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1.- Introduction. In [5], a theoremis proved which asserts

the existence of a non-trivial solution to the problem

@ Ay + yF(y*x) =0 in O, Ylao = 0,

where A is the Laplace operator, Qis a bounded region in RY
for which the Dirichlet problemis solvable, and F is a function
| ocal |y Hbl der continuous on IE¥£} Satisfying, for some € >0

and al | xe€},

(2) 0 < nlF(ri sx) <_r?2%F(77, x), for 0 <rj™ r?2< oo,

and al so, for all xefl

(3) F(?7,x) < cr)’ +or, 0 <7 <oo0

where c,a and y are positive constants, (N-2)y < 2. This
result is the analogue of a result of [8 concerning a boundary
val ue problem for a non-linear ordinary differential equation.
The result of [5 concerning (1) was obtained by treating the
integral equation equivalent to (1) by methods simlar to those
used in [9]e

In this note we shall derive fromthe results of [5 an

exi stence theorem for a boundary value problemof the form

(4) TU = uF(u?, x) in fi, Dw ~=0, |a<ml,

\’%‘*FMFQ??@F]’;X'L");E: tflva%FgT
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where r is an elliptic operator of order 2 D = -
p P m - &T:ffa;ﬂﬁ
|a| = at ... oh; m> 1" N> 1. The result obtained here was

suggested by the main theoremof Berger's study, [4], of a non-

linear elliptic eigenvalue problem




2. The differential operator, We shall assume throughout

this section that Q is a region of class c2m (see def. 9.2,

[3]) and that the differential operator r, given in the form

(5) T = m”qDaaaB(x)DB,
le|, [B]<m
has real coefficients satisfying
(6) g ecmxtel, 1B @, all a,B.

In addition we assume that T is uniformy strongly elliptic

in C and that there exists a positive constant Co such

t hat
(7) Bl<p, <Pl ol [epl |2, all cpe@"(Q,
where

W shall use standard notation. For r > 1, ||. .. ”n,r s

t he Sobol ev norm defi ned as foll ows,

-
for <p having strong I¥ -derivatives of order upto m in Q
V\Flkr(CI) is the space of all such functions (because of the
snoot hness assunption concerning O this is equivalent to the
more usual definitionof W*I>(a)); WA"(O) is normedby |[[...][|]|. _.
Finally, I1g L(d) is the closure of c°g(c1) in whT(Q). o

W t hout exception the function space considered here will be




understood to consist of real valued functions.
By a standard result, see Theorem 8.2, [3], the generalized

Dirichlet problemw th zero boundary data

Bl<p.u] = (<p.f), all (p€ct” (0),

| a0 Q
has a unique solution ucW? (0) for each feL (O). Actually

the same is true for f€LYO) provided
(8) q > do = max(l, 2N/ (N+2m)) , q< 2

This follows fromthe fact that, because of the Sobol ev imbedding

r];—+ - and

XT SL

theorem  W?!'*2A) js stronger than L°(0) when
(8) holds. Thus for feL%(0), cpevia 3(Q),

9) | (<Pf) | <. HVILIIfIL ,<_const, \\co\}, , Iff]...
XT S» 9 Sl

2 .
The sane proof as in the case where feL then works for

We define an operator A whose domain is U, L*(0O and

N\
feL1.

-m 2 190
whose range is contained in wb (O, by
(10) Blcp, Al = ((0f), all (peviri(d)

upon taking <p = A in (10) it follows from (7) and (9) that
A acts as a bounded operator from LY 0) to V@f‘g 2(O) for each
g > Qo-

W shall require the following results from [1] and [2].

() LL f€L(O) , r > do then AfeW™'(0O), and there

exists xa_constant k™ such that
' r

(11) Iagll o< %, (gl + I




(**) 1l. feL’® (Q and u = Af, then (after nodification
on a set of measure zero) ueCz”" 1(55 and u sﬁj_l_s_u_es_tj_e.b,o_u.n_d_

ary condi 't i ons

(12) D°u‘= O - on dfl, |al<m.

(***) if_ f€C°~(n) and if

(13) A\Ned AW Wt m, dl a,fi
for some fi: 0 <\L<1, _then u=AfeC™ O) and u satisfies
(12).

C*P(f2) is the space consisting of those f'unctions in

Ck(O) whose ktﬁ order derivatives are uniformy Hol der con-
ti nuous of order \x in Q

The first assertion® (*)g follows fromTheorem8.2, [2];
the proof of (**) is also in [2]; (*) follows from Theorem
A5.1, Appendix 5, [1]. Al though we do not use the fact here it
Is interesting to note that the assertion (**) is equivalent to
the assertion that for r > d, @ function u belongs to
wiJ'?(0) OW™ " (fl) if andonly if it is the limt in W™ "(0)
of a sequence (u,), where, for each n, u,€C®™(0O)n W™ "(fi)
and u = u, satisfies (12) .

If r >0 then TU can be defined for ueW™ "(0), if

r > qo then W™ ' can be inbedded in W™~ | we shall denote
2
by Ar for r >qo the operator in L (O) whose domain is

M =W™"(0) nwlJ**(0O and which sends u - TU. Since

Blp,¥]l = {o,Td) = (<p, »0), for cpeC* (O), peM',

Act uaIIK this is not so unless (6) is strengthened. An adapta--
tion of the argunents in [2] to the case where the operator is

gl ven |(n)d| vergence formgives a result inplying (¥ under con-
ition (6) .




it follows that
(14) _ A& U = u, for ueM.
On the other hand, by (*), A maps L"(Cl) into M' so
B[<p,Af] = ((p,*>Af), for <p'e%w {d), fEL"(Q),
thus
- (15) O >SAf = f for feL'(O).

We put A, = A|L"(O) .

Lemma 1. For each r > g -
A;: L'(O) - M

is a bijection. Mreover there are positive constants C oxCn

such that for felL (0O

(16) O K 112-.1 i «'»r £ «i»V»2.,r-
Proof, W have shown that Ar and 8& are inverses of
one another. It readily follows from (6) that |fi u|| <_const, |ul. s
r i «<nr

whi ch inplies the second inequality of (16) M is a subspace
of W™ "(a) so the first inequality of (16) follows fromthe
open mappi ng theorem

Lemma 2. Let r >qg . If 2mm <N then A maps L'(0)
compactly into L°(Q  for

(17) 1 <s < Nr/(N-2nr);




2nr > N then A can be regarded as a., conpact mapping of

p——

i f
L'(0) into QUJT).
Proof. Let g <r, then by Lenma 1 A maps L’fCI) into

W™ (0) . If 2m <N then, by SoboleVs theorem W™ "( Q)
can be inbedded compactly in L“(CI)' for any s satisfying
(17) . If 2mr > N then W™ '(f2) can be inbedded conpactly
in c(f.

The followng lemma will sinplify matters by making the
results of [5] applicable,, as they stand, to the problemconsid-
ered here.

Lerma 3. Let a =N(N2m or let a* = O according as

N>2m O N < 2m There exists a-measurable function Gx,t)

on OxO0 such that the napping

X - Qx, )
is uniformy continuous from O to_ L% 0) for 1< ac< ay:
and
(18) ess sup I|rG(x t) | °dt < 00, ess sup I|’G(x"t) | 2dx < oe
| xefl 1 "~ teO |
for 1 <a<a For feL'(O), r > qo
(19) [A] (X) =J£G(K,t)f(t)dt, a.e. in 0.

Y
Proof. Let 2mr > N, so that A can be regarded as a map
of L¥(Q into ). By awell known representation theorem
(TheoremVI . 7.1, [6]) there is a continuous map X -¢ (x, *) of

S into L3(Q, where *+ L= 1 such that (19) holds everywhere
ra
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in Q for f€L'(fi). It is easily seen that the function Gx,t)
i s independent of the particular choice of r. Let

c- valfofa ot
S S

(notice the symmetry of (6)), and let A* be defined by

(21) BA*f,0] = (£, pewEr2(Q) , £e13(Q), q > q -
It follows that for frgel(fi) , q > g, we have
(22) (Atg.f) =fer, Af).

Because of the symmetry of (6), A* has an integral representa-
tion analogous to (19) for fE€L'(ft), 2nr > N, let G (x,t)
denote the corresponding kernel. It follows then from (22)

t hat

JGES* (t,x) f(x) g(t) dxdt :J(§(x, t) f(x)g(t) dxdt,
an 20
for f,geL'(O) , 2nt > N. Thus we have

G(t,x) =0G(x,t), a.e. in QXO,

an.d fromthe uniformcontinuity of x -« G(x,*)” and t -» G(t,*)
as mappings from Q to L% Q) > 1<ac< a,, follow the inequal -
ities (18) .

It remains to showthat (19) is valid for felL=(£2) when
r>q,. and 2nmmr < N. In this case however it follows from (18)
and Theorem 9.5.6, [7], that the right hand side of (19) defines
a conpact mapping from L[(£2)' to LS(Q>) for

1 <s <N/(N2nr) .




Thus since (19) is valid for f in a dense subset of Lr(Q),
(nanely for feLrL{Q) , 2nmry > N), it follows fromLema 2 that

it isvalid for felL' (0.
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3, The non-| i near problem Let O and r be as in Sec-

tion 2. The main result of this note is the follow ng.

Theorem  Suppose that (13) holds, for sone Doéitive /i less
than 1 and that F i~ uniformy HSl der continuous on RXQ
Suppose also that F satisfies (2) for some e > 0 and that
(3) holds, for all xefi, with positive _constants ¢, CI and vy
where
(23) 0 <y, y(N-2m) < 2m

Finally assunme that r ]ls formally self-adjoint. Then there

exists <a function ueCHfi) nc™" La) which is not identically

zero and satisfies (4) (in the ordinary sense).

Proof. We consider the operator equation
(24) u = AuF(u?, x) ,

where A has the same meaning as in Section 2. By Lemma 3 this

is equivalent to an integral equation
(25) u( x) :{lG(x,t)u(t)F(uz(t),t)dt,

where, since r is formally.self-adjoint, GQx,t) is symetric;

(18) holds for 1 <a, a(N2m< N It readily follows from (7)
2

that A, regarded as an operator in L (O , is positive definite;
the range of A contains C°q’ (O and is therefore dense in
LP(0) for any p > 1. Now fromTheorens 1 and 3 of [5] it
follows that (25) has a non-trivial essentially bounded sol ution
u; sée also the remarks followi ng the statenent of Theorem 2 of

[5]. Fromthe equival ence of (24)and (25) it follows that wu
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satisfies (24). By (3), u(x)F(uZ(x),x) I's essentially bounded
and thus, by (*), ueC*™"!(U) and u satisfies (12). Prom
the differentiability of u and the hypothesis concerning F

it follows that u(x)F(uZ(x)’vo is uniformy HOl der continuous
in Q Finally by (* we conclude t hat ueCzKC» and is an

ordinary solution of (4). This conpletes the proof.
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