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1. Introduction. In [5], a theorem is proved which asserts

the existence of a non-trivial solution to the problem

(1) Ay + yF(y2,x) =0 in O, y | a o = 0,

where A is the Laplace operator, Q is a bounded region in R

for which the Dirichlet problem is solvable, and F is a function

locally Holder continuous on R,x£} satisfying, for some € > 0

and all ,

(2) 0 < nl£F(rilsx) < r?2€F(772,x), for 0 < r j ^ r?2< oo ,

and also, for all xefl,

(3) F(?7,x) < cr)7 + or, 0 < 7] < oo ,

where c,a and y are positive constants, (N-2)y < 2. This

result is the analogue of a result of [8] concerning a boundary

value problem for a non-linear ordinary differential equation.

The result of [5] concerning (1) was obtained by treating the

integral equation equivalent to (1) by methods similar to those

used in [9]•

In this note we shall derive from the results of [5] an

existence theorem for a boundary value problem of the form

(4) TU = uF(u2,x) in fi, D% | ̂  = 0, |a|< m-1,

os v n i i , n t . g i f c * f j ; ^ L i ) i < ;;tf j V- t tdt S T



where r is an elliptic operator of order 2m, D
chc,1. . .chc

|a| = a,+ ... + o^; m >^ 1^ N >_ 1. The result obtained here was

suggested by the main theorem of Berger's study, [4], of a non-

linear elliptic eigenvalue problem.



2. The differential operator, We shall assume throughout

this section that Q, is a region of class C (see def. 9.2,

[3]) and that the differential operator r, given in the form

has real coefficients satisfying

(6) a

In addition we assume that T is uniformly strongly elliptic

in Cl and that there exists a positive constant c such

that

(7) B[<p,<p]> co||cp||^2 , all cpeC™ (Q),

where

Bl<P^] |o|,T|8|<m ^ a D

We shall use standard notation. For r > 1, ||. . . || is

the Sobolev norm defined as follows,

for <p having strong L -derivatives of order up to m in Q;

W * (Cl) is the space of all such functions (because of the

smoothness assumption concerning Cl this is equivalent to the

more usual definition of W3nclj>r(a)); Wm^r(O) is normed by ||. . . ||
111, XT

Finally, IN' (Cl) is the closure of C00 (Cl) in

Without exception the function space considered here will be



understood to consist of real valued functions.

By a standard result, see Theorem 8.2, [3], the generalized

Dirichlet problem with zero boundary data

B[<p,u] = (<p,f), a l l (p€c£° (0 ) ,

m 0 0

has a unique solution ucVv' (0) for each feL (O). Actually

the same is true for f€Lq(O) provided

(8) q > qQ = max(l,2N/(N+2m)) , q < 2 .

This follows from the fact that, because of the Sobolev imbedding

theorem, W 1 1 1* 2^) is stronger than L P(O) when — + — = 1 and
XT SL

(8) holds. Thus for feL q(O), cpeVf^' (Q),

(9) | (<P,f) | < HvlLllflL < const, \\co\\ ||ff||
XT S» 9 SI

2 ^
The same proof as in the case where feL then works for

We define an operator A, whose domain is U > L^(O) and

2
 q qo

whose range is contained in w' (O), by

(10) B[cp,Af] = ((0,f), all (peVf^2(Cl) ,

upon taking <p = Af in (10) it follows from (7) and (9) that

A acts as a bounded operator from Lq(0) to W111' (O) for each

q > qo-

We shall require the following results from [1] and [2].

(*) If f€Lr(O) , r > qQ then AfeW2m'r(O), and there

exists <a constant k^ such that
—————— r
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(**) II. feL00 (Q) and u = Af, then (after modification

on a set of measure zero) ueC m" (O) and u satisfies the bound-

ary conditions

(12) D°u = O, on dfl, |a|<m .

(***) if f€C°^(n) and if

(13) ^Wed^W'W'tm , all a,fi ,

for some fi: 0 < \L < 1, then u = AfeC m(O) and u satisfies

(12).

C *p(f2) is the space consisting of those functions in

C (O) whose k— order derivatives are uniformly Holder con-

tinuous of order \x in Q.

The first assertion^ (*)9 follows from Theorem 8.2, [2]3

the proof of (**) is also in [2]; (***) follows from Theorem

A5.1, Appendix 5, [1]. Although we do not use the fact here it

is interesting to note that the assertion (**) is equivalent to

the assertion that for r > q , a function u belongs to

wJJ'2'(o') 0 W2m'r(fl) if and only if it is the limit in W 2 m' r(0)

of a sequence (u n), where, for each n, un€C
2m"1(O)n W2m'r(fi)

and u = u satisfies (12) .

If r > 0 then TU can be defined for ueW2m'r(O), if

r > qQ then W 2 m' r can be imbedded in W™1^ , we shall denote
2

by A , for r > q , the operator in L (Cl) whose domain is

Mr = W 2 m* r(O) n wJJ*2(O) and which sends u - TU. Since

= (<p,»r0), for cpeC^ (O), r

Actually this is not so unless (6) is strengthened. An adapta-
tion of the arguments in [2] to the case where the operator is
given in divergence form gives a result implying (*) under con-
dition (6) .



i t follows that

(14) A&ru = u, for ueM.

On the other hand, by (*) , A maps Lr (Cl) into Mr so

B[<p,Af] = ((p,*>rAf), for <peC™ {d), f€Lr(Q),

thus

(15) *>rAf = f , for feLr(O).

We put Ar = A|Lr(O) .

Lemma 1. For each r > q ,

Ar: Lr(O) - Mr

is a_ bijection. Moreover there are positive constants c
r*

c
r

such that for feLr(O)

(16) OrK'112-.r i «f»r £ «i»V»2.,r-

Proof, We have shown that A and & are inverses of

one another. It readily follows from (6) that ||fi u|| <_ const, ||u|L s

r JL «m ̂r

which implies the second inequality of (16) M is a subspace

of W 2 m' r(a) so the first inequality of (16) follows from the

open mapping theorem.

Lemma 2. Let r > q . If 2mr < N then A maps Lr(0)

compactly into Ls(Q) for

(17) 1 < s < Nr/(N-2mr);



if 2mr > N then A can be regarded as a. compact mapping of

Lr(0) into C(JT).

Proof. Let q < r, then by Lemma 1 A maps L (Cl) into

W 2 m' r(0) . If 2mr < N then, by SoboleVs theorem, W2m'r(Q)

can be imbedded compactly in L (Cl) for any s satisfying

(17) . If 2mr > N then W2m'r(f2) can be imbedded compactly

in

The following lemma will simplify matters by making the

results of [5] applicable,, as they stand, to the problem consid-

ered here.

Lemma 3. Let a = N/(N-2m) or let a^ = OD according as

N > 2m O£ N < 2m. There exists a measurable function G(x,t)

on 0 x 0 such that the mapping

x - G(x, •)

is uniformly continuous from O to, La(0) for 1 < a < a .

and

(18) ess sup l|G(x,t) |adt < oo, ess sup l|G(x^t) |adx < cx> ,
xefl I teO

for 1 < a < aQ. For feLr(O) , r > qQ,

(19) [Af] (x) = (G(K,t)f(t)dt, a.e. in 0 .

Proof. Let 2mr > N, so that A can be regarded as a map

of L (Q into C(C2). By a well known representation theorem,

(Theorem VI. 7.1, [6]) there is a continuous map x -• G(x, •) of

SI into L a ( Q , where — + — = 1, such that (19) holds everywhere
r a
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in Q for f€Lr(fi). It is easily seen that the function G(x,t)

is independent of the particular choice of r. Let

(20) r* =

(notice the symmetry of (6)), and let A* be defined by

(21) B[A*f,0] = ( £ Q

It follows that for f^geLq(fi) , q > q , we have

(22) (A*g,f) = fer,Af) .

Because of the symmetry of (6), A* has an integral representa-

tion analogous to (19) for f€Lr(ft), 2mr > N; let G*(x,t)

denote the corresponding kernel. It follows then from (22)

that

JJG* (t,x) f (x) g (t) dxdt = JIG (x, t) f (x) g (t) dxdt,

for f,geLr(O) , 2mr > N. Thus we have

G*(t,x) = G(x,t), a.e. in QXO,

and from the uniform continuity of x -• G(x,*)^ and t -» G*(t,*)

as mappings from Q, to La(Q) > 1 < a < a , follow the inequal

ities (18) .

It remains to show that (19) is valid for feL (£2) when

r > q , and 2mr < N. In this case however it follows from (18)

and Theorem 9.5.6, [7], that the right hand side of (19) defines
r ' sa compact mapping from L (£2) to L (Q>) for

1 < s < Nr/(N-2mr) .



Thus since (19) is valid for f in a dense subset of L (Q),
rl(namely for feL {Q) , 2mr1 > N), it follows from Lemma 2 that

it is valid for feLr(O).
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3, The non-linear problem. Let O and r be as in Sec-

tion 2. The main result of this note is the following.

Theorem. Suppose that (13) holds, for some positive /i less

than 1 and that F i^ uniformly Holder continuous on R X Q.

Suppose also that F satisfies (2) for some e > 0 and that

(3) holds, for all xefi, with positive constants c,CT and y

where

(23) 0 < y, y(N-2m)< 2m.

Finally assume that r ]Ls_ formally self-adjoint. Then there

exists <a function ueC m(fi) n Cm"" {Ci) which is not identically

zero and satisfies (4) (in the ordinary sense).

Proof. We consider the operator equation

(24) u = AuF(u2,x) ,

where A has the same meaning as in Section 2. By Lemma 3 this

is equivalent to an integral equation

(25) u(x) = /G(x,t)u(t)F(u2(t),t)dt,

where, since r is formally .self-adjoint, G(x,t) is symmetric;

(18) holds for 1 < a, a(N-2m)< N. It readily follows from (7)

2

that A, regarded as an operator in L (O) , is positive definite;

the range of A contains C°° (O) and is therefore dense in

L p(0) for any p > 1. Now from Theorems 1 and 3 of [5] it

follows that (25) has a non-trivial essentially bounded solution

u; see also the remarks following the statement of Theorem 2 of

[5]. From the equivalence of (24)and (25) it follows that u
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2
satisfies (24). By (3), u(x)F(u (x) ,x) is essentially bounded

and thus, by (**) , ueC2*1""1 (U) and u satisfies (12). Prom

the differentiability of u and the hypothesis concerning F
2

it follows that u(x)F(u (x) ̂ x) is uniformly Holder continuous

in Q. Finally by (***) we conclude that ueC m(O) and is an

ordinary solution of (4). This completes the proof.



12

References

1. S. Agmon, A. Douglis and L. Nirenberg, Estimates near the
boundary for solutions of elliptic partial differential
equations satisfying general boundary conditions I, Coram.
on Pure and Appl. Math., 12̂  (1959), 623-727.

2. S. Agmon, The Lp approach to the Dirichlet problem, Ann.
Scuola norm sup. Pisa Sci fis. mat., III. Ser 13, (1960),
405-448.

3. S. Agmon, Lectures on Elliptic Boundary Value Problems,
Van Nostrand, Princeton, 1965.

4. M. S. Berger, An eigenvalue problem for nonlinear elliptic
partial differential equations, Trans. Amer. Math. Soc.
120 (1965), 145-184.

5. C. V. Coffman, An existence theorem for a class of non-linear
integral equations with applications to a non-linear elliptic
boundary value problem, Carnegie-Mellon University Report
67-37.

6. N. Dunford and J. T. Schwartz, Linear Operators, Part I.
Interscience, New York, 1958.

7. R. E. Edwards, Functional Analysis, Holt Rinehart and Winston,
Inc., New York, 1965.

8. Z. Nehari, On a class of nonlinear second order differential
equations, Trans. Amer. Math. Soc, 9J5. (1960), 101-123.

9. Z. Nehari, On a class of nonlinear integral equations, Math.
Zeit., 72. (1959), 175-183.


