)2 = 1 ~ (uCv)2

and

||C*u - (uCv)vl|2 = |lC^u||2 - (uCv)2 = 1 - (uCv)2 ,
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this implies

(uCv)
(2.9)

\J 1 - (uCv)2

and an integration establishes (2.4) .

We now turn to the proof of inequality (2.5). Since

uGv = vC*u , we may assume without loss of generality that w

(and thus also v ) is oscillatory on [a,b] . If vi* # # #> v
n

are the components of v , there will thus exist a set of

points x-,...,x in [a,b] , containing at least two

different points (since otherwise w would reduce to the

trivial solution), such that v
t(

xk^ = s O , k - l , . . . , n .

Evidently, the vector Cv(x,) is not changed if the elements

c.j.i=l,...,n in the k-th column of the matrix C are

replaced by different numbers. We shall take advantage of this

fact by substituting - c
i k

 f o r cik^i = lj**->n) 9 anci w e

note that this change does not affect the orthogonal character

of the matrix. Proceeding from a to b , and making this

change whenever a point x, is crossed, we obtain a matrix

function C(x) which is constant and orthogonal in the

intervals between adjacent points x, . By the construction

of C(x) , the vector function C(x)v(x) is continuous

on [a,b] , and we evidently have C(b) = -C(a) = -C .

In any interval between adjacent points x, we may

use (2.9) with C(x) substituted for C . We integrate, and

add up the contributions from all the intervals making up [a,b]



Since C(x)v(x) is continuous, and since C(b) = -C(a) = -C ,

we obtain
b

|arc sin[u(b)Cv(b)] + arc sin[u(a)Cv(a) ] | < f(i|A|| + ||B||)dx .

a

Combining this with (2.4), we obtain (2.5). It is easy to

see that this argument remains valid if some (or even all)

of the points x coincide with either a or b .

In the special case in which C is a diagonal matrix

whose elements c,, are either 1 or -1 , the continuity

of C(x) is not affected by changing c,, into ~ c
k k

 a t

a point at which the k-th component of either u or v is

zero. In order to obtain inequality (2.5) it is therefore

sufficient to assume that, for each k (k = 1,...,n) , the

k-th component of at least one of the vectors y,w vanishes

on [a,b] . If, for x = a , we take C to be the unit

matrix, this leads to the following result.

Theorem 2.2. Let y,w , A,B , u,v have the same meaning as

in Theorem (2.1). Lf, for each k (k = 1,...,n) , the k-th

component of at least one of the vectors y,w vanishes at

a point of [a,b] , then

(2.9) (arc sin[u(b)v(b) ] j + jarc sin[u(a)v(a) ] | < f (||A|| + ||B||)dx



10

3. As a first application of Theorem 2.1 we derive the

following sufficient condition for suborthogonality.

Theorem 3.1. If, for some continuous real function /i = fi(x)

on [a,b] , we have

b

(3.1) J ||A + MElldx < | ,
a

then the system (2,1) ijs suborthogonal on [a,b] . The

constant TT/2 in. (3.1) jls the best possible; iji fact, the

conclusion does not necessarily hold if the sign of equality

is permitted in (3.1).

Proof: We use (2.4), with B = 0 and C = I . Since

(2.2) is solved by an arbitrary constant vector, v may be

taken to be an arbitrary constant unit vector. If a < s < t < b ,

and we set v = u(t) , (2.4) becomes

t b

(3.2) | J - arc sin[u(s)u(t) ] | < ( HA||dx < f ||A||dx .
s a

If (2.1) is not suborthogonal on [a,b] 9 there exist s,te[a,b]

such that u(s)u(t) = 0 . In this case we thus must have

b\<- s,A||dx .
a

If \i = 0 , this conflicts with (3.1) and thus proves Theorem

(3.1) in this particular case. The case of a general continuous

function jz is easily reduced to the case \i = 0 , since the



11

general solution of the system a1 = (A + E^)o is of the

form a = gy , where g(x) is the scalar function exp{ J.pdx)

and y is the general solution of (2.1). We have

(X(s)cr(t) = g(s)g(t)[y(s)y(t)] and, since g t 0 , the

system crT = (A + jxE)a is suborthogonal if, and only if,

the same is true of the system (2.1).

To show that the constant in Theorem 3.1 is the best

possible, we set n = 2m , where m is a positive integer,

and we consider the coefficient matrix A whose elements a.,

are defined as follows: a, , - = 1 , k = l,...,n - 1, a - = (-1) ;
K,K+± n,i

all other elements of A are zero. It is easily confirmed

that the system (2.1) associated with this matrix has a

k
solution vector y = (y-,, • • • ̂ y^) with y o w 1 = (-1) sin x ,

k+1
k = 0, ...,m - 1 , and y2k = (-1) cos x , k = 1, ...,m .

Accordingly, we have y(O)yC~) = 0 , i.e., the system is

not suborthogonal on [°^5] • O n the other hand, it is

easily confirmed that \k\ = 1 , and thus

JL
2

/ ilAlldx - \ .
0

This shows that (3.1) (with the particular choice \i = 0 )

is the best possible condition of its kind and that suborthogonality

does not necessarily obtain if the sign of equality holds in

(3.1). We also note for further reference that the exhibited



solution vector is oscillatory on [O^TT/2] .

Turning now to criteria for nonoscillation, we set

B = 0 , C = I in (2.5) and, as before, we identify the

arbitrary constant unit vector v with u(a) . An application

of Theorem 2.1 then leads to the following result.

Theorem 3.2. Lf the solution vector y of (2.1) iŝ  oscillatory

on [a,b] , then

b

l|y(a)||||y(b)||"
(3.3) £ + arc sin ., ' y ^ . * " " ' „ < J ||A||dx .

As an immediate corollary of this result we find that

the condition

b

l|A||dx < \
as

is sufficient to guarantee the nonoscillation of the system

(2.1) on [a,,b] . However, this criterion can be given a

more general form with the help of an arbitrary diagonal n x n

matrix P , whose diagonal elements p,, are continuously

differentiable and do not vanish on [a,b] . If w = Py and

y is a solution of (2.1), the vector w is a solution of

(3.3) w1 = (PAP"1 + pIp""1)w

and, as remarked by B. Schwarz [16], the system (3.3) is

nonoscillatory on an interval if and only if the same is true
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of the system 2.1; indeed, if y. and wfc are the components

of y and w 9 respectively, then wfc = Pkk
yk ' a n d Pkk ^ °

We thus have the following result.

Theorem 3.3. Let P be. ia diagonal n x n matrix whose

diagonal elements are continuously differentiable and do

not vanish ori [a, b] 3 and let A Ibe a, continuous n x n

matrix on this interval. If

(3.4) f \\PAV~1 + P'P^Udx < 1

then the system (2.1) iŝ  nonoscillatory on [a,b] . The

constant ir/2 in_ (3.4) ijs the best possible, and the con-

clusion does not necessarily hold if the sign o£ equality is

permitted in (3.4).

A weaker form of condition (3.4) (with the constant 1

instead of TT/2 ) was recently obtained by W. J. Kim [7].

(For nonoscillation criteria of a different type see [11,12,16]).

The sharpness of (3.4) can be verified (for P = I ) with the

help of the same example which was used to show that Theorem 3.1

is the best possible of its kind.

4. The presence of the n arbitrary functions in the main

diagonal of P lends a great deal of flexibility to condition

(3.4). For a given A , the best choice of P would be that

which minimizes the integral on the left-hand side (and thus

increases the interval to which the condition may be applied).

*m uSmr
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Since the resulting variational problem will in general

present great technical difficulties, it will often be more

rewarding to choose a matrix P of simple type which depends

on some arbitrary parameters, and then to find the best

criterion obtainable in this way.

We shall illustrate this method in the case of a system

(2.1) which is equivalent to the n-th order scalar differential

equation

(4,1) a ( n ) + r(x)a « 0 ,

where v(x) is continuous on the interval [a,b] . If A

is the n X n matrix whose only non-zero elements a,, are

ak k+1 = = 1 ^ k = = 1 ^ - * ' ^ n ' " 1 a n d a
ni * -r , the solution

vector y of (2.1) has the components cr̂ a1 , . . . ̂ CJ ~ ,

where a is the solution of (4.1). The nonoscillation of

the system is thus equivalent to the condition that, for

any solution a of (4.1), at least one of the functions

v,or , . . . >cr^n~ does not vanish in the interval in question.

An equation with this property is said to be disfocal on the

interval [13]. It may be noted that, by Rollefs theorem

a real disfocal equation is a fortiori disconjugate, i.e.,

none of its solutions can have more than n - 1 zeros on the

interval.

Theorem 4.1. Let R bê  â  closed x-interval and let S

be â  measurable subset of R of Lebesgue measure

If r(x) is continuous on R ,
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:Lf r(x) £ 0 except cm â  null set, and if

(4.2) supt^S)]11"1 j |r|dx < (n ~ I)
S

11"1 j |r|dx < (n I)11""1

R-S

then equation (4.1) .is disfocal on R . The constant in

(4*22) Ijs the best possible.

If r is of constant sign and |r| is monotonic on R ,

the expression (4.2) can be simplified. For instance, if

|r| is nondecreasing and R is the interval [a,b] , (4.2)

may evidently be replaced by the condition

(4.3)

b

sup(c - a)11""1 f |r|dx < (n - i)"" 1^) 1 1 , ce[a,b]

To prove Theorem 4.1, we use a constant diagonal matrix P

If we set p,, =j8~ , k = 1, . ..,n , where j3 is a positive

constant, the matrix PAP = ^-k^ ^ a s ^^e el e m e nts

bk,k+l = i3 . k = 1, ...,n - 1 , b n ^ = -rj3"
n+1 , and all

the other elements b., are zero. It is easy to see that

IJPAP"1 + P'P"1!! = IIPAP""1!! = max[j3jr|r n + 1] ,

and we may therefore conclude from Theorem 3.3 that the

system associated with the coefficient matrix A is non-

oscillatory on R (and, therefore, the equation (4.1) is

disfocal on R ) if

J {max[/3, |r|)3
R
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If S denotes the subset of R on which |r| < j3n , this

may be written in the form

(4.4) fri(S) + / 3 n + 1 J |r|dx
R-S

It is possible to choose /3 in such a way that

\ |r|dx

(4.5, ? **
n - 1 JUS)

Indeed, the set S depends on j3 , and it is easy to see

that the right-hand side of (4.5) varies continuously from

G to a> if j3n decreases from max | r | to 0 • Hence,

there must exist a positive j3 for which (4.5) holds.

For this particular value of j3 9 the left-hand side of (4.4)

takes the form

_1

1 ( n

(4.6) n - 1 ̂
n ~ ^-HMCS)] J |r|dx]

R-S

and condition (4.4) will thus certainly be satisfied if (4.2)

holds. This completes the proof of Theorem 4.1.

To show that the constant in (4.2) is the best possible,

we consider the equation

a ( 2 m ) - (-l)ma = 0
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on the interval [O,TT/2] . The solution sin x of this equation,

as well as all its derivatives, vanish at either 0 or TF/2 ,

and the equation is thus not disfocal On [O,TT/2] . On the

other hand,

7T

2
n~ 1 ( |r|dx = max c11"1^ - c) = (n - i) 1 1" 1^!) 1 1 ,- (n-2m)max c

c

and this shows that the constant in condition (4.2) (which in

this case is equivalent to condition (4.3)) cannot be improved

upon.

5. In this section we explore some of the consequences of

Theorem 2.2. In our first application, we use a matrix B

whose only non-zero elements b., appear in the n-th

column, and we set b = b 2 =. . -^b = e (1 <. m <C n - 1) ,

where e is a small positive number, and b - =..-.= b ^ = 0 .
^ m+l,n n, n

We have ||B|| = e ̂ Tm , and it is easily confirmed that the

system (2.2) associated with this matrix B has the solution

vector w = (e(x - x-) , e(x - x ) , . . . , e (x - x ) , c™. •!>•••€„ i*l)
JL & m m+ x n— x

where x-,...,x , c _,...,c" are arbitrary constants.1 m m+1 n-1

If x G[a,b] , r = l,...,m , the first m components of w

have zeros in [a,b] , and Theorem 2.2 can be applied if

y = (y-jj--**y ) is a solution vector of (2.1) whose component,

y _i.-i'****y vanish at points of [a,b] . For e -+ 0 ,

we have ||B(| -* 0 and v = w/||w|l t ends t o a cons t an t u n i t
vec to r v = ( v ^ , . . . , v ) with v- = v^ = . . . = v = 0 , v, = OL ,

X U JL £t m 1£ -K

k = n + 1,...,n. This leads to the following result.
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Theorem 5.1. Let y = (y,,...,y ) be a solution vector
— — _ — — _ — _ ____— i j_ n - —— ' — — — — — — — —

of the system (2,1) . If each of the components ym+1> • • • *yn(l<m<n--l)

vanishes at some point of the interval [a,b] , then

b

(5.1) I arc sin E u, (b)a, | + (arc sin E u, (a)al < C ||A||dx .

where u = (u-, . . . ,\i ) = y/||y|| > and the OL are such that
1 • x n • - • ic " • - ' ' — — — —

2 2a -+.•.+ a = 1 and are otherwise arbitrary.
m~r x n - • - '

Our next application refers to the case in which (2.2)

is the system adjoint to A , i.e., B = -A* . Since ||B|| = ||B*|

Theorem 2.2 yields the following result.

Theorem 5.2. Let y and w be, respectively, solution

vectors of the system (2.1) and its adjoint (1.5), and set

u = y/l|y|| , v = w/||w|| . I£, for each k (1 < k < n) , the

k-th component of either y o£ w has £ zero on [a,b] ,

then

b

(5.2) |arc sin[u(b)v(b) ] | +• |arc sin[u(a)v(a) ] | < C ||A||dx

a

This result leads to interesting consequences in the case

in which the system 2.1 is equivalent to an n-th order

differential equation

(5.3) a ( n ) + rn-Bla
(n-1) +...+ TQO = 0 ,
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i.e., if the non-zero elements a., of A are given

b y Air ir4.1 = 1 , k = 1 , • • • > n - 1 , a . = - r. , , k - 1, , n .
JV , J\.-T X IllV XV~ X

If cr is a solution of (5.3), then the vector y - (cr,a» , . . . ,a(n~

is a solution of the system (2.1), and if r is a solution of

the equation

(5.4) T ( n ) - (r 1 T )
( n " " 1 ) + -...+ (-l)nT T = 0

n-1 o

adjoint to (5.3), the vector w = (T^n~ ,T^n~ , . . . , T ! , T )

solves the adjoint system (1.5) (see e.g., [2]). Let now o be

a solution of (5.3) which has k zeros (0 < k < n) in [a,b] ,

and denote by T a solution of (5.4) with n - k zeros in

(k-1)
this interval. By Rollefs theorem, the functions a,o},...,av

T,T* f ...,T'
n~k~1' all have zeros in [a,b] , and it follows

that, for each m (1 <C m < n) , the n-th component of either y

or w has a zero in [a,b]. In view of Theorem (5.2), this

establishes the following statement.

Theorem 5.3. Let or and T be, respectively, nontrivial

solutions of equation (5.3) and its adjoint (5.4), and set

n

(5.5) T(x) « ^ 2 L ^

*
k

n

=1
1°(k - 1) I2

n

2.
k = l

[r ( k - 1) ] 2

N
(cr = a(x) , T - r(x))
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If_ A iŝ  the companion matrix of equation (5.3) and

b

( ||A||dx < arc sin|T(b)| + arc sin|T(a)| ,

a

then the combined number of zeros of o and T iji [a^b]

cannot exceed n - 1 .
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